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Abstract

We propose a testing based procedure to determine the number of common trends
in a large non-stationary dataset. Our procedure is based on a factor representation,
where we determine whether there are (and how many) common factors (i) with linear
trends, and (ii) with stochastic trends. Cointegration among the factors is also permit-
ted. Our analysis is based on the fact that those largest eigenvalues of a suitably scaled
covariance matrix of the data corresponding to the common factor part diverge, as the
dimension N of the dataset diverges, whilst the others stay bounded. Therefore, we
propose a class of randomised test statistics for the null that the p-th largest eigenvalue
diverges, based directly on the estimated eigenvalue. The tests only requires minimal
assumptions on the data generating process. Monte Carlo evidence shows that our
procedure has very good finite sample properties, clearly dominating competing ap-
proaches when no common trends are present. We illustrate our methodology through
an application to US bond yields with different maturities observed over the last 30
years.
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1 Introduction

Large panels of time series often exhibit co-movements, and can also be non-stationary. In

such a case, a convenient way of capturing both aspects (co-movements and non-stationarity)

is to employ a factor model where the factors represent common trends. Hence, the first

step in the analysis is to determine the presence (or indeed the absence), and the number,

of common trends.

The importance of considering common, non-stationary trends when modelling large datasets

has been illustrated through numerous applications. For example, focusing only on economics

and finance, Bai (2004) studies employment fluctuations across 60 industries in the US; Moon

and Perron (2007) consider a panel of interest rates at different maturities in the US and

Canada; Engel, Mark, and West (2015) develop a forecasting technique applied to a panel of

bilateral US dollar rates against 17 OECD countries; and Zhang, Robinson, and Yao (2019)

apply a non-stationary panel factor model to US Industrial Production indices. Whilst, in

all the aforementioned applications, the common trends are assumed to be stochastic, panel

models with common deterministic, linear trends have also been employed, for example, in

the context of analysing macro-economic data (see Maciejowska, 2010), and also in order to

model US temperature data (see Chen and Wu, 2019).

In this paper, we consider the following large approximate factor model for an N -

dimensional vector of time series Xt:

Xt = ΛFt + ut, (1)

where Ft is an r × 1 vector of common factors and Λ is an N × r matrix of factor loadings,

with r < ∞. We propose a testing procedure to determine the dimension of the following

three groups: (a) factors with a linear trend and an additional, either I (1) or I (0), zero

mean component; (b) pure, zero mean I (1) factors, i.e. with no linear trends; and, (c)

finally, stationary common factors. Each group may well have dimension zero, e.g. factors

with linear trends may not be present, etc. If, in model (1), either group (a) or (b) is non-

empty, this entails that Xt is driven by some common trends. We also assume, throughout

the paper, that each component of the idiosyncratic vector ut is I (0), which, in the presence

of common stochastic trends, implies that Xt is cointegrated. Although this may be viewed

2



as a restriction, we point out that our procedure could be employed even in the presence of

non-stationary idiosyncratic components, as long as these are only a vanishing fraction of

the total, say at most O(Nα0), for any α0 < 1 - see also the comments in Section 3.2.

In order to determine the dimension of each of the groups mentioned above, we propose

a procedure based on the eigenvalues of the second moment matrix of the data, building on

the well-known fact that the number of common factors is related to the number of spiked

eigenvalues - i.e., the eigenvalues which diverge to infinity as N → ∞. In particular, we

develop tests to distinguish whether an eigenvalue is bounded or spiked, and use them in

a sequential fashion to estimate the number of common factors belonging in each group.

In order to construct the tests, (i) we derive the rates of the eigenvalues of the second

moment matrix of the data as min (N, T )→∞; and (ii), based on those bounds, we propose

a randomisation procedure which produces a statistic whose asymptotic behaviour under

the null and the alternative hypotheses we are able to study. Whilst details are spelt out

hereafter, we point out that our asymptotics does not require virtually any restriction on

the relative rate of divergence N and T as they pass to infinity.

Our research question is mainly related to three works. The first contribution in this

area is the paper by Bai (2004), who develops the inferential theory for a large panel factor

model with common stochastic trends, including a family of information criteria to estimate

the number of common (stationary and non-stationary) factors. Whilst linear trends are not

considered, Maciejowska (2010) extends the inferential theory to the case of linear trends,

although a method to determine their presence is not explicitly derived. Finally, a recent

contribution by Zhang et al. (2019) proposes a method based on the ratio of the eigenvalues

of (a transformation of) the long-run covariance matrix to find the number of I(d) factors for

d ≥ 0. In addition to not considering linear trends, however, the theory developed therein

also requires the constraint N
Tκ
→ c ∈ (0,∞), for κ ∈

(
0, 1

2

)
, as min (N, T )→∞.

Broadly speaking, the literature has considered the presence of common trends in mul-

tivariate time series in a plethora of contributions, at least since the seminal articles by

Phillips and Ouliaris (1988) and Stock and Watson (1988); more recent extensions to high-

dimensional settings include Peña and Poncela (2006), Gengenbach, Palm, and Urbain (2009)

and Zhang, Pan, and Gao (2018). Similarly, there is a vast body of literature on unit roots

and cointegration in large panels arising from the presence of common stochastic trends -

3



we refer, inter alia, to Moon and Perron (2004), Bai and Ng (2004), Bai, Kao, and Ng

(2009), Kapetanios, Pesaran, and Yamagata (2011), and Pesaran, Smith, and Yamagata

(2013). Further, the literature has recently extended the theory of cointegration to a high-

dimensional setting (see Onatski and Wang, 2018 and Liang and Schienle, 2019); we point

out that, while in this strand of the literature, the cointegration rank is implicitly assumed

to be finite for any N , in our context the number of cointegration relationships grows with

N . Finally, we note that the issue of finding the number of common factors has been studied

at length in a stationary setting - examples include Bai and Ng (2002), Onatski (2010), Ahn

and Horenstein (2013), and Trapani (2018). However, to the best of our knowledge, in a

non-stationary setting like (1), only the information criteria developed by Bai (2004) are

available.

The remainder of the paper is organised as follows. In Section 2 we outline the main ideas

behind our testing procedure. In Section 3, we spell out the main assumptions and (in Section

3.2) we study the strong rates of convergence of the eigenvalues of various rescalings of the

second moment matrix of Xt. The testing algorithm is presented in Section 4. Numerical

evidence from simulations is in Section 5. In Section 6 we report an empirical illustration

on the dimension of the yield curve. Finally, Section 7 concludes. Proofs and further results

are in the Supplement available online, where we also report further Monte Carlo evidence.

NOTATION. We define the Euclidean norm of a vector a = [a1, ..., an] as ‖a‖ = (
∑n

i=1 a
2
i )

1/2
,

and similarly for a matrix A, ‖A‖ denotes the Frobenius norm; “a.s.” stands for “almost

surely”; IA (x) is the indicator function of a set A; finally, C0, C1, etc... denote positive, finite

constants whose value may differ from line to line. Other relevant notation is introduced

later on in the paper.

2 Main ideas

We here present a heuristic preview of how the procedure works, while main arguments are

laid out in the remainder of the paper. To begin with, in the presence of linear trends, it can

be expected that the sample second moment matrix of Xt will diverge as fast as T 3. Also, due

to the well known eigenvalue separation property of large factor models, it can be expected

that the eigenvalues corresponding to common factors should diverge as fast as N . This
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suggests considering the eigenvalues of T−3
∑

tXtX
′
t (denoted as, say, ν

(p)
1 , p = 1, . . . , N) to

decide between  H
(p)
0,1 : ν

(p)
1 →∞,

H
(p)
A,1 : ν

(p)
1 <∞,

as min (N, T )→∞; the test can be carried out for p = 1, 2, ..., stopping as soon as the null is

rejected. Similarly, considering the zero mean, I (1) common factors, the Functional Central

Limit Theorem (FCLT) suggests that the second moment matrix of Xt will diverge as fast as

T 2, again with the eigenvalues corresponding to the common factors diverging as fast as N .

Thus, one could study the eigenvalues of T−2
∑

tXtX
′
t (denoted as, say, ν

(p)
2 , p = 1, . . . , N),

and decide between  H
(p)
0,2 : ν

(p)
2 →∞,

H
(p)
A,2 : ν

(p)
2 <∞,

as min (N, T ) → ∞, carrying out the test as above. The output of these two steps is an

estimate of the number of common factors which have a linear trend and of those which are

genuinely zero mean I (1) processes, respectively. Note that, in both steps, if we reject the

null-hypothesis when p = 1, we are in fact saying that there are no common deterministic

or stochastic trends. This approach could be complemented by using T−1
∑

t ∆Xt∆X
′
t and

determining the number of total common factors as suggested in Trapani (2018), which would

provide an indirect estimate of the number of common stationary factors and therefore of

the number of cointegration relations between factors.

From a technical point of view, the implementation of the algorithm described above

presents one difficulty: we are unable to construct test statistics which converge to a dis-

tributional limit under the null hypotheses, and the best result we can obtain are rates.

Thus, we base our tests on randomising the test statistic. This approach builds on an idea

of Pearson (1950), and it has been exploited in numerous contexts - see e.g. Corradi and

Swanson (2006), and Trapani (2018) in the context of factor models. A major advantage of

this procedure is that only rates are needed, and these can be derived under quite general

assumptions. In particular, we derive our rates (and, thus, we are able to apply our test)

under virtually no restrictions on the relative rates of divergence of N and T as they pass

to infinity (see Assumption 5 below for details), which can be compared with the standard

restriction that as min (N, T ) → ∞, N
T
→ c ∈ (0,∞), often assumed in random matrix
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theory (see also Onatski and Wang, 2018, where a similar restriction is needed); in principle,

our procedure can be applied to a wide variety of datasets, being particularly useful when

either dimension is much bigger than the other (see also the discussion in Section A.5 of the

Supplement).

