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Purpose: Total kidney volume (TKV) is an important measure in renal disease de-
tection and monitoring. We developed a fully automated method to segment the kid-
neys from T2-weighted MRI to calculate TKV of healthy control (HC) and chronic 
kidney disease (CKD) patients.
Methods: This automated method uses machine learning, specifically a 2D con-
volutional neural network (CNN), to accurately segment the left and right kidneys 
from T2-weighted MRI data. The data set consisted of 30 HC subjects and 30 CKD 
patients. The model was trained on 50 manually defined HC and CKD kidney seg-
mentations. The model was subsequently evaluated on 50 test data sets, comprising 
data from 5 HCs and 5 CKD patients each scanned 5 times in a scan session to enable 
comparison of the precision of the CNN and manual segmentation of kidneys.
Results: The unseen test data processed by the 2D CNN had a mean Dice score of 
0.93 ± 0.01. The difference between manual and automatically computed TKV was 
1.2 ± 16.2 mL with a mean surface distance of 0.65 ± 0.21 mm. The variance in TKV 
measurements from repeat acquisitions on the same subject was significantly lower 
using the automated method compared to manual segmentation of the kidneys.
Conclusion: The 2D CNN method provides fully automated segmentation of the left 
and right kidney and calculation of TKV in <10 s on a standard office computer, al-
lowing high data throughput and is a freely available executable.

K E Y W O R D S

convolutional neural network, kidney, machine learning, magnetic resonance imaging, 
segmentation

1  |   INTRODUCTION

Segmentation of the kidneys from MRI is a time consuming 
aspect of many renal MRI studies.1-3 Total kidney volume 
(TKV) gives insight into renal function and is therefore used 

as a measured parameter for a variety of renal pathologies. 
The use of TKV is an active area of ongoing research for 
autosomal dominant polycystic kidney disease (ADPKD), 
which is characterized by an increase in TKV as a result of 
cyst formation. Disease progression can be monitored by 

www.wileyonlinelibrary.com/journal/mrm
https://orcid.org/0000-0003-2353-3283
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:susan.francis@nottingham.ac.uk


2  |      DANIEL et al.

recording TKV, with higher rates of TKV increase being 
associated with a more rapid decrease in renal function.4-6 
Measurements of TKV in chronic kidney disease (CKD) 
subjects have shown a significant correlation with glomer-
ular filtration rate,7 the primary measure of CKD severity,8 
with more generally a decrease in TKV associated with a de-
crease in renal function.9 When studying pathologies, which 
commonly lead to a change in kidney function, total kidney 
perfusion is often measured, this metric relies on an accurate 
measurement of renal blood flow and kidney volume of each 
kidney, and allows investigators to ascertain if the blood flow 
is preserved as the organ changes in size or if tissue perfusion 
is impaired. In addition to TKV measurements, renal seg-
mentation is an important first step in many other processing 
pipelines, for example, increasing the accuracy of cortical-
medullary segmentations or reducing computation times by 
only fitting quantitative maps for voxels within the kidney.

The gold standards of kidney segmentation are manual 
(region-of-interest) ROI boundary tracing10 or stereology11 
by experienced and skilled experts, with blood vessels in the 
kidney and the hilum excluded. These manual processes are 
highly time consuming (taking ~15-30 min per subject12-14) 
and can be biased by investigator judgement because of the 
similar signal intensities between the kidneys and surround-
ing organs, anatomical differences between subjects, cysts, 
and image artefacts. Consequently, the resulting kidney 
ROIs produced are subject to intra- and inter-expert vari-
ability as a result of the varying expertise levels; experts 
may segment a specific image differently when performed 
more than once, or different experts may segment the same 
image differently. These factors mean that the development 
of a faster and ideally fully automated method of renal seg-
mentation is highly desirable. However, the same factors 
that make manual segmentation difficult can also limit fully 
automated methods, for example, the signal intensity of the 
kidneys closely matches that of other abdominal structures 
such as the spleen.

