Software Fault Localisation via Probabilistic
Modelling

Colin G Johnson[0000—0002—9236—6581]

School of Computer Science, University of Nottingham,
Jubilee Campus, Nottingham, UK
Colin.Johnson@nottingham.ac.uk

Abstract. Software development is a complex activity requiring intel-
ligent action. This paper explores the use of an Al technique for one
step in software development, viz. detecting the location of a fault in
a program. A measure of program progress is proposed, which uses a
Naive Bayes model to measure how useful the information that has been
produced by the program to the task that the program is tackling. Then,
deviations in that measure are used to find the location of faults in the
code. Experiments are carried out to test the effectiveness of this measure.

Keywords: Software development, bug finding, Naive Bayes

1 Introduction

Software development is a task requiring substantial intelligence. In recent years,
a number of Al based approaches have been taken to software development
tasks [8], both in terms of actually writing code, and in the wide variety of
tasks that surround this, such as decomposition of tasks [17], fault finding and
fixing [15,16], building and improving test suites [3], etc.

This paper is concerned with applying an Al technique to fault localization—
that is, is the problem of identifying which component of a faulty system is
causing the fault [23]. For a software system, fault localization can be used at a
number of scales, from identifying which component of a large multi-component
system is causing the fault, through to identifying which line of code is the cause
of a fault in a single function.

In this paper, we are concerned with the smallest scale of fault localization,
finding the location of a fault in a single unit of faulty code: a function/method
consisting of a number lines of code. The problem is as follows. Take the source
code for a function f, and a test set consisting of sample inputs f and the
expected output for each sample input. A fault in f means that the input-output
behaviour of the function on the inputs in the test set do not match with the
input-output pairs in the test set; for some inputs, the output from f is different
to the output in the test set. The localization problem is to identify the line(s) of
code that give rise to this fault.

This problem is commonly tackled using a spectrum-based approach. This
is where a spectrum matrix, indexed by test set inputs x lines of code in f is

2 Colin G. Johnson

created, with the entry being True if that line of code was executed during that
test case, and Fulse otherwise. Fault localization is then carried out using one of
many suspiciousness metrics [21], which assign a numerical value to each line of
code, with the idea that the lines most likely to get a high suspiciousness value
are those that are the causes of the fault. Typically, suspiciousness metrics are
based on the difference between program paths taken when the correct output is
obtained and when a wrong output is obtained; lines which occur most frequently
in traces that give incorrect outputs are treated as most suspicious.

However, sometimes the cause of the fault is to do with the values taken during
that execution, not the different paths taken. Indeed, in some applications—signal
processing, image and audio transformation, numerical computation, etc.—there
many be few conditional statements to facilitate the creation of usefully different
traces to calculate suspiciousness metrics from. The focus of this paper is on
testing such programs, consisting of a succession of calculations.

To tackle these problems, we introduce two concepts. The first is that of
a rich spectrum. A conventional program spectrum consists of a 2-tensor of
size (numberOfTestCases, numberOfLines) with entries in the set True, False).
The entries indicate, for each test case, whether the program executed that
particular line whilst running that test case. A rich spectrum is a 3-tensor, of size
(numberOfTestCases, numberOfLines, numberOfVariables), with values in a set
appropriate to the problem at hand (in the examples in the paper, these will be
integer or floating point numbers). The entries in the rich spectrum represent the
values computed by the various lines of the code. The aim of this is to capture a
richer set of data about the program’s execution, to which Al and data mining
algorithms can be applied.

The second concept is the idea of probabilistic accumulation of evidence as a
program executes. The key concept here is that we can quantify an approximation
to the progress of a program towards solving its task. In this paper the model
used is a Nalve Bayes model, which is recalculated as each line is executed. A
record is kept of the accuracy of each of these models. The key idea is that,
if a program is successful at its task, the accuracy of this model will increase
line-by-line, because the data encoded in the variables at the end of each line is
more informative, therefore the probability of being able to predict the output
based on that information will increase. Conversely, if there is a fault, then a
piece of irrelevant, distracting information will be created, which will mean that
there will be a dip in that probability.

The paper is structured as follows. Section 2 explains previous approaches to
the problem, Section 3 explains the new model of measuring program execution,
and then Section 4 explains how that model is used to detect faults. Two
experiments are described in Section 5, then there is a discussion in Section 7 of
the limitations and threats to validity of the model. Finally, Section 8 summarises
the ideas in the paper and presents ideas for further developments.

