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Abstract
Introduction Osteoarthritis (OA) is a common cause of disability in older people, but its aetiology is not yet fully understood. 
Biomarkers of OA from metabolomics studies have shown potential use in understanding the progression and pathophysiol-
ogy of OA.
Objectives To investigate possible surrogate biomarkers of knee OA in urine using metabolomics to contribute towards a 
better understanding of OA progression and possible targeted treatment.
Method Liquid chromatography-high resolution mass spectrometry (LC-HRMS) was applied in a case–control approach to 
explore the possible metabolic differences between the urinary profiles of symptomatic knee OA patients (n = 74) (subclassi-
fied into inflammatory OA, n = 22 and non-inflammatory OA, n = 52) and non-OA controls (n = 68). Univariate, multivariate 
and pathway analyses were performed with a rigorous validation including cross-validation, permutation test, prediction and 
receiver operating characteristic curve to identify significantly altered metabolites and pathways in OA.
Results OA datasets generated 7405 variables and multivariate analysis showed clear separation of inflammatory OA, but 
not non-inflammatory OA, from non-OA controls. Adequate cross-validation  (R2Y = 0.874,  Q2 = 0.465) was obtained. The 
prediction model and the ROC curve showed satisfactory results with a sensitivity of 88%, specificity of 71% and accuracy 
of 77%. 26 metabolites were identified as potential biomarkers of inflammatory OA using HMDB, authentic standards and/
or MS/MS database.
Conclusion Urinary metabolic profiles were altered in inflammatory knee OA subjects compared to those with non-inflam-
matory OA and non-OA controls. These altered profiles associated with perturbed activity of the TCA cycle, pyruvate and 
amino acid metabolism linked to inflammation, oxidative stress and collagen destruction. Of note, 2-keto-glutaramic acid 
level was > eightfold higher in the inflammatory OA patients compared to non-OA control, signalling a possible perturbation 
in glutamine metabolism related to OA progression.
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1 Introduction

Osteoarthritis (OA) is the most common form of arthritis 
(Chen et al. 2017). The World Health Organisation esti-
mated that 9.6% of men and 18% of women above 60 years 
of age have symptomatic OA worldwide (WHO, 2020). 
The exact aetiology of OA is not yet fully understood. 
However, it is recognised to be a common complex disor-
der with multiple genetic, constitutional and environmen-
tal risk factors including increasing age, female gender, 
obesity and joint usage and trauma (De Ceuninck et al. 
2011; Li et al. 2010). Current OA research is directed 
towards prevention, early diagnosis, and understanding of 
the aetiology and progression of OA, with the hope that 
better understanding will lead to better treatment options 
(Hunter et al. 2019).

To date, no disease-modifying agent has been approved 
to effectively treat OA and therefore, treatment strategies 
aim to improve the quality of life through management 
of symptoms including pain control and improvement 
of reduced function (Mora et al. 2018). Currently, OA 
is diagnosed predominantly according to characteristic 
joint symptoms and abnormal signs, together, if required, 
with imaging evidence of OA structural changes using 
radiography (the usual, most widely available modality), 
ultrasonography (increasingly available but not as compre-
hensive as MRI in its tissue assessment) or MRI (very sen-
sitive and comprehensive, but costly and least available) 
(NICE guidelines) (Loeuille, 2012; Menashe et al. 2012). 
These techniques lack the ability to provide pathophysi-
ological information at early stages of OA development. 
Therefore, the identification of new OA biomarkers using 
alternative technologies might aid in the search for the 
development of new diagnostic tests and the identification 
of new drug targets.

Untargeted metabolomics aims to provide an unbiased 
overview of the metabolic patterns in a biological system 
and may provide a direct way to identify surrogate bio-
markers and study the underlying perturbations of meta-
bolic pathways in the clinical progression of OA. Urine is 
readily available for non-invasive sampling and provides 
an end metabolite pool of the body. Hence, it has the 
potential to increase our understanding of the metabolic 
variation associated with OA development and progres-
sion. There are relatively few studies related to the use of 
urine metabolomics in OA (Lamers et al. 2003, 2005; Li 
et al. 2010; Nepple et al. 2015). These studies showed that 
metabolites related to tricarboxylic acid (TCA), histamine, 
purine and energy metabolism are associated with OA and 
could be logically linked to the disturbed biochemical 
pathways of the condition. Therefore, further research is 
needed to identify, confirm, validate and characterise OA 

urinary biomarkers. The use of liquid chromatography-
high resolution mass spectrometry (LC-HRMS) employing 
hydrophilic interaction chromatography (HILIC) is pre-
ferred for the analysis of polar and semi-polar metabolites 
typically found in urine (Buszewski & Noga, 2012; WHO, 
2020).