A number of automated methods have been proposed 
with varied success.12 Some simply assume the kidney is 
an ellipse and calculate the volume from measurements of 
the pole-to-pole distance15,16 or include a correction factor 
to reduce overestimations.17 Unfortunately, these techniques 
produce a large confidence interval and still require human 
intervention to define the pole-to-pole length, a process that 
can produce inconsistencies between readers and takes a rea-
sonable amount of time (~5 min).18 Other semi-automated 
methods use classical image processing techniques such as 
thresholding,19 water-shedding,20 level sets,14,21 and spatial 
prior probability mapping.22 These methods can either be in-
accurate, over-segmenting the kidneys, or include a number 
of parameters that need to be manually adjusted and are com-
putationally intensive. Further, the fact that each technique is 
highly optimized for a specific data set means that it needs 

to be re-written to be applied to different pathology, which is 
another time consuming and highly skilled process.

Machine learning methods have the potential to automat-
ically detect different patterns from data given to a model 
that has been trained. Deep learning is a class of machine 
learning algorithms that can model high-level information in 
an image using several processing layers of transformations. 
This uses an architecture of multi-level linear and non-linear 
operations, described by layers, to learn complex functions 
that can represent high-level detail to map the input data to 
the output segmentations directly. As more data becomes 
available the algorithm can become more accurate and gen-
eralized, without a need to rewrite the underlying methods, 
therefore making it a good choice for long-term development.

In recent years, deep learning-based methods have been 
applied to the segmentation of medical images, especially 
successful has been the U-Net.23 This modified fully convo-
lutional neural network (CNN) architecture uses a number of 
convolution, pooling, and upsampling layers to detect fea-
tures in the input data at multiple resolutions. The convolu-
tion layers convolve a learnable kernel with the input data to 
generate spatial feature maps that are passed to subsequent 
layers in the network. By adjusting the kernels, the resulting 
feature maps can be optimized to detect the location of the 
kidneys. Pooling layers are used to downsample the data and 
allow some convolution kernels to become tuned to approx-
imate features, this also reduces the tendency of the network 
to over-fit the training data. When the data has been fully 
downsampled, upsampling layers are used to increase the res-
olution of the feature maps back to that of the original data 
while more convolution layers also learn the precise location 
of the kidneys. Parameters are adjusted by comparing the out-
put from the network to a known ground truth. CNN methods 
have been applied to segmentation in other areas of medical 
imaging,24-27 for example, to prostate segmentation of MRI 
images,28 liver segmentation of x-ray CT images29 and seg-
mentation of polycystic kidneys.30-32 However, to date, these 
methods have not been successfully applied to CKD and 
healthy kidney segmentation from MR images.

Here a single 2D U-Net model CNN is used for the seg-
mentation of the kidneys in both healthy control (HC) par-
ticipants and CKD patients using T2-weighted MR images. 
Automatically generated kidney masks are compared with 
manual masks defined by experts and assessed for similarity 
using multiple voxel and surface based metrics and total seg-
mented volume. A subset of subjects was scanned multiple 
times to assess the repeatability of the segmentations.

2  |   METHODS

The study was approved by the University of Nottingham 
Medical School Research Ethics Committee (H14082014 
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and E14032013), and East Midlands Research Ethics com-
mittee REC reference: 17/LO/2036 and 15/EM/0274.

2.1  |  MRI data acquisition

All kidney MRI scans were acquired on a 3T Philips Ingenia 
system (Philips Medical Systems, Best, The Netherlands) 
using a 2D T2-weighted half-Fourier single-shot turbo spin 
echo (HASTE) sequence optimized to achieve the maximum 
contrast between the kidneys and surrounding tissue TE = 60 
ms, TR = 1300-1800 ms, SENSE factor = 2.5, refocus angle 
120°, bandwidth, 792 Hz, FOV = 350 × 350 mm2, voxel 
size = 1.5 × 1.5 × 5 mm3 and a slice gap of 0.5 mm with 
approximately 13 coronal slices, enough to image the entire 
kidney,33,34 in a single 17- to 23-s breath-hold.