Software Fault Localisation via Probabilistic Modelling 3

2 Background

A number of approaches to software fault localisation have been investigated in
the literature (see e.g. [22] for a survey). Some of these are driven by human
programmer’s understanding of the program—e.g. printing out variable values
and looking for patterns in light of the fault, comparing program activities
with asserted properties, inserting breakpoints to review machine state at certain
points, or examining the run time or execution frequencies of parts of the program
and comparing it to an expected profile.

There are a number of approaches to automating or semi-automating the
fault location detection process. One of these is based around slicing the program,
that is, finding which subset of the code precede the point where the fault has
been detected. A related idea is that of spectral testing [11], where an array is
constructed to map out which statements are executed when there is a fault, and
when there isn’t. Then, a suspiciousness statistic is calculated, which predicts
which line is most likely to be the cause of the fault—the basic idea being that
lines that are often executed when a fault occurs, but not when it doesn’t, are
more likely to be the cause of the fault. We will take this idea further in this
paper, both extending the idea of the spectrum, and using a different kind of
statistical model to detect faults.

Another approach concentrates on detecting or constructing test examples that
cause faults, so that the programmer can look for patterns in these test examples.
For example, delta debugging [6] focuses on trimming down failure-causing inputs
until some minimal failure-causing cases are found.

A number of approaches to the localisation problem have been grounded in
AT and machine learning methods. For example [24] have used neural networks
to discover the association between test case failures and code coverage, whilst
another paper [4] has used decision trees to group together test cases that cause
similar kinds of faults. Machine learning has also been used to improve existing
techniques—for example, the spectral based approach to fault localisation has
been improved by using genetic programming to discover suspiciousness formulae
that are more effective than the traditional formulae [10] written by people [25]

There are a number of problems that contemporary fault localization methods
struggle to address. Some of these are concerned with multiple faults in the same
program—a fault can be obstructed by a later fault, and sometimes a later fault
can mask or even undo earlier one. In this paper we address this problem by
constructing a set of models that take a certain number of lines of the code and
build a probabilistic model for the remainder of the computation, thus meaning
that the rest of the code after the initial fault is not executed. Secondly, most
approaches rely on differences between different execution paths in code. This
means that localisation cannot be done in blocks of code without any conditional
branching. By contrast, in this paper, we focus on the information calculated by
each step in the code, meaning that faults can be localised within a non-branching
piece of code.

4 Colin G. Johnson

3 DModelling Program Execution with Naive Bayes
Models

Programs are written to carry out a task. This task can be described in a number
of ways: by a formal specification, by a set of input-output examples, and/or by
a natural language description. As a program executes, it makes progress on the
task. A key idea of this approach is that we can quantify this progress. For a
correct program without any computations that are irrelevant to the task, we
expect each line to calculate some information that is relevant to the task. After
each line of the program has been executed, the computer’s memory contains
more information relevant to the task then it did before.

For the purposes of this paper we will focus on imperative programs that
have no loops or conditionals (apart from single-line conditions and folds). There
is no fundamental reason why these ideas cannot be developed for such programs,
or for other programming paradigms, but for a first attempt at these approaches,
this provides a starting point. Furthermore, it emphasises an aspect of code that
has been neglected by previous approaches to fault localisation. In many previous
approaches, such as the spectral approaches discussed above, the branching
execution of the program is key to discovering the fault, and the location of faults
in parts of code without branches cannot be found.

3.1 Progress Modelling

This section explains how we quantify the progress of a program towards its
task. Before the program is executed, no memory is allocated to the program.
Therefore, there is no information to tell us whether the program has made any
progress towards the solution. As each statement is executed, the state of the
computer’s memory contains more information that is relevant to the task. To
measure this progress, we execute the program on a large number of test cases,
accumulating the variable states after each statement has been executed.

There is then a gap between these variable values for the partially-executed
program and the test case outputs—what Androutsopoulos et al. [1] call a “ghost”
program. We then build a probabilistic model of the relationship between these
variable values and the set of outputs in the test cases. The measure of progress
is the accuracy of that model on a reserved test set of examples of variable values
and test case outputs. Repeating this process for each line of the program in turn
gives a vector of numbers, each corresponding to a line in the code. This process
is illustrated in Figure 1.