3 Theory

3.1 Model and assumptions

The scalar version of our model (1) is:

Xi,t = λ′iFt + ui,t, 1 ≤ i ≤ N, (2)

where λi and Ft are r × 1 vectors. We assume that

Ft = a (d1t) +Bψt, (3)

where a is a non-zero r× 1 vector, B an r× r matrix; finally, d1 is a dummy variable, which

has the purpose to entertain the possibility that there are linear trends or not, according as

d1 = 1 or 0, respectively. As far as the r-dimensional vector ψt is concerned, its components

are allowed to be a mixture of I (0) and I (1) processes, with no linear trends, i.e. with zero

mean.

We consider the following assumption, which ensures that the Fts are fully identified.

Assumption 1. It holds that: (i) a is non-zero; (ii) rank (B) = r; (iii) the vector ψt can

be rearranged and partitioned as [ψ′at, ψ
′
bt]
′, where ψat ∼ I (1) has dimension r2 + d2 and

ψbt ∼ I (0) has dimension r3 + (1− d2), where d2 is a dummy variable.

By part (ii) of Assumption 1, B has full rank, which ensures the identification of the

vector Ft irrespective of whether there is a trend or not. When there are trends, that is when

d1 = 1, part (i) of the assumption ensures that they do have an impact on Ft. Finally, by

part (iii) there could be both I (1) and I (0) factors in the vector ψt, sorted in no particular

order. The dummy variable d2 is equal to 1 if the factors with a linear trend have also an

I(1) component.
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We then have a representation result which, essentially, states that the number of common

factors with a linear trend (and, possibly, further components which may be I (0) or I (1))

can be either zero - no common factors with linear trends - or 1. This result is originally

due to Maciejowska (2010), and we report it hereafter, as a lemma, for convenience.

Lemma 1. Under Assumption 1, model (2) can be equivalently represented as

Xi,t = λ
(1)
i f

(1)
t + λ

(2)′
i f

(2)
t + λ

(3)′
i f

(3)
t + ui,t, 1 ≤ i ≤ N, (4)

where λ
(1)
i and f

(1)
t are r1 × 1 with 0 ≤ r1 ≤ 1, λ

(2)
i and f

(2)
t are r2 × 1 vectors with r2 ≥ 0,

λ
(3)
i and f

(3)
t are r3× 1 vectors with r3 ≥ 0, and such that r = r1 + r2 + r3 is finite for all N

and T , and λ′i = (λ
(1)′

i λ
(2)′

i λ
(3)′

i ) for all i.

Moreover, the common non-stationary factors are defined by the following equations

f
(1)
t = d1t+ d2f

(1)†
t + (1− d2) gt, (5)

f
(1)†
t = f

(1)†
0 +

t∑
j=1

e
(1)
j , (6)

f
(2)
t = f

(2)
0 +

t∑
j=1

e
(2)
j , (7)

where in (5)-(7): f
(1)†
t , gt and e

(1)
t are r1 × 1 vectors, e

(2)
t is an r2 × 1 vector, e

(1)
t , e

(2)
t , gt

and f
(3)
t are I (0), and d1 and d2 are dummy variables.

Lemma 1 states that the number of linear trends is either zero or one, according as

d1 = 1 or 0: if an identified r-dimensional vector of common factors has linear trends, this

is tantamount to an identified r-dimensional vector of common factors where only the first

factor has a linear trend. When r1 = 1 and d1 = 1, we show in Theorem 1 below, that it does

not matter whether the remainder d2f
(1)†
t + (1− d2) gt is I (1) or I (0): the trend component

is the one that dominates. When r1 = 0, there are no linear trends in the factor structure;

in this case, f
(1)
t can be I (1) or I (0), according as d2 = 1 or 0.

Let us denote as r∗ the number of non-stationary factors, and as r the total number of

factors. Then, based on (5)-(7), the numbers of common factors in Xi,t are summarised in

the table below.
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Factor type Number

With linear trend r1d1

Zero mean, I (1) r2 + r1 (1− d1) d2

Zero mean, I (0) r3 + r1 (1− d1) (1− d2)

Total non-stationary r∗ = r1d1 + r2 + r1 (1− d1) d2

Total number of common factors r = r∗ + r3 + r1 (1− d1) (1− d2) = r1 + r2 + r3

Recall that - in addition to restricting r (and, therefore, r1, r2, r3, r∗) to be finite - we

allow for the possibility of having any of the numbers r1, r2, r3, r∗, or even r, to be equal

to zero. On the other hand, if there is no linear trend (d1 = 0), we have at most r1 + r2

zero-mean I(1) factors and r1 + r3 zero-mean I(0) factors, while if there is a linear trend

(d1 = 1), we have at most r2 zero-mean I(1) factors and r3 zero-mean I(0) factors.

We now spell out the main assumptions. Consider the vector of zero-mean I(1) factors:

f ∗t , where f ∗t =
[
f

(1)†
t , f

(2)′
t

]′
, and consider the I(0) vector et, where et =

[
e

(1)
t , e

(2)′
t

]′
. Both

f ∗t and et are [r2 + r1(1− d1)d2]× 1 vectors.

We define the long-run covariance matrix associated with f ∗t as

Σ∆f∗ = lim
T→∞

V ar

(
T−1/2

T∑
t=1

et

)
. (8)

Assumption 2. Let κ > 0. It holds that (i) E ‖et‖4+κ < ∞ for all t; (ii) E ‖f ∗0‖
4+κ < ∞;

(iii) Σ∆f∗ is positive definite; (iv) there exists, on a suitably enlarged probability space, an

(r2 + d2)-dimensional standard Wiener process W (t) such that, for some ε > 0,

sup1≤t≤T

∥∥∥f ∗t − Σ
1/2
∆f∗W (t)

∥∥∥ = Oa.s.

(
T 1/2−ε) ; (v) E

∥∥∥∑T
t=1 et

∥∥∥2+κ

≤ C0

(∑T
t=1E ‖et‖

2
) 2+κ

2
.

Assumption 3. It holds that: (i) (a) max1≤i≤N,1≤t≤T E |ui,t|4 <∞; (b) max1≤t≤T E
∥∥∥f (3)

t

∥∥∥4

< ∞; and (c) max1≤t≤T E |gt|4 < ∞; (ii) (a) max1≤i≤N E
∥∥∥∑T

t=1 f
∗
t ui,t

∥∥∥2

≤ C0T
2;

(b) E
∥∥∥∑T

t=1 f
∗
t f

(3)′
t

∥∥∥2

≤ C0T
2; and (c) E

∥∥∥∑T
t=1 f

∗
t gt

∥∥∥2

≤ C0T
2; (iii) E

∥∥∥∑T
t=1 tf

∗
t

∥∥∥2

≤ C0T
5;

(iv) (a) max1≤i≤N E
∣∣∣∑T

t=1 tui,t

∣∣∣2 ≤ C0T
3; (b) E

∥∥∥∑T
t=1 tf

(3)
t

∥∥∥2

≤ C0T
3; and (c) E

∣∣∣∑T
t=1 tgt

∣∣∣2
≤ C0T

3; (v) E
∥∥∥∑T

t=1 f
∗
t f
∗′
t

∥∥∥2

≤ C0T
4.

Some comments on Assumptions 2 and 3 are in order. Both are high-level assumptions

which can be shown to hold under a wide variety of commonly considered dependence as-
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sumptions and DGPs. Assumption 2 poses some restrictions on the common I(1) factors.

Parts (i) and (ii) require the existence of at least the 4-th moment of the innovation et and

of the initial condition f ∗0 respectively. Part (iii) is a standard requirement, which rules out

that the common, zero mean I(1) factors are cointegrated: in essence, this ensures that the

number of I(1) common factors is genuinely r2 +d2. Part (v) is a Burkholder-type inequality

(see e.g. Lin and Bai, 2010, p. 108). The most delicate part of the assumption is part (iv),

which requires the existence of a strong approximation for the partial sums process f ∗t . In

Section A.3 of the Supplement, we show that this part of the assumption can be verified for a

wide variety of commonly considered forms of weak dependence (e.g. mixingales, Near Epoch

Dependence and causal processes), and also for many commonly employed DGPs (e.g. linear

models, threshold autoregressions, random coefficient autoregressive models, and univariate

and multivariate conditional heteroskedasticity models).

Assumption 3 deals with the idiosyncratic terms ui,t and the stationary factors. Part (i)

requires the existence of the 4-th moments, which is a milder assumption than the customary

8-th moment existence requirement - see Bai (2004). Parts (ii)-(v) are equivalent to assuming

weak dependence; in Section A.3 of the Supplement, we show that these assumptions hold

under the same dependence assumptions and DGPs considered for Assumption 2(iv).

We now spell out the assumptions for the N × r loadings matrix Λ = [λ1|...|λN ]′.

Assumption 4. The loadings Λ are non-stochastic with (i) max1≤i≤N ‖λi‖ < ∞; (ii)

limN→∞
Λ′Λ
N
→ ΣΛ, where the matrix ΣΛ is positive definite.

Assumption 4 is standard in this literature - see e.g. Bai (2004). One consequence of part

(ii) and Lemma 1 is that every diagonal block of ΣΛ, defined by the loadings of f
(1)
t , f

(2)
t

or f
(3)
t , is also positive definite. Note that the assumption requires the loadings to be non-

stochastic; however, this could be relaxed to the case of random loadings, with no changes

to the main arguments in the paper.

An important consequence of Assumption 4 is that the common factors belonging in

each category are “strong” or “pervasive”. We point out that our setup can be generalised

to consider also the case of weakly pervasive factors (see Section A.5 of the Supplement).
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3.2 Asymptotic behaviour of eigenvalues

We introduce the following assumption on the relative rate of divergence of N and T as they

pass to infinity.

Assumption 5. It holds that: N = O
(
eT

1/2−ε′
)

, with 0 < ε′ < 1
2
.