In this study, we applied untargeted metabolomics using 
HILIC LC-HRMS analysis to urine samples collected from 
OA patients and non-OA controls. We investigated altera-
tions in urinary metabolic end-products related to pertur-
bations in the metabolic pathways in OA and attempted 
to relate these changes to biochemical pathways relevant 
to OA disease and contribute to the understanding of OA 
progression.

2  Materials and methods

2.1  Reagents and chemicals

Reagents, chemicals and 171 authentic standards used for 
the LC-HRMS optimisation, validation and/or metabolite 
identification were either HPLC or MS grade; their descrip-
tion and details are summarized in Tables S1 and S2.

2.2  Ethics approval, sample collection and storage

The study was approved by the Nottingham University Hos-
pital Research Ethics Committee 1 (NRES reference 14/
EM/0013), and fully informed written consent was obtained 
from participants prior to study entry. Community-derived 
142 participants aged over 30 years comprised: (1) people 
with symptomatic knee OA (n = 74), having predominantly 
usage-related pain plus definite radiographic joint space nar-
rowing and osteophyte in at least one knee compartment (using 
a single standardised semi-flexed weight-bearing tibio-femoral 
view and a Rosen template to control knee flexion and foot 
external rotation, and skyline 30-degree flexion patella-femoral 
views); and (2) control non-OA participants (n = 68) with no 
knee pain and no clinical or radiographic signs of knee OA. 
Participants with knee OA were classified into two phenotypes 
based on clinical assessment: those with inactivity stiffness 
plus joint line tenderness and either grade 2 effusion (positive 
“balloon sign” for fluctuance) or morning stiffness were clas-
sified as “inflammatory OA” (n = 22), whereas those not fulfill-
ing this definition were classified as “non-inflammatory OA 
(n = 52). Exclusion criteria for both groups included clinically 
significant disease affecting the endocrine, hepatic, cardiac, 
respiratory, or renal systems. However, some subjects with 
comorbidities of heart attack history (12%), stroke (4.9%), 
epilepsy (1.4%), hypertension history (33%), asthma (7.7%), 
psoriasis (2.1%), irritable bowel syndrome (4.9%), thyroid 
problems history (9.2%), diabetes (8.5%), kidney problems 
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history (5.6%), liver problems history (2.1%), gout (7.7%), 
osteoporosis (1.4%), depression (15.5%), cancer history 
(15.5%), fibromyalgia (2.8%) and chronic fatigue syndrome 
(0.7%) were included in the study. Fasting (i.e. no breakfast) 
morning urine samples were collected from all the participants 
without the use of preservatives, aliquoted in 2.0 mL triplicates 
and stored immediately at − 80 ˚C.

2.3  Preparation of urine samples for LC‑HRMS

The urine samples (60 µL) were centrifuged at 10,000×g 
for 10 min, 50 µL of the supernatant was diluted with 100 
µL water and analysed using LC-HRMS. Blanks were pre-
pared in the same way without including urine sample. For 
metabolomics analysis, pooled QC samples were prepared 
by mixing 20 µL from each urine sample in the study.

