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ABSTRACT 

Introduction: Functional changes in the aging human brain have been previously reported using 

functional magnetic resonance imaging (fMRI). Earlier resting-state fMRI studies revealed an age-

associated weakening of intra-system functional connectivity (FC) and age-associated strengthening 

of inter-system FC. However, the majority of such FC studies did not investigate the relationship 

between age and network amplitude, without which correlation-based measures of FC can be 

challenging to interpret. Consequently, the main aim of this study was to investigate how three 

primary measures of resting-state fMRI signal – network amplitude, network topography, and inter-

network FC – are affected by healthy cognitive aging. 

Methods: We acquired resting-state fMRI data on a 4.7 T scanner for 105 healthy participants 

representing the entire adult lifespan (18-85 years of age). To study age differences in network 

structure, we combined ICA-based network decomposition with sparse graphical models. 

Results: Older adults displayed lower blood-oxygen-level-dependent (BOLD) signal amplitude in 

all functional systems with sensorimotor networks showing the largest age differences. Our age 

comparisons of network topography and inter-network FC demonstrated a substantial amount of 

age-invariance in the brain’s functional architecture. Despite architecture similarities, old adults 

displayed a loss of communication efficiency in our inter-network FC comparisons, driven 

primarily by FC reduction in frontal and parietal association cortices. Together, our results provide 

a comprehensive overview of age effects on fMRI-based FC. 

 

Keywords: high-field fMRI, resting-state fMRI, brain-aging, network amplitude, sparse graphs. 
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INTRODUCTION 

Many cognitive functions decline with age (Buckner, 2004; Grady, 2008, 2012; Fabiani, 

2012; Hedden & Gabrieli, 2004; Reuter-Lorenz & Cappell, 2008; Schneider-Garces et al., 2010; 

Spreng et al., 2010). Although the cognitive neuroscience literature tends to emphasize aging effects 

on high-level cognition, especially memory, task switching, and selective attention (Fabiani, 2012; 

Li et al., 2015; Spreng et al., 2010), laboratory tests of visual perception, facial processing, and 

motor function also revealed a drop in performance with age (Grady et al., 1994; Houx & Jolles, 

1993; Kauranen & Vanharanta, 1996; Mattay et al., 2002). It has been hypothesized that brain 

physiology alterations are responsible for much of the age-related decline in cognitive capacity 

(Buckner, 2004; Grady, 2008, 2012; Reuter-Lorenz & Cappell, 2008; Sperling, 2007; Spreng et al., 

2010). 

 The human brain can be conceptualized as a highly structured network, sometimes termed as 

the connectome of dynamically interacting neuronal communities (Buckner et al., 2013; Power et 

al., 2011; Rubinov & Sporns, 2010; Wig, 2017; Yeo et al., 2011, 2014). The brain’s functional 

architecture is commonly estimated from spontaneous low-frequency blood-oxygen-level-

dependent (BOLD) signal fluctuations, measured during resting-state functional Magnetic 

Resonance Imaging (RS-fMRI) scans (Buckner et al., 2013; Craddock et al., 2013; Smith et al., 

2011; Wig, 2017; Wig et al., 2014). Functional connectivity (FC) studies report 7 to 20 major 

resting-state networks (RSNs) with network topography localized to visual, somatomotor, and 

cognitive regions of the brain (Allen et al., 2011; Christoff et al., 2016; Gordon et al., 2017; 

Laumann et al., 2015; Petersen & Posner, 2012; Power et al., 2011; Raichle & Snyder, 2007; Wig, 

2017; Yeo et al., 2011). Because spatial profiles of many RSNs resemble activation patterns from 

task-based fMRI studies, it has been hypothesized that RSNs represent fundamental units of brain 

organization, which are recruited in various combinations to perform specific tasks (Buckner et al., 

2013; Crossley et al., 2013; Deco & Corbetta, 2011; Smith et al., 2009; Spreng et al., 2010). 