In Assumption 5, ε′ should be intended as arbitrarily close to zero. The assumption

imposes a very mild restriction between N and T , which in practice should hold for virtually

all datasets. Note that, whilst needing an upper bound for N , we do not need any lower

bounds on either N or T as long as they pass to infinity.

We base inference on the two matrices

Σ1 =
1

T 3

T∑
t=1

XtX
′
t, (9)

Σ2 =
1

T 2

T∑
t=1

XtX
′
t. (10)

We denote the p-th largest eigenvalues of Σ1 and Σ2 as ν
(p)
1 and ν

(p)
2 respectively. Consider

the sequence

lN,T = (lnN)1+ε (lnT )
3
2

+ε ,

where ε is an arbitrarily small number such that 0 < ε < 2ε′

1−2ε′
, with ε′ defined in Assumption

5. The asymptotic behaviour of those eigenvalues is reported in the following theorem.

Theorem 1. Under Assumptions 2-4, it holds that there are two random N0 and T0 such

that, for all N ≥ N0 and T ≥ T0,

C1,pN ≤ ν
(p)
1 ≤ C1,pN, for p ≤ r1d1, (11)

ν
(p)
1 = Oa.s.

(
N√
T
lN,T

)
, for p > r1d1, (12)

and

C2,p

N

ln lnT
≤ ν

(p)
2 ≤ C2,p

N

ln lnT
, for r1d1 < p ≤ r∗, (13)

ν
(p)
2 = Oa.s.

(
N√
T
lN,T

)
, for p > r∗, (14)
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with 0 < C1,p ≤ C1,p <∞, and 0 < C2,p ≤ C2,p <∞ .

Theorem 1 is a separation result for the eigenvalues corresponding to common factors in Σ1

and Σ2 and is our first contribution.

Equations (11) and (12) refer to the eigenvalues of Σ1. The results state that the first

r1 eigenvalues diverge to infinity at a rate N ; conversely, by virtue of Assumption 5, the

remaining eigenvalues have a smaller magnitude. Indeed, the magnitude of ν
(p)
1 , when p > r1,

may be very large, but Assumption 5 ensures that it is however smaller than that of ν
(p)
1

when p ≤ r1. In the definition of Σ1, there is a denominator given by T 3: intuitively, this is

due to the fact that the presence of a drift in the common factor f
(1)
t creates a linear trend.

Norming by T 3 is needed in order to make the trend component converge.

Equations (13) and (14) refer to the eigenvalues of Σ2. This matrix is normalised by T 2:

the main idea is that we wish to separate the eigenvalues corresponding to non-stationary

factors from the other ones. The partial sums of f ∗t f
∗′
t should grow at least as fast as T 2 by

the CLT in functional spaces; the result in (13) follows from this intuition, although, since

we need an a.s. rate, it is based on the Law of the Iterated Logarithm (see Donsker and

Varadhan, 1977). Similarly to Σ1, the remaining eigenvalues may also diverge, but this will

happen at a slower rate. Equation (14) illustrates the separation result, through the T−1/2

term. Following the proof of the theorem, it could be readily shown that, if the idiosyncratic

components ui,t were I(1), the upper bound for ν
(p)
2 when p > r2 + max {r1, d2} would be

Oa.s. (NlN,T ) - in essence, in this case a separation result could not be shown, whence the

need to assume that the ui,ts are I(0). On the other hand, one could envisage a situation

where only a fraction of the ui,ts are I(1) - say O (Nα0), with α0 < 1. In such a case, by

adapting the proof of Theorem 1 it can be shown that the upper bound in (14) would become

Oa.s. (N
α0lN,T ) +Oa.s.

(
N√
T
lN,T

)
, and thus a separation result would obtain.

Note that Theorem 1 provides only rates: no distributional results are available. When

data are stationary, Wang and Fan (2016) derive an asymptotic distribution for the estimates

of the diverging eigenvalues of the sample covariance matrix. We do not know, however, if

this can also be done for the ν
(p)
1 s and the ν

(p)
2 s. Hence, in what follows we will rely only on

rates.

Finally, in order to construct the relevant test statistics, we will also make use of the first
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differenced version of (2):

∆Xi,t = λ′i∆Ft + ∆ui,t, 1 ≤ i ≤ N, (15)

such that the following holds:

Assumption 6. It holds that: (i) E (∆Fj,t∆ui,t) = 0 for 1 ≤ j ≤ r and 1 ≤ i ≤ N ; (ii)

max1≤i≤N,1≤t≤T E |∆Xi,t|4 ≤ C0; (iii) Emax1≤t̃≤T

∣∣∣∑t̃
t=1 ∆Xh,t∆Xj,t − E (∆Xh,t∆Xj,t)

∣∣∣2 ≤
C0T ; (iv) (a) T−1

∑T
t=1E (∆Ft∆F ′t) is a positive definite matrix; (b) the largest eigenvalue of

T−1
∑T

t=1E (∆ut∆u
′
t) is finite; (c) T−1

∑T
t=1E (∆ut∆u

′
t) is a positive definite matrix.

Assumption 6 is the same as Assumptions 1-3 in Trapani (2018), and we refer to that

paper for examples in which the assumption is satisfied. Note that part (iv)(b) can be

shown to hold if the largest eigenvalue of E(utu
′
t) is bounded - i.e., in the presence of (weak)

cross-sectional dependence in the idiosyncratic term.

4 Estimating the number of common factors

4.1 Preliminary definitions

Consider the notation β = lnN
lnT

, and define δ < 1 such that

δ

 > 0 when β < 1
2
,

> 1− 1
2β

when β ≥ 1
2
.

(16)

The role played by δ is the following. In view of Theorem 1, the largest eigenvalues are

(modulo some slowly varying functions) proportional to N ; the others, to NT−1/2. When

premultiplying eigenvalues by N−δ, the former will be proportional to N1−δ, thereby still

diverging; the latter will be proportional to N1−δT−1/2, which, by construction, will drift to

zero.

In order to construct our test statistics, we also make use of the eigenvalues of the matrix

Σ3 =
1

T

T∑
t=1

∆Xt∆X
′
t, (17)

12



which, with the same notation as before, are denoted as ν
(p)
3 , p = 1, . . . , N , in decreasing

order. In particular, when running our procedure for the p-th largest eigenvalues of Σ1 or

Σ2, we will extensively use the quantities

ν3,p(k) =
1

4 (N − k + 1)

N∑
h=k

ν
(h)
3 , (18)

for different values of k. Essentially, ν3,p(k) is the average of all (or some) eigenvalues of Σ3

and will be employed in order to rescale the estimated eigenvalues, so as to render all our

test statistics scale invariant. In the numerical analysis of Section 5, we consider rescaling

schemes with k = p and k = p+ 1, and we discuss the impact of these choices on our results.

For simplicity in the rest of this section we do not make explicit the dependence of (18) on

k. Finally, note the division by 4 in (18), which is done, heuristically, since it is possible that

∆Xi,t could inflate the variance by over-differencing, and the factor 4 represents the largest

inflation factor possible.

4.2 Determining the presence of factors with linear trends

Consider first Σ1 defined in (9), and its eigenvalues ν
(p)
1 . Based on (11)-(12), the first r1d1

eigenvalues of Σ1 should diverge to positive infinity, as min (N, T ) → ∞, at a faster rate

than the (N − r1d1) remaining ones. Thus, the cornerstone of the algorithm to determine

r1d1 is based on checking whether ν
(p)
1 diverges sufficiently fast. In particular, as suggested

by Theorem 1, we want to construct a test for H
(p)
0,1 : ν

(p)
1 ≥ C ′pN ,

H
(p)
A,1 : ν

(p)
1 ≤ C ′′p

N√
T
lN,T ,

(19)

for some positive bounded constants C ′p and C ′′p . Thus, given r1, we have that H
(p)
0,1 holds

true for p ≤ r1, while H
(p)
A,1 holds true for p > r1.

Consider the following transformation of ν
(p)
1 :

φ
(p)
1 = exp

{
N−δ

ν
(p)
1

ν3,p

}
. (20)
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Then, based on (19), equations (11) and (12), and given the definition (16) of δ, we have

that

limmin(N,T )→∞ φ
(p)
1 =∞, under H

(p)
0,1 i.e. for p ≤ r1,

limmin(N,T )→∞ φ
(p)
1 = Cp <∞, under H

(p)
A,1 i.e. for p > r1.

In principle, we could then use φ
(p)
1 to test H

(p)
0,1 . However, since φ

(p)
1 either diverges to

infinity or not, it does not have any randomness. Therefore, we propose to use the following

randomisation algorithm - note that other randomisations schemes would also be possible,

in principle; the one we propose, however, has been often considered in this type of literature

(see e.g. Corradi and Swanson, 2006, and Trapani, 2018).

Step A1.1. Generate an i.i.d. sample {ξ(p)
1,j }

R1
j=1 from a common distribution G1, indepen-

dently across p.

Step A1.2. For a user-defined u, let, for 1 ≤ j ≤ R1, ζ
(p)
1,j (u) = I[φ

(p)
1 × ξ

(p)
1,j ≤ u].

Step A1.3. Compute ϑ
(p)
1 (u) = 1√

R1

∑R1

j=1

ζ
(p)
1,j (u)−G1(0)√
G1(0)[1−G1(0)]

.

Step A1.4. Compute Θ
(p)
1 =

∫ +∞
−∞

∣∣∣ϑ(p)
1 (u)

∣∣∣2 dF1 (u).