This program progress measure should increase monotonically where a pro-
gram is correct (and doesn’t contain any irrelevant or redundant lines), because
each execution step will provide some useful information towards solving the test
cases, thus reducing the complexity of model needed to bridge the gap to the
target output. Contrastingly, many kinds of error will break this monotonicity:
by executing an error-causing step, either an irrelevant or distracting piece of
information will be created, or a piece of information needed to solve the test

Software Fault Localisation via Probabilistic Modelling 5

Initial state After 1 execution step After 2 execution steps After last execution step
T T2 TI3 T4 TIS Ti6 TH T2 TIB T4 TIS Ti6 T T2 TI3 T4 TI5 Ti6 T T2 TI3 T4 TI5 Ti6
RER RN AAAREEERARREN AAAAR

AR SANERERERR AREER

Execution Step 2 Execution Step 2

FHIHHY g o THEVHY
odeer 2EEER

[]

[]

L]
EEERR’ (2 2 25 B A EEERR
TO1TO2 TO3 TO4 TO5 TO6 TO1TO2 TO3 TO4 TO5 TO6 TO1TO2 TO3 TO4 TO5 TO6 TO1TO2 TO3 TO4 TO5 TO6

-

Execution steps

Fig. 1. Measuring the progress of a program towards its task, by building a model of
the remaining computation at the end of each line in the program.

cases will be deleted, thus making the learned model more complex. By looking
for these “spikes” in the model complexity/execution time graph, suspicious
statements in the code can be identified for future examination by the program-
mer. This is illustrated by the example in Figure 2, which shows the difference
in progress curves (calculated by the process described below) for a correct and
faulty program.

Importantly, this process can also be run on incomplete code. The system
will only need to execute the actual code up to the current step of interest, the
learned model substituting for the remainder of the processing. This is valuable
because it can be used to test code which is actually incomplete, or where the
latter part of the code is uncompilable. This also means that bug localisation can
begin before a particular unit is finished. Furthermore, the common problem of
masking [5], where bugs later in a program make it difficult to find the location
of a bug, is not an issue for this approach because the portion of the code that
would cause the masking is not executed, but modelled by the machine learning
model.

3.2 Building the Rich Spectrum

We implement this in the following way. The inputs to the process are a piece of
program code (the final line of which calculates a single integer value that is the
output from the code), and a set of test cases that are in the form of input-output
pairs.

6 Colin G. Johnson

o o o =
= o ® o

Progress Measure

°
o

°
°

a
4.0=0
u
inputvalue
14

phrase.count('a’)
phrase.count('l)
phrase.count('o")
phrase.count(‘u’)

= a+e+i+o+u

il
=
&

0. [before execution]

o

s

7. phrase
9.2

111
12.0=
13.u

15. total

Program Line

(a) Progress for a program without fault

= inputvalue

& 7.phrase
15, total = atesi+

(b) Progress for a program with a typo (line 11)

Fig. 2. Progress measures for a program without a fault and with a small typographical
€rror.

Firstly, we scan the program for variable names, and make a list of these. We
remove any variable names that represent libraries etc. For the purposes of this
paper, these variables will all be integers, but extensions to other data types are
readily possible. We then create a rank 3 tensor S(t,1,v), indexed by the test
cases, the lines of code in the program, and the variable names discovered in
that initial pass. Let us call S the execution trace spectrum of the program with
regard to that test case set.

We then fill values into S in the following way. For each test case, we run
the following process. Create a sequence of program texts, the first one with the
first line of the program, the second one with the first two lines of the program,
and so on until the final sequence contains the whole program. For each of the
programs in this sequence, we run them on the current test case, and calculate
any variable value that has changed due to the execution of that line.

We call the output of this the rich spectrum because it is calculated in the
same way as a program spectrum in traditional spectral testing [21], but each
line contains a richer set of information. A related idea is the execution trace

Software Fault Localisation via Probabilistic Modelling 7

Algorithm 1 Construct the Rich Spectrum

1: procedure CONSTRUCTEXECUTIONTRACESPECTRUM(P,T')
> P is the program text, 1" the set of test-case pairs
2 let V be the set of variable names in P
3 let Nng < |T‘
4: let n, < |V]|
5: let n, < number of lines in P
6.
7
8

create 3-d array S with dimensions (n¢, np, n,)

for t € T do
for ¢ € [1,n,] do

9: let v, < NULL
10: let Py < first ¢ lines in P
11: execute P, with input from T
12: if the last line of P, sets a variable value then
13: let v,, be the variable name that is set in the last line of P,
14: let v. be the variable value that is set in the last line of P,
15: let S(t,4,vn) + v
16: end if
17: for v € V do (except when ¢ == 0)
18: if v # v, then
19: let S(¢,0,v) < S(t,0 —1,v,)
20: end if
21: end for
22: end for
23: end for

24: return S
25: end procedure

spectrum by Harrold et al. [9], but that is focused on tracking the text of the
lines of code visited rather than the values computed by those lines.