The data set consisted of 60 subjects, 30 HC (10 female, 
20 male) with a mean age of 26 ± 11 (19-77) years and 30 
CKD patients (6 female, 24 male) with a mean age of 59 ± 14 
(19-80) years and mean CKD stage 3.5 ± 1.2 (1-5). Ten of the 
subjects (5 HCs and 5 CKD patients) were scanned 5 times 
in the same scan session for use as test data. In each test data 
scan session, subjects were repositioned between each acqui-
sition (removed from the scanner, asked to sit up and move 
on the bed), additionally the scanner operator attempted to 
vary the acquisition geometry between each scan while still 
acquiring full kidney coverage. These repeated test data sets 
allow the consistency of the networks ability to measure TKV 
to be assessed.

In total, 649 2D image slices from the 50 subjects in the 
training data and 650 2D image slices from the 10 subjects 
in the test data were collected. A summary of the data col-
lected is provided in Supporting Information Table S1 and 
Supporting Information Figure S1.

2.2  |  Manual segmentation

The manual binary mask of the kidneys of each subject 
were generated by 1 of 3 observers (A, B, and C who had 
been trained on kidney segmentation and had an average of 
2 years of experience), with each observer segmenting data 
from both the training and testing data sets. Kidney bound-
aries were manually traced using freely available software 
(MRIcron) and any area of non-renal parenchyma, such as 
the renal hilum and cysts, were excluded from the manual 
definition. Binary masks of the kidney were generated, and 
the volume of each kidney was computed from the product of 
the number of voxels in each kidney mask and the voxel vol-
ume. Separate kidney volume for the left and right kidneys 
was determined and summed to compute TKV. All measure-
ments were performed by observers blinded for patient num-
ber and previous TKV measurements.

For the training phase, for each subject a manual mask 
was used from a single observer (randomized between ob-
server A, B, or C). For the testing phase, all 5 scans from a 
given subject were segmented by a single reader with the 10 
subjects being segmented by a mix of the 3 readers, that is, 
the test data comprised of subjects segmented by all read-
ers but the repeat scans of each subject were segmented by 
the same reader. For 4 HC subjects from the test data set, 
manual masks were drawn by all 3 observers for all 5 repeat 
acquisitions to allow assessment of inter-observer variability 
in the manual masks. HCs were chosen for this analysis as 
they healthy kidneys have a more consistent morphology and 
therefore will give a best-case measure of observer variability 
and provide a comparison of the automated method to the 
highest standard of manual segmentation.

2.3  |  Automated segmentation using 
convolutional neural network architecture

Voxel intensities were normalized between 0 and 255, where 
0 was set to the mean voxel intensity minus 0.5 times the 
SD of that slice and 255 was set to the mean voxel intensity 
plus 4 times the SD of the volume. This empirically derived 
windowing led to a clear contrast between the kidneys and 
surrounding tissue while negating the effects of bulk signal 
changes between volumes. Each data set volume was then 
split into 2D coronal slices and resampled to a matrix size 
of 256 × 256. Twenty percent of slices were reserved for 
validation during the network optimization process, this 
validation data was used to monitor over-fitting and direct 
the optimization process between epochs. Once the data had 
been split into training and validation sets, the slice order 
was randomized within sets. Splitting the data before slice 
randomization limited the possibility of slices from only 1 
subject being split over both the training and validation data 
sets. During training, data augmentation was applied. At the 
start of each epoch, a batch of images and their correspond-
ing masks was selected at random from the training data and 
a series of random shifts (up to 25% of the image in both 
the horizontal and vertical direction), zooms (between 0.75 
and 1.25 magnification), rotations (within a 20° range), and 
sheers (within a 5° range) were applied to the image/mask 
pair to produce different yet anatomically reasonable im-
ages. The weights of the network were then adjusted based 
on this augmented data before selecting a new batch of im-
ages for the next epoch. Augmenting the data reduces the 
tendency of a model to over-fit the training data and there-
fore increases accuracy when the model is applied to unseen 
images.