The intuition for considering this approach is the following. Under the null, we know

that φ
(p)
1 diverges; thus, we can expect ζ

(p)
1,j (u) to be an i.i.d. Bernoulli sequence with

expected value exactly equal to G1 (0), and variance G1 (0) [1−G1 (0)]. In such case, a CLT

ensures that ϑ
(p)
1 (u) follows - asymptotically - a Normal distribution, and consequently Θ

(p)
1

is asymptotically Chi-squared. By the same token, under the alternative φ
(p)
1 is finite, and

therefore ζ
(p)
1,j (u) is an i.i.d. Bernoulli sequence with expected value different from G1 (0);

thus, ϑ
(p)
1 (u) diverges as fast as

√
R1 by the LLN, and consequently Θ

(p)
1 also diverges at a

rate R1. The random variable Θ
(p)
1 is then the statistic that we are going to use.

In order to derive the asymptotic behaviour of Θ
(p)
1 , we need some regularity conditions

on the distributions G1 and F1 - see Section 5 for a choice of these functions and of u and

R1.

Assumption 7. It holds that: (i) (a) G1 has a bounded density function; (b) G1 (0) 6= 0

and G1 (0) 6= 1; (ii)
∫∞
−∞ dF1 (u) = 1, and

∫∞
−∞ u

2dF1 (u) <∞.
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Let P ∗ denote the conditional probability with respect to {Xi,t, 1 ≤ t ≤ T, 1 ≤ i ≤ N}; we

use the notation “
D∗→” and “

P ∗→” to define, respectively, conditional convergence in distribution

and in probability according to P ∗. It holds that:

Theorem 2. Consider H
(p)
0,1 and H

(p)
A,1 defined in (19). Under Assumptions 2-7, if

lim
min(N,R1)→∞

√
R1 exp

{
−N1−δ} = 0, (21)

then, for almost all realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and for all p,

as min (N, T,R1)→∞, under H
(p)
0,1 it holds that

Θ
(p)
1

D∗→ χ2
1, (22)

and under H
(p)
A,1 it holds that

1

R1

∫∞
−∞ [G1 (u)−G1 (0)]2 dF1 (u)

G1 (0) [1−G1 (0)]
Θ

(p)
1

P ∗→ 1. (23)

The determination of r1 follows from an algorithm which is based on a single step.

Step T1.1. Set p = 1 and run the test for H
(1)
0,1 : ν

(1)
1 = ∞ based on Θ

(1)
1 . If the null is

rejected, set r̂1 = 0 and stop, otherwise set r̂1 = 1.

The output of this step is r̂1, which is an estimate of r1d1. As discussed above, r1d1 can

be either 0 or 1, whence the test being stopped at p = 2. The procedure based on the single

Step T1.1 can therefore be viewed as a test for the presence of a common factor with a linear

trend.

As can be expected, in order to ensure that r̂1 is consistent, a pivotal role is played by

the level of the test, α1 := P ∗(Θ
(p)
1 > cα,1), through the relevant critical value denoted as

cα,1.

Lemma 2. Under the assumptions of Theorem 2, as min (N, T,R1) → ∞, if cα,1 → ∞

with cα,1 = o (R1), then it holds that P ∗ (r̂1 = r1d1) = 1, for almost all realisations of

{et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.
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Requiring that cα,1 → ∞ is necessary in order to have asymptotically zero Type I error

probability, which ensures the consistency result in the lemma; an immediate implication of

cα,1 →∞ is that the level of the test is such that under H
(p)
0,1

lim
min(N,T,R1)→∞

P ∗
(

Θ
(p)
1 > cα,1

)
= 0. (24)

The fact that cα,1 diverges has also an interesting consequence on the interpretation of

the outcome of our testing procedure. It is well-known that randomised tests will yield

different results for different researchers when applied to the same data, since the added

randomness does not vanish asymptotically. However, this is not the case with our procedure,

since, when cα,1 → ∞, (24) holds under H
(p)
0,1 . Further, we show in the proof that having

cα,1 = o (R1) affords that the probability of a Type II error is asymptotically zero, thus

ensuring consistency. Looking at this from a different angle, the results in Lemma 2 are

guaranteed by letting the level of the test α1 → 0 as min (N, T,R1) → ∞ and we refer to

Section 5 for the choice of α1.

As a final remark, we point out that this part of our procedure can detect whether there

exists a common factor with a linear trend. However, our test is not able to directly establish

whether such a trend arises from the common factor being an I(1) process with a drift, or

a trend-stationary process. Whilst this (important) question goes beyond the main focus of

this paper, in Section A.4 of the Supplement we build on the theory developed here in order

to propose a further test to discern between the two possible cases.

4.3 Determining the number of non-stationary common factors

Consider the matrix Σ2 defined in (10) and its eigenvalues ν
(p)
2 . Based on Theorem 1, the r∗

largest eigenvalues of Σ2 should diverge to positive infinity, as min (N, T ) → ∞, at a faster

rate than the (N − r∗) remaining ones. Therefore, we can construct a the test for H
(p)
0,2 : ν

(p)
2 ≥ C ′p

N
ln lnT

,

H
(p)
A,2 : ν

(p)
2 ≤ C ′′p

N√
T
lN,T ,

(25)

for some positive bounded constants C ′p and C ′′p . Thus, given r∗ we have that H
(p)
0,2 holds

true for p ≤ r∗, while H
(p)
A,2 holds true for p > r∗.
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We exploit this fact, as in the above, by considering the following transformation of ν
(p)
2

φ
(p)
2 = exp

{
N−δ (ln lnT )

ν
(p)
2

ν3,p

}
, (26)

which is very similar to (20) except for the presence of the logarithmic term, which is a

consequence of (13). Then, based on (19), equations (13) and (14), and given the definition

(16) of δ, we have that

limmin(N,T )→∞ φ
(p)
2 =∞, under H

(p)
0,2 i.e. for p ≤ r∗,

limmin(N,T )→∞ φ
(p)
2 = Cp <∞, under H

(p)
A,2 i.e. for p > r∗.

We consider the following randomisation procedure.

Step A2.1 Generate an i.i.d. sample {ξ(p)
2,j }

R2
j=1 from a common distribution G2, indepen-

dently across p.

Step A2.2 For a user-defined u, let, for 1 ≤ j ≤ R2, ζ
(p)
2,j (u) = I[φ

(p)
2 × ξ

(p)
2,j ≤ u].

Step A2.3. Compute ϑ
(p)
2 (u) = 1√

R2

∑R2

j=1

ζ
(p)
2,j (u)−G2(0)√
G2(0)[1−G2(0)]

.

Step A2.4. Compute Θ
(p)
2 =

∫ +∞
−∞

∣∣∣ϑ(p)
2 (u)

∣∣∣2 dF2 (u).

The same comments as in the previous algorithm apply: in essence, the procedure exploits

the fact that under the null and the alternative, φ
(p)
2 diverges or drifts to zero respectively:

the former feature ensures (asymptotic) normality of ϑ
(p)
2 (u), whereas the latter entails that

ϑ
(p)
2 (u) diverges under the alternative.

Assumption 8. It holds that: (i) (a) G2 has a bounded density function; (b) G2 (0) 6= 0

and G2 (0) 6= 1; (ii)
∫∞
−∞ dF2 (u) = 1 and

∫∞
−∞ u

2dF2 (u) <∞.

It holds that:

Theorem 3. Consider H
(p)
0,2 and H

(p)
A,2 defined in (25). Under Assumptions 2-6 and 8, if

lim
min(N,R2)→∞

√
R2 exp

{
−N1−δ} = 0, (27)
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then, for almost all realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and for all p,

as min (N, T,R2)→∞, under H
(p)
0,2 it holds that

Θ
(p)
2

D∗→ χ2
1, (28)

and under H
(p)
A,2 it holds that

1

R2

∫∞
−∞ (G2 (u)−G2 (0))2 dF1 (u)

G2 (0) (1−G2 (0))
Θ

(p)
2

P ∗→ 1 under H
(2)
1 . (29)

Note that, conditionally on the sample, the sequence {Θ(p)
2 }Np=1 is independent across p.

We recommend the following algorithm for the determination of r∗.

Step T2.1. Run the test for H
(1)
0,2 : ν

(1)
2 =∞ based on Θ

(1)
2 . If the null is rejected, set r̂∗ = 0

and stop, otherwise go to the next step.

Step T2.2. Starting from p = 1, run the test for H
(p+1)
0,2 : ν

(p+1)
2 =∞ based on Θ

(p+1)
2 , con-

structed using an artificial sample {ξ(p+1)
2,j }

R2
j=1 generated independently of

{ξ(1)
2,j }

R2
j=1, . . . , {ξ

(p)
2,j }

R2
j=1. If the null is rejected, set r̂∗ = p and stop; otherwise re-

peat the step until the null is rejected (or until a pre-specified maximum number of

factors, say r∗max, is reached).

As can be expected, in this context a pivotal role is played by the level of the individual

tests, which should be chosen so that r̂∗ is a good approximation of r∗, at least asymptotically.

Similarly to the previous case, let cα,2 denote the critical value of the test at each step.

Lemma 3. Under the assumptions of Theorem 3, as min (N, T,R2)→∞, if r∗max ≥ r∗ and

cα,2 → ∞ with cα,2 = o (R2), then it holds that P ∗ (r̂∗ = r∗) = 1, for almost all realisations

of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

This lemma has the same interpretation - especially when it comes to the condition that

cα,2 →∞ - as Lemma 2.

4.4 Determining the number of zero-mean I(1) and I(0) factors

After estimating r∗, it is possible to estimate the number of common, zero-mean I (1) factors

by subtracting the number of those with a linear trend from the total number of non-
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stationary factors, i.e. as r̂∗ − r̂1. Under the conditions of Lemmas 2 and 3, it is immediate

to verify that

lim
min(N,T,R1,R2)→∞

P ∗ [r̂∗ − r̂1 = r2 + r1 (1− d1) d2] = 1.