2.4  LC‑HRMS and LC‑HRMS/MS analyses

Chromatography was performed on Accela UHPLC system/
Dionex U3000 (Thermo Fisher Scientific, Hemel Hemp-
stead, UK) on a BEH HILIC column (2.1 × 100 mm, 1.7 µm 
particle size; Waters, Milford, USA) coupled to an orbital 
trap mass spectrometer (Exactive/Q-Exactive, Thermo 
Fisher Scientific, Hemel Hempstead, UK). The column 
was maintained at 400 µL/min, 40 °C. Mobile phases used 
were: (A) 50:50 and (B) 95:5 acetonitrile:ammonium acetate 
(10 mM in water). Urine samples (5 µL, 4 °C) were injected 
in a ramp gradient from 1% (A) to 100% (A) in 12 min then 
the composition was returned to its initial conditions and 
maintained for the second run (15 min). The MS param-
eters were optimised for urine analysis using the standard 
mixture (Table S1) of a selected set of 35 urinary metabo-
lites (Bouatra et al. 2013). LC-HRMS was performed using 
Exactive-MS in simultaneous ESI + and ESI − modes. The 
operational parameters of MS were spray voltage 3.2 kV 
(ESI +), 2.4 kV (ESI −), capillary voltage 25 V (ESI +), 
− 27 V (ESI −). Sheath, auxiliary and sweep gas flow rate 
were 20, 5 and 5 (arbitrary unit), respectively, for both 
modes. Capillary and heater temperature were maintained at 
350 and 120 °C, respectively. Data were acquired in full scan 
mode with resolution 50,000, AGC  1e6 from m/z 60–1000 
with 4 Hz scan rate. Metabolite identification was performed 
on the pooled QC sample (n = 3) and co-analysed with 171 
authentic standards using Q-Exactive MS with Top 5 ddMS/
MS scans at a resolution of 17,500 and a stepped normalised 
collision energy (NEC) of 20, 30 and 40.

2.5  Urinary metabolomics analysis of participants 
with OA and non‑OA controls

Urine samples in the study were randomised and analysed 
in a single batch with LC-HRMS. The mixture of authentic 

standards (Table S1) were 10 times diluted and co-analysed 
with the samples as a reference test mix to check the perfor-
mance and the stability of the instrument. The pooled QC 
was also injected at the beginning to condition the column 
and every 5–10 samples to monitor the stability, robustness, 
repeatability and performance of the LC-HRMS.

2.6  Data analysis and metabolite identification

2.6.1  LC‑HRMS validation

The performance of the analysis was validated by principal 
component analysis (PCA) and by monitoring the variability 
in the response of a representative set of 54 metabolites in 
the set of pooled QC samples. In addition, the quality of 
the acquired datasets was assessed by determining the rela-
tive standard deviation (RSD) of the peak areas of all peaks 
present in at least 80% of the pooled QC (Want et al. 2010).

2.6.2  Multivariate analysis

The raw datasets were pre-processed with Progenesis QI 
(Nonlinear Dynamics, Waters, Milford, USA), normalised 
using MS total useful signal (MSTUS) (Warrack et al. 2009) 
and ArcSinh transformed (Jones, 2008) to restore normal-
ity to the datasets. Any detected ions related to analgesics 
received by the OA participants were identified as detailed in 
the metabolite identification section and excluded manually 
to minimise the potential confounding effect of medication 
in the classification of the OA samples. Simca P + 13/ + 14 
(Umetrics, Umeå, Sweden) was used for multivariate analy-
sis in which PCA and orthogonal partial least squares-dis-
criminant analysis (OPLS-DA) were generated to investi-
gate any possible trends and metabolic changes between 
OA participants and non-OA controls. Shared and unique 
structures (SUS) plot was used to balance the sample size 
in each class as stated elsewhere (Kirwan et al. 2012). The 
robustness of the OPLS-DA models was evaluated by cross-
validation  (R2Y: fitness of model,  Q2: predictive ability), 
permutation test, prediction (50:50 training:test sets) using 
Simca P random selection function (Eriksson et al. 2006a) 
and area under the receiver operating characteristic (ROC) 
curve (AUC). Variable Importance for the Projection (VIP) 
and p(corr) of the OPLS-DA and p-values from Student’s 
t-Test, adjusted using Benjamini and Hochberg false dis-
covery rate, were used to select the ions responsible for the 
class separation between the OA participants and the non-
OA controls.

2.6.3  Metabolite identification

The QC samples analysed with top five MS/MS transitions 
were processed by Compound Discoverer 3.1 SP1 (Thermo 
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Fisher Scientific, Hemel Hempstead, UK) for metabolite 
identification. The significantly altered urinary metabolites 
in the study were identified by matching their m/z, reten-
tion times (RTs) and MS/MS spectra with the metabolites 
in Human Metabolome Database (HMDB) (Wishart et al. 
2018) and/or the MS/MS of standards, mzCloud and mzVault 
database (Thermo Fisher Scientific, Hemel Hempstead, 
UK). The identified metabolites were then classified based 
on the confidence in identification recommended by Chemi-
cal Analysis Working Group, Metabolomics Standards Ini-
tiative (MSI) (Sumner et al. 2007). In MSI scale, metabolites 
were either classified as level 1: Identified compounds with 
reference standards (m/z, RT and MS/MS), level 2: puta-
tively annotated compounds based on the use of spectral 

library and no reference standards (m/z and/or MS/MS), 
level 3: putatively characterised compound classes and level 
4: unknowns.