The U-Net consists of 2 fully CNN-like structures 
that are cascaded in the form of an encoder-decoder 
(auto-encoder) structure. The encoder is used for feature 
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extraction and the decoder is used for feature mapping to 
the original input resolution. A summary of the network 
architecture is shown in Figure 1. The convolution layers 
use a set of small parameterized filters, referred to as ker-
nels, to perform convolution operations to produce differ-
ent feature maps of their input. Here, each convolution and 
deconvolution layer uses a 3 × 3 kernel. Activation layers 
use a rectified linear unit (ReLU). Following convolution at 
each resolution, max pooling with a stride 2 is used on the 
encoding half of the network.

The network was implemented using Keras (v2.2.4)35 
with a TensorFlow backend (v1.13.1)36 in Python 3.6.9. All 
training was carried out on an NVIDIA Titan Xp graph-
ics processing unit (GPU) (3840 CUDA cores, 12 GB 
GDDR5X). The network uses a Dice score loss function, 
D (A, B) =

2|A∩B|

|A|+ |B|
=

2TP

2TP+FP+FN
, where TP is true-positive, 

FP is false-positive, FN is false-negative, a value of 1 
implies complete overlap between the automated mask, 
and the manual mask whereas 0 implies no overlap. This 
function is ideal for renal segmentation because it does 
not weight true negatives, which represent the majority of 
voxels input to the network and therefore means that al-
though the network is training, it does not become trapped 
in a local minimum outputting solely background voxels. 
Training was carried out over 150 epochs using stochastic 
gradient descent with an initial learning rate of 0.01 and 
learning rate decay of 5 × 10−7 and momentum of 0.8, 
these parameters help the optimizer converge quickly while 
also avoiding overshooting. As seen in Figure 2, after 150 
epochs the validation Dice score plateaued whereas the 
training Dice score was still rising slightly, indicating that 
any further training would lead to over-fitting. Training 
took ~30 min.

Using the model to subsequently perform segmentation of 
renal masks from a given T2-weighted volume of the test data 
took ~9 s on a standard office computer with no GPU, which 
is the type of machine end users would have access to.

2.4  |  Statistical analysis

Baseline demographics are reported as mean ± SD. Inter-
observer variability in manual segmentation and TKV was 
calculated by comparing the TKV of the manual masks each 
observer generated for a given volume, and also assessing the 
Bland–Altman and regression analysis. Intra-observer vari-
ability in manual segmentation was calculated by comparing 
the TKV of the 5 masks generated by an observer for a given 
subject. For each, the mean coefficient of variation (CoV; 
defined as SD/mean) and intraclass correlation (ICC) were 
used as measures of repeatability of TKV. Voxel-based (eg, 
Dice score) and surface based (eg, Hausdorff distance) met-
rics were also calculated between each observer.

The performance of the automated segmentation was as-
sessed using multiple voxel and surface based similarity met-
rics. Performance was further assessed by determining the 
mean difference in TKV between the automatic and manual 
methods. Both actual and percentage (%) difference in TKV 
were evaluated. Bias (mean) obtained from the automatic and 
manual methods were assessed using a paired sample t test. 
The mean CoV and ICC were also used as measures of re-
peatability of the automated TKV.

