
 

Abstract--This paper presents a Neural Network (NN)-

based weighting factor (WF) selection method for the multi-

objective cost function in Model Predictive Control (MPC). 

MPC is adopted for scheduling the loads and 

charging/discharging the battery intelligently on More-

Electric Aircraft (MEA) in a preferred manner. The 

decisions which are made while the MPC is running utilize a 

cost function which weights together different objectives 

(using WFs). The final overall evaluation is performed by 

considering various objectives with full knowledge of what 

happened throughout the whole operation, which are 

weighted together by utilising weights appropriate to the 

user. The WFs utilized by the MPC to get the best overall 

result will usually differ from the weights used in the final 

evaluation. A NN is trained to predict the effects of different 

combinations of WF values, facilitating optimisation to find 

the minimum evaluation index, i.e. the most suitable 

weighting factors for the applied MPC.  

 
Index Terms— Weighting factor (WF), Model predictive 

control (MPC), multi-objective optimization, Neural network 

(NN), More-electric Aircraft (MEA)   

I.  INTRODUCTION 

Loads are increasingly driven by electric power on 

More-Electric Aircraft (MEA) with the replacement of 

hydraulic and pneumatic power for higher efficiency [1]. 

Those responsible for flight safety are named critical loads 

and must be powered in all flight scenarios regardless of 

high power peaks or fault-causing emergencies [2]. Use of 

the Energy Storage System (ESS) and shedding of non-

critical loads both help to maintain power for critical loads 

when power shortages occur. Intelligently combining the 

load shedding with the ESS capabilities is essential for safe 

on-board Electric Power System (EPS) operation [3]. 

A Model Predictive Control (MPC) framework is 

adopted in this paper for scheduling the battery 

charging/discharging and load shedding. This online-

optimisation control aims to keep the energy storage (ES) 

highly charged, within a defined target range, while also 

minimising the load shedding, with less switching to 

improve device lifetimes, and to avoid unnecessary 

transients. Using a Mixed-Integer Linear Programming 

(MILP) formulation for MPC modelling, the cost function 
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can combine different objectives linearly by adding 

various Weighting Factors (WFs) [4]. The selection of 

suitable WFs has vital impacts on achieving required 

control performance, since objectives could conflict with 

each other. However, the most commonly used selection 

methodology involves carrying out time-consuming 

simulations and relying on a trial-and-error approach to 

test the effect of different WFs [5],[6]. To this end, a more 

efficient selection method is required. 

This paper proposes a Neural Network (NN)-based 

approach to select WFs of MPC for optimal battery and 

load management in MEA. An MPC model for a main 

source - energy storage - load (MS-ES-L) system is first 

built up and the ranges for WFs in the cost function are 

given. A multi-objective evaluation index is then 

proposed, which quantifies the required control 

performance of MPC. After that, a range of values for each 

WF is swept with large sample steps using which the 

system is simulated. The corresponding evaluation index 

values are then collected as the training data for the desired 

NN. The training data is processed into an input/output 

matrix where every row corresponds to a combination of 

WF values and an associated index value. This matrix is 

used to train a NN, which can serve as a fast surrogate 

model of the system and its evaluation, thus allowing a fast 

selection of the optimised WF combination with small 

WFs granularity in the given range. The simulation results 

adopting both the optimised WFs and an empirical design 

by adopting evaluation weights are compared to verify the 

effectiveness of the proposed method. 

This paper is organized as follows: Section II explains 

the architecture of the studied MS-ES-L system and the 

MPC model in this system. Section III demonstrates the 

evaluation index for each objective, and a multi-objective 

evaluation index is proposed with evaluation weights. The 

NN-based WF selection method is presented in Section IV. 

The MPC based system with different WFs are simulated 

and presented in Section V, and the paper is concluded in 

Section VI.  
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II.  SYSTEM DESCRIPTION AND MPC MODEL 

The studied MS-ES-L system is illustrated in Fig. 1, the 

MS and ES are connected to one LV bus to supply the 

loads. Three types of loads are considered – critical loads, 

high priority and low priority noncritical loads.   

 
Fig. 1. Architecture of MS-ES-L system 

The control of the MS-ES-L system can be formulised 

as an MILP model. The system operation is represented as 

a group of linearized constraints in MILP, including power 

balance, storage dynamics, SOC target range, battery 

charging/discharging modes, and power bounds. The cost 

function targets on minimising total load shedding and the 

switching activities, and maximising the battery energy 

storage. In the meantime, an MPC scheme is adopted in 

this work. For each time step, the controller gets the system 

status and load prediction in a prediction horizon to update 

the constraints in MILP model, the model is then solved 

for the prediction horizon to obtain a sequence of control 

decisions for discrete time instants k (k = 1, 2, …). Only 

the control decisions for the first instant is provided to the 

system, which consists of input power from MS and load 

shedding. Then the battery power can be consequently 

controlled. 