3  Results

3.1  Assessment of the demographic data 
for metabolomics analysis

The median age of participants in the study was 68 years 
old (range: OA participants 50–91; non-OA controls 
52–88), indicating adequate age matching for metabolomics 
analysis (Table 1). There was no significant difference 

Table 1  Demographic data 
comparing the OA participants 
to the non-OA controls

*p-values were computed using a two tail Student’s t-Test at 95% confidence limits assuming equal vari-
ance between groups. BMI body mass index, OA osteoarthritis, vs versus

Description OA participants Non-OA controls

1. Number of participants
 a. All 74 68
  Male 26 30
  Female 48 38

 b. Inflammatory OA participants 22 –
  Male 5 –
  Female 17 –

 c. Non-inflammatory OA participants 52 –
  Male 21 –
  Female 31 –

2. Age
 a. All
  Median 68 68
  Range 50–91 52–88

 b. Inflammatory OA participants
  Median 69 –
  Range 54–86 –

 c. Non-inflammatory OA participants
  Median 68 –
  Range 50–91 –

3. BMI
 a. All
  Mean (p-value* = 0.05) 30.23 28.34
  Median 29.27 27.62
  Range 20.40–51.04 20.28–45.52

 b. Inflammatory OA participants vs non-OA controls
  Mean (p-value = 0.02) 31.55 28.34
  Median 29.41 27.62
  Range 24.77–46.85 20.28–45.52

 c. Non-inflammatory OA participants vs non-OA controls
  Mean (p-value = 0.19) 29.67 28.34
  Median 28.99 27.62
  Range 20.40–51.04 20.28–45.52
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(p-value = 0.05) in body mass index (BMI) between the OA 
participants and the non-OA controls, indicating that they 
were well matched for the study. However, a significant dif-
ference in BMI (p-value = 0.02) was observed between the 
inflammatory OA participants and the non-OA controls.

3.2  The performance of the LC‑HRMS for untargeted 
metabolomics

The quality of the LC-HRMS datasets in the study was 
assessed using the QC samples in which the RSDs of the 
selected 54 ions were within 1% for RTs and 18% (range 
7–18%) for peak areas in the QC (Table S3). The RSDs 
across the mean peak areas of at least 80% of all peaks 
present in the QC were less than 30% for 71% of these 
peaks, which were lower than the recommended threshold 
for metabolomics analysis (Begou et al. 2018). PCA was 
also used to assess the quality of the acquired datasets; the 
QC samples were adequately clustered towards the centre 
of the PCA score plot (Fig. 1a). These results demonstrate 
satisfactory stability and validate the LC-HRMS for urine 
metabolomics.

Visual examination of the LC-HRMS base peak chro-
matograms (BPCs) of urine samples showed differences 
between the different classes in the study. For instance, 

in Figure S1, the marked regions (A) and (B) show an 
increased level of the metabolite, m/z 232.0274 (unknown) 
and m/z 152.0706 (phenylglycine) in inflammatory OA par-
ticipants compared to non-inflammatory OA participants and 
non-OA controls. The metabolite ion, m/z 181.0286 (ESI +) 
and, m/z 286.2642 (ESI −) showed higher peak areas in the 
inflammatory OA compared to the non-inflammatory OA 
participants and non-OA controls. Creatinine, m/z 114.0667 
(ESI +) was found to be the most abundant ion in the urine 
sample of non-OA controls. Taking all molecular features 
into account, most of the detected ions were concentrated 
in the lower mass range (m/z 60–300) in the positive mode, 
while relatively higher mass ions were detected in the nega-
tive modes.