3  |   RESULTS

3.1  |  Characteristics of the training cohort

Data were collected using a T2-weighted HASTE sequence 
providing optimal contrast between the kidneys and sur-
rounding tissue, examples shown in Figure 5, however, there 
is limited contrast between the left kidney and spleen be-
cause of their similar T2-weighting. Cysts of variable size are 
clearly visible in the kidneys of the CKD patient. The train-
ing data comprised 25 HCs (9 female, 16 male) with a mean 
age of 26 ± 12 (19-77) years and 25 CKD patients (6 female, 

F I G U R E  1   An overview of the network architecture
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19 male) with a mean age of 58 ± 15 (19-80) years and mean 
CKD stage 3.3 ± 1.1 (1-5). The manual TKV was 277 ± 60 
mL, ranging between 145 and 422 mL. Including both HC 
subjects and CKD patients meant the kidneys had variable 
morphology (shape, size, and heterogeneous cysts) within the 
training data set. Supporting Information Table S1 provides 
the characteristics of data sets used for training and testing of 
the CNN, whereas Supporting Information Figure S1 shows 
the distribution of TKV within the training and testing data.

3.2  |  Accuracy of manual segmentation

Four of the test subjects were each scanned 5 times, with 
the left and right kidneys in the 20 data sets each masked by 
Observers A, B, and C. The intra-observer and inter-observer 
variability for this manual segmentation was computed, as 
shown in Table 1 additionally, similarity metrics were used 
to assess the overlap between each observer’s manual masks, 
Table 2. As a result of the large difference between in-plane 
and out-of-plane resolution (1.5 mm3 vs. 5.5 mm3) the 
Hausdorff distance is very susceptible to inaccuracies in the 
anterior–posterior direction; this metric is highly sensitive to 
noise and as such the 95th percentile is used to generate a 
more representative value. Bland–Altman plots and regres-
sion analysis of inter-observer variance in measured TKV are 
provided in Supporting Information Figure S2.

3.3  |  Network testing

The trained network was used to predict segmentations of the 
2D kidney slices and compute TKV for each of the unseen test 
volumes. The mean Dice score over the 50 test volumes was 
0.93 ± 0.01 (0.94 ± 0.02 for HC and 0.92 ± 0.01 for CKD 
patients). The TKV predicted by the network was, on aver-
age, 1.2 ± 16.2 mL less than the manually segmented TKV 

F I G U R E  2   Dice score of the network for the training and 
validation data. Data are shown with a 10-epoch rolling average

T A B L E  1   Repeatability of the manual segmentation for left, 
right, and TKV with coefficient of variation and intraclass correlation 
coefficient computed

Observer Kidneys CoV (%) ICC

Intra A Total 2.2 ± 0.7 0.939

Left 3.2 ± 0.8 0.783

Right 1.9 ± 0.5 0.957

Intra B Total 1.9 ± 0.3 0.895

Left 2.0 ± 0.5 0.807

Right 2.4 ± 0.3 0.892

Intra C Total 2.5 ± 0.9 0.908

Left 2.8 ± 1.3 0.769

Right 3.1 ± 1.9 0.940

Inter Total 3.0 ± 1.0 0.897

Left 4.0 ± 1.4 0.713

Right 2.9 ± 1.0 0.910

Abbreviations: TKV, total kidney volume; CoV, coefficient of variation; ICC, 
intraclass correlation coefficient. 
All values are quoted as mean ± SD.

T A B L E  2   Metrics comparing each combination of observers manual masks (A-B, A-C, and B-C)

Observer Kidney Dice score
Jaccard 
index

Average distance 
(mm)

Hausdorff distance (mm) 
(95th percentile)

Volume 
difference (mL)

