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Abstract: In this paper, the phase lead by the general phase-lead compensator is analyzed, and

a criterion of its parameters selection is proposed. In order to get the relatively large time-interval

prediction for stochastic signal, two types of differentiator-predictors are presented to estimate fu-

ture signal and its derivatives: linear high-gain differentiator-predictor and nonlinear differentiator-

predictor. Furthermore, a nonlinear extended differentiator-predictor is designed for future estima-

tion and chattering rejection. The stability analysis of differentiator-predictors is described in time

domain. The iterative transfer function method is proposed to analyze the robustness in frequency

domain, and the rules of differentiator-predictor parameters selection are presented. The analysis

shows that the nonlinear differentiator-predictor has stronger adaptability and robustness than the

linear high-gain differentiator-predictor. Simulations demonstrate the effectiveness of the proposed

methods.

Keywords: Phase-lead compensator, (extended) differentiator-predictor, future signal and its

derivatives

1 Introduction

This paper focuses on the problem of prediction of future signal and its derivatives for stochastic

signal. Estimation of future signals is important for many applications, for examples, future tra-

jectory prediction for missile interception (Akcal & Ure, 2017), short-term stock prediction (Weng,

Lu, Wang, Megahed, & Martinez, 2018), et al. Figure 1 shows the future trajectory prediction

for missile-interception system. As the speed of attack missile is very fast, the usual methods of

real-time interception control need the motion of defense missile much faster and more flexible. In

order to get the timely interception, the prediction of future position, velocity and even acceleration

of the attack missile is necessary. Moreover, the prediction can relieve the speed-maneuverability

requirement for defence missiles. Many times, for prediction, no model information of the attack

missile is provided. Therefore, for the interception control system, not only the future position of

attack missile needs to be determined, but also its future velocity and acceleration are necessary

under condition that the model of attack missile is unknown.

In fact, the implementation of future prediction is to make signal phase in a required lead.

The simplest approach for signal prediction is the phase-lead compensator (Franklin, Powell, &

Emami-Naeini, 2014; Han, Lee, & Kim, 2018; Kikuuwe, Kanaoka, Kumon, & Yamamoto, 2015):

a proper transfer function is used to make the signal phase in lead, and the future prediction can

be implemented. However, for the phase-lead compensator: 1) it is only fit for very short time-

interval prediction; 2) low accuracy due to large approximations; 3) the derivative of current signal

should be known; 4) the method cannot provide the derivatives of future signal; 5) no robustness to

high-frequency noise from the frequency characteristic; 6) the parameters selection is not explicit.

For a signal, the Padé approximation can generate a time lag, but not a time lead (Glader,
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Figure 1. Future trajectory prediction for missile interception

Hoegnaes, Maekilae, & Toivonen, 1991; Pekař & Kurečková, 2012). If the Padé approximation is

used for signal prediction, it will become unstable because a positive pole exists in the system.

Not only the future signal is important, but also the derivatives in the future are necessary

for many systems. There are many works on state observers for estimate of unknown states or

derivatives (Boukal, Darouach, Zasadzinski, & Radhy, 2017; Hansen, Johansen, Sokolova, & Fos-

sen, 2019), and extended state observers for estimate of system uncertainties (Pu, Yuan, Yi, &

Tan, 2015; Sanz, Garcia, Fridman, & Albertos, 2018; Stanković, Rapaić, Manojlović, Mitrović,

Simić, & Naumović, 2019). However, for the above observers, the system models are inevitably

required. The differentiators can provide the derivatives estimate without considering of system

model (Ahrens, & Khalil, 2009; Khalil, 2017; Khalil, & Priess, 2016; Ibrir, 2004; Levant, 1998; Lev-

ant, 2003; Levant, & Livne, 2018; Levant & Yu, 2018; Moreno, 2018; Obeid, Fridman, Laghrouche,

Harmouche, & Golkani, 2018; Wang, Chen, & Yang, 2007; Wang & Lin, 2012; Wang & Shirinzadeh,

2014). However, the above observers and differentiators can only estimate the current states and

derivatives.

Some observers with phase-lead compensation can provide the estimate of future derivatives

under condition that the system models are known (Ahmed-Ali, Giri, Krstic, & Kahelras, 2018;

Chakrabarty, Fridman, Żak, Buzzard, 2018; Kader, Zheng, & Barbot, 2017).

In this paper, first, a general phase-lead compensator is designed, and the criterion of its param-

eters selection is proposed. Interestingly, the popular phase-lead compensator (Franklin, Powell,

& Emami-Naeini, 2014) is the special case of this general compensator. Second, the phase lead

and future derivatives estimation are considered simultaneously, and two types of differentiator-

predictors are presented respectively for stochastic signal without considering of system model:

linear high-gain differentiator-predictor and nonlinear (extended) differentiator-predictor. The pro-

posed differentiator-predictors have the iterative structure, and each iteration step can estimate the

corresponding future signal and its derivatives. At the final step, the future signal and the deriva-

tives in large phase lead will achieve.

In the presented differentiator-predictors, the linear or nonlinear differentiators are adopted as the

elements. When the linear differentiator is used in the proposed iterative differentiator-predictor, its

gains tend to infinity (Ahrens & Khalil, 2009; Khalil, 2017; Khalil & Priess, 2016; Ibrir, 2004). First,

the selection of large gains makes the bandwidth very large, and it is sensitive to high-frequency

noise. Second, peaking phenomenon happens. It means that the maximal value of system output

during the transient increases infinitely when the gains tend to infinity. Adversely, the peaking
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effect becomes worse when an iterative algorithm is used for the linear differentiator-predictor. For

the nonlinear differentiators, the gains do not need to be very large (Levant, 1998; Levant, 2003;

Levant & Livne, 2018; Levant & Yu, 2018; Moreno, 2018; Obeid, Fridman,Laghrouche, Harmouche,

& Golkani, 2018; Wang, Chen, & Yang, 2007; Wang & Shirinzadeh, 2014; Wang & Lin, 2012). Thus,

the peaking effect can be avoided. Importantly, through selecting the suitable gains, the bandwidth

of the nonlinear differentiator can match that of the predictor in the differentiator-predictor, and

its strong robustness can reject the predictor drift with frequency increasing. Although the sliding

mode differentiator plays an important role for derivatives estimate (Levant, 1998; Levant, 2003;

Levant & Livne, 2018; Levant & Yu, 2018; Moreno, 2018; Obeid, Fridman, Laghrouche, Harmouche,

& Golkani, 2018), it is not very fit for the iterative differentiator-predictor design. In fact, the

existence of switching function makes the serious chattering happen in the highest-order derivative

estimate, although no chattering exists in lower-order derivative estimates. When the high-order

sliding mode differentiator is used in an iterative algorithm, the chattering effect will be amplified

adversely. Accordingly, the chattering in the iterative differentiator-predictor will contaminate the

estimate outputs. The continuous nonlinear differentiators can provide continuous, accurate and

smoothed estimations (Wang, Chen, & Yang, 2007; Wang & Shirinzadeh, 2014; Wang & Lin, 2012).

In the experiments on helicopter estimation and control (Castañeda, Plestan, Chriette, & León-

Morales, 2016), the continuous nonlinear differentiator (Wang & Lin, 2012) was compared with the

standard sliding mode differentiator (Levant, 1998). The advantage of the continuous nonlinear

differentiator is the reduction of high frequency oscillations with respect to classic discontinuous

differentiators, and the system gains are also bounded. Therefore, the continuous structure of

nonlinear differentiator with bounded gains is more fit for the iterative algorithm in the presented

differentiator-predictor.

In this paper, the iterative transfer function method is presented to analyze the frequency char-

acteristic of the differentiator-predictor. According the input signal information, the differentiator-

predictor parameters (including the gains, the prediction time interval and number of iteration

steps) are analysed, and a theorem of the parameters selection is proposed.

2 Analysis of future signal prediction

We are interested in designing a signal prediction method to estimate the future signal f (t+∆)

and its derivatives f (j) (t+∆) according to the current stochastic signal f (t), even system model is

unknown, and the large future time interval ∆ is required. Figure 2 shows that the future estimate

and the signal phase leading are equivalent.
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Figure 2. Future prediction scheme
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From Figure 2, after phase leading, we can observe f (t+∆) at the current time t, where, f (t+∆)

is the signal value at future time t + ∆. It means that the phase lead can implement the future

signal prediction.

In the following, a general phase-lead compensator including the criterion of parameters selection

will be presented, and the popular phase-lead compensator (Franklin, Powell, & Emami-Naeini,

2014) is the special case of this general compensator.

2.1 Phase-lead compensator

Lemma 1: Considering a stochastic signal f (t) and a time lead ∆ ∈ (0, 1), for the phase-lead

compensator

Y (s)

F (s)
=

1 + a1s

1 + a2s
(1)

if the a2 ∈ (0, 1) is selected as small as possible, and the following relations hold:

a1 = a2 +∆ (2)

a2 <
1

maxω [f (t)]
−∆ (3)

then, there exists a positive constant L, such that

lim
t→0

|y (t)− f (t+∆)| ≤ L ·∆ (4)

where, f (t) is the input signal, and y (t) is the system output; F (s) = L [f (t)] and Y (s) = L [y (t)];

maxω [f (t)] is the maximal angular frequency of f (t), and maxω [f (t)] < 1
∆ .

Proof: The phase-lead compensator (1) can be written in time domain by

ẏ (t) = − 1

a2
y (t) +

1

a2
f (t) +

a1
a2

ḟ (t) (5)

For the time lead ∆ ∈ (0, 1), the reference future signal is f (t+∆). The error is defined as

e (t) = y (t)− f (t+∆) (6)

Then, considering of derivative approximation and Taylor expansion, the error system is given by

ė (t) =− 1

a2
e (t)− 1

a2
f (t+∆) +

1

a2
f (t) +

a1
a2

ḟ (t)− ḟ (t+∆)

=− 1

a2
e (t)− ∆

a2

(f (t+∆)− f (t))

∆
+

a1
a2

ḟ (t)− ḟ (t+∆)

=− 1

a2
e (t)− ∆

a2

{
ḟ (t) +

∞∑
i=1

1

(i+ 1)!
∆if (i+1) (t)

}
+

a1
a2

ḟ (t)−

{
ḟ (t) +

∞∑
i=1

1

i!
∆if (i+1) (t)

}

=− 1

a2
e (t) +

(
a1
a2

− ∆

a2
− 1

)
ḟ (t) +O (∆) (7)
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where, O (∆) = −∆
a2

∞∑
i=1

1
(i+1)!∆

if (i+1) (t) −
∞∑
i=1

1
i!∆

if (i+1) (t). In order to make the system stable,

and to make the error small sufficiently: i) 1
a2

is selected as large as possible, i.e., a2 is as small

as possible; ii) ∆ ∈ (0, 1) is required to be small enough. Furthermore, to make the second term
a1
a2

− ∆
a2

− 1 = 0 in (7), the parameters a1 and a2 satisfy

a1 = a2 +∆ (8)

Importantly, in order to guarantee more useful elements of f (t) go through the compensator

without distortion, a1 is selected such that 1
a1

> maxω [f (t)]. Then, we can get a2 <
1

maxω[f(t)]−∆.