3.3  Data analysis

The metabolomics datasets of OA patients and non-OA 
controls generated 7405 features and were submitted for 
multivariate and univariate analyses. PCA-class analysis 
was first performed to evaluate the similarity of the samples 
within each class. Adequate similarity with no significant 
differences were observed between the samples in each class 
indicated by the poor PCA-class  Q2 values in all classes 
(Q2 < 0.01, Fig. 2). This demonstrates that the underlying 

Fig. 1  PCA and OPLS-DA score plots obtained from all OA par-
ticipants and non-OA controls. a PCA of non-OA controls (n = 68), 
inflammatory OA (n = 22), non-inflammatory OA (n = 52) partici-
pants and pooled QCs (n = 15), whereas b OPLS-DA of inflammatory 
OA participants and non-OA controls and c OPLS-DA of non-inflam-

matory OA participants and non-OA controls analysed by LC-HRMS. 
d The Significantly altered metabolites were selected using VIP vs 
p(corr) of OPLS-DA of inflammatory OA participants and non-OA 
controls
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comorbidities in some subjects had no significant clustering 
or separation in the metabolic profile within each class. No 
separation or clustering was observed in the PCA between 
the different classes in the study (Fig. 1a), hence, subse-
quent OPLS-DA were constructed. A complete separation 
was observed in the OPLS-DA between the inflammatory 
OA participants and the non-OA controls (Fig. 1b) indicat-
ing significant difference with good  R2Y (0.874) and  Q2 
(0.465). Univariate analysis was performed in parallel to 
multivariate analysis in which the adjusted p-values from 
Student’s t-Test were computed across all ions in OA partici-
pants compared to non-OA controls to identify significantly 
altered metabolites related to OA, if any. 26 metabolite fea-
tures were found significantly different in inflammatory OA 
participants compared to non-OA controls (Table 2). SUS 
plots and balanced OPLS-DA were used to demonstrate 
that the small change in BMI in inflammatory OA com-
pared to non-OA controls was not related to the significant 
metabolic features found between the two classes. An equal 
set of samples from inflammatory OA (n = 22) vs no-OA 
controls (n = 22) were randomly selected to minimise bias 
using SUS plot and subsequently a balanced OPLS-DA was 
generated (Fig. 3). No significant difference in BMI (i.e. 
p-value = 0.05) was observed between the 2 classes and the 
reported metabolites were found still significant, hence not 

related to BMI. Insufficient separation was observed in the 
OPLS-DA of non-inflammatory OA participants and non-
OA controls with very poor  Q2 of − 0.221, indicating no 
significant difference between the two classes (Fig. 1c).

The OPLS-DA of inflammatory OA participants and 
non-OA controls was further validated using a permutation 
test, prediction and AUC, the validation results are listed in 
Table S4. In the permutation test, the regression line of the 
Y-permuted  Q2 was intercepted at − 0.130, indicating a reli-
able predictive power of the model (Eriksson et al. 2006b). 
Prediction showed a satisfactory model with a sensitivity of 
88%, specificity of 71% and accuracy of 77%. The sensitiv-
ity and specificity of this model were further assessed by 
computing the AUC which was 0.76 indicating a good clini-
cal utility for biomarker discovery (Xia et al. 2013). These 
results validate the model.

3.4  Selection and identification of potential 
biomarkers of OA in urine

Significantly altered metabolites between the inflamma-
tory OA participants and non-OA controls were selected 
using VIP score > 1.0, │p(corr)│ > 0.4 and q-value < 0.05 
(Fig. 1d). 26 metabolites were identified as significantly 
altered metabolites in inflammatory OA participants 

Fig. 2  PCA-class analysis score plots obtained from a non-OA controls (n = 68,  R2X = 0.39,  Q2 = −  0.001), b inflammatory OA (n = 22, 
 R2X = 0.35,  Q2 = − 0.014) and c non-inflammatory OA (n = 52,  R2X = 0.42,  Q2 = − 0.006) participants’ urine samples analysed by LC-HRMS
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compared to non-OA controls (Table 2). The MS/MS spec-
tral matching of the metabolites are illustrated in Figures S2 
to S17. Some of the significantly changed metabolites 
remained putatively identified, however, they remain listed 
due to their potential importance for interpretation of the 
study data.

3.5  Pathway analysis

The normalised abundances of the significantly altered 
metabolites in inflammatory OA participants and non-OA 
controls were processed for pathway enrichment, analysis 
and network mapping using MetaboAnalyst 4.0 (Chong et al. 
2019). Different metabolic pathways (Table S5) including 
pyruvate, purine and lysine metabolism were found signifi-
cantly altered in inflammatory OA participants compared 
non-OA controls as illustrated in Fig. 4.