A-B Both 0.93 ± 0.03 0.87 ± 0.05 0.81 ± 0.58 5.59 ± 2.77 20.84 ± 9.33

Left 0.92 ± 0.07 0.85 ± 0.10 0.94 ± 1.12 5.53 ± 3.65 13.36 ± 5.76

Right 0.94 ± 0.01 0.88 ± 0.02 0.65 ± 0.14 4.75 ± 1.15 7.48 ± 5.63

A-C Both 0.93 ± 0.01 0.87 ± 0.02 0.79 ± 0.18 5.83 ± 1.86 16.01 ± 8.56

Left 0.93 ± 0.01 0.87 ± 0.02 0.84 ± 0.27 6.83 ± 3.12 6.93 ± 5.78

Right 0.93 ± 0.01 0.87 ± 0.02 0.72 ± 0.17 4.82 ± 1.25 9.08 ± 5.41

B-C Both 0.94 ± 0.04 0.89 ± 0.06 0.63 ± 0.62 3.59 ± 2.74 −4.83 ± 9.92

Left 0.93 ± 0.08 0.88 ± 0.11 0.78 ± 1.22 4.31 ± 3.58 −6.44 ± 6.17

Right 0.95 ± 0.01 0.90 ± 0.02 0.48 ± 0.14 3.39 ± 1.15 1.61 ± 6.56

All values are quoted as mean ± SD.
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and therefore not significantly different (P = .615) (Figure 3). 
This accuracy was comparable for the HC and CKD cohorts, 
with automated CNN TKV measurements of 4.7 ± 17.7 mL 
greater than manual and 7.0 ± 12.4 mL less than manual, re-
spectively. A summary of the CNN accuracy when evaluated 
using similarity metrics and volume difference from manual 
measures is shown in Table 3. Note a slightly larger discrep-
ancy for the left compared to the right kidney.

Figure 3 shows plots of the difference in volume between 
manual segmentation and automated segmentation of the test 
data set.

In Figure 4, the TKV predicted by the CNN is plot against 
the manual TKV, in 90% of subjects, the SD of TKV mea-
surements between each volume for a subject was smaller 
when the TKV was measured using the CNN as appose to 
manually. The mean CoV and ICC were 2.7% ± 0.9% and 
0.979, respectively, across the 5 repeats of the manually seg-
mented test data (using masks from observers A, B, and C), 
compared to a value of 1.5% ± 0.5% and 0.993, respectively, 
for the automatic segmentations of the 5 repeats of test data. 
The CNN produced a significantly lower CoV than the man-
ual segmentations (P = .008).

Representative examples of the output from the network 
for both HC and CKD data are shown in Figure 5. The auto-
mated CNN accurately segments the kidneys, and for CKD 
patients, often omits cysts from the masks.

Because this is a 2D CNN, it is important to assess the 
accuracy across the anterior–posterior 2D slices of the kid-
ney. This was achieved by comparing the Dice score of the 
CNN to the inter-reader Dice scores, Figure 6. A decrease in 
accuracy in the outer slices can be seen in both the CNN and 
manual masks.

This decrease in accuracy manifests itself on the outer 
slices of the volume, where the proportion of kidney per slice 
is smaller and as such the 2D network, with a lack of spatial 
context in the anterior–posterior direction, finds these outer 

slices more challenging. This decrease in accuracy can partly 
be explained by the fact that larger structures (in terms of 
number of voxels) will in general produce higher scores for 
comparable errors because the vast majority of errors are on 
the perimeter of the kidney in each slice, slices with fewer 
voxels of kidney have a smaller area to perimeter ratio.

4  |   DISCUSSION

In this study, a 2D CNN has been trained to generate auto-
matic segmentations of HC and CKD patients. Segmentations 
of the left and right kidneys are computed from which total 
kidney volume is estimated. The CNN was trained on both 
HC and CKD kidneys with a range of TKV (144.76-422.49 
mL), which included the presence of cysts. The automated 
segmentation by the CNN yielded a mean Dice score of 0.93 
± 0.01 and took an average time of 9 s to measure TKV com-
pared to 15-30 min12 for manual segmentation. The auto-
mated CNN can be run as a self-contained package with the 
data and program freely available (https://github.com/alexd​
aniel​654/Renal_Segme​ntor).37 Note the software released at 
present can only be used to process coronal HASTE images 
and will not be accurate with other geometries and/or con-
trasts. To accurately segment other geometries and/or con-
trasts the network would need to be trained using a different 
data set, this cannot be done using the self-contained package 
and would necessitate the use of a GPU.