We now use this to calculate a vector of numbers, the progress measure, with
one number in the interval [0.0,1.0] for each line in the code. As discussed above
(and illustrated in Figure 1), the key idea is to take the rich spectrum as computed
above, and for each line to take the variable values for each test case, and the test
case outputs, and build a probabilistic model of the dependencies between them.
In this case, the model is the Naive Bayes classification model; for each line in
the code, a Naive Bayes model is produced that takes the current variable values,
and tries to predict the output. The progress measure associated with each line
is the accuracy of its Naive Bayes model on a reserved test set. Pseudocode for
this is given in Algorithm 2.

4 Applying this Model to Fault Localisation

We now have a notion of identifying a progress model with a piece of code and
associated test case set. For a correct program, we would expect this progress
model to output a monotonically increasing vector of values of the progress metric—

8 Colin G. Johnson

Algorithm 2 Construct the Progress Vector

1: procedure CONSTRUCTPROGRESSVECTOR(P, T)
> P is the program text, T is the set of test cases

2 let S < ConstructExecutionTraceSpectrum(P, T")

3 let Terain < [| > empty list
4: let Yirain <]

5: let Tiest < ||

6: let Ytest < H

7 let V «+ ||

8: for t € T do

9: let to + output value of ¢

10: if random() > 0.1 then

11: let Xirain < S(t, 4,) > slice of the spectrum for line ¢
12: let ¥train < output value of ¢

13: else

14: let Xiest S(t,4, %)

15: let yiest < output value of ¢

16: end if

17: let ¢ + run Naive Bayes classifier on Xtrain, Ytrain

18: append accuracy(c) to V

19: end for
20: for ¢ € [2,|P]] do
21: if P[{] is a comment, a blank line, or a library import then
22: let V[{] + V[—1]

> if the line makes no substantive computation, copy value from previous line
23: end if
24: end for
25: return V
26: end procedure

each line executed produces task-relevant information, and so the accuracy of
the mode will increase because it has more task-relevant information.

In this section of the paper, we look at how this can then be used to find
the location of faults. The kind of faults we are interested in here are the minor
typographic faults that are commonly made by programmers—typing the wrong
variable name, typing the wrong operator value, mixing up 0 and o or 1 and i or 1,
or copying-and-pasting and then failing to make the required changes. These are
the kinds of faults that the competent programmer hypothesis [7] predicts will
be common—most of the time, a competent programmer will not make egregious
errors of logic or language syntax, but minor typographical errors and “brainos”
will remain regardless of high-level competence.

Our approach looks for two kinds of departures from monotonicity in the
progress vectors. The first approach finds the earliest (large) downtick in the
progress vector. The second approach finds the largest downtick. In the results,
we present both of these.

Software Fault Localisation via Probabilistic Modelling 9

Algorithm 3 Find the Fault Location

1: procedure FINDFAULTLOCATION(P, T, m,n,)
> P is the program text, T is the set of test cases, m is the method used, n, the
number of runs

2 let F' + [0,0,...,0] of length |P|
3 for r € [1,n,] do
4: let V' < ConstructProgressVector(P,T)
5: append 0.0 to start of V
6: if thenm == “first substantive downtick”
7 for dov e V[2: |V]]
8 if thenV[v] — Vv —1] < —0.025
> is decreasing, and not by a trivial amount
9: let Flv] < Flv] +1
10: let a < True
11: break
12: end if
13: end for
14: end if
15: if thenm == “largest downtick”
16: let d « inf
17: let arg, - NULL
18: for dov e V[2: |V]]
19: if thenV[y]—Vjp—-1]<d
> is decreasing by more than previous lines
20: break
21: end if
22: end for
23: let Flarg,] < Flarg,] +1
24: end if
25: end for
26: return a, argmax(F’)

> return both whether a solution has been found, and the solution
27: end procedure

5 Experiments

Two experiments have been carried out to test the above ideas and algorithms.
The first of these examines whether the program progress model accurately
captures the progress of the example programs, and the second measures whether
that same measure can be used to detect the location of faults.