4  Discussion

Significant differences in the urinary profile of inflammatory 
OA participants were found compared to the non-OA con-
trols in which 26 metabolites were identified as potential OA 
biomarkers in urine (Table 2). We cannot definitively ascribe 
these perturbed metabolites to inflammatory OA changes 
in the knee joint (cartilage, synovium and related tissues) 
since they may also have a systemic source. Pathway analy-
sis of these metabolites showed that some metabolic path-
ways were significantly affected in OA participants (adjusted 
p-value < 0.05) including pyruvate metabolism, TCA cycle 
and amino acid metabolism (Fig. 4). These pathways have 
been shown to change in previously reported studies of OA 
using invasive types of samples such as plasma, synovial 
fluids, serum and cultured synovial tissue (Carlson et al. 
2019; Showiheen et al. 2019; Zhai et al. 2018). Our find-
ings indicate that urine, as a readily accessible biofluid, can 

Table 2  The identified urinary biomarkers of the inflammatory OA participants

a Fold change: ( +): increased and (−) decreased level of the metabolite in inflammatory OA compared to non-OA controls
b Levels of confidence in identification (1–4) was based on MSI method as previously detailed

Metabolite Formula RT (min) Fold  Changea Adjusted p-value VIP score Identificationb

Method Level

2,3-Diaminopropionic acid C3H8N2O2 1.50 1.9 0.0267 2.8 Accurate mass 2
2-Keto-glutaramic acid C5H7NO4 4.06 8.24 0.0045 1.9 Accurate mass 2
2-Hydroxyhippuric acid C9H9NO4 4.10 − 2.3 0.0308 1.6 Accurate mass, MS/MS 2
3-Methoxyphenylacetic acid C9H10O3 0.60 − 3.4 0.0484 2.6 Accurate mass, MS/MS 2
3-Methylcrotonylglycine C7H11NO3 5.16 − 2.1 0.0356 2.4 Accurate mass 2
3-Nitrotyrosine C9H10N2O5 1.68 1.4 0.0421 2.4 Accurate mass 2
3-Oxoalanine C3H5NO3 2.27 − 1.5 0.0462 2.4 Accurate mass 2
4-Hydroxybutyric acid C4H8O3 1.36 − 1.7 0.0073 3.0 Accurate mass, RT, MS/MS 1
Acetylphosphate C2H5O5P 7.89 1.3 0.0254 1.3 Accurate mass 2
Aminoadipic acid C6H11NO4 1.36 − 1.3 0.0186 2.8 Accurate mass, MS/MS 2
Creatinine C4H7N3O 3.16 − 1.2 0.0004 2.4 Accurate mass, RT, MS/MS 1
Cytosine C4H5N3O 2.47 − 1.4 0.0484 2.5 Accurate mass, RT, MS/MS 1
Fumarate C4H4O4 13.65 1.4 0.0362 1.5 Accurate mass, RT, MS/MS 1
Homocysteine sulphinic acid C4H9NO4S 1.47 − 3.5 0.0462 2.1 Accurate mass 2
Hydroxykynurenine C10H12N2O4 1.45 − 2.6 0.0356 2.2 Accurate mass 2
Hypoxanthine C5H4N4O 1.99 − 1.7 0.0486 2.1 Accurate mass, RT, MS/MS 1
l-Homoserine C4H9NO3 1.49 − 1.3 0.0086 2.9 Accurate mass, RT, MS/MS 1
N-Acetyl-l-glutamate 5-semial-

dehyde
C7H11NO4 1.52 − 1.6 0.0032 3.1 Accurate mass 2

N-Phenylacetyl-l-glutamine C13H16N2O4 1.68 − 1.4 0.0421 2.3 Accurate mass, MS/MS 2
Phosphoric acid H3O4P 1.49 1.8 0.0421 2.5 Accurate mass, MS/MS 2
Pipecolic acid C6H11NO2 2.88 -2.7 0.0395 1.5 Accurate mass, MS/MS 2
Prolyl-Glutamate C10H15N2O5 1.57 2.3 0.0484 2.4 Accurate mass 2
Pyruvic acid C3H4O3 7.75 − 1.1 0.0056 1.4 Accurate mass, RT, MS/MS, 1
S-Lactoylglutathione C13H21N3O8S 4.75 1.5 0.0405 2.5 Accurate mass 2
Suberic acid C8H14O4 5.31 1.1 0.0214 1.0 Accurate mass, MS/MS 2
Tryptophan C11H12N2O2 1.68 − 1.4 0.0301 2.4 Accurate mass, RT, MS/MS, 1
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provide a reliable and comparable metabolic signature of OA 
and may aid in the understanding of OA pathogenesis and 
progression of structural change.