Therefore, the system is stable, and the result (4) holds. This concludes the proof. �
Specially, when we define a2 = T and a1 = aT , the phase-lead compensator (1) can be written

by (Franklin, Powell, & Emami-Naeini, 2014)

Y (s)

F (s)
=

1 + aTs

1 + Ts
(9)

where a > 1, and T > 0 is time constant.

Lemma 2: Considering a stochastic signal f (t) and a time lead ∆ ∈ (0, 1), for the phase-lead

compensator (9), if T ∈ (0, 1) is selected as small as possible, and the following relations hold:

a =
∆

T
+ 1 (10)

T <
1

maxω [f (t)]
−∆ (11)

then, there exists a positive constant L, such that

lim
t→0

|y (t)− f (t+∆)| ≤ L ·∆ (12)

where, f (t) is the input signal, and y (t) is the system output; F (s) = L [f (t)] and Y (s) = L [y (t)];

maxω [f (t)] is the maximal angular frequency of f (t), and maxω [f (t)] < 1
∆ .

Proof: For (1) in Lemma 1, we define

a2 = T, a1 = aT (13)

Then, from a1 = a2 + ∆ in Lemma 1 and (13), it follows that a = ∆
T + 1. In order to guarantee

more useful elements of f (t) go through the compensator without distortion, aT selected such that
1
aT > maxω [f (t)]. Then, we can get T < 1

maxω[f(t)] −∆. Therefore, the system is stable, and the

result (12) holds. This concludes the proof. �
Example 1: Suppose the time lead ∆ = 0.2s, and maxω [f (t)] = 4rad/s. We know that

requirement maxω [f (t)] = 4 < 1
∆ = 5 is satisfied. According to T < 1

maxω[f(t)] −∆ = 0.25− 0.2 =

0.05, we select T = 0.02. Then, a = ∆
T + 1 = 0.2

0.02 + 1 = 11, and the transfer function of the

phase-lead compensator is

Y (s)

F (s)
=

1 + 11× 0.02s

1 + 0.02s
(14)
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The Bode plot of phase-lead compensator (14) is shown in Figure 3.
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Figure 3. Bode plot of phase-lead compensator

Although we can get the criterion of parameters selection for the phase-lead compensator, its

disadvantages include: 1) it is only fit for small phase lead, i.e., ∆ ∈ (0, 1); 2) low accuracy due

to derivative approximation and low-order Taylor expansion; 3) from (5), it needs the derivative

information of current signal, i.e., ḟ (t) should be known; 4) it cannot provide the future derivatives;

5) no robustness to high-frequency noise.

2.2 Padé approximation

Can the Padé approximation be used for phase lead? If Padé approximation is used for phase

lead, the transfer function can be given by (Glader, Hoegnaes, Maekilae, & Toivonen, 1991; Pekař

& Kurečková, 2012)

Y (s)

F (s)
= es∆ ≈

1 + ∆
2 s

1− ∆
2 s

(15)

where, Y (s) = es∆F (s) i.e., y (t) = f (t+∆). However, a positive pole exists in (15), and the

system is unstable. Therefore, Padé approximation cannot be used for phase lead. In fact, Padé

approximation can only be used for signal lag, i.e., Y (s) = e−s∆F (s) in s domain, and y (t) =

f (t−∆) in time domain. The transfer function of a phase-lag compensator is

Y (s)

F (s)
= e−s∆ ≈

1− ∆
2 s

1 + ∆
2 s

(16)

2.3 Estimation by differentiators

Although the differentiators cannot observe the future signal and its derivatives, they can estimate

the current derivatives of signal.

A. Linear high-gain differentiator

Lemma 3 (Ahrens & Khalil, 2009): Considering of a stochastic signal f (t) = f0 (t) + d (t),

where, f0 (t) is the desired signal, d (t) is the measurement noise, and supt≥0 |d (t)| ≤ Ld, for the

differentiator:
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Ẋ (t) = AX (t) +H (f (t)− CX (t)) (17)

there exist positive constant c1 and c2, such that

lim
t→0

∥F0 (t)−X (t)∥ ≤ εc1 +
Ld

εn−1
c2 (18)

and the function εc1 +
Ld

εn−1 c2 has the following properties:

1) εc1 +
Ld

εn−1 c2 has a global minimum at ε = [(n− 1) c2Ld/c1]
(1/n) def

= caL
1/n
d , and

min
ε>0

{
εc1 +

Ld

εn−1
c2

}
=
(
c1ca + c2/c

n−1
a

)
L
1/n
d

def
= kaL

1/n
d (19)

2) For ε ≥ caL
1/n
d , εc1+

Ld
εn−1 c2 is a strictly increasing function of ε, and εc1+

Ld
εn−1 c2 ≤ kbε, where

kb = c1 + c2/c
n
a ;

3) Given k > 0, for every Ld ∈ [0, (k/ka)
n), there exist εm = εm (Ld, k) > 0 and εM = εM (Ld, k) >

caL
1/n
d , with εm ≤ caL

1/n
d , εm ≤ (Ldc2n/k)

1/(n−1), and limLd→0 εM (Ld, k) = k/c1, such that

εc1 +
Ld

εn−1 c2 ≤ k for all ε ∈ (εm, εM ]; where,

F0 (t) =


f0 (t)

ḟ0 (t)
...

f
(n−1)
0 (t)

 , X (t) =


x1 (t)

x2 (t)
...

xn (t)

 , A =



0 1 0 · · · 0

0 0 1
...

...
. . .

. . . 0
...

. . . 1

0 · · · · · · · · · 0


,H =


kn
ε

kn−1

ε2

...
k1
εn

 , C =


1

0
...

0


T

; (20)

the parameters k1, · · · , kn, are selected such that sn + kns
n−1 + · · ·+ k2s+ k1 = 0 is Hurwitz.

Remark 1: For the linear high-gain differentiator (17), in order to make the system stable, the

parameter ε should be selected as small as possible. Thus, the peaking effect is inevitable.

B. Nonlinear differentiator

According to the finite-time stability, the nonlinear differentiator can estimate the current deriva-

tives of signal in spite of the existence of the bounded disturbance.

Lemma 4 (Wang & Shirinzadeh, 2014): For the nonlinear differentiator:

ẋj = xj+1 +
kn−j+1

εj
|f (t)− x1|αn−j+1 sign(f (t)− x1); j = 1, · · · , n− 1

ẋn =
k1
εn

|f (t)− x1|α1 sign(f (t)− x1) (21)

if the disturbance exists in signal f (t), i.e., f (t) = f0 (t) + d (t), where f0 (t) is the desired signal,

d (t) is the bounded stochastic disturbance, and supt>0 |d (t)| ≤ Ld, then there exist γ > 1 and

Γ > 0, such that, for t ≥ εΓ (Ξ(ε)e (0)),

∣∣∣xj − f
(j−1)
0 (t)

∣∣∣ ≤ L(δdj)
γ , j = 1, · · · , n (22)
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where, L is the bounded positive constant; δdj = ε
n− j−1

γ +
L
αp
d
hn

(
n∑

i=1
21−αn−i+1kn−i+1

)
ε
− j−1

γ , and

δdj ∈ (0, 1), j = 1, · · · , n; ε ∈ (0, 1); supt≥0|f (n)
0 (t)| ≤ hn < ∞; L

αp

d = Lα1
d when 0 < Ld ≤ 1, and

L
αp

d = Lαn
d when Ld > 1; k1, · · · , kn, are selected such that sn + kns

n−1 + · · · + k2s + k1 = 0 is

Hurwitz; α1, · · · , αn satisfy

αn−j+1 =
jα1 + n− j

n
; j = 1, · · · , n (23)

with α1 ∈ [0, 1); Ξ(ε) = diag{1, ε, · · · , ε n−1}; ej = xj − f
(j−1)
0 (t), j = 1, . . . , n, n ≥ 2; and

e = [e1 · · · en ]T .

Lemma 5 (Properties of error up-boundness for nonlinear differentiator (21)):

The error up-boundness function δdj = ε
n− j−1

γ +
L
αp
d
hn

(
n∑

i=1
21−αn−i+1kn−i+1

)
ε
− j−1

γ
def
= ε

n− j−1
γ +

cL
αp

d ε
− j−1

γ in (22) has the following properties:

1) δdj has a global minimum at ε =
(
c j−1
nγ−j+1L

αp

d

)(1/n) def
= caL

αp/n
d , and

min
ε>0

{δdj} =

(
c
n− j−1

γ
a + c/c

j−1
γ

a

)(
L
αp

d

)(1− j−1
nγ

)
def
= ka

(
L
αp

d

)(1− j−1
nγ

)
(24)

2) For ε ≥ caL
αp/n
d , δdj is a strictly increasing function of ε, and δdj ≤ kbε

n− j−1
γ , where kb =

(1 + 1/cna).

3) For every Ld ∈
[
0, (1/ka)

nγ/αp
nγ−j+1

)
, there exist ε∗1 and ε∗2 , such that δdj = ε

n− j−1
γ +cL

αp

d ε
− j−1

γ <

1 for all ε ∈ (ε∗1, ε∗2), where, 0 < ε∗1 < ε∗2 < 1.

Proof:

1) From
∂(δdj)
∂ε =

(
n− j−1

γ

)
ε
n− j−1

γ
−1 − j−1

γ cL
αp

d ε
− j−1

γ
−1

, δdj is strictly decreasing for

ε <
(
c j−1
nγ−j+1L

αp

d

)(1/n) def
= caL

αp/n
d , strictly increasing for ε > caL

αp/n
d , and has global minimum

at ε = caL
αp/n
d when

∂(δdj)
∂ε = 0.

2) We know that δdj = ε
n− j−1

γ + c
L
αp
d

ε
j−1
γ

=

(
1 + c

L
αp
d
εn

)
ε
n− j−1

γ . When ε ≥ caL
αp/n
d , εn ≥ cnaL

αp

d .