As a final remark, on the grounds of Assumption 6 it is possible to use the algorithm

proposed in Trapani (2018) to estimate the total number of common factors. The algorithm

- based on first-differenced data - uses the eigenvalues ν
(p)
3 of Σ3 defined in (17) in a similar

way to the algorithms above and using a simulated sample of size R3. Denoting the estimate

of the total number of factors as r̂, the number of common I(0) factors can be estimated as

r̂ − r̂∗. Under the conditions in Trapani (2018) and of Lemma 3 above, it follows that

lim
min(N,T,R1,R2,R3)→∞

P ∗ [r̂ − r̂∗ = r3 + r1 (1− d1) (1− d2)] = 1.

4.5 Estimation

Once we have estimates of the number of common factors, we can estimate the factors via

principal component analysis as explained in Bai (2004) and Maciejowska (2010). Define

D =


T 3/2Ir̂1 0 0

0 TIr̂∗−r̂1 0

0 0
√
TIr̂−r̂∗

 .

Let F = (F1 · · · FT )′ be the T × r̂ matrix of factors and X = (X1 · · ·XT )′ the T ×N matrix

of data. Then, the estimated factors and loadings are solutions to the following constrained

minimisation problem

(Λ̂, F̂) = arg min(X −FΛ′)′(X −FΛ′), s.t. D−1F ′FD−1 = Ir̂,

where, in particular, the solution for F̂ are the eigenvectors of XX ′ multiplied by D and

Λ̂ = D−2F̂ ′X. Since we proved that the probability of correctly determining all number

of factors tends to 1 as N, T → ∞, the asymptotic results in Bai (2004) and Maciejowska

(2010) for the estimated loadings and factors still hold.
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5 Monte Carlo and empirical evidence

We generate data as

Xi,t = λ
(1)
i f

(1)
t + λ

(2)′

i f
(2)
t + λ

(3)′

i f
(3)
t +

√
θui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (30)

f
(1)
t = 1 + f

(1)
t−1 + ε

(1)
t , (31)

f
(2)
j,t = f

(2)
j,t−1 + e

(2)
j,t , e

(2)
j,t = ρje

(2)
j,t−1 + ε

(2)
j,t , j = 1, . . . , r2, (32)

f
(3)
j,t = αjf

(3)
j,t−1 + ε

(3)
j,t , j = 1, . . . , r3, (33)

ui,t = aiui,t−1 + vi,t + bi
∑

|k|≤Ci,k 6=0

vi+k,t, (34)

Note that model (30) represents the most general DGP which we use, where it is understood

that, when e.g. no factors with a linear trend are present, we set λ
(1)
i = 0, etc. The loadings

in (30) are simulated such that each nonzero entry is distributed as N (0, 1), with Λ satisfying

Λ′Λ = NIr. In (32) and (33), we use ρj ∼ U [0.4, 0.8], and αj ∼ U [−0.5, 0.5] respectively.

The vector εt = (ε
(1)
t ε

(2)
1,t . . . ε

(2)
r2,t ε

(3)
1,t . . . ε

(3)
r3,t) is simulated from N (0,Γ) independently at each

t, with Γ diagonal and such that

1

NT

N∑
i=1

T∑
t=1

(λ
(1)
i ∆f

(1)
t )2 =

1

NT

N∑
i=1

T∑
t=1

(λ
(2)′

i ∆f
(2)
t )2 =

1

NT

N∑
i=1

T∑
t=1

(λ
(3)′

i f
(3)
t )2,

so that in first differences each non-stationary factor component has, on average, the same

weight as the stationary component. In (34) we allow both for serial and cross-sectional

dependence in the idiosyncratic errors and for all 1 ≤ i ≤ N , in a similar way to Ahn and

Horenstein (2013). We fix ai = 0.5, bi = 0.5 and Ci = min
(⌊

N
20

⌋
, 10
)
, and the errors vi,t are

simulated from N (0, 1). Last, we set the noise-to-signal as

θ = 0.5

∑N
i=1

∑T
t=1(λ

(1)
i ∆f

(1)
t + λ

(2)′

i ∆f
(2)
t + λ

(3)′

i ∆f
(3)
t )2∑N

i=1

∑T
t=1(∆ui,t)2

.

We consider the following cases:

1. we fix r3 = 0 and we let r1 ∈ {0, 1} and r2 ∈ {0, 1, 2} and we use the test based on φ
(p)
1

to compute r̂1 (see Table 1);
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2. we fix r1 = 0 and we let r2 ∈ {0, 1, 2} and r3 ∈ {0, 1, 2} and we use the test based on

φ
(p)
2 to compute r̂∗ = r̂2 (see Table 2);

3. we fix r1 = 1 and we let r2 ∈ {0, 1, 2} and r3 ∈ {0, 1, 2} and we use the test based on

φ
(p)
2 to compute r̂∗ = r̂2 + 1 (see Table 4).

We use N ∈ {50, 100, 200} and T ∈ {100, 200, 500}, and simulate (30)-(34) 500 times,

reporting the average value of r̂1 or r̂2 across simulations, as well as the standard deviation

and the percentage of time that the estimator is correct. As far as r̂2 is concerned, we report

both the infeasible estimate r̂∗− r1 and the feasible one r̂∗− r̂1, in order to gauge the impact

of the estimation error of r̂1 on the subsequent stage of the procedure.

Our tests are run as follows. When computing φ
(p)
1 and φ

(p)
2 , we rescale the p-th eigenvalue

as (see (18))

ν
(p)
i

ν̄3,p(k)
=

ν
(p)
i

1
4(N−k+1)

∑N
h=k ν

(h)
3

, i = 1, 2.

For a given p, we consider two different rescaling schemes:

BT1: using k = p, i.e. ν̄3,p(k) = 1
4(N−p+1)

∑N
h=p ν

(h)
3 ;

BT2: using k = (p+ 1), i.e. ν̄3,p(k) = 1
4(N−p)

∑N
h=p+1 ν

(h)
3 .

Note that, by construction, ν̄3,p(p) ≥ ν̄3,p(p + 1). This entails that, at least for finite

samples, tests based on BT1 are less conservative than those using BT2. In turn, this

entails that BT1 may have, in finite samples, a tendency to understate the number of

common factors more often than BT2, and vice versa.

We then divide the eigenvalues by N δ, where (see (16))

δ =

 δ∗, when lnN
lnT

< 1
2
,

1− 1
2β

+ δ∗, when lnN
lnT
≥ 1

2
,

(35)

with δ∗ = 10−5. Thence, for each p, in the first step of the randomisation algorithm, {ξ(p)
1,j }

R1
j=1

and {ξ(p)
2,j }

R2
j=1 are generated with G1 and G2 following a standard normal distribution, with

R1 = 2N and R2 = 2N , if p = 1 or R2 = bN
3
c, for p > 1. In the second step of the
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randomisation algorithm, as weight functions F1 (·) and F2 (·) we choose the distribution of

the standard normal; thus, in order to compute Θ
(p)
1 and Θ

(p)
2 , we use

Θ
(p)
k =

1√
π

nS∑
s=1

ws

(
ϑ

(p)
1

(√
2zs

))2

, k = 1, 2, (36)

where the zss are the zeroes of the Hermite polynomial HnS (z), and the weights ws are

defined as

ws =

√
π2nS−1 (nS − 1)!

nS [HnS−1 (zs)]
2 .

In practice, this entails that, when computing Θ
(p)
1 (and Θ

(p)
2 ), we construct nS different

versions of ϑ
(p)
1 (u) (resp. ϑ

(p)
2 (u)), using u =

√
2zs. The values of zs and the corresponding

weights ws are tabulated e.g. in Salzer, Zucker, and Capuano (1952); in our simulations, we

have set nS = 4, which corresponds to u = {−2.4,−0.75, 0.75, 2.4}, with weights π−1/2ws

given by {0.05, 0.45, 0.45, 0.05}. As well as being a consequence of the Gauss-Hermite quadra-

ture formula, (36) also has an impact on the trade-off between the power and size of each test:

as discussed in Trapani (2018), the larger |u|, the larger the power and the more oversized

the individual tests (thus leading to a potential underestimation of the number of common

factors), and vice versa. Heuristically, having “large” values such as ±2.4, with “small”

weights set to 0.05, helps to strike a balance between size and power. Finally, all tests are

carried out at a significance level α1 = α2 = 0.05
min(N,T )

, which corresponds to critical values

growing logarithmically with N or T .

Results are in Tables 1-5 (see also the further Monte Carlo evidence reported in Section

B of the Supplement). As a general point, BT1 performs better than BT2 at finding no

common factors - whether with a linear trend or genuinely I (1) with zero mean - when there

are no common factors; this is also consistent with the results in the further simulations in

the Supplement. Considering Table 1, there are some cases in which BT1 finds a common

factor when this is not present, but this error vanishes as T increases. On the other hand,

BT2 also performs well, but there are instances in which it tends to overstate r1 when r1 = 0,

particularly in the case where there is no common factor with a linear trend but there is one

zero-mean I(1) common factor.

As far as determining r2 is concerned, BT1 and BT2 are comparable, with BT1 dom-
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Table 1: Estimated number of factors with linear trend, r̂1.