4.1  Perturbed pyruvate and TCA cycle pathways 
in OA

The increased levels of acetylphosphate, fumarate and s-lac-
toylglutathione in the urine of inflammatory OA participants 

compared to non-OA controls indicate an enhanced activity 
of the pyruvate pathway and the TCA cycle possibly due 
to perturbed metabolism in the cartilage cells. Most of the 
enzymes involved in the pyruvate metabolism and TCA 
cycle are located inside the mitochondrial matrix of the car-
tilage cells. Abnormal urinary excretion of these pathway 
intermediates provides a metabolic evidence of mitochon-
drial dysfunction of the cartilage cells in OA as previously 
reported (Blanco et al. 2004; Gavriilidis et al. 2013). Li and 

Fig. 3  Workflow for balancing 
class size of non-OA control 
with inflammatory OA for 
biomarker analysis. a Non-OA 
control (n = 68) were sub-
divided into 3 subsets using 
multivariate design based on 
PCA single class analysis. 3 
OPLS-DA models were gener-
ated from each dataset against 
inflammatory OA patients’ 
dataset. SUS plot was used to 
monitor the similarity of the 
generated OPLS-DA models. 
SUS plots were generated 
for 2 models at a time. This 
procedure was repeated until the 
selected subsets of the healthy 
controls generated adequately 
similar OPLS-DA models with 
inflammatory OA patients. b 
OPLS-DA score plot obtained 
from inflammatory OA patients 
(OA active) and the balanced 
non-OA controls urine samples
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co-workers, linked the detection of abnormal levels of aco-
nitic acid and citric acid in the urine of OA patients to the 
enhanced activity of the TCA cycle (Li et al. 2010). How-
ever, these metabolites were detected in OA patients with 
no significant difference, which may be attributed to the fact 

that they used GC–MS for the analysis, and hence, different 
sensitivity. The increased activity in the pyruvate metabo-
lism was consistent with the level of pyruvate found in the 
urine of OA patients as it was highly consumed and there-
fore, lower levels were detected in the urine of OA patients.

Fig. 4  Pathway analysis of the significantly altered metabolites in 
inflammatory OA participants compared to non-OA controls. a Path-
way analysis, b pathway enrichment analysis and c pathway network 

map highlighting significantly changed pathways and interactions 
between the significantly altered metabolites in inflammatory OA 
participants compared to non-OA controls
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4.2  Oxidative stress and amino acid metabolism 
in OA

Oxidative stress and inflammation processes are believed 
to play an important primary role in the development and 
progression of OA (De Ceuninck et  al. 2011). Amino 
acids, the structural building blocks of proteins, play an 
important role in the regulation of these processes. For 
instance, L-cysteine is essential for the production of 
the antioxidant glutathione, which is thought to help in 
scavenging the destructive oxygen-free radicals produced 
during normal cell metabolism and plays an important 
role in the inflammatory response in OA (Surapaneni & 
Venkataramana, 2007). Under metabolic stress, L-cysteine 
is produced from homocysteine and 2-hydroxybutyrate is 
released as a by-product. No significant difference was 
observed in L-cysteine levels between inflammatory OA 
participants and non-OA controls, but significantly lower 
levels of 4-hydroxybutyrate, 3-oxoalanine and homocyst-
eine sulfinic acid were found in the urine of OA partici-
pants, which may indicate impaired production or trans-
formation of the necessary L-cysteine in OA. Similarly, 
abnormal concentrations of urinary amino acids or their 
metabolites may provide evidence of oxidative stress and/
or inflammation in people with OA. Low levels of tryp-
tophan, pipecolic acid, hypoxanthine, aminoadipic acid 
(lysine metabolites), L-homoserine (serine metabolite) and 
3-methylcrotonylglycine (glycine metabolite) were found 
in the urine of inflammatory OA participants compared 
to non-OA controls, signalling the possibility of altered 
metabolic pathways and the biological functions of these 
amino acids in OA. Oxidative stress is present in several 
diseases and we cannot be sure that these changed path-
ways are specific to knee OA as they could be due to sys-
temic effects of other comorbidities.