A.  Nomenclature 

The parameters and decision variables used in the 

proposed formulation are described in TABLE 1. 

 
TABLE 1 PARAMETERS AND VARIABLES INVOLVED 

Parameters 

k Time intervals, k∈ℤ≥0 

H Prediction horizon [s] 

Ts Sampling time [s] 

T Total system operation time [s] 

ch , disch  Battery charging/discharging efficiency 

capB  Battery capacity [kWh] 

max

chP , max

dischP  Maximum charging/discharging power [kW] 

max

inP  Maximum input power form the grid side 
[kW] 

( )ncri

LiP k  The ith non-critical load power [kW] 

Li  The priority of the ith non-critical load 

NLi The total number of the non-critical load 

( )cri

LjP k  The jth critical load power [kW] 

NLj The total number of the critical load 

Continuous variables 

( )inP k  Input power from the MS side [kW] 

( )chP k  Battery charging power [kW] 

( )dischP k  Battery discharging power [kW] 

( )battP k  Battery overall power [kW] 

SOC(k) Battery stage of charge 

Binary variables 

( )LiS k  Contactor connection status of the ith non-

critical load 

( )chf k  Indicator for charging battery 

( )dischf k  Indicator for discharging battery 

 

  The prediction horizon sH KT  and the total system 

operation time sT MT , where K and M are the total 

numbers of time intervals for the H and T. The following 

two subsections will discuss the three objectives in the cost 

function and four groups of constraints. 

B.  Cost functions 

Three control objectives are considered in this work. 

The MPC controller firstly aims to minimize the total 

number and time of non-critical load shedding; further the 

high priority load is less shed than the low priority load. 

This cost function for this objective is represented in (1). 
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Since constant load connecting and shedding will lead 

to transient and instability problem to the system, a cost 

function in (2) is introduced to minimise the switching 

activities. 
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 The ES supplies power to loads when the input power 

from MS has shortage. However, the battery SOC is 

required to be kept in a target range [LO, HI] to improve 

the battery lifetime and the system safety. Moreover, high 

SOC means more energy can be potentially supplied. 

Hence the MPC controller has the objective to keep SOC 

close to its upper limit HI as much as possible, which helps 

keep battery SOC in the target range and in the meantime, 

store more enough energy in battery. The cost function for 

this objective is presented in (3). 
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The total cost function combines (1) - (3) with 

normalized WFs wS/wSUM, wSs/wSUM, wSOC/wSUM 

correspondingly, which is presented in (4), where wSUM = 

wS + wSs + wSOC. 

( ) ( ) ( )S Ss SOC

SUM

w f S w f Ss w f SOC
Obj

w

 
        (4) 

C.  Constraints 

    1)  Power balance constraints:  

For the bus, the sum of power flowing into/out of it 



 

equals zero, assuming no losses within this bus. (5)

indicates that the power from the MS and the ES equals the 

power of connected critical and non-critical loads. The 

battery power in  (5) can be calculated as shown in (6). 
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 ( ) ( ) ( )batt ch dischP k P k P k                      (6) 

    2)  Battery dynamics  

The battery SOC dynamics is calculated from the 

charging/discharging power in a time step using (7) [7].  

( ) ( )
( 1) ( ) ch disch

s ch s
cap cap disch

P k P k
SOC k SOC k T T

B B



      


  (7) 

Battery SOC varies from 0 to 1, with 1 indicating fully 

charged, while 0 indicates a depleted battery. In the 

aircraft, SOC is preferred to be kept within a target range 

[LO, HI]. In this case, we select LO=0.3, HI=0.9,   

therefore upper and lower bounds are defined as (8). 
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    3)  Charging/discharging mode constraints 

The battery can be either in charging or discharging 

mode under the maximum charging/discharging power. 

By introducing an indicator 𝑓(𝑘) for each mode, the one 

mode selection can be represented with the constraint in 

(9) [8]. In each mode, the battery charging/discharging 

power varies from 0 to the maximum, which is presented 

as (10) and (11).  

         1,  ,  0,1ch disch ch dischf fk k k kf f    (9) 

    max0  ch ch chkP f Pk                    (10) 

    max0  disch disch dischP f Pk k                (11) 

    4)   Bounds of input power from MS side 

The power obtained from MS side should not exceeds 

its maximum value, which is presented as (12).   

  max0  in inP Pk                            (12) 

III.  EVALUATION WITH DIFFERENT WEIGHTS 

As presented in Section II, the MPC cost function 

combines multiple objectives with WFs. Different 

combination of the WFs will lead to different energy 

management results. To evaluate the predictive control 

performance for a flight load profile, a set of evaluation 

indices are proposed to make the performance quantified 

for comparisons.  

In this section, three evaluation indices are introduced 

first. The weighting factors are then sampled in a given 

range, and the resulting evaluation values are recorded.  