Therefore, δdj ≤
(
1 + c

L
αp
d

cnaL
αp
d

)
ε
n− j−1

γ = (1 + c/cna) ε
n− j−1

γ
def
= kbε

n− j−1
γ .

3) For Ld ∈
[
0, (1/ka)

nγ/αp
nγ−j+1

)
, minε>0 {δdj} = ka

(
L
αp

d

)(1− j−1
nγ

)
< 1. Because ε

n− j−1
γ + c

L
αp
d

ε
j−1
γ

= 1

has two solutions at ε∗1 < caL
αp/n
d and ε∗2 > caL

αp/n
d . Therefore, there exist 0 < ε∗1 < ε∗2 < 1,

such that δdj = ε
n− j−1

γ + c
L
αp
d

ε
j−1
γ

< 1.

These conclude the the properties 1)-3) �.

Remark 2: For the nonlinear differentiator (21), the parameter ε does not need to be selected

as small as possible because of the sufficiently large γ > 1 in the error up-boundness (δdj)
γ and

δdj ∈ (0, 1). Therefore, no peaking phenomenon happens. Importantly, the differentiator (21) can

reduce chattering effect sufficiently because of its continuous structure, and the estimate outputs
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are all smooth.

Remark 3: When α1 = 0 is selected, from Theorem 3 in (Wang & Shirinzadeh, 2014), we can

get the high-order sliding mode differentiator (Levant, 2003). For this sliding mode differentiator,

although high-order sliding mode is introduced, the chattering still exists in the output of the

highest-order derivative estimate because of the existence of switching function. If this sliding

mode differentiator is used in an iterative algorithm, the chattering will be amplified adversely.

3 Design of differentiator-predictors

Considering stochastic signal f (t), for the given future time interval ∆ > 0, two types of differentiator-

predictors are designed respectively to estimate future signal and its derivatives f (j−1) (t+∆),

j = 1, · · · , n.

3.1 High-gain differentiator-predictor

The high-gain technique is used to design an iterative differentiator-predictor to estimate future

signal and its derivatives, and one theorem is presented as follows.

Theorem 1: Considering signal f (t), for system

Ẋ0 (t) =AX0 (t) +K (ε) (f (t)− CX0 (t)) (25)

Ẋi (t) =AXi (t) +K (ε)C
(
eA∆iXi−1 (t)−Xi (t)

)
; i = 1, · · · ,m (26)

a constant L > 0 exists, such that

lim
t→∞

∣∣∣f (j−1) (t+∆)− xm,j (t)
∣∣∣ ≤ Lε; j = 1, · · · , n (27)

where, ∆ > 0 is the future time interval from the current, and ∆ =
m∑
i=1

∆i, ∆i > 0, i = 1, · · · ,m;

m represents the number of iteration steps; the ε ∈ (0, 1) is the small parameter;

X0 (t) =


x0,1 (t)

x0,2 (t)
...

x0,n (t)

 , Xi =


xi,1 (t)

xi,2 (t)
...

xi,n (t)

 (28)

A =



0 1 0 · · · 0

0 0 1
...

...
. . .

. . . 0
...

. . . 1

0 · · · · · · · · · 0


n×n

, C =


1

0
...

0


T

n×1

,K (ε) =


kn
ε

kn−1

ε2

...
k1
εn


n×1

(29)

and k1, · · · , kn, are selected such that sn + kns
n−1 + · · ·+ k2s+ k1 = 0 is Hurwitz.

The proof of Theorem 1 is presented in Appendix.
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Remark 4 (Noise sensitivity and peaking phenomenon): The high-gain differentiator-predictor

provides for the estimations when its gain 1/ε tends to infinity. However, the sensitivity to high-

frequency noise increases infinitely. Another drawback of the high-gain differentiator-predictor is

its peaking effect: the maximal transient output increases infinitely when 1/ε tends to infinity.

Adversely, the peaking becomes more obvious when an iterative algorithm is used.

Remark 5 (Reduction of peaking phenomenon): For the high-gain differentiator-predictor (25)-

(26), in order to reduce the peaking, the varying ε can be selected as follows:

1

ε
= R0

(
1− e−ρ·t) (30)

or

1

ε
= R0

1− e−ρ·t

1 + e−ρ·t (31)

where R0 > 0; ρ > 0 is a small constant. Therefore, the maximal transient output does not grow

too large, and peaking effect can be reduced to some extent.

3.2 Continuous nonlinear differentiator-predictor

The finite-time stability of continuous systems is adopted to design an iterative nonlinear differentiator-

predictor to estimate the future signal and its derivatives, and one theorem is presented as follows.

Theorem 2: Considering signal f (t), for system

ẋ0,j (t) = x0,j+1 (t) +
kn−j+1

εj
|f (t)− x0,1 (t)|αn−j+1 sign(f (t)− x0,1 (t)); j = 1, · · · , n− 1

ẋ0,n (t) =
k1
εn

|f (t)− x0,1 (t)|α1 sign(f (t)− x0,1 (t)) (32)

ẋi,j (t) = xi,j+1 (t) +
kn−j+1

εj
∣∣C (eA∆iXi−1 (t)−Xi (t)

)∣∣αn−j+1
sign

(
C
(
eA∆iXi−1 (t)−Xi (t)

))
;

j =1, · · · , n− 1

ẋi,n (t) =
k1
εn
∣∣C (eA∆iXi−1 (t)−Xi (t)

)∣∣α1
sign

(
C
(
eA∆iXi−1 (t)−Xi (t)

))
; i = 1, · · · ,m (33)

there exist a constant L > 0, ε∗ ∈ (0, 1), time ts and γ > 1, such that, for ε ∈ (ε∗, 1) and t ≥ ts

∣∣∣f (j−1) (t+∆)− xm,j (t)
∣∣∣ ≤ Lεnγ−j+1; j = 1, · · · , n (34)

where, ∆ > 0 is the future time interval from the current, and ∆ =
m∑
i=1

∆i, ∆i > 0, i = 1, · · · ,m; m

is the number of iteration steps; k1, · · · , kn, are selected such that sn+ kns
n−1+ · · ·+ k2s+ k1 = 0

is Hurwitz;

αn−j+1 =
jα1 + n− j

n
; j = 1, · · · , n (35)

with α1 ∈ (0, 1); and
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A =



0 1 0 · · · 0

0 0 1
...

...
. . .

. . . 0
...

. . . 1

0 · · · · · · · · · 0


n×n

, C =


1

0
...

0


T

n×1

, Xi−1 (t) =


xi−1,1 (t)

xi−1,2 (t)
...

xi−1,n (t)

 , Xi (t) =


xi,1 (t)

xi,2 (t)
...

xi,n (t)

 (36)

The proof of Theorem 2 is presented in Appendix.

Remark 6 (General form of differentiator-predictors):

1) For the differentiator-predictor (32)-(33), if α1 = 1 is selected, then high-gain differentiator-

predictor (25)-(26) is obtained. Therefore, the differentiator-predictor (32)-(33) includes the high-

gain differentiator-predictor (25)-(26).

2) Also, for the differentiator-predictor (32)-(33), when α1 = 0, it becomes the usual high-order

sliding mode form. Therefore, the differentiator-predictor (32)-(33) is a general form including

linear high-gain differentiator-predictor and the high-order sliding mode differentiator-predictor.

Remark 7 (Limitation of high-order sliding mode for iterative algorithm): In fact, although the

sliding mode differentiator (Levant, 2003) (when α1 = 0 in (21)) can play an important role for

derivatives estimate, it is not very fit for the iterative differentiator-predictor design. The existence

of switching function makes the chattering happen in the highest-order derivative estimate, although

no chattering exists in lower-order derivative estimates. If the high-order sliding mode is used in

an iterative algorithm, the chattering will be amplified adversely, and a vicious circle will happen.

The chattering in the iterative differentiator-predictor will change the estimate accuracy adversely.

Therefore, the case of α1 = 0 is not preferred for design of iterative differentiator-predictor.

Remark 8 (No peaking and low chattering for (32)-(33)): First, the continuous structure of

nonlinear differentiator-predictor (32)-(33) can reduce chattering effect sufficiently than the usual

high-order sliding mode. Therefore, the estimate outputs are almost smooth. The continuous

structure is fit for the iterative algorithm. Second, from Theorem 2, the parameter ε ∈ (ε∗, 1) does

not need to be as small as possible. Thus, the peaking effect can be avoided. From Lemma 4,

γ > 1 is sufficiently large, and nγ − j + 1 > 1 is large enough. Therefore, for any ε ∈ (ε∗, 1), the

up-boundness of estimate errors of the differentiator-predictor is small sufficiently.

3.3 Extended nonlinear differentiator-predictor

In order to reduce the chattering effect more effectively, a nonlinear extended differentiator-

predictor is presented. In (32)-(33), oscillations exist in the last variable of each-step iteration

system. Therefore, we extend the differentiator-predictor (32)-(33) from nth order and m steps

into (n+ 1)th order and m steps. For the extended differentiator-predictor, in each step iteration,

the first n variables are used for estimate outputs, and the last variable only covers chattering

effect. The improved nonlinear differentiator-predictor is presented in the following theorem.

Theorem 3 (Nonlinear extended differentiator-predictor): Considering signal f (t), for system

ẋ0,j (t) = x0,j+1 (t) +
kn−j+2

εj
|f (t)− x0,1 (t)|αn−j+2 sign(f (t)− x0,1 (t)); j = 1, · · · , n

11



ẋ0,n+1 (t) =
k1

εn+1
|f (t)− x0,1 (t)|α1 sign(f (t)− x0,1 (t)) (37)

ẋi,j (t) = xi,j+1 (t) +
kn−j+2

εj
∣∣C (eA∆iXi−1 (t)−Xi (t)

)∣∣αn−j+2
sign

(
C
(
eA∆iXi−1 (t)−Xi (t)

))
;

j =1, · · · , n

ẋi,n+1 (t) =
k1

εn+1

∣∣C (eA∆iXi−1 (t)−Xi (t)
)∣∣α1

sign
(
C
(
eA∆iXi−1 (t)−Xi (t)

))
; i = 1, · · · ,m (38)

there exist a constant L > 0, ε∗ ∈ (0, 1), time ts and γ > 1, such that, for ε ∈ (ε∗, 1) and t ≥ ts

∣∣∣f (j−1) (t+∆)− xm,j (t)
∣∣∣ ≤ Lε(n+1)γ−j+1; j = 1, · · · , n (39)

where, ∆ > 0 is the future time interval from the current, and ∆ =
m∑
i=1

∆i, ∆i > 0, i = 1, · · · ,m;

m is the number of iteration steps; k1, · · · , kn and kn+1 are selected such that sn+1 + kn+1s
n +

kns
n−1 + · · ·+ k2s+ k1 = 0 is Hurwitz;

αn−j+2 =
jα1 + n+ 1− j

n+ 1
; j = 1, · · · , n+ 1 (40)

with α1 ∈ (0, 1); and

A =



0 1 0 · · · 0

0 0 1
...