4.1  |  Evaluation of methodology

The network performed with high precision on the test data 
with a 1.2 ± 16.2 mL, statistically insignificant, discrepancy 
between manual and automated TKV measurements. Table 3 
shows the agreement between the CNN and manual masks 

F I G U R E  3   The difference between the TKV predicted by the CNN and the manually segmented true TKV. Mean and SD TKV difference are 
shown as dashed and dotted lines, respectively. Each subject is shown in a different color. (A) shows the absolute volume difference. (B) shows the 
percentage volume difference

https://github.com/alexdaniel654/Renal_Segmentor
https://github.com/alexdaniel654/Renal_Segmentor
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is higher for the right than left kidney, this is in part because 
of the proximity and lack of contrast between the left kidney 
and the spleen making distinguishing this boundary difficult 
for the CNN. This difficulty also leads to inconsistencies in 
manual masks, borne out by the increased CoV and decreased 
ICC and similarity metrics of the left kidney when compared 
to the right kidney in Tables 1 and 2 assessing the variability 
in manual masks between observers. From Table 3, it can 
also be seen that the agreement between the CNN and man-
ual masks is greater for the HC cohort than the CKD cohort, 
this is expected because of the increased variation in kidney 
morphology and the presence of cysts in the CKD cohort. 
Figure 3 shows that the difference between the manual TKV 
and CNN predicted TKV is not dependent on the true TKV, 
therefore, the training data are balanced and well augmented 
because the network is able to accurately perform over the 
full range of kidney size in the test data.

Here, 5 volumes of test data were collected for each sub-
ject by repositioning the subject in the scanner within an hour 
scan session, and therefore, any variance in measured TKV is 
purely because of inaccuracies in the kidney ROI definition. 
On assessing the correlation between manual and CNN mea-
sured TKV in Figure 4, it can be seen that, in 90% of subjects 
the intra-observer variance in manual TKV between the seg-
mentation of the 5 volumes collected in each subject is larger 
than using the CNN to estimate TKV, as reflected by the 
lower CoV and increased ICC of the TKV measured using 
the CNN (CoV 1.5% ± 0.5%, ICC 0.993) compared to the 
manual measures (CoV 2.7% ± 0.9%, ICC 0.979). Because 
the network is trained on the kidney segmentations from 3 

observers (A, B, and C), it has been optimized by inheriting 
the most accurate tendencies of each observer, for example, 1 
observer may have been very accurate when excluding cysts 
but not as accurate at defining the kidney-spleen boundary. The 
network will have learnt to exclude cysts from this observer but 
to delineate between kidney and spleen from another observer. 
Therefore, the network can become more precise than each 
individual observer’s manual segmentations. This increased 
precision can be seen in Figure 3 when compared to Figure 4 
where the variance in difference in TKV is driven by the larger 
variance in manual TKV. The smallest TKV per subject is con-
sistently overestimated when compared to its manual mask and 
vice versa the largest manual TKV per subject is often an un-
derestimation compared to the manual TKV.

Figure 5 illustrates the masks produced by the manual 
segmentation and the CNN for both a HC and CKD patient. 
For the HC, the CNN includes more voxels around the edge 
of its mask than manual segmentation, and the network is 
more anatomically accurate, for example, where the inter-
face between the kidney and spleen is very narrow, the CNN 
predicts the kidney is adjacent to the spleen whereas the ob-
server’s manual segmentation leaves a gap. The CKD data 
shown in Figure 5 includes a cyst in each of the kidneys. The 
network was trained on a combination of healthy and CKD 
data, with 19 of the 25 CKD training data sets containing at 
least 1 cyst. The CNN can be seen to segment out the cysts, 
despite their highly variable morphology and prevalence in 
the overall training data.

The amount of augmentation applied to the training data 
was empirically derived (random shifts up to 25% of the 
image in both the horizontal and vertical direction, zooms 
between 0.75 and 1.25 times magnification, rotations within 
a 20° range, and sheers within a 5° range) and led to the 
potential for large transforms being applied to the data and 
masks if the extremes of each transform were randomly se-
lected. This large degree of augmentation was advantageous 
because it mirrors the large variation in acquisition planning 
in abdominal imaging.