A.  Evaluation indices 

According to three objectives mentioned in Section II, 

three evaluation indices are first confirmed. Smaller value 

of each index indicates better control performance. 

The load shedding index g(S) calculates the ratio of 

shed load over the duration of whole flight as presented in 

(13).   
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The switching index g(Ss) calculates the average 

number of connection status changes for each contactor in 

the whole flight, as shown in (14). 
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Battery energy storage level index g(SOC) calculates 

the average SOC for the whole flight as (15). 
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B.  WF impacts to evaluations 

To compare different impacts of WFs, the factors wSs 

and wSOC are set into a range of [0.1, 62], and wS=5, hence 

wSs/wSUM and wSOC/wSUM varies from 0.0015 to 0.924, while 

wS/wSUM ∈[0.0388, 0.9615].  The range is selected to make 

each weight of the objective can vary from 0.05 to 0.9, 

where the optimal WFs are expected to appear. 

Then, wSs and wSOC are sampled with large steps for the 

range [0.1, 5] with the step size 0.2, while for the range [5, 

62], the step size is 3.  For each weighting factor 

combination, the MPC model is conducted with a load 

profile of 240 load samples, the evaluation values for each 

model simulation are recorded, as follows.  

Fig. 2 illustrates three evaluation index values in the 

given ranges of wSs and wSOC. Fig. 2 (a) shows how the 

amount of load shedding g(S) varies according to the value 

of wSs and wSOC sampled. When wSs ≤4 and wSOC ≤30 (wSs/ 

wSUM ≤0.1025, wSOC/wSUM ≤0.7692), the system will 

perform the least load shedding activities. When wSs ≤20 

and wSOC increases from 30 to 60 (0.2353≤wSs/wSUM 

≤0.3636, 0.5455≤wSs/wSUM ≤0.7059), load shedding 

increases a lot, while comparing with the g(SOC) changes 

in  Fig. 2 (c), the SOC in this range decreases to the 

minimum value. Similarly, Fig. 2 (b) shows how switching 

activities g(Ss) changes according to the value of wSs and 

wSOC sampled. When wSs ≤2 (wSs/wSUM ≤0.2816), the 

system performs the most switching on/off changes. 

 

 
(a) g(S) with different WF combinations 



 

 
(b) g(Ss) with different WF combinations 

 
(c) g(SOC) with different WF combinations 

Fig. 2. The evaluation value changes with different WF combinations 

 

C.  Multi-objective evaluation function 

To select proper WFs for MPC, a multi-objective 

evaluation function should be provided, which sets a 

selection criteria for the objective function in (4). The 

multi-objective evaluation function can be presented as 

(16), where vS, vSs, and vSOC are the weights for the 

evaluation functions.  

( ) ( ) ( ) ( )S Ss SOCg Obj v g S v g Ss v g SOC         (16) 

The trade-offs between each pair of evaluation indices 

are presented in Fig. 3, showing the results for each 

execution (with different WFs). The range of the third 

index value is indicated by the colour of each point. Fig. 3 

(a) indicates that the best potential values for g(SOC) 

decrease as those for g(S) increase. Similar relationships 

are observed in Fig. 3 (b) for g(Ss) and g(S), and in Fig 3(c) 

for g(SOC) and g(Ss). 

It is noted that the weights for combining multiple 

objectives in an evaluation function are usually determined 

by practical requirements, i.e. priorities of each objective. 

In this paper, rather than choosing arbitrary weights, we 

normalise their ranges, using the ranges of the best values 

shown in Fig. 3, to give the weights, so that varying each 

objective can then have a similar effect in MPC. 

The acceptable ranges for g(S), g(Ss) and g(SOC) can 

be obtained from Fig. 3. The acceptable range for g(S), 

denoted by g(S)∈[g(S)min, g(S) max] are considered to be 

[0.31, 0.47]. Similarly, the acceptable ranges for g(Ss) and 

g(SOC) are considered to be [g(Ss)min, g(Ss)max] = 

[0.05,0.3] and [g(SOC)min, g(SOC)max] = [0.12,0.56]. 

Based on that, the weights in (16) can be calculated by 

the following equations (17) - (19), which are calculated 

as vS =2.8, vSs =1.68. 
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(a) Relation between g(S) and g(SOC), with g(Ss) in colour map 

 
(b) Relation between g(S) and g(Ss) , with g(SOC) in colour map 

 
(c) Relation between g(Ss) and g(SOC), with g(S) in colour map 

Fig. 3. The relation between each two evaluations 



 

Therefore, the multi-objective evaluation function in 

(16) can be rewritten as (20) and the results in Fig. 2 can 

be expressed using (20) as Fig. 4. The optimal weighting 

factor combination is the one whose g(Obj) value is the 

minimum.  