The increased level of 3-nitrotyrosine in the urine of 
the inflammatory OA participants further support the 
oxidative stress in OA. 3-Nitrotyrosine was detected in 
human urine and plasma by GC–MS and LC–MS and it is 
strongly believed to be one of the biomarkers of oxidative 
damage of peroxynitrite (Gaut et al. 2002; Tsikas et al. 
2012). Cellular exposure to peroxynitrite was reported to 
cause calcium dysregulation, mitochondrial dysfunction, 
inhibition of prostaglandin formation, imbalance of anti-
inflammatory mediator pathways and amino acids nitra-
tion (Szabo et al. 2007). Therefore, different pathological 
conditions such as inflammation, pain, arteriosclerosis 
and neurodegenerative disorders are believed to be asso-
ciated with peroxynitrite (Pacher et al. 2007). The results 
obtained here may be an indication of an increased oxida-
tive damage of cartilage cells due to peroxynitrite.

4.3  Perturbation of glutamine metabolism in OA

The eightfold increase in urinary excretion of 2-keto-glutar-
amic acid, a deaminated metabolite of glutamine, in inflam-
matory OA participants may be an indication of disturbed 
glutamine metabolism in the chondrocytes. Normally, excess 
glutamine conjugates with active phenyl acetate to form 
N-phenylacetyl-glutamine and Coenzyme A. The end prod-
uct, N-phenylacetyl-glutamine is then excreted in urine as a 
normal metabolite of glutamine and phenyl acetate (Shock-
cor et al. 1996). Alternatively, under abnormal conditions, 
glutamine is deaminated to form 2-keto-glutaramic acid. The 
increased levels of 2-keto-glutaramic acid and the decreased 
level of N-phenylacetyl-glutamine in the urine of inflam-
matory OA participants, may give further evidence of the 
altered glutamine metabolic pathways and supported with 
a previously reported study (Li et al. 2010). This very large 
change in level of a single metabolite suggests that this may 
be useful for further investigation as a biomarker of disease 
progression. However, we do not know if this is a knee-
specific change or whether it is derived from a change in the 
systemic levels of 2-keto-glutaramic acid.

5  Conclusion

The significance of this study is that we used a readily acces-
sible non-invasive biofluid, urine, and performed a rigor-
ous validation and identification of the urinary biomarkers 
of OA. There are some caveats to this study. Firstly, it is 
a cross-sectional comparative study undertaken at a single 
time-point. Prospective studies with serial measures in a 
well characterised cohort of participants are ideally required 
to confirm these findings and to determine whether the uri-
nary measures predict variation in structural progression of 
OA. Secondly, the classification of inflammatory OA was 
based solely on symptoms and clinical signs rather than the 
use of ultrasound or MRI to provide quantification. Thirdly, 
this study included people with established knee OA and 
radiographic change, and study of people at an earlier stage 
of OA development would be of great interest. Furthermore, 
a potentially interesting future direction is to compare the 
male and female participants separately considering the 
known higher incidence of OA in females. Finally, this 
study focused exclusively on knee OA and the generalis-
ability of the findings to OA at other joint sites remains to 
be established.

Overall, we were able to find distinct urinary metabolites 
associated with inflammatory knee OA but not with non-
inflammatory OA participants compared non-OA controls, 
which may contribute to the understanding of OA pathogen-
esis and stimulate interest in urinary surrogate biomarkers of 
OA. However, we are unable to confirm that these observed 
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changes in urinary profile are a direct result of local meta-
bolic changes due to damage to knee cartilage or synovium. 
Altered activity in TCA cycle, pyruvate and amino acid 
metabolism, particularly based on the eightfold change in 
the metabolite 2-keto-glutaramic acid, can provide a basis 
to understand disease progression based on mitochondrial 
dysfunction and collagen destruction in the cartilage cells of 
people with OA, possibly linked to inflammation and oxida-
tive stress.
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