...
. . .

. . . 0
...

. . . 1

0 · · · · · · · · · 0


n×n

, C =


1

0
...

0


T

n×1

, Xi−1 (t) =


xi−1,1 (t)

xi−1,2 (t)
...

xi−1,n (t)

 , Xi (t) =


xi,1 (t)

xi,2 (t)
...

xi,n (t)

 (41)

The proof of Theorem 3 is similar to Theorem 2.

Remark 9: In the extended differentiator-predictor (37)-(38), the variables xi,j (t) (where, j =

1, · · · , n and i = 1, · · · ,m) are used for estimate outputs, and the variables xi,n+1 (t) (where,

i = 1, · · · ,m) only cover the chattering effects. Therefore, for the final-step estimate outputs

xm,j (t) (where, j = 1, · · · , n), the chattering effects are reduced sufficiently. Furthermore, it is

easy to see that the (n + 1)th-order differentiator-predictor (37)-(38) provides for a much better

accuracy of the future derivatives than the nth-order differentiator-predictor (32)-(33). In fact,

(n+ 1) γ − j + 1 is larger than nγ − j + 1. Because γ > 1 and ε ∈ (ε∗, 1), the estimate error

up-boundness in (39) is much smaller than that in (34).

4 Frequency analysis and parameters selection for differentiator-

predictor

In this section, we will consider the estimate accuracy, robustness and parameters selection ac-

cording to the frequency analysis. Furthermore, the determination of the maximal prediction time

interval and maximal number of iteration steps will be analysed.
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In practice, high-frequency noise exists in signal f (t), and its effect on system outputs is in-

evitable. Therefore, the robustness to high-frequency noise should be analyzed for the differentiator-

predictors. Here, the iterative transfer function method is used to analyze its frequency-domain

characteristic. We can find that the differentiator-predictor leads to perform precise estimation and

rejection of high-frequency noise to some extent.

4.1 Iterative transfer function of differentiator-predictor

The frequency characteristic of nonlinear differentiator-predictor (32)-(33) is analyzed as follows.

In (32)-(33), for the nonlinear function |∗|αi sign (∗), by selecting the input signal as ∗ = M sin(ωt),

its describing function can be given by:

Nj(M) =
2

Mπ

∫ π

0
|M sin(ωτ)|αj sign(M sin(ωτ)) sin(ωτ)dωτ =

Ω(αj)

M1−αj
(42)

where, Ω(αj) =
2
π

∫ π
0 |sin(ωτ)|αj+1 dωτ , αn−j+1 =

jα1+n−j
n , j = 1, · · · , n.

For the differentiator-predictor (32)-(33), define the Laplace transforms Xi,j (s) = L [xi,j (t)] and

F (s) = L [f (t)]. Then, we can write (32)-(33) by the form of Laplace transform.

For (32), we get

X0,j (s) =

sj−1
n−j+1∑
q=1

εq−1 kqΩ(αq)

M1−αq s
q−1

εnsn +
n∑

i=1
εi−1 kiΩ(αi)

M1−αi
si−1

F (s) ; j = 1, · · · , n (43)

Also, for (33), we get

Xi,j (s) =

sj−1
n−j+1∑
q=1

εq−1 kqΩ(αq)

M1−αq s
q−1

εnsn +
n∑

i=1
εi−1 kiΩ(αi)

M1−αi
si−1

Xi,e (s) ; j = 1, · · · , n (44)

where,

Xi,e (s) =

n∑
k=1

1

(k − 1)!
∆k−1

i Xi−1,k (s) ; i = 1, · · · ,m (45)

According to (43), (44) and (45), the transfer function of the output xm,j (t) to input signal f (t)

is determined by

Xm,j (s)

F (s)
= aj (s)

m
Π
i=1

(
n∑

k=1

1

(k − 1)!
∆k−1

i ak (s)

)
(46)

where,

aj (s) =

sj−1
n−j+1∑
q=1

εq−1 kqΩ(αq)

M1−αq s
q−1

εnsn +
n∑

i=1
εi−1 kiΩ(αi)

M1−αi
si−1

; j = 1, · · · , n (47)
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4.2 Bode plots of differentiator-predictor with different parameter selections

The effects of the differentiator-predictor parameters on the frequency-domain characteristic are

analyzed as follows.

Frequency characteristic with different ε and α1. With different selections of α1, we get the values

of Ω(α3), Ω(α2) and Ω(α1) shown in Table 1.

Table 1 Values of Ω(α1), Ω(α2) and Ω(α3) with respect to α1

α1 Ω(α3) Ω(α3) Ω(α1)

1 1 1 1

0.3 1.048 1.104 1.170

0.15 1.060 1.131 1.218

For the differentiator-predictor, the parameters are selected as follows: n = 3, m = 3; k1 = 6,

k2 = 11, k3 = 6; M = 0.1; ε = 0.9, 0.1, 0.01; α1 = α = 1, 0.3, 0.15, respectively. When α1 = 1,

we can get the high-gain differentiator-predictor (25)-(26). The Bode plots of (46) with different

selections of ε and α1 are described in Figure 4.

From the Bode plot in Figure 4, the differentiator-predictor can obtain the estimation pre-

cisely, and the effect of high-frequency noise is reduced to some extent. Also, for the designed

differentiator-predictor, from Figure 4, we can find that:

(i) Estimation accuracy: Parameter α1 ∈ (0, 1] affects the estimate accuracy: smaller α1 can

obtain more precise estimations; on the other hand, larger α1 can reduce much noise.

(ii) Bandwidth and robustness: Parameter ε affects the low-pass bandwidth: Decreasing ε, the

low-pass bandwidth becomes larger, and the estimate speed increases; increasing ε, the low-pass

bandwidth becomes smaller, and much noise is reduced.

4.3 Elements in differentiator-predictor

From the iterative transfer function (46), the differentiator-predictor is made up of the following

two elements: iterative predictor and differentiator.

A. Iterative predictor

Before we analyse the performance of the iterative predictor in (46), we introduce the ideal

predictor, as follows.

Analysis of ideal predictor (cannot be implemented in practice): For signal f (t+∆), the ideal

time lead correction is es∆F (s) = L [f (t+∆)]. The frequency characteristic for the ideal predictor

is

H (jω) = ejω∆ = cos (ω∆) + j sin (ω∆) (48)

The magnitude-frequency characteristic for the ideal predictor is

20 log |H (ω)| = 20 log
∣∣ejω∆∣∣ = 0 (49)

and the phase-frequency characteristic for the ideal predictor is

14
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Figure 4. Bode plot of predictor-differentiator with different parameter selections

∠H (ω) = ω∆ (50)

However, for the above ideal predictor, we cannot implement it in practice.

Conclusion on expression of iterative predictor: The iterative predictor in (46) for signal f (t) can

be expressed by

es∆F (s) =

(
m
Π
i=1

n∑
k=1

1

(k − 1)!
∆k−1

i sk−1 +
m
Π
i=1

O

(
1

n!
∆n

i s
n

))
F (s) (51)

where, F (s) = L [f (t)]; ∆ is the prediction time interval; ∆i is the prediction time interval at the

i-th step; ∆ =
m∑
i=1

∆i and ∆i =
∆
m ; m is the number of iteration steps.
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Proof:

es∆F (s) =
m
Π
i=1

( ∞∑
k=1

1

(k − 1)!
∆k−1

i sk−1

)
F (s)

=

(
m
Π
i=1

n∑
k=1

1

(k − 1)!
∆k−1

i sk−1 +
m
Π
i=1

∞∑
k=n+1

1

(k − 1)!
∆k−1

i sk−1

)
F (s)

def
=

(
Hm (s) +

m
Π
i=1

O

(
1

n!
∆n

i s
n

))
F (s) (52)

Therefore, the iterative predictor (51) can implement the time lead correction in time interval

∆ =
m∑
i=1

∆i, where, ∆i ∈ (0, 1).

Magnitude-frequency and phase-frequency characteristics for iterative predictor

Here, we analyse the third-order system, i.e., n = 3.

1) First, we analyse the case without iteration for the predictor (51), i.e., m = 1, and ∆i = ∆.

The transfer function of predictor can be written by

H1 (s) = 1 +∆s+
1

2!
∆2s2 (53)

Selecting s = jω, we can get

H1 (jω) = 1− 1

2
∆2ω2 + j∆ω (54)

The magnitude of H1 (jω) is:

|H1 (jω)| =

√(
1− 1

2
∆2ω2

)2

+∆2ω2 =

√√√√(1− 1

2

(
ω

1/∆

)2
)2

+

(
ω

1/∆

)2

(55)

Therefore, we can get the following magnitude-frequency characteristic:

(i) When ω ≪ 1/∆, 20 log |H1 (jω)| ≈ 0.

(ii) When ω = 1/∆, 20 log |H1 (jω)| = 20 log
√
5
2 ≈ 1dB.

(iii) When ω ≫ 1/∆, 20 log |H1 (jω)| ≈ 40 log ∆ω√
2
.

The argument of H1 (jω) is:

∠H1 (jω) = tan−1 ∆ω

1− 1
2∆

2ω2
= tan−1

ω
1/∆

1− 1
2

(
ω

1/∆

)2 (56)

Therefore, we can get the following phase-frequency characteristic:

(i) When ω ≪ 1/∆, ∠H1 (jω) ≈ ∆ω.

(ii) When ω = 1/∆, ∠H1 (jω) = tan−1 1
1− 1

2

= tan−1 2 ≈ 28.6◦.

(iii) When ω ≫ 1/∆, ∠H1 (jω) ≈ tan−1 2
−∆ω .
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2) Second, we analyse the multi-step case of iterative predictor (51), i.e., m > 1, and ∆ =
m∑
i=1

∆i

and ∆i =
∆
m . The transfer function of the predictor can be written by

Hm (s) =
m
Π
i=1

(
1 + ∆is+

1

2!
∆2

i s
2

)
(57)

Selecting s = jω, we can get

Hm (jω) =
m
Π
i=1

(
1− 1

2
∆2

iω
2 + j∆iω

)
(58)

The magnitude of Hm (jω) is:

|Hm (jω)| =
m
Π
i=1

√(
1− 1

2
∆2

iω
2

)2

+∆2
iω

2 =
m
Π
i=1

√√√√(1− 1

2

(
ω

1/∆i

)2
)2

+

(
ω

1/∆i

)2

(59)

Therefore, we can get the following magnitude-frequency characteristic:

(i) When ω ≪ 1/∆i, 20 log |Hm (jω)| ≈ 0.