( ) 2.8 ( ) 1.68 ( ) ( )g Obj g S g Ss g SOC           (20) 

 
Fig. 4 Multi-objective evaluation value changes with different weight 

combinations 

IV.  NN-BASED WFS SELECTION 

In Fig. 4, if the sample step for wSs and wSOC is small, 

theoretically the optimal weights can be directly obtained 

from this heat map. However, small sample steps will 

cause the detailed system to run for tens even hundreds of 

hours, which makes this method unrealistic. 

To solve that, relatively large sample steps are used to 

run the model within a reasonable time, as presented in 

Section I. Then NN is adopted for training the data 

collected. Furthermore, the trained NN is used to 

exhaustively predict the g(Obj) values for small sample 

steps (e.g. 0.1 for each WF) in the given range, and the 

optimised weighting factors can be finally obtained. 

 
Fig. 5. Schematic of Used Neural Network. Internal weights and bias 

are omitted for simplicity. 

 

Fig. 5 depicts the schematic of the used feedforward 

NN. A basic forward ANN comprises an input layer, one 

or more hidden layers, and an output layer. The neuron 

numbers in input and output layers are determined by 

sample designs while the neuron number in hidden layers 

can be changed. The NN in this study directly maps the 

relation from two weighting factors in (4) to g(Obj). As 

mentioned, the NN should be trained by the sample data 

obtained from the detailed MILP-MPC simulations. Then, 

based on the tiny-step sampling in the 2D input space, the 

variations of g(Obj) (against two factors) can be globally 

obtained. Noting that NN is a math model with simple 

structure thus, the generation process of g(Obj) can be very 

fast (less than 0.1 sec for 0.36 million data points).  

Fig. 6 shows the global g(Obj) results based on the 

trained NN. The optimised WFs for the evaluation function 

in (20) are obtained as wS =5, wSs =34.7, wSOC =56.8, 

correspondingly, wS/wSUM =0.0518, wSs/wSUM =0.3596, 

wSOC/wSUM =0.5886. The predicted minimum value for the 

g(Obj) is 1.76. The rmse between the raw dataset and the 

NN predicted data is 0.0169.  

 
Fig. 6. Multi-objective evaluation with different WF combinations 

based on NN 

V.  CONTROL RESULTS WITH DIFFERENT WFS 

In this section, the MPC with the optimised WFs is 

simulated to obtain the best g(Obj) in (20). The optimised 

WFs are different from the g(Obj) weights which are 

empirically adopted. Hence both WFs are compared in 

simulation to demonstrate the comparison.  

Fig. 7 shows the load connection results based on the 

optimised WFs (a) and the empirical WFs (wS =2.8, wSs 

=1.68, wSOC =1) (b). By adopting the optimised WFs, the 

low priority noncritical load is shed for a longer time to 

reduce the switching activities. The load shedding when 

adopting optimised WFs is 1.17 times of that adopting the 

empirical ones, while the switching activities are reduced 

by 4.17 times.  

 
(a) Load connection control with optimised WFs 



 

 
(b) Load connection control with empirical WFs 

Fig.7. Load connection results when adopting different WFs in MPC 

controller 

Fig. 8 illustrates the SOC variations based on the 

optimised WFs (a) and the empirical WFs (b). It can be 

seen that the optimised design makes average SOC reach 

0.36, while the other design only reaches 0.32. Moreover, 

the maximum SOC using the optimised WFs exceeds 0.4, 

which is 1.24 times of that using empirical WFs. 

 
(a) SOC variations with optimised WFs 

 
(b) SOC variations with experience WFs 

Fig. 5. SOC variations when adopting different WFs in MPC controller 

 

Results in Fig. 5 and Fig. 8 are evaluated by the multi-

objective evaluation function in (20). When the optimised 

WFs are adopted, g(Obj)=1.776, while the empirical WFs 

makes g(Obj)=1.97. Therefore, the optimised WFs 

selected in Section IV perform much better than the 

empirical weights. Moreover, the minimum g(Obj) with 

sampled WFs in Fig. 4 is 1.778. Hence, the WFs obtained 

from NN perform better than the sampled WFs, which 

verifies the effectiveness of the proposed NN approach. 

VI.  CONCLUSIONS 

This work presents a novel method for selection of the 

WFs in the multi-objective cost function of the MPC 

algorithm. A NN is used to predict the effects of different 

weights in order to allow the user to more easily find 

appropriate weights to use. The NN is trained by sample 

WFs and the corresponding evaluation value in a given 

range, with large step sizes. This NN model is then used to 

predict the evaluation value for WFs with smaller 

granularity to find optimised WFs, which gives a lower 

evaluation index. The NN therefore saves time for running 

the MPC model. The optimised WFs are different from the 

weights in evaluation index, and the simulation results 

verifies that the optimised WFs selected by the proposed 

method has better performance.  
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