A 2D CNN was used to process each 2D slice of a full vol-
ume, rather than a 3D volume. This was advantageous for the 
relatively small training data set the network was optimized 
on, because it avoids over-fitting and allows the network to 
easily be used on volumes of variable slice number. However, 
this can come at the expense of accuracy because 2D CNNs 
do not leverage the information from adjacent slices in the 
segmentation as is done in 3D CNNs, but 3D CNNs come 
with a computational cost as a result of the increased number 
of parameters used. 3D networks have successfully been im-
plemented on neural data using patching methods where the 
image volume is divided up into smaller cubes26 to reduce 
memory requirements and allow for differing input shapes. 
Although this works well in the brain, there are a number of 
reasons why this method may not be as successful for body 

F I G U R E  4   The TKV predicted by the CNN plot against the 
manually segmented true TKV with each subject plot in a different 
color. The SD measured using both methods are shown as error bars 
originating from the mean of each subject. The dotted line represents 
perfect correlation between the CNN and manual segmentation
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applications. The out-of-plane resolution is significantly less 
than the in-plane resolution; this results in far fewer slices 
in 1 direction than the other 2. To avoid over-fitting for a 
certain number of slices, for example, training on an 11 

slice image with a 113 patch, and subsequently the network 
not performing well when the patch is applied to a 16 slice 
image, the patch would need to be much smaller than the 
number of slices, therefore diminishing the benefits of the 3D 

F I G U R E  5   Representative raw test data and corresponding masks of a HC and CKD subject. Manually generated masks are shown in blue, 
automatically generated masks are shown in red and the overlap of the 2 is shown in magenta
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methodology. Additionally, the extra memory requirements 
for a 3D network limit the ease of use of the software for 
inference on many standard office computers.

4.2  |  Future directions

Future work will collect more training data to compare the 
2D CNN with a 3D CNN to ascertain if the potential increase 
in accuracy is worth the increased hardware requirements 
and reduced generalizability. Here, the CNN has been de-
veloped for use on a T2-weighted sequence and has not been 
validated on T1-weighted images. This image contrast was 
chosen as a result of recent publications comparing T1- and 
T2-weighted images for TKV assessment reporting that T2-
weighted images provide better quality to enable TKV meas-
urements, leading to improved reproducibility with lower 
intra- and inter-reader variability.38 T1-weighted data could 
be registered to the T2-weighted data and used as an extra 
channel to inform the segmentation.

This network was validated on healthy subjects and CKD 
patients, but has not been trained and validated on subjects 
with ADPKD. These subjects have many more cysts in their 
kidneys, although the CNN was able to segment cysts en-
countered in the CKD cohort, it would be beneficial for fu-
ture work on ADPKD to retrain the network with HC, CKD, 
and ADPKD data, where TKV is a recognized biomarker of 
disease progression.

Another common segmentation task in renal imaging is 
generating an ROI for the renal cortex and medulla. There 
are some automated methods of achieving this once a total 
kidney mask has been produced,1,39 however, there has been 
no work on the application of deep learning to this task. In 
addition to the acquisition of the T2-weighted data set used 
here, a T1-weighted data set designed to optimize the con-
trast between cortex and medulla was also collected on each 

subject.34 Using these data, it may be possible to develop this 
method further such that an automated mask for each tissue 
type is produced.

5  |   CONCLUSIONS

A CNN has been successfully applied to accurately segment 
the kidneys from T2-weighted renal MRI data and measure 
TKV in both HCs and CKD patients with higher than human 
precision. In the future, this will be used in clinical trials to 
study large numbers of CKD patients for serial measurements 
of TKV to monitor natural history or response to treatment.
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FIGURE S1 Distribution of TKV within the training and 
testing data
FIGURE S2 Bland–Altman plots and regression analysis of 
inter-observer variance in measured TKV
TABLE S1 Characteristics of data sets used for training and 
validation of the 2D U-Net model CNN
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