Two python programs will be used in both experiments. These are given in
Figure 3. These are designed to represent the kinds of simple data-transformation
functions that are often written as units of a larger piece of code. The first counts
the vowels in a piece of text, the second adds a vector of eight numbers together.
For each program, 50000 random test cases are generated.

10 Colin G. Johnson

a0 = inputValue[0]+inputValue[1]
al = inputValue[2]+inputValue[3]
a2 = inputValue[4]+inputValue[5]
a3 = inputValue[6]+inputValue[7]

£ O H 0o M
I
O O O oo

b0 = alO+al
phrase = inputValue bl = a2+a3
= phrase.count(’a’) c0 = bO+b1

phrase.count(’e’)
= phrase.count(’i’)
= phrase.count(’0’)
phrase.count(’u’)

£ 0O K 0O M
I

total = atet+i+o+u

Fig.3. The programs wused in the experiments: VowelCounter.py and
AddingNumbers.py.

5.1 Experiment 1: Does the Program Progress Measure actually
Measure Progress?

In this experiment we run the ConstructProgressVector algorithm (described
above as Algorithm 2 on the four sample programs. We then measure whether
the progress measure is monotonically increasing. Because there are occasionally
minor fluctuations in the measure because of the Naive Bayes process detecting
random coincidences in otherwise uncorrelated data, we discount small downturns,
where the downward difference between successive entries is less than 0.01. So,
we refer to this behaviour as “near monotonic”. The results for this experiment
are presented in Table 1; the results show that the progress measure is capturing
progress in the program.

Table 1. Measure of whether the progress measure is near monotonic (for 100 runs of
the algorithm per program)

Program Name Number of Near-monotonic Vectors
VowelCounter.py ~ 100/100
AddingNumbers.py 100/100

6 Experiment 2: Can the Program Progress Measure
Detect Faults?

In this experiment we run the FindFaultLocation algorithm (described above as
Algorithm 3) on several erroneous versions of the programs from Figure 3. The

Software Fault Localisation via Probabilistic Modelling 11

details of the errors introduced, and the results of the experiments, are detailed
in Table 2. Overall, the results are positive; in most cases, the most common line
identified as erroneous was the genuine erroneous line, and when it is not, it is in
all but one case the second most chosen line.

Table 2. Error detection experiment (for 100 runs per error). The rank of the erroneous
line (ranked by how many times out of 100 that line was chosen as the error) is also
indicated.

Rank of

Program Change Made Method Error Number of
Found Correct Pred’s Best Pred.

VowelCounter.py i = phrase.count(’i’) first yes 39/100 1/15
— i = phrase.count(’1’)

VowelCounter.py i = phrase.count(’i’) largest yes 44/100 1/15
— i = phrase.count(’1’)

VowelCounter.py i = phrase.count(’i’) first yes 65/100 1/15
— i = phrase.count(’e’)

VowelCounter.py i = phrase.count(’i’) largest yes 93/100 1/15
— i = phrase.count(’e’)

VowelCounter.py i = phrase.count(’i’) first yes 9/100 1/15
—e = phrase.count(’e’)

VowelCounter.py i = phrase.count(’i’) largest no 2/15
— e = phrase.count(’e’)

VowelCounter.py total = ate+i+o+u first yes 42/100 1/15
— total = a-e+i+o+u

VowelCounter.py total = ate+i+o+u largest yes 87/100 1/15
— total = a-e+i+o+u

AddingNumbers.py bl = a2+a3 first yes 94/100 1/9
— bl = a2+al

AddingNumbers.py bl = a2+a3 largest no 2/9
— bl = a2+al

AddingNumbers.py bl = a2+a3 first no 2/9
— bl = a2-a3

AddingNumbers.py bl = a2+a3 largest no 2/9
— bl = a2-a3

AddingNumbers.py a2 = inputValue[4]+inputValue[5] first no 2/9
— a2 = inputValue[2]+inputValue[5]

AddingNumbers.py a2 = inputValue[4]+inputValue[5] largest no 4/9

— a2 = inputValue[2]+inputValue[5]

7 Limitations and Threats to Validity

One limitation of the current work is that the programs are fairly small and
simple, and that they lack substantial use of loops and conditionals. However,
there is no principled reason why these ideas cannot be applied to these more
complex programs, and techniques such as that of Silva et al. [20] show how

12 Colin G. Johnson

the execution traces can be aligned between programs of different lengths of
execution.