(ii) When ω = 1/∆i, 20 log |Hm (jω)| = 20 log
(√

5
2

)m
= m20 log

√
5
2 ≈ mdB.

(iii) When ω ≫ 1/∆i, 20 log |Hm (jω)| ≈ 40 log
(
ω∆i√

2

)m
.

The the argument of Hm (jω) is:

∠Hm (jω) =
m∑
i=1

tan−1 ∆iω

1− 1
2∆

2
iω

2
=

m∑
i=1

tan−1
ω

1/∆i

1− 1
2

(
ω

1/∆i

)2 (60)

Therefore, we can get the following phase-frequency characteristic:

(i) When ω ≪ 1/∆i, ∠Hm (jω) ≈ m∆iω = ∆ω.

(ii) When ω = 1/∆i, ∠Hm (jω) = m tan−1 1
1− 1

2

= m tan−1 2.

(iii) When ω ≫ 1/∆i, ∠Hm (jω) ≈ m tan−1 2
−∆iω

.

3) Comparison of the single step and multi-step predictors:

(i) They have the same prediction time interval ∆. In fact, ∠ |H1 (jω)| = ∠ |Hm (jω)| ≈ m∆iω =

∆ω.

(ii) The natural angular frequency of the iterative predictor (57) is greater than that of single step

predictor (53). In fact, ω1 = 1/∆ for the single step predictor, and ωm = 1/∆i for the multi-step

predictor. We know that ωm = 1/∆i ≫ ω1 = 1/∆i. Therefore, the effective bandwidth [0, ωm] of

iterative predictor (57) is wider than the [0, ω1] of single step predictor (53).

Therefore,

(iii) the iterative predictor (57) is more fit for the input signals with wider bandwidth: slow

time-varying and fast time-varying signals.

In the following, we use an example to demonstrate: the effective bandwidth of the iterative

predictor is wider than that of the single step predictor.
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Example 2 (iterative predictor): Suppose the prediction time interval ∆ = 0.6s.

1) For the single step predictor (m = 1 and ∆ = 0.6s), the natural frequency ω1 = 1/∆ = 1/0.6 =

1.67rad/s, and at this frequency, 20 log |H1 (jω)| = 20 log
√
5
2 = 1dB.

2) For the iterative predictor (m = 3 and ∆ = ∆i · m = 0.2s × 3), the natural frequency

ωm = 1/∆i = 1/0.2 = 5rad/s, and 20 log |Hm (jω)| = 20 log
(√

5
2

)3
= 3dB.

3) We know that ωm > ω1, and the effective bandwidth of iterative predictor is wider than that of

single step predictor. However, for the single step predictor, at the frequency ω = 1/∆i = 1/0.2 =

5rad/s, we can get the magnitude 20 log |H1 (jω)| = 20 log

√(
1− 1

2∆
2ω2
)2

+∆2ω2 = 20 log
√
85
2 =

13dB.

4) Comparison. At the frequency ω = 1/∆i = 5rad/s, the magnitude by the iterative predictor

is 3dB, and the magnitude by the single step predictor is 13dB. Therefore, the effective bandwidth

of the iterative predictor is wider than that of the single step predictor. Under the same prediction

time interval, the output accuracy by the iterative predictor is much higher than that of the single

step predictor.

We use the Bode plots to show the frequency characteristic of the single-step and iterative pre-

dictors, respectively: the parameters are selected as: ∆ = 0.1, 0.2, 0.6s (where, m = 1), and

∆ = 0.2s × 3 = 0.6s (where, m = 3). The Bode plots are shown in Figure 5. From the Bode

plots in Figure 5, with frequency increasing, the drift starts to happen at frequency ω1 = 1.67 for

the single step predictor. However, the drift does not happen until ωm = 5rad/s for the iterative

predictor.
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Figure 5. Bode plot of predictor with different prediction time intervals

Remark 10 (Predictor drift): From the Bode plots of the predictors in Figure 5, we can find,

with frequency increasing, the drift happens when ω > ω1 = 1/∆ for the single step predictor, and

it happens when ω > ωm = 1/∆m for the iterative predictor. The following iterative differentiator

can be used to reject the predictor drift, and to provide the derivatives information for the predictor.

B. Iterative differentiator (Estimation, robustness and predictor drift correction)

18



The iterative differentiator provides the derivatives at each step, and it can reject the drift of

predictor.

From (46), we can get the transfer function of iterative differentiator, as follows:

aj (s) =

sj−1
n−j+1∑
q=1

εq−1 kqΩ(αq)

M1−αq s
q−1

εnsn +
n∑

i=1
εi−1 kiΩ(αi)

M1−αi
si−1

; j = 1, · · · , n (61)

We use the Bode plot to explain its derivative estimations and robustness of the differentiator.

The parameters of differentiator are selected as: n = 3, m = 3; k1 = 6, k2 = 11, k3 = 6; M = 0.1;

ε = 0.9, 0.1, 0.01; α1 = α = 1, 0.3, 0.15, respectively. The Bode plots of signal estimate, the

first-order and second-order derivatives estimate are shown in Figure 6. We can find that the high-

frequency noise can be reduced sufficiently. Parameter ε affects the low-pass frequency bandwidth:

with smaller ε ∈ (0, 1), the low-pass frequency bandwidth is larger; with larger ε ∈ (0, 1), the

low-pass frequency bandwidth is smaller, and much noise can be reduced.

Predictor drift correction by the iterative differentiator: Considering of the combination of the

iterative differentiator and predictor, the Bode plot in Figure 7 shows that the differentiator can

reject the drift from the predictor (Also, see Figure 4). It means that the combination of differen-

tiator and predictor, i.e., the differentiator-predictor, is stable with strong robustness. Not only the

differentiator can reject the predictor drift, but also the high-frequency noise is filtered sufficiently.

Remark 11 (Comparison of linear and nonlinear differentiators): For the linear differentiator,

the parameter ε is selected as small as possible. One the one hand, peaking effect happens. One

the other hand, the selection of small ε makes the bandwidth very large, and it is sensitive to

high frequency noise. Also it cannot reject the predictor drift effectively (See Figure 4). For the

nonlinear differentiator, the parameter ε does not need to be very small. Thus, the peaking effect

can be avoided. Importantly, through regulating the parameter ε, the bandwidth of the nonlinear

differentiator is fit for the predictor, and its strong robustness can reject the predictor drift with

frequency increasing. From the Bode plots in Figure 4, small overshoot happens when ε = 0.6, but

large overshoot happens when ε = 0.1, 0.01, respectively.

4.4 Differentiator-predictor performance analysis:

1) Future signal and its derivatives estimation: For the differentiator-predictor, xm,j estimates

f (j−1) (t+∆), respectively, where, j = 1, · · · , n. In the estimate error (34), due to ε ∈ (0, 1) and

nγ − j + 1 ≫ 1, the error O
(
εnγ−j+1

)
is sufficiently small.

2) Estimate accuracy and robustness by parameter ε ∈ (0, 1): Decreasing ε, the low-pass band-

width becomes larger, and the estimate speed increases; increasing ε, the low-pass bandwidth

becomes smaller, and much noise is reduced.

3) Estimate accuracy and robustness by parameter α1 ∈ (0, 1]: From Figure 4, smaller α1 can

obtain more accurate estimations; on the other hand, larger α1 can reduce much noise.

4) Predictor drift correction: The iterative nonlinear differentiator can reject the predictor drift

with frequency increasing, and it can provide the derivatives information for the predictor.

5) Bandwidth affected by ∆i in the prediction time interval ∆ (where, ∆i =
∆
m): Relatively larger
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6(b) First-order derivative estimate
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Figure 6. Frequency characteristic of differentiator
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Figure 7. Differentiator corrects predictor drift

∆i makes the effective bandwidth smaller; relatively smaller ∆i makes the effective bandwidth larger

(See the Bode plot in Figure 5).

6) Prediction time interval ∆ affected by input signal: In Figure 5, from the Bode plot of predictor

with different prediction time intervals, we can get:

(i) For fast time-varying (relatively high frequency) input signal, relatively small time interval

can be predicted;

(ii) For slow time-varying (relatively low frequency) input signal, relatively large time interval

can be predicted.

4.5 Rules of differentiator-predictor parameters selection:

1) Stability conditions: The parameters k1, · · · , kn are selected such that sn + kns
n−1 + · · · +

k2s+ k1 = 0 is Hurwitz; and α1, · · · , αn satisfy (35).

2) Estimate accuracy: According to the requirements for differentiator, select ε and α1, such

that: (i) The selection of ε satisfies that the bandwidth of the differentiator is same to that of the

predictor. (ii) α1 ∈ (0, 1) guarantees the system is continuous; and α1 decreases, we can get more

accurate estimation.

3) Filtering: If much noise exists, ε ∈ (0, 1) should increase, or α1 ∈ (0, 1) increases, to make the

low-pass bandwidth narrow (See Figure 4).

4) Selection of prediction time interval ∆ and iteration steps number m

Theorem 4: (i) The prediction time interval at each step satisfies:

∆i ≤
1

ωf
(62)

where, maxω [f (t)] is the maximal angular frequency of input signal f (t), and there exists a

constant ωf > 0, such that maxω [f (t)] ≤ ωf .

(ii) The number of iteration steps:
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m ≤ aN

20 log
√
5
2

= 1.032aN , or max {m} = int

{
aN

20 log
√
5
2

}
(63)

where, aN is the maximal magnitude-frequency characteristic in decibel at the natural frequency,

i.e., max [20 log |Hm (jω)|] = aNdB.