N = 50, T = 100 N = 100, T = 100
average std. dev. % correct average std. dev. % correct

r1 r2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.19 0.17 0.39 0.37 0.81 0.83 0.11 0.12 0.31 0.32 0.89 0.88
0 2 0.04 0.03 0.19 0.18 0.96 0.97 0.01 0.01 0.10 0.11 0.99 0.99
1 0 1.00 1.00 0.04 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.04 1.00 1.00
1 2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.06 0.00 1.00 1.00

N = 200, T = 100 N = 100, T = 200
average std. dev. % correct average std. dev. % correct

r1 r2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.05 0.33 0.21 0.47 0.95 0.67 0.06 0.07 0.24 0.26 0.94 0.93
0 2 0.01 0.06 0.09 0.23 0.99 0.94 0.01 0.01 0.11 0.10 0.99 0.99
1 0 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.00 0.04 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.04 1.00 1.00

N = 200, T = 200 N = 200, T = 500
average std. dev. % correct average std. dev. % correct

r1 r2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.02 0.20 0.15 0.40 0.98 0.80 0.00 0.12 0.00 0.33 1.00 0.88
0 2 0.00 0.02 0.06 0.15 1.00 0.98 0.00 0.01 0.00 0.10 1.00 0.99
1 0 1.00 1.00 0.06 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.04 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

In each cell we report the average and standard deviation of r̂1 over all Monte Carlo

replications, as well as the fraction of times in which r̂1 = r1.

inating over BT2 when estimating r2 in the case r1 = 0. In general, our criteria tend to

understate r2, albeit slightly, when r1 = 0, especially in the presence of linear trends; and,

conversely, to overstate, albeit again slightly, when r1 = 1. In both cases, the bias tends to

vanish as T increases. Overall, the performance of all our criteria improves dramatically as

T increases: results markedly improve when T ≥ 200 for all cases considered. The impact

of N is, in general, less clear. Comparing Tables 2-4 with Tables 3-5, the impact of using r̂1

when estimating r̂2 is such that when r1 = 0, r̂2 tends to understate r2, and vice versa when

r1 = 1. However, this error quickly disappears as soon as T ≥ 100. These results are in line

with the observation that in finte samples BT1 is less conservative than BT2, however this

discrepancy quickly becomes negligible as the sample size increases.

As a final remark, we point out that in Section B of the Supplement, we have carried

out some sensitivity analysis to assess the impact of different specifications of the DGP

and of the tests. In particular, as far as the DGP is concerned, we consider ρj ∼ U [ρ̄, 0.8]

with values of ρ̄ equal to 0 and 0.8: results are broadly the same, with few exceptions (see
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Table 2: Estimated number of zero-mean I(1) factors, r̂2 when r1 = 0, using r1.

N = 50, T = 100 N = 100, T = 100
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 1.00 1.00 0.04 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
2 0 1.99 1.99 0.10 0.09 1.00 0.99 1.98 1.98 0.15 0.15 0.98 0.98
2 1 1.97 1.97 0.19 0.19 0.97 0.97 1.94 1.93 0.24 0.25 0.94 0.93
2 2 1.98 1.98 0.16 0.16 0.98 0.98 1.94 1.93 0.25 0.26 0.94 0.93

N = 200, T = 100 N = 100, T = 200
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 1.00 1.00 0.04 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.04 0.04 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 2 1.00 1.00 0.04 0.00 1.00 1.00 1.00 1.00 0.04 0.00 1.00 1.00
2 0 1.98 1.99 0.14 0.11 0.99 0.99 1.98 1.99 0.14 0.09 0.99 0.99
2 1 1.93 1.98 0.27 0.16 0.93 0.98 1.99 1.99 0.13 0.09 0.99 0.99
2 2 1.94 1.98 0.24 0.15 0.94 0.98 1.99 1.99 0.10 0.09 0.99 0.99

N = 200, T = 200 N = 200, T = 500
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
1 2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00
2 0 2.00 2.00 0.04 0.04 1.00 1.00 2.00 2.00 0.04 0.00 1.00 1.00
2 1 1.99 2.00 0.08 0.06 0.99 1.00 1.99 2.00 0.09 0.00 0.99 1.00
2 2 2.00 2.00 0.06 0.00 1.00 1.00 2.00 2.00 0.00 0.00 1.00 1.00

In each cell we report the average and standard deviation of r̂2 over all Monte Carlo

replications, as well as the fraction of times in which r̂2 = r2.

discussion in Section B.2 of the Supplement). As far as the test specifications are concerned,

we have considered different choices of G1 and G2, and of F1 and F2 (Section B.3), as

well as δ∗ (Section B.4) and the R1 and R2 (Section B.5). Results show that the tests are

virtually unaffected by such specifications, whose impact vanishes as N and T increase. In

the Supplement, we have also reported results when estimating r2 using the information

criteria proposed by Bai (2004) (Section B.1); these criteria invariably find one common I(1)

factor even when such factors are not present.
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Table 3: Estimated number of zero-mean I(1) factors, r̂2 when r1 = 0, using r̂1.

N = 50, T = 100 N = 100, T = 100
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 0.81 0.82 0.40 0.39 0.81 0.82 0.88 0.88 0.32 0.33 0.88 0.88
1 1 0.93 0.94 0.25 0.24 0.93 0.94 0.98 0.98 0.14 0.15 0.98 0.98
1 2 0.93 0.94 0.25 0.24 0.93 0.94 0.96 0.97 0.19 0.18 0.96 0.97
2 0 1.96 1.96 0.21 0.20 0.96 0.96 1.97 1.97 0.19 0.18 0.97 0.97
2 1 1.96 1.97 0.20 0.19 0.97 0.97 1.94 1.93 0.24 0.25 0.94 0.93
2 2 1.98 1.97 0.17 0.17 0.98 0.98 1.94 1.93 0.25 0.26 0.94 0.93

N = 200, T = 100 N = 100, T = 200
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 0.95 0.67 0.23 0.47 0.95 0.67 0.94 0.94 0.23 0.23 0.94 0.94
1 1 0.99 0.94 0.10 0.24 0.99 0.94 0.98 0.99 0.13 0.12 0.98 0.99
1 2 0.99 0.96 0.11 0.20 0.99 0.96 0.99 0.99 0.12 0.10 0.99 0.99
2 0 1.98 1.93 0.15 0.26 0.98 0.94 1.98 1.99 0.15 0.09 0.98 0.99
2 1 1.93 1.98 0.27 0.17 0.93 0.98 1.99 1.99 0.13 0.09 0.99 0.99
2 2 1.94 1.98 0.24 0.15 0.94 0.98 1.99 1.99 0.10 0.09 0.99 0.99

N = 200, T = 200 N = 200, T = 500
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 1 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
0 2 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1 0 0.98 0.79 0.13 0.41 0.98 0.79 0.99 0.88 0.08 0.32 0.99 0.88
1 1 1.00 0.98 0.06 0.13 1.00 0.98 1.00 1.00 0.00 0.04 1.00 1.00
1 2 0.99 0.99 0.08 0.12 0.99 0.99 1.00 0.99 0.00 0.10 1.00 0.99
2 0 2.00 1.98 0.04 0.15 1.00 0.98 2.00 1.99 0.04 0.11 1.00 0.99
2 1 1.99 2.00 0.08 0.06 0.99 1.00 1.99 2.00 0.09 0.00 0.99 1.00
2 2 2.00 2.00 0.06 0.00 1.00 1.00 2.00 2.00 0.00 0.00 1.00 1.00

In each cell we report the average and standard deviation of r̂2 over all Monte Carlo

replications, as well as the fraction of times in which r̂2 = r2.

6 On the dimensions of the yield curve

We illustrate our methodology through an application to the High Quality Market (HQM)

Corporate Bond Yield Curve, available from the Federal Reserve Economic Data (FRED)1

- details on the construction of the yield curves are available from the US Department of

Treasury.2 We use monthly data on HQM Corporate Bonds with maturities from 6 months

up to 100 years (N = 196), and spanning the period from January 1985 to September 2017

(T = 393). The data are shown in Figure 1, which shows evidence of non-stationarity and

co-movements both cross-sectionally and across time.

1https://fred.stlouisfed.org.
2https://www.treasury.gov/resource-center/economic-policy/corp-bond-yie.
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Table 4: Estimated number of zero-mean I(1) factors, r̂2 when r1 = 1, using r1 = 1.

N = 50, T = 100 N = 100, T = 100
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.08 0.12 0.99 0.99 0.02 0.03 0.17 0.17 0.98 0.97
0 1 0.02 0.02 0.14 0.13 0.98 0.98 0.04 0.05 0.22 0.22 0.96 0.95
0 2 0.01 0.01 0.08 0.10 0.99 0.99 0.03 0.04 0.18 0.20 0.97 0.96
1 0 1.00 0.99 0.08 0.10 0.99 1.00 1.01 1.01 0.13 0.12 0.98 0.99
1 1 1.00 1.01 0.08 0.16 0.99 0.98 1.04 1.03 0.20 0.18 0.96 0.97
1 2 1.01 1.01 0.10 0.12 0.99 0.99 1.02 1.03 0.21 0.18 0.97 0.97
2 0 1.86 1.84 0.37 0.40 0.85 0.83 1.92 1.93 0.32 0.33 0.89 0.89
2 1 1.72 1.71 0.47 0.48 0.71 0.69 1.81 1.83 0.44 0.45 0.77 0.79
2 2 1.71 1.66 0.49 0.50 0.72 0.67 1.82 1.82 0.43 0.45 0.79 0.78

N = 200, T = 100 N = 100, T = 200
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.00 0.04 1.00 1.00 0.02 0.01 0.17 0.11 0.98 0.99
0 1 0.00 0.07 0.06 0.25 1.00 0.93 0.04 0.03 0.21 0.18 0.96 0.97
0 2 0.00 0.00 0.00 0.04 1.00 1.00 0.02 0.04 0.16 0.21 0.97 0.96
1 0 1.00 1.00 0.08 0.04 0.99 1.00 1.04 1.03 0.20 0.20 0.96 0.96
1 1 1.00 1.02 0.06 0.15 1.00 0.98 1.03 1.03 0.19 0.19 0.97 0.97
1 2 1.00 1.00 0.11 0.09 0.99 1.00 1.02 1.03 0.19 0.16 0.97 0.97
2 0 1.99 1.99 0.10 0.09 0.99 0.99 1.99 1.99 0.19 0.23 0.96 0.96
2 1 1.95 1.98 0.27 0.19 0.93 0.96 1.99 1.98 0.28 0.28 0.93 0.92
2 2 1.92 1.97 0.30 0.19 0.92 0.96 1.95 1.96 0.28 0.36 0.92 0.90

N = 200, T = 200 N = 200, T = 500
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.04 0.00 1.00 1.00 0.00 0.00 0.04 0.00 1.00 1.00
0 1 0.01 0.06 0.08 0.24 0.99 0.94 0.00 0.02 0.06 0.15 1.00 0.98
0 2 0.00 0.01 0.06 0.10 1.00 0.99 0.00 0.00 0.04 0.00 1.00 1.00
1 0 1.00 1.00 0.10 0.09 1.00 1.00 1.00 1.00 0.00 0.06 1.00 1.00
1 1 1.01 1.02 0.13 0.13 0.99 0.98 1.00 1.01 0.00 0.08 1.00 0.99
1 2 1.00 1.00 0.09 0.00 1.00 1.00 1.00 1.00 0.00 0.06 1.00 1.00
2 0 2.00 2.00 0.00 0.06 1.00 1.00 2.00 2.00 0.09 0.06 1.00 1.00
2 1 2.00 2.02 0.13 0.15 0.98 0.98 2.00 2.00 0.04 0.04 1.00 1.00
2 2 1.99 2.00 0.14 0.06 0.99 1.00 1.99 1.99 0.14 0.13 1.00 1.00

In each cell we report the average and standard deviation of r̂2 over all Monte Carlo

replications, as well as the fraction of times in which r̂2 = r2.