One threat to the wider applicability of these techniques is their reliance
on a large number of test cases. For example, in the above experiments, 50000
test cases were used for each program. Initially, this would seem to render the
approach useless (the so-called test oracle problem [2])—you need a program to
correctly carry out the tasks in order to debug the program that is doing the
task. In some cases, this might not be a problem, for example there might be
a program in another language to generate the test problems, or some kind of
dataset or physical phenomenon to generate the examples. But, it is more likely
that an alternative approach to generating the test cases will be needed—for some
problems, it is possible to calculate a set of inputs back from a target output, and
in others it is is possible to use generate-and-test methods or machine learning
driven by an oracle that can say whether a particular example is a valid [18].

One limitation of the current approach is that each test case set has a small
number of possible outputs, which renders possible the use of a classification
algorithm as our model for program progress. For more complex cases, the output
might be continuous, multi-dimensional, or be of a complex data type. In such
cases, other modelling approaches will be needed, for example replacing the
classification model with a regression model.

8 Conclusions and Future Work

The probabilistic model used in this work is somewhat simplistic. By using the
naive Bayes model, we are assuming that all values calculated are equally and
independently contributing towards the prediction of the output. This provides a
first approximation for this, but in future it would be interesting to explore how
the program progress measures proposed in this paper could be combined with
more sophisticated models of program execution, such as probabilistic graphical
models (as explored by Yu et al. [26]).

This paper has focused on providing candidate bug locations to human
programmers. However, this work could also, in the future, support the growing
research effort into automated bug fizing [15,16]. These automated bug-fixing
systems rely heavily on automated methods for finding the location of bugs as
their starting point, so methods such as the ones on this paper can feed directly
into this important new direction in automated software development.

A related idea would be to use these progress measures to achieve program
synthesis from scratch. Rather than beginning the program synthesis process
from random code as is done in methods such as genetic programming [19],
instead the system would synthesise a number of putative first lines, then use
the program progress measure to ascertain which of those lines was making the
strongest contribution to the problem as defined by the test cases. This line
would then be fixed, and the system would move onto the next line, and so on
with the aim of finding a monotonically increasing sequence of lines with the last
one computing the output.

Software Fault Localisation via Probabilistic Modelling 13

There are more general implications here for building Al systems. Usually,

we build a machine learning model such as a classifier so that we can apply it to
new data, and use the results of the classification. Here, we are using the success
of the model as a proxy for some more complex task. This echoes the arguments
recently made by Krawiec, Swan and O’Reilly [12,13,14], who use the complexity
of a machine-learned model as a proxy for the difficulty of computing a given
task.

Source code for the experiments can be found at http://www.colinjohnson.

me.uk/researchSoftware.php

References

10.

11.

. Androutsopoulos, K., Clark, D., Dan, H., Hierons, R., Harman, M.: An analysis

of the relationship between conditional entropy and failed error propagation in
software testing. In: Proceedings of the 36th International Conference on Software
Engineering (ICSE) (2014)

. Barr, E., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem

in software testing: A survey. IEEE Transactions on Software Engineering 41(5),
507-525 (May 2015)

. Briand, L.C., Labiche, Y., Bawar, Z.: Using machine learning to refine black-box

test specifications and test suites. In: 2008 The Eighth International Conference on
Quality Software. pp. 135-144 (2008)

. Briand, L.C., Labiche, Y., Liu, X.: Using machine learning to support debugging

with tarantula. In: The 18th IEEE International Symposium on Software Reliability
(ISSRE ’07). pp. 137-146 (2007)

. Clark, D., Hierons, R.M.: Squeeziness: An information theoretic measure for avoiding

fault masking. Information Processing Letters 112(8-9), 335-340 (2012)

. Cleve, H., Zeller, A.. Locating causes of program failures. In: Proceed-

ings of the 27th International Conference on Software Engineering. pp. 342—
—-351. Association for Computing Machinery, New York, NY, USA (2005).
https://doi.org/10.1145/1062455.1062522

. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for

the practicing programmer. IEEE Computer 11(4), 34-41 (1978)

. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:

Trends, techniques and applications. ACM Computing Surveys 45(1) (Dec 2012).
https://doi.org/10.1145/2379776.2379787

. Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation of

the relationship between spectra differences and regression faults. Software Testing,
Verification and Reliability 10(3), 171-194 (2000). https://doi.org/10.1002/1099-
1689(200009)10:3;171::AID-STVR209;3.0.CO;2-J

Jones, J., Harrold, M.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering. pp. 273—282 (2005)

Keller, F., Grunske, L., Heiden, S., Filieri, A., van Hoorn, A., Lo, D.: A critical
evaluation of spectrum-based fault localization techniques on a large-scale software
system. In: 2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS). pp. 114-125 (2017)

http://www.colinjohnson.me.uk/researchSoftware.php
http://www.colinjohnson.me.uk/researchSoftware.php
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J
https://doi.org/10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Colin G. Johnson

Krawiec, K., O’Reilly, U.M.: Behavioral programming: A broader and more detailed
take on semantic GP. In: Proceeding of the sixteenth annual conference on Genetic
and evolutionary computation conference. ACM, New York, NY, USA (2014)
Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Proceed-
ings of the 15th Annual Conference on Genetic and Evolutionary Com-
putation. pp. 949-956. GECCO ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2463372.2463496, http://doi.acm.org/10.1145/2463372.
2463496

Krawiec, K., Swan, J., O’Reilly, U.M.: Behavioral program synthesis: Insights and
prospects. In: Genetic Programming Theory and Practice XIII. Springer (2015)
Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: Glinz, M.,
Murphy, G.C., Pezzeé, M. (eds.) International Conference on Software Engineering.
pp. 3-13. IEEE (2012)

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method for
automatic software repair. IEEE Transactions on Software Engineering 38, 54-72
(2012)

Lutz, R.: Evolving good hierarchical decompositions of complex
systems. Journal of Systems Architecture 47(7), 613-634 (2001).
https://doi.org/https://doi.org/10.1016/S1383-7621(01)00019-4, evolutionary
computing

McMinn, P.: Search-based software test data generation: A survey. Software Testing,
Verification and Reliability 14(2), 105-156 (2004). https://doi.org/10.1002/stvr.294
Poli, R., Langdon, W.B., McPhee, N.F.. A Field Guide to Genetic
Programming. Published via http://lulu.com and freely available at
http://wuw.gp-field-guide.org.uk (2008), http://www.gp-field-guide.org.uk,
(With contributions by J. R. Koza)

Silva, L., Paixdo, K., de Amo, S., de Almeida Maia, M.: Software evolution aided by
execution trace alignment. In: 2010 Brazilian Symposium on Software Engineering.
pp. 158-167 (2010)

de Souza, H.A., Chaim, M.L., Kon, F.: Spectrum-based software fault localization:
A survey of techniques, advances, and challenges (2016)

Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Transactions on Software Engineering 42(8), 707-740 (2016)
Wong, W.E., Debroy, V.: A survey of software fault localization (2009), university of
Texas at Dallas, Department of Computer Science, Technical Report UTDCS-45-09
Wong, W.E., Qi, Y.: Bp neural network effecitve fault localization. International
Journal of Software Engineering and Knowledge Engineering 19(04), 573-597 (2009).
https://doi.org/10.1142/S021819400900426X

Xie, X., Kuo, F.C., Chen, T.Y., Yoo, S., Harman, M.: Provably optimal and human-
competitive results in SBSE for spectrum based fault localisation. In: Ruhe, G.,
Zhang, Y. (eds.) Search Based Software Engineering, Lecture Notes in Computer
Science, vol. 8084, pp. 224-238. Springer Berlin Heidelberg (2013)

Yu, X., Liu, J., Yang, Z., Liu, X.: The bayesian network based program dependence
graph and its application to fault localization. Journal of Systems and Software
134, 44-53 (2017). https://doi.org/https://doi.org/10.1016/j.jss.2017.08.025

https://doi.org/10.1145/2463372.2463496
http://doi.acm.org/10.1145/2463372.2463496
http://doi.acm.org/10.1145/2463372.2463496
https://doi.org/https://doi.org/10.1016/S1383-7621(01)00019-4
https://doi.org/10.1002/stvr.294
http://www.gp-field-guide.org.uk
https://doi.org/10.1142/S021819400900426X
https://doi.org/https://doi.org/10.1016/j.jss.2017.08.025

	Software Fault Localisation via Probabilistic Modelling