(iii) The prediction time interval:

∆ = ∆i ·m (64)

(iv) The maximal prediction time interval:

max {∆} =
1

maxω [f (t)]
int

{
aN

20 log
√
5
2

}
(65)

Proof of Theorem 4:

(i) Suppose we can determine that the angular frequency of input signal f (t) is bounded, and

maxω [f (t)] ≤ ωf holds. In order to make all the useful elements of signal go through the

differentiator-predictor, we need to select ∆i to make

ωf ≤ ωm =
1

∆i
(66)

where, ωm = 1
∆i

is the system natural frequency. Therefore, we can get

∆i ≤
1

ωf
(67)

(ii) We know that 20 log |Hm (jω)| = 20 log
(√

5
2

)m
at the natural frequency ωm = 1

∆i
. Giving a

maximal magnitude-frequency characteristic aNdB at the natural frequency which the system can

accept normally, we can get

max [20 log |Hm (jω)|] = max

[
20 log

(√
5

2

)m]
= aN (68)

Therefore, we get

20 log

(√
5

2

)m

≤ aN (69)

Then, we get the iteration number

m ≤ aN

20 log
√
5
2

= 1.032aN , or max {m} = int

{
aN

20 log
√
5
2

}
(70)

(iii) By considering of each-step prediction time interval ∆i and the iteration steps number m,

we can get the prediction time interval
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∆ = ∆i ·m (71)

(iv) From maxω [f (t)] ≤ ωf , (67) and (70), we can get the maximal value of ∆i, i.e., max {∆i} =

1
maxω[f(t)] , and the maximal value of iteration steps number max {m} = int

{
aN

20 log
√
5
2

}
. Therefore,

the maximal prediction time interval is

max {∆} = max {∆i}max {m} =
1

maxω [f (t)]
int

{
aN

20 log
√
5
2

}
(72)

We found that the maximal prediction time interval is decided by the frequency band of input

signal and the requirement of estimate accuracy.

This concludes the proof. �
Example 3 (Determination of ∆ and m): Suppose the maximal angular frequency of a signal

f (t) is 3rad/s, i.e., maxω [f (t)] = 3rad/s. Suppose we can know maxω [f (t)] ≤ 4rad/s. Therefore,

according to (67), the prediction time interval at each step should satisfy ∆i ≤ 1
4 = 0.25s. We

can select ∆i = 0.2s. We require the maximal magnitude at the natural frequency ωm = 1
∆i

is

aN = 3dB. Then, from (70), we can get the iteration steps number max {m} = int

{
3

20 log
√

5
2

}
= 3.

Therefore, from (71), the the prediction time interval of the differentiator-predictor can be selected

as ∆ = ∆i · m = 0.2s × 3 = 0.6s. Furthermore, according to (72), the maximal prediction time

interval is max {∆} = 1
maxω[f(t)] int

{
aN

20 log
√

5
2

}
= 3

3 = 1s.

5 Simulations

In this section, we use the simulations to demonstrate the presented differentiator-predictors by

considering of different types of input signals: constant signal, step signal, ramp signal, and parabo-

la. Furthermore, slow time-varying and fast time-varying signals are used to illustrate the relation

between input signal band and the prediction time interval.

5.1 The following time functions are selected as the input signal f(t), respectively:

(i) Constant signal: f (t) = 1; (ii) Step signal: f (t) =

{
0, where, t < 1.5s

1, where, t ≥ 1.5s
; (iii) Ramp signal:

f (t) = 10t; (iv) Parabola: f (t) = 0.5t2

The future time interval ∆ = 1.5s is considered, and ∆ =
3∑

i=1
∆i = 0.5s × 3 = 1.5s is assigned.

The nonlinear differentiator-predictor (32)-(33) is used for the estimation, and the parameters are:

n = 3, m = 3; k1 = 6, k2 = 11, k3 = 6; 1/ε = 1.1; α1 = 0.2.

Figures 8-11 show the future derivatives estimation by the nonlinear differentiator-predictor for

the different types of input signals, respectively. The precise prediction and estimation are imple-

mented simultaneously.
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Figure 8. Nonlinear differentiator-predictor with constant input signal
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Figure 9. Nonlinear differentiator-predictor with step input signal
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Figure 10. Nonlinear differentiator-predictor with ramp input signal
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Figure 11. Nonlinear differentiator-predictor with parabola input signal
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5.2 For slow time-varying input signal

We select the function f (t) = sin(0.5t) + 0.5 cos(t) as the input signal f(t).

Suppose we can get maxω [f (t)] ≤ ωf = 1.2rad/s, and the maximal magnitude-frequency char-

acteristic at the natural frequency is required to be aN = 3dB. Therefore, ∆i ≤ 1
ωf

= 0.83 holds,

and we can select ∆i = 0.6s. From the requirement aN = 3dB, we can get m ≤ 1.032aN = 3.096.

We select m = 3. Therefore, the future time interval ∆ =
3∑

i=1
∆i = 0.6s× 3 = 1.8s is assigned.

For comparison, the functions f(t + 1.8) = sin(0.5(t + 1.8)) + 0.5 cos(t + 1.8), ḟ(t + 1.8) =

0.5 cos(0.5(t+ 1.8))− 0.5 sin(t+ 1.8) and f̈(t+ 1.8) = −0.25 sin(0.5(t+ 1.8))− 0.5 cos(t+ 1.8) are

the desired future signal, the future first-order derivative and the future second-order derivative,

respectively. The estimations of future signal f(t+1.8) and derivatives f (j)(t+1.8) are determined

from the current signal f(t). Moreover, the high-frequency noise is considered in the input signal.

The parameters of differentiator-predictors are shown in Table 2.

Table 2 The parameters of differentiator-predictors

differentiator-predictor n k1 k2 k3 k4 α1 1/ε

Linear high-gain differentiator-predictor 3 6 11 6 1

1001−e−0.02t

1+e−0.02t

(no noise)

2.5

(consider noise)

Nonlinear differentiator-predictor 3 6 11 6 0.2 1.1

Nonlinear extended differentiator-predictor 4 1 4 6 4 0.1 1.1

A. Simulation on linear high-gain differentiator-predictor

Figures 12(a)-12(c) describe the estimations by the high-gain differentiator-predictor without

considering of noise: x3,1, x3,2 and x3,3 estimate f (t+ 1.8), ḟ (t+ 1.8) and f̈ (t+ 1.8), respectively.

It means that, at any time t, we can observe the values of signal and its derivative at time t+1.8s.

Parameter ε should be selected very small. Figures 13(a)-13(c) present the estimations of the future

signal, its first-order and second-order derivatives, respectively, by considering of noise. In order to

reduce noise effect, according to the frequency analysis, a relatively larger ε should be selected.

B. Simulation on nonlinear differentiator-predictor

Figures 14(a)-14(c) show the estimations by the nonlinear differentiator-predictor without consid-

ering of noise: x3,1, x3,2 and x3,3 estimate f (t+ 1.8), ḟ (t+ 1.8) and f̈ (t+ 1.8), respectively.The

chattering still exists in the estimate outputs of future derivatives, although it has been reduced to

some extent by the continuous structure: even a small chattering exists in the first step, it is am-

plified by the iterations. Figures 15(a)-15(c) present the future derivatives estimate by considering

of noise. The parameters of the nonlinear differentiator-predictor do not need to change, and the

noise effect is reduced.

C. Simulation on nonlinear extended differentiator-predictor

Figures 16(a)-16(c) show the estimations by the nonlinear extended differentiator-predictor: x3,1,

x3,2 and x3,3 estimate f (t+ 1.8), ḟ (t+ 1.8) and f̈ (t+ 1.8), respectively. No chattering happens

for the estimate outputs of x3,1 and x3,2, and the chattering in x3,3 becomes very weak.
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Figure 12. High-gain predictor-differentiator without noise
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Figure 13. High-gain predictor-differentiator with noise
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Figure 14. Nonlinear predictor-differentiator without noise
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15(b) Future derivative estimate
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15(c) Future second-order derivative estimate

Figure 15. Nonlinear predictor-differentiator with noise
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Figure 16. Extended nonlinear predictor-differentiator
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D. Performance analysis of linear and nonlinear (extended) differentiator-predictors

From the simulations, we can find that, not only the differentiator-predictors can provide the

future signal, but also the future derivatives can be estimated, in spite of the requirement of large

future time interval ∆. Moreover, high-frequency noise can be reduced to some extent. This

confirmed the frequency analysis of the differentiator-predictors.

For the high-gain differentiator-predictor, in order to reduce noise, the parameter ε needs to

increase. Otherwise, much noise will exist in the estimate outputs. Alternatively, the filters can be

used before each iteration for rejecting the noise.

For the nonlinear differentiator-predictor, even noise exists, the parameter ε do not need to change.

It means that the nonlinear differentiator-predictor has much stronger adaptability and robustness

than linear high-gain differentiator-predictor. Also, we can find that, serious peaking phenomenon

happens when the high-gain differentiator-predictor is used; while, no large peaking exists when the

nonlinear differentiator-predictor is adopted. Comparing to the nonlinear differentiator-predictor,

the chattering effect is reduced more sufficiently by the nonlinear extended differentiator-predictor.

E. Maximal prediction time interval

The maximal prediction time interval is decided by the input signal bandwidth and the require-

ment of estimate accuracy. We use the examples to explain it, and the input signal is selected as

f (t) = sin(0.5t) + 0.5 cos(t).

(i) Suppose the maximal angular frequency of input signal satisfies maxω [f (t)] ≤ ωf = 1.2rad/s,

and the maximal magnitude-frequency characteristic at the natural frequency is required to be

a = 5dB. Therefore, ∆i ≤ 1
ωf

= 0.83 holds, and we can select the prediction time interval at each

step to be ∆i = 0.6s. From the requirement aN = 5dB, we can get max {m} = int {1.032aN} = 5.

Therefore, the future time interval ∆ =
5∑

i=1
∆i = 0.6s× 5 = 3s is assigned.

(ii) Suppose the maximal angular frequency of input signal satisfies maxω [f (t)] ≤ ωf = 1.2rad/s,

and the maximal magnitude-frequency characteristic at the natural frequency is required to be

aN = 6dB. Therefore, ∆i ≤ 1
ωf

= 0.83 holds, and we can select the prediction time interval at each

step to be ∆i = 0.6s. From the requirement aN = 6dB, we can get max {m} = int {1.032aN} = 6.

Therefore, the future time interval ∆ =
6∑

i=1
∆i = 0.6s× 6 = 3.6s is assigned.

Figure17 shows the future prediction under the conditions of (i) and (ii), respectively. Due to the

different requirements (aN = 5dB for case (i), and aN = 6dB for case (ii)), the estimate accuracy

of case (i) is better than that of case (ii).

5.3 Fast time-varying input signal and maximal time interval prediction

We select the function f (t) = 2 sin(0.5t)+sin(t)+0.5 cos(3t) as the input signal, in which, cos(3t)

is fast time-varying element. Suppose we can know maxω [f (t)] ≤ ωf = 4rad/s.