Figure 1: HQM Corporate Bond Yield Curve
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We use the same settings as in Section 5. In particular, when computing r̂1, we set

R1 = N , while for r̂∗ we set R2 = N if p = 1 and R2 = bN/3c for p > 1. The significance
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Table 5: Estimated number of zero-mean I(1) factors, r̂2 when r1 = 1, using r̂1.

N = 50, T = 100 N = 100, T = 100
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.01 0.00 0.10 0.11 0.99 0.99 0.02 0.03 0.18 0.18 0.97 0.97
0 1 0.02 0.02 0.14 0.14 0.98 0.98 0.04 0.05 0.22 0.22 0.96 0.95
0 2 0.01 0.01 0.08 0.10 0.99 0.99 0.03 0.04 0.18 0.20 0.97 0.96
1 0 1.00 0.99 0.09 0.10 0.99 1.00 1.01 1.01 0.14 0.12 0.98 0.99
1 1 1.00 1.01 0.08 0.16 0.99 0.98 1.04 1.03 0.21 0.18 0.96 0.97
1 2 1.01 1.02 0.11 0.13 0.99 0.98 1.02 1.03 0.23 0.19 0.96 0.96
2 0 1.86 1.84 0.37 0.40 0.85 0.83 1.92 1.93 0.32 0.33 0.89 0.89
2 1 1.73 1.71 0.48 0.48 0.70 0.69 1.82 1.84 0.46 0.46 0.77 0.78
2 2 1.71 1.66 0.49 0.51 0.72 0.66 1.83 1.83 0.44 0.46 0.78 0.77

N = 200, T = 100 N = 100, T = 200
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.04 0.04 1.00 1.00 0.02 0.01 0.17 0.11 0.98 0.99
0 1 0.00 0.07 0.06 0.27 1.00 0.93 0.04 0.03 0.21 0.18 0.96 0.97
0 2 0.00 0.00 0.04 0.04 1.00 1.00 0.02 0.04 0.16 0.21 0.97 0.96
1 0 1.00 1.00 0.09 0.06 0.99 1.00 1.04 1.03 0.20 0.20 0.96 0.96
1 1 1.03 1.02 0.18 0.15 0.97 0.98 1.03 1.03 0.19 0.19 0.97 0.97
1 2 1.04 1.00 0.24 0.10 0.95 1.00 1.02 1.03 0.19 0.16 0.97 0.97
2 0 1.99 1.99 0.10 0.09 0.99 0.99 1.99 1.99 0.19 0.23 0.96 0.96
2 1 1.99 1.99 0.32 0.19 0.90 0.96 1.99 1.98 0.28 0.28 0.93 0.92
2 2 1.96 1.97 0.37 0.21 0.88 0.96 1.95 1.96 0.29 0.36 0.92 0.90

N = 200, T = 200 N = 200, T = 500
average std. dev. % correct average std. dev. % correct

r2 r3 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2 BT1 BT2
0 0 0.00 0.00 0.04 0.04 1.00 1.00 0.00 0.00 0.04 0.00 1.00 1.00
0 1 0.01 0.06 0.09 0.24 0.99 0.94 0.00 0.02 0.06 0.15 1.00 0.98
0 2 0.00 0.01 0.06 0.10 1.00 0.99 0.00 0.00 0.04 0.00 1.00 1.00
1 0 1.00 1.00 0.10 0.09 1.00 1.00 1.00 1.00 0.00 0.06 1.00 1.00
1 1 1.01 1.02 0.13 0.13 0.99 0.98 1.00 1.01 0.00 0.09 1.00 0.99
1 2 1.00 1.00 0.09 0.00 1.00 1.00 1.00 1.00 0.00 0.06 1.00 1.00
2 0 2.00 2.00 0.00 0.06 1.00 1.00 2.00 2.00 0.09 0.06 1.00 1.00
2 1 2.00 2.02 0.13 0.15 0.98 0.98 2.00 2.00 0.04 0.06 1.00 1.00
2 2 1.99 2.00 0.14 0.06 0.99 1.00 1.99 1.99 0.14 0.13 1.00 1.00

In each cell we report the average and standard deviation of r̂2 over all Monte Carlo

replications, as well as the fraction of times in which r̂2 = r2.

level is 0.05
min(N,T )

= 0.0002551.

In our analysis, we also report the information criterion IC3 proposed by Bai (2004).3

Results are in Table 6. Both BT1 and BT2 find three non-stationary common factors -

this is broadly in line with the stylised facts in this literature where a three factor model is

customarily employed. Whilst both criteria agree that two of these factors are I(1) with mean

zero, there is some evidence that the first common factor may have a linear trend. Indeed,

this is picked up by BT2 but not by BT1, which is compatible with the theory (which

stipulates that BT2 may have a tendency to find common factors more often than BT1)

and the evidence from the simulations. Thus, our procedures do not rule out the presence

3We note that, when computing r̂, this is also equivalent to IC3 in Bai and Ng (2002)
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Table 6: Estimated number of factors in the HQM Corporate Bond Yield Curve

BT1 BT2 IC

with linear trend r̂1 0 1 n.a.
non-stationary r̂∗ 3 3 5
zero-mean, I(1) r̂2 3 2 n.a.
all factors r̂ 5 5 5
zero-mean, I(0) r̂3 2 2 0

of a factor with a time trend, a finding in agreement with the debate on the evidence on the

secular decline of interest rates (see e.g. the discussion in Rachel and Summers, 2019).

We have also applied the test by Trapani (2018) to the first-differenced data, finding a

total number of 5 common factors, which suggests that there are two further I(0) common

factors. Note that IC finds 5 non-stationary factors in total, which may suggest that the last

two factors are either stationary (as found by BT1 and BT2), or marginally non-stationary.

The estimated factors are shown in Figure 2 (solid red lines). In Figure 3 we report

the autocorrelation of each estimated factor and the median, 5th and 95th percentiles of

the autocorrelations of the idiosyncratic errors together with 95% confidence bands (dashed

lines) computed as ±1.96√
T

. These results suggest that the fourth and fifth factor are nearly

stationary, whilst the idiosyncratic component is clearly stationary since it shows no residual

autocorrelation. The presence of common unit roots, and the stationarity of the idiosyncratic

error imply cointegration, which in turn implies the factor structure in bond yields - see

Dungey, Martin, and Pagan (2000).

Our findings can be contrasted with the stylised facts which are typically found in this

literature. In particular, following Nelson and Siegel (1987), it is common to model yield

curves by means of three common factors, which are usually interpreted as the level, slope,

and curvature of the yield curve in a given time period t – see for example Dai and Singleton

(2000) and Diebold and Li (2006). Moreover, when considering corporate bonds it common to

find additional factors beyond the classical first three – see for example Duffie and Singleton

(1999), Duffie, Saita, and Wang (2007), and Christensen and Lopez (2008).

First we analyse the first three estimated common factors. At each point in time t, the N

elements of Xt are ordered according to their maturity, thus X1,t is the shortest maturity (6

months), while XN,t is the longest maturity (100 years). We compare each estimated factor
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Figure 2: Estimated and identified common factors F̂j,t with proxies.
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with a standard proxy as specified by Diebold, Rudebusch, and Aruoba (2006). Results

are in the first three panels of Figure 2, where we show both the estimated factors (solid

red lines) and the proxies (dashed black lines). In particular, in order to identify F̂1,t, we

consider the proxy X̄t = N−1
∑N

i=1Xi,t; we found that Corr(X̄t, F̂1,t) ' 1, which strongly

suggests that F̂1,t can be viewed as the level of the curve. Turning to F̂2,t, we use, as a proxy

for the slope, dXt = (N − 1)−1
∑N

i=2(lnXi,t − lnXi−1,t) = N−1(lnXN,t − lnX1,t). We find

that Corr(dXt, F̂2,t) = .82, which suggests that F̂2,t can be interpreted as the slope of the

term structure. Finally, we compare F̂3,t to d2Xt = (N − 2)−1
∑N−1

i=2 (Xi+1,t− 2Xi,t +Xi−1,t)

as a proxy for the curvature; we find Corr(d2Xt, F̂3,t) = .53, which shows some evidence that
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Figure 3: Autocorrelation of common factors F̂j,t and idiosyncratic errors ûi,t.
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Figure 4: Estimated and theoretical factor loadings.
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F̂3,t can be interpreted as the curvature. Furthermore, according to Diebold and Li (2006),

the first three elements of the i-th row of the loadings matrix Λ should be given by

λi,1(c) = 1, λi,2(c) =

(
1− e−ci

ci

)
, λi,3(c) =

(
1− e−ci

ci
− e−ci

)
, (37)

for some c > 0. To confirm this finding, in Figure 4, we plot the estimated loadings

(λ̂i,1, λ̂i,2, λ̂i,3) (left panel) together with the theoretical curves in (37) computed for c = 0.2.4

As far as the remaining two estimated common factors are concerned, we note that, in

addition to level, slope and curvature, macroeconomic and financial factors have also been

incorporated in the study of yield curves – see for example Estrella and Mishkin (1998),

Ang and Piazzesi (2003), Diebold et al. (2006), Duffie et al. (2007), and Coroneo, Giannone,

4The chosen value of c is such that it minimizes
∑N

i=1(λ̂i,2 − λi,2(c))2.
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and Modugno (2016). We evaluate the correlation between St - the spread between the

10 years HQM bond rate and the Federal Funds rate - and the fourth factor finding that

Corr(St, F̂4,t) = .51, whence we propose to interpret F̂4,t as the spread factor. Also, letting

Rt be the yearly returns of the Standard & Poor’s index, we have Corr(Rt, F̂5,t) = .30; this

seems to suggest that F̂5,t may be viewed as a financial factor, or that, at a minimum, F̂5,t

is intimately related to the financial market.5 These results are in line with the results by

Duffie et al. (2007). In the last two panels of Figure 2 we report the fourth an fifth estimated

factors (solid red lines) and the corresponding proxies (dashed black lines).

7 Conclusions

In this paper, we propose a methodology to estimate the dimension of the common factor

space for a given dataset Xi,t. We do not assume that the data are stationary or that

they have (or not) linear trends: our procedure estimates separately the number of common

factors with a linear trend (which can be only 0 or 1), the number of zero mean, I (1) common

factors, and the number of zero mean, I (0) common factors.

Since estimation of these dimensions is carried out via testing (as opposed to using

an information criterion or some other diagnostic), the results provide several interesting

interpretations. For example, having r1 = 0 means that the data have been tested for the

presence of common linear trends, and none has been found; finding r∗ = 0 indicates that

the data have been tested for (the null of) non-stationarity, and have been found to be

stationary; etc. Our methodology thus complements the results recently derived by Zhang

et al. (2018).

Technically, our approach exploits the well-known eigenvalue separation property that

characterises the covariance matrix of data with a common factor structure: essentially, the

eigenvalues associated to common factors diverge to positive infinity, whereas the other ones

are bounded. On top of this, we exploit the also well-known fact that linear trends, unit

roots and stationary processes all imply different rates of divergence of the eigenvalues: these

two facts allow us not merely to check whether there are common factors (and how many

5Data for St are available at https://fred.stlouisfed.org.
Data for Rt are available at http://www.econ.yale.edu/~shiller/data.htm.
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these are) but also to discriminate between those that have a trend, those that have a unit

root, and the stationary ones. In this respect, our procedure is akin to the one proposed by

Bai (2004) and Zhang et al. (2019), although it is based on tests rather than an information

criterion, and it entertains the possibility that linear trends could be present.

We conclude by mentioning several interesting issues which, albeit not explicitly consid-

ered in this paper, can be studied by extending the results derived above. Firstly, all our

common factors are assumed to be pervasive; however, based on the discussion in Trapani

(2018), the individual tests can be used even in the presence of weak factors. Secondly, as

also mentioned in the comments to Theorem 1, it is possible to use our set-up - with no

need for changes to it - in the case of ui,t ∼ I (1) for at least some i; this would be helpful in

order to disentangle common and idiosyncratic sources of non-stationarity. Finally, we note

that, by suitably rescaling the second moment matrix of the data, our approach can also be

generalised to I(d) factors with d > 1.

References

Ahn, S. C. and A. R. Horenstein (2013). Eigenvalue ratio test for the number of factors.

Econometrica 81, 1203–1227.

Ang, A. and M. Piazzesi (2003). A no-arbitrage vector autoregression of term structure

dynamics with macroeconomic and latent variables. Journal of Monetary Economics 50,

745–787.

Bai, J. (2004). Estimating cross-section common stochastic trends in nonstationary panel

data. Journal of Econometrics 122, 137–183.

Bai, J., C. Kao, and S. Ng (2009). Panel cointegration with global stochastic trends. Journal

of Econometrics 149, 82–99.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models.

Econometrica 70, 191–221.

Bai, J. and S. Ng (2004). A panic attack on unit roots and cointegration. Econometrica 72 (4),

1127–1177.

32



Chen, L. and W. B. Wu (2019). Testing for trends in high-dimensional time series. Journal

of the American Statistical Association 114 (526), 869–881.

Christensen, J. H. E. and J. A. Lopez (2008). Common risk factors in the US treasury and

corporate bond markets: An arbitrage-free dynamic Nelson-Siegel modeling approach.

Technical report, Federal Reserve Bank of San Francisco.

Coroneo, L., D. Giannone, and M. Modugno (2016). Unspanned macroeconomic factors in

the yield curve. Journal of Business & Economic Statistics 34, 472–485.

Corradi, V. and N. R. Swanson (2006). The effects of data transformation on common

cycle, cointegration, and unit root tests: Monte Carlo and a simple test. Journal of

Econometrics 132, 195–229.

Dai, Q. and K. J. Singleton (2000). Specification analysis of affine term structure models.

The Journal of Finance 55, 1943–1978.

Diebold, F. X. and C. Li (2006). Forecasting the term structure of government bond yields.

Journal of Econometrics 130, 337–364.

Diebold, F. X., G. D. Rudebusch, and S. B. Aruoba (2006). The macroeconomy and the

yield curve: a dynamic latent factor approach. Journal of Econometrics 131, 309–338.

Donsker, M. and S. Varadhan (1977). On laws of the iterated logarithm for local times.

Communications on Pure and Applied Mathematics 30 (6), 707–753.

Duffie, D., L. Saita, and K. Wang (2007). Multi-period corporate default prediction with

stochastic covariates. Journal of Financial Economics 83, 635–665.

Duffie, D. and K. J. Singleton (1999). Modeling term structures of defaultable bonds. The

Review of Financial Studies 12, 687–720.

Dungey, M., V. L. Martin, and A. R. Pagan (2000). A multivariate latent factor decomposi-

tion of international bond yield spreads. Journal of Applied Econometrics 15 (6), 697–715.

Engel, C., N. C. Mark, and K. D. West (2015). Factor model forecasts of exchange rates.

Econometric Reviews 34 (1-2), 32–55.

33



Estrella, A. and F. S. Mishkin (1998). Predicting US recessions: Financial variables as

leading indicators. The Review of Economics and Statistics 80, 45–61.

Gengenbach, C., F. C. Palm, and J.-P. Urbain (2009). Panel unit root tests in the presence

of cross-sectional dependencies: comparison and implications for modelling. Econometric

Reviews 29 (2), 111–145.

Kapetanios, G., M. H. Pesaran, and T. Yamagata (2011). Panels with non-stationary mul-

tifactor error structures. Journal of Econometrics 160 (2), 326–348.

Liang, C. and M. Schienle (2019). Determination of vector error correction models in high

dimensions. Journal of econometrics 208 (2), 418–441.

Lin, Z. and Z. Bai (2010). Probability inequalities of random variables. In Probability

Inequalities, pp. 37–50. Springer.

Maciejowska, K. (2010). Common factors in nonstationary panel data with a deterministic

trend–estimation and distribution theory.

Moon, H. R. and B. Perron (2004). Testing for a unit root in panels with dynamic factors.

Journal of Econometrics 122 (1), 81–126.

Moon, H. R. and B. Perron (2007). An empirical analysis of nonstationarity in a panel of

interest rates with factors. Journal of Applied Econometrics 22 (2), 383–400.

Nelson, C. R. and A. F. Siegel (1987). Parsimonious modeling of yield curves. Journal of

Business 60, 473–489.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigen-

values. The Review of Economics and Statistics 92, 1004–1016.

Onatski, A. and C. Wang (2018). Alternative asymptotics for cointegration tests in large

vars. Econometrica 86 (4), 1465–1478.

Pearson, E. (1950). On questions raised by the combination of tests based on discontinuous

distributions. Biometrika 37, 383–398.

34



Peña, D. and P. Poncela (2006). Nonstationary dynamic factor analysis. Journal of Statistical

Planning and Inference 136 (4), 1237–1257.

Pesaran, M. H., L. V. Smith, and T. Yamagata (2013). Panel unit root tests in the presence

of a multifactor error structure. Journal of Econometrics 175 (2), 94–115.

Phillips, P. C. and S. Ouliaris (1988). Testing for cointegration using principal components

methods. Journal of Economic Dynamics and Control 12 (2-3), 205–230.

Rachel,  L. and L. H. Summers (2019). On secular stagnation in the industrialized world.

Technical report, National Bureau of Economic Research.

Salzer, H. E., R. Zucker, and R. Capuano (1952). Table of the zeros and weight factors

of the first twenty Hermite polynomials. Journal of Research of the National Bureau of

Standards 48 (2), 111.

Stock, J. H. and M. W. Watson (1988). Testing for common trends. Journal of the American

Statistical Association 83 (404), 1097–1107.

Trapani, L. (2018). A randomized sequential procedure to determine the number of factors.

Journal of the American Statistical Association 113 (523), 1341–1349.

Wang, W. and J. Fan (2016). Asymptotics of empirical eigen-structure for high dimensional

spiked covariance. The Annals of Statistics 45 (3), 1342–1374.

Zhang, B., G. Pan, and J. Gao (2018). CLT for largest eigenvalues and unit root testing for

high-dimensional nonstationary time series. The Annals of Statistics 46 (5), 2186–2215.

Zhang, R., P. Robinson, and Q. Yao (2019). Identifying cointegration by eigenanalysis.

Journal of the American Statistical Association 114 (526), 916–927.

35