(i) Nonlinear differentiator-predictor (Different parameter selections). Suppose the maximal

magnitude-frequency characteristic at the natural frequency is required to be aN = 3dB . There-

fore, ∆i ≤ 1
ωf

= 0.25 holds, and we can select ∆i = 0.2s. From the requirement aN = 3dB, we get

max {m} = int {1.032aN} = 3. Therefore, the future time interval ∆ =
3∑

i=1
∆i = 0.2s× 3 = 0.6s is
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17(a) ∆ = 3s = 0.6s× 5
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17(b) ∆ = 3.6s = 0.6s× 6

Figure 17. Nonlinear differentiator-predictor with large future interval prediction

assigned. For comparison, the function f (t) = 2 sin(0.5 (t+ 0.6))+sin(t+0.6)+0.5 cos(3 (t+ 0.6)) is

the desired future signal. Figure 18 describes the different prediction performances for the different

parameter selections of ε and α1. From Figure 18, we can find that:

Parameter ε ∈ (0, 1) affects the system bandwidth: Decreasing ε (from 0.5 to 0.2), the low-pass

bandwidth becomes larger, however, frequent oscillations start to happen. The selection of ε should

satisfy that the bandwidth for the differentiator is same to that of the predictor.

Parameter α1 ∈ (0, 1) affects the estimate accuracy: Parameter α1 guarantees that the system is

continuous; smaller α1 can obtain more precise estimations (from 0.2 to 0.1); on the other hand,

larger α1 can reduce much noise (from 0.1 to 0.2), however, the large estimate error starts to

happen.

The parameters tuning in the simulation confirms the presented rules of nonlinear differentiator-

predictor parameters selection.
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18(a) ε = 0.5, α1 = 0.1
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18(b) ε = 0.2, α1 = 0.1
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18(c) ε = 0.5, α1 = 0.2

Figure 18. Nonlinear differentiator-predictor with fast-varying input signal: ∆ = 0.6s = 0.2s× 3
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(ii) Nonlinear extended differentiator-predictor. Suppose the maximal magnitude-frequency char-

acteristic at the natural frequency is required to be aN = 5dB . Therefore, ∆i ≤ 1
ωf

= 0.25

holds, and we can select ∆i = 0.2s. From the requirement aN = 5dB, we get max {m} =

int {1.032aN} = 5. Therefore, the future time interval ∆ =
5∑

i=1
∆i = 0.2s × 5 = 1s is as-

signed. Parameters ε = 0.2 and α1 = 0.1 are selected. For comparison, the function f (t) =

2 sin(0.5 (t+ 1)) + sin(t+ 1) + 0.5 cos(3 (t+ 1)) is the desired future signal.

Figures 18(a) and 19 show the future prediction for the fast time-varying input signal under the

conditions of (i) and (ii), respectively. The estimate accuracy decreases as the prediction time

interval increases (e.g., aN = 3dB for case (i), and aN = 5dB for case (ii)).
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Figure 19. Nonlinear extended differentiator-predictor with fast-varying input signal:

∆ = 1s = 0.2s× 5

6 Conclusion

This paper presents two types of stable differentiator-predictors to estimate the future signal and

its derivatives. In fact, these differentiator-predictors can also correct the delay for delayed signal,

and the undelayed derivatives can be observed.The future jobs are to reduce the peaking more

effectively for the high-gain differentiator-predictor, and to reject the chattering effect completely

for the nonlinear differentiator-predictor.

Appendix
Proof of Theorem 1:

1) Estimation of current derivatives

For system (25), we define the errors as

e0,j = f (j−1) (t)− x0,j (t) ; j = 1, · · · , n; e0 (t) =
[
e0,1 (t) · · · e0,n (t)

]T
(73)

Then, the estimate error system can be given by
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ė0 (t) = Ae0 (t) +Bf (n) (t) (74)

where,

A =



−kn
ε 1 0 · · · 0

−kn−1

ε2
0 1

...
...

. . .
. . . 0

...
. . . 1

− k1
εn · · · · · · · · · 0


, B =


0
...

0

1


n×1

(75)

We know that A is a matrix in the observable standard form, and sn+kns
n−1+ · · ·+k2s+k1 = 0

is Hurwitz. Therefore, the eigenvalues −λj < 0, where, j = 1, · · · , n. Then, for matrix A, there

exist an invertible matrix T , such that

A = T · diag
{
−λ1

ε
, · · · ,−λn

ε

}
T−1 (76)

From the properties of matrix A, we know that ∥T∥ and
∥∥T−1

∥∥ are bounded without involving

ε. The solution to the system (74) is

e0 (t) = eAte0 (0) +

∫ t

0
eA(t−τ)Bf (n) (τ) dτ (77)

Taking the norm for (77), we get

∥e0 (t)∥ ≤
∥∥∥eAt

∥∥∥ ∥e0 (0)∥+ ∫ t

0

∥∥∥eA(t−τ)
∥∥∥ ∥B∥

∣∣∣f (n) (τ)
∣∣∣ dτ (78)

According to Taylor expansion and the properties of matrix A, we know that

eAt =

∞∑
i=0

1

i!
A

i
ti = T

( ∞∑
i=0

1

i!

(
diag

{
−λ1

ε
, · · · ,−λn

ε

})i

ti

)
T−1

= T · diag
{
e−

λ1
ε
t, · · · , e−

λn
ε
t
}
T−1 (79)

Define λ = min
j∈{1,··· ,n}

{λj}, ∥e0 (0)∥ ≤ h0, and
∣∣f (n) (τ)

∣∣ ≤ hn, where, h0 and hn and are the

bounded constants. Then, according to (79), (78) can be written by

∥e0 (t)∥≤
∥∥∥T · diag

{
e−

λ1
ε
t, · · · , e−

λn
ε
t
}
T−1

∥∥∥ ∥e0 (0)∥
+

∫ t

0

∥∥∥T · diag
{
e−

λ1
ε
(t−τ), · · · , e−

λn
ε
(t−τ)

}
T−1

∥∥∥ ∥B∥
∣∣∣f (n) (τ)

∣∣∣ dτ
≤∥T∥

∥∥T−1
∥∥(h0e−λ

ε
t + hn

∫ t

0
e−

λ
ε
(t−τ)dτ

)
= ∥T∥

∥∥T−1
∥∥(h0e−λ

ε
t + hn

ε

λ

(
1− e−

λ
ε
t
))

(80)
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Therefore, taking limit about time t for (80), we can get

lim
t→∞

∥e0 (t)∥ ≤ ε
hn
λ

∥T∥
∥∥T−1

∥∥ (81)

Define l0 =
hn
λ ∥T∥

∥∥T−1
∥∥, then, (81) is rewritten by

lim
t→∞

∥e0 (t)∥ ≤ εl0 (82)

i.e.,

lim
t→∞

∣∣∣f (j−1) (t)− x0,j (t)
∣∣∣ ≤ εl0; j = 1, · · · , n (83)

2) Iterative estimate of future signal and future derivatives

According to An = On×n, the Taylor expansion of eA∆i can be given by

eA∆i =
n∑

j=1

1

(j − 1)!
(A∆i)

j−1

=



1∆i
1
2!∆

2
i · · · 1

(n−1)!∆
n−1
i

0 1 ∆i
. . .

...

0 0 1
. . . 1

2!∆
2
i

...
...

. . .
. . . ∆i

0 0 · · · 0 1


(84)

Therefore, the following relation holds:

CeA∆iXi−1 (t) =

n∑
j=1

1

(j − 1)!
∆j−1

i xi−1,j (t) (85)

Define xi−1,j (t)
def
= x

(j−1)
i−1,1 (t) (where, j = n + 1, · · · ) to compensate the dimension of Xi−1 (t) into

infinity. According to Taylor expansion and the element derivative relations in Xi−1 (t) and its

expansion, we know that

xi−1,1 (t+∆i) =

∞∑
j=1

1

(j − 1)!
∆j−1

i xi−1,j (t) (86)

Furthermore, xi−1,1 (t) in Xi−1 (t) can be expressed by the Fourier form, as follows:

xi−1,1 (t) = a0 +

∞∑
k=1

ak sin (kω0t) +

∞∑
k=1

bk cos (kω0t) (87)

where, ω0 is the base frequency in xi−1,1 (t). Therefore, the n-th derivative of xi−1,1 (t) is

xi−1,n+1 (t) = x
(n)
i−1,1 (t) =

∞∑
k=1

ak (kω0)
n sin (kω0t) +

∞∑
k=1

bk (kω0)
n cos (kω0t) (88)

39



Therefore, we get

∆n
i

n!
xi−1,n+1 (t) =

∞∑
k=1

ak
(∆ikω0)

n

n!
sin (kω0t) +

∞∑
k=1

bk
(∆ikω0)

n

n!
cos (kω0t) (89)

Define:

O

(
(∆ikω0)

n

n!

)
=

∞∑
j=n+1

1

(j − 1)!
∆j−1

i xi−1,j (t) (90)

and we define
∣∣∣O ( (∆ikω0)

n

n!

)∣∣∣ ≤ L∆i. Therefore, from (85), (86) and (90), we get

xi−1,1 (t+∆i) = CeA∆iXi−1 (t) +O

(
(∆ikω0)

n

n!

)
(91)

We rewrite (26) by

Ẋi (t) = AXi (t) +K (ε)
(
CeA∆iXi−1 (t)− CXi (t)

)
(92)

where, i = 1, · · · ,m. From (28), the following relation holds:

CXi (t) = xi,1 (t) (93)

Then, considering of (91) and (93), system (92) can be written by

Ẋi (t) = AXi (t) +K (ε)

(
xi−1,1 (t+∆i)−O

(
(∆ikω0)

n

n!

)
− xi,1 (t)

)
(94)

where, i = 1, · · · ,m. Therefore, according to the result (18) in Lemma 3, for system (94), there

exist the bounded constants li and di, such that

lim
t→∞

∥∥∥∥∥∥∥∥∥∥


xi−1,1 (t+∆i)

ẋi−1,1 (t+∆i)
...

x
(n−1)
i−1,1 (t+∆i)

−


xi,1 (t)

xi,2 (t)
...

xi,n (t)


∥∥∥∥∥∥∥∥∥∥
≤ εli +

L∆idi
εn−1

; i = 1, · · · ,m (95)

Then, according to the variable relations in (26), we get

lim
t→∞

∥Xi−1 (t+∆i)−Xi (t)∥ ≤ εli +
L∆idi
εn−1

; i = 1, · · · ,m (96)

Thus, for each variable in the estimate vectors, it follows that

lim
t→∞

|(xi−1,j (t+∆i))− xi,j (t)| ≤ εli +
L∆idi
εn−1

; j = 1, · · · , n; i = 1, · · · ,m (97)

3) Combination of 1) and 2)

Using t+∆1 instead of t, the result (83) for system (25) still holds, and it can be written by

lim
t→∞

∣∣∣f (j−1) (t+∆1)− x0,j (t+∆1)
∣∣∣ ≤ εl0 (98)
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Then, from (97) and (98), and considering of −x0,j (t+∆1) + x0,j (t+∆1) = 0, we can get

lim
t→∞

∣∣∣f (j−1) (t+∆1)− x1,j (t)
∣∣∣

= lim
t→∞

∣∣∣f (j−1) (t+∆1)− x0,j (t+∆1) + x0,j (t+∆1)− x1,j (t)
∣∣∣

≤ lim
t→∞

∣∣∣f (j−1) (t+∆1)− x0,j (t+∆1)
∣∣∣+ lim

t→∞
|x0,j (t+∆1)− x1,j (t)|

≤ εl0 + εl1 +
L∆1d1
εn−1

= ε (l0 + l1) +
L∆1d1
εn−1

(99)

Furthermore, considering of −x1,j (t+∆2) + x1,j (t+∆2) = 0, it follows that

lim
t→∞

∣∣∣f (j−1) (t+∆1 +∆2)− x2,j (t)
∣∣∣

≤ lim
t→∞

∣∣∣f (j−1) (t+∆2 +∆1)− x1,j (t+∆2)
∣∣∣+ lim

t→∞
|x1,j (t+∆2)− x2,j (t)|

≤ ε (l0 + l1) +
L∆1d1
εn−1

+ εl2 +
L∆2d2
εn−1

= ε (l0 + l1 + l2) +
1

εn−1
(L∆1d1 + L∆2d2) (100)

In general, iterating i from 1 to m, and considering of −xm−1,j (t+∆m) + xm−1,j (t+∆m) = 0,

we get

lim
t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣∣
= lim

t→∞

∣∣∣∣∣f (j−1)

(
t+

m−1∑
i=1

∆i +∆m

)
− xm−1,j (t+∆m) + xm−1,j (t+∆m)− xm,j (t)

∣∣∣∣∣
≤ lim

t→∞

∣∣∣∣∣f (j−1)

(
t+∆m +

m−1∑
i=1

∆i

)
− xm−1,j (t+∆m)

∣∣∣∣∣+ lim
t→∞

|xm−1,j (t+∆m)− xm,j (t)|

≤ ε
m−1∑
i=0

li +
1

εn−1

m−1∑
k=1

L∆kdk + εlm +
L∆m

εn−1
dm = ε

m∑
i=0

li +
1

εn−1

m∑
k=1

L∆kdk ≤ εc1 + c2
Ld

εn−1
(101)

where, c1 =
m∑
i=0

li, c2 =
m∑
k=1

dk, Ld = maxk∈{1,··· ,m} {L∆k}, and j = 1, · · · , n.

Alternatively, by substituting −
m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
+

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
= 0 into

lim
t→∞

∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣, we can also get the estimate error up-boundness (101) by

using the following method:

lim
t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣∣
= lim

t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
−

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
+

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
− xm,j (t)

∣∣∣∣∣
41



= lim
t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− x0,j

(
t+

m∑
i=1

∆i

)

−
m∑
k=2

xk−1,j

(
t+

m∑
i=k

∆i

)
+

m−1∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
+ xm−1,j (t+∆m)− xm,j (t)

∣∣∣∣∣
= lim

t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− x0,j

(
t+

m∑
i=1

∆i

)

+

m−1∑
k=1

{
xk−1,j

(
t+

m∑
i=k

∆i

)
− xk,j

(
t+

m∑
i=k+1

∆i

)}
+ xm−1,j (t+∆m)− xm,j (t)

∣∣∣∣∣
≤ lim

t→∞

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− x0,j

(
t+

m∑
i=1

∆i

)∣∣∣∣∣
+

m−1∑
k=1

lim
t→∞

∣∣∣∣∣xk−1,j

(
t+

m∑
i=k+1

∆i +∆k

)
− xk,j

(
t+

m∑
i=k+1

∆i

)∣∣∣∣∣
+ lim
t→∞

|xm−1,j (t+∆m)− xm,j (t)|

≤ εl0 + ε

m−1∑
k=1

li +
1

εn−1

m−1∑
k=1

L∆kdk + εlm +
L∆m

εn−1
dm

= ε
m∑
i=0

li +
1

εn−1

m∑
k=1

L∆kdk ≤ εc1 + c2
Ld

εn−1
(102)

where, j = 1, · · · , n.

According to Lemma 3:

1) function εc1 + c2
Ld

εn−1 in (102) has a global minimum at ε = [(n− 1) c2Ld/c1]
(1/n) def

= caL
1/n
d ,

and

min
ε>0

{
εc1 +

Ld

εn−1
c2

}
=
(
c1ca + c2/c

(r−1)
a

)
L
1/n
d

def
= kaL

1/n
d (103)

2) For ε ∈
[
caL

1/n
d , 1

)
, εc1 +

Ld
εn−1 c2 is a strictly increasing function of ε, and εc1 +

Ld
εn−1 c2 ≤ Lε,

where L = c1 + c2/c
n
a . This concludes the proof. �

Proof of Theorem 2:

1) Estimation of current derivatives

For (32), according to Lemma 4, there exist γ > 1, time t0 > 0 and a bounded constant l0 > 0,

such that, for t ≥ t0,

∣∣∣f (j−1) (t)− x0,j (t)
∣∣∣ ≤ l0ε

nγ−j+1; j = 1, . . . , n (104)

2) Iterative estimate of future signal and future derivatives

From (36), we can get

CeA∆iXi−1 (t) =
n∑

j=1

1

(j − 1)!
∆j−1

i xi−1,j (t) ;CXi (t) = xi,1 (t) (105)
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Define xi−1,j (t)
def
= x

(j−1)
i−1,1 (t) (where, j = n + 1, · · · ) to compensate the dimension of Xi−1 (t) into

infinity. Meanwhile, according to Taylor expansion and the element derivative relations in Xi−1 (t)

and its expansion, we know that

xi−1,1 (t+∆i) =

∞∑
j=1

1

(j − 1)!
∆j−1

i xi−1,j (t) (106)

Therefore, from (105) and (106), the following relation holds:

xi−1,1 (t+∆i) = CeA∆iXi−1 (t) +O

(
(∆ikω0)

n

n!

)
(107)

where, O
(
(∆ikω0)

n

n!

)
=

∞∑
j=n+1

1
(j−1)!∆

j−1
i xi−1,j (t). We define

∣∣∣O (∆n
i

n!

)∣∣∣ ≤ L∆i. The system (33)

can be written by

ẋi,j (t) = xi,j+1 (t) +
kn−j+1

εj

∣∣∣∣xi−1,1 (t+∆i)−O

(
(∆ikω0)

n

n!

)
− xi,1 (t)

∣∣∣∣αn−j+1

×sign

(
xi−1,1 (t+∆i)−O

(
(∆ikω0)

n

n!

)
− xi,1 (t)

)
;

j =1, · · · , n− 1

ẋi,n (t) =
k1
εn

∣∣∣∣xi−1,1 (t+∆i)−O

(
(∆ikω0)

n

n!

)
− xi,1 (t)

∣∣∣∣α1

×sign

(
xi−1,1 (t+∆i)−O

(
(∆ikω0)

n

n!

)
− xi,1 (t)

)
;

i=1, · · · ,m (108)

For (108), from Lemma 4, there exist γ > 1, time ti > 0 and bounded constants li > 0, such that,

for t ≥ ti,

∣∣∣x(j−1)
i−1,1 (t+∆i)− xi,j (t)

∣∣∣ ≤ li (δi,j)
γ (109)

where, δi,j = ε
n− j−1

γ +cL
αp

∆iε
− j−1

γ , j = 1, . . . , n, and i = 1, . . . ,m. From the system variable relations

in (33), we know that x
(j−1)
i−1,1 (t+∆i) = xi−1,j (t+∆i), j = 1, . . . , n; i = 1, . . . ,m. Therefore, (109)

can be written by

|xi−1,j (t+∆i)− xi,j (t)| ≤ li (δi,j)
γ (110)

where, j = 1, . . . , n, and i = 1, . . . ,m.

3) Combination of 1) and 2)

By substituting −
m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
+

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
= 0 into∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣, and from Lemma 4, we can get the estimate error up-boundness
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as follows:∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣∣
=

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
−

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
+

m∑
k=1

xk−1,j

(
t+

m∑
i=k

∆i

)
− xm,j (t)

∣∣∣∣∣
≤

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− x0,j

(
t+

m∑
i=1

∆i

)∣∣∣∣∣
+

m−1∑
k=1

∣∣∣∣∣xk−1,j

(
t+

m∑
i=k+1

∆i +∆k

)
− xk,j

(
t+

m∑
i=k+1

∆i

)∣∣∣∣∣
+ |xm−1,j (t+∆m)− xm,j (t)|

≤ l0ε
nγ−j+1 +

m−1∑
k=1

lk (δk,j)
γ + lm (δm,j)

γ = l0ε
nγ−j+1 +

m∑
i=1

li (δi,j)
γ

≤ l0ε
nγ−j+1 + c2 (δdj)

γ (111)

where, δdj = maxi∈{1,··· ,m} {δi,j} = ε
n− j−1

γ + cL
αp

d ε
− j−1

γ , Ld = maxk∈{1,··· ,m} {L∆k}, c2 =
m∑
i=1

li, and

j = 1, · · · , n.

According to Lemma 5, function δdj = ε
n− j−1

γ + cL
αp

d ε
− j−1

γ in (111) has the following properties:

1) δdj has a global minimum at ε =
(
c j−1
nγ−j+1L

αp

d

)(1/n) def
= caL

αp/n
d , and

minε>0 {δdj} =

(
c
n− j−1

γ
a + c/c

j−1
γ

a

)(
L
αp

d

)(1− j−1
nγ

)
def
= ka

(
L
αp

d

)(1− j−1
nγ

)
.

2) For ε ≥ caL
αp/n
d , δdj is a strictly increasing function of ε, and δdj ≤ kbε

n− j−1
γ , where kb =

(1 + 1/cna). Therefore, ε ∈ (ε∗, 1) is selected, where ε∗ = caL
αp/n
d . Then, for (111), we get

∣∣∣∣∣f (j−1)

(
t+

m∑
i=1

∆i

)
− xm,j (t)

∣∣∣∣∣≤ l0ε
nγ−j+1 + c2 (δdj)

γ ≤ l0ε
nγ−j+1 + c2

(
kbε

n− j−1
γ

)γ
=
(
l0 + c2k

γ
b

)
εnγ−j+1 def

= Lεnγ−j+1 (112)

This concludes the proof. �
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