Much of the early work on the relationship between resting-state FC and age was focused on 

intra-network communication in select RSNs, especially the default mode system (e.g., Andrews-

Hanna et al., 2007; Damoiseaux et al., 2008; Grady et al., 2012; Hampson et al., 2012; Koch et al., 

2010; Onoda et al., 2012; Persson et al., 2014; Sambataro et al., 2010). Those studies revealed an 

age-related loss of functional interaction between the medial frontal and the posterior 

cingulate/retrosplenial cortices (but see, Persson et al., 2014). More recent RS-fMRI studies showed 
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that in addition to the default mode network (DMN), age-related reduction in within-system FC is 

also present in brain networks involved in attention, cognitive control, sensory processing, and 

motor function (Allen et al., 2011; Betzel et al., 2014; Grady et al., 2016; Ng et al., 2016; Song et 

al., 2014; Spreng et al., 2016; Zonneveld et al., 2019). In addition, studies that employed graphical 

models to quantify age effects on FC showed that network community structure becomes less 

efficient and less segregated in old age (Cao et al., 2014; Chan et al., 2014; Chong et al., 2019; 

Geerligs et al., 2015; Spreng et al., 2016), with long-range FC being particularly vulnerable 

(Tomasi & Volkow, 2012). 

Despite these advances, the number of studies that examined age differences in functional 

architecture of the entire brain is still relatively small, with most relying on anatomical or functional 

atlases to define their networks (Betzel et al., 2014; Chan et al., 2014; Chong et al., 2019; Fjell et 

al., 2015; Geerligs et al., 2015; Meunier et al., 2009; Song et al., 2014; Wang et al., 2010). 

Unfortunately, it has been shown that connectivity estimates can vary substantially from one atlas to 

another, even when all image preprocessing and data analysis methods are controlled (Cao et al., 

2014). Employing ROIs from a predefined atlas may also fail to capture inter-individual variability 

in brain organization since individual network architecture can deviate, sometimes substantially, 

from an average map (Gordon et al., 2017; Laumann et al., 2015; Mueller et al., 2013). 

Furthermore, most connectomic studies of brain aging used mass univariate correlation methods to 

quantify age effects on the brain’s functional architecture (Andrews-Hanna et al., 2007; Betzel et 

al., 2014; Geerligs et al., 2015; Grady et al., 2016; Han et al., 2018; Meier et al., 2012; Rubinov & 

Sporns, 2010; Zonneveld et al., 2019). Although informative, correlation differences are 

challenging to interpret without additional information about the underlying BOLD signal 

properties (Duff et al., 2018). In addition to the time series coupling, two other factors are 

responsible for the correlation coefficient strength in all RS-fMRI connectivity comparisons: 

network amplitude and magnitude of background noise (Duff et al., 2018). For this reason, 

examining network amplitude adds another layer of valuable information about the underlying 

neurobiology of aging. It also provides insight into factors that may have caused the observed 

increases/decreases in correlation-based FC. To date, research on the relationship between age and 

RSN amplitude has been limited. Most RS-fMRI studies of brain aging did not test for age 

differences in network amplitude (e.g., Betzel et al., 2014; Cao et al., 2014; Chan et al., 2014; 

Geerligs et al., 2015; Grady et al., 2016; Meunier et al., 2009; Spreng et al., 2016), while those that 
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did focused either on early (up to middle adulthood) or late (50 years of age and older) aging only 

(Allen et al., 2011; Zonneveld et al., 2019). 

Since conclusions from prior RS-fMRI studies of brain aging were limited by correlation-

only methodology, our study’s main goal was to investigate age effects on every primary measure 

of RS-fMRI signal – i.e., network amplitude, network topography, and inter-network 

communication. To adress these research questions, we combined a high-field RS-fMRI acquisition, 

data-driven network decomposition, sparse graphical model estimation, and a sample representing 

the entire adult lifespan. In task-based fMRI experiments, the most prominent activity differences 

between young and old adults are often found in the prefrontal and parietal association cortices 

(Cabeza et al., 2002, 2004; Davis et al., 2008; Grady et al., 1994; Gutchess et al., 2005; Li et al., 

2015; Logan et al., 2002; Persson et al., 2014; Rypma & D’Esposito, 2000; Rajah & D’Esposito, 

2005; Schneider-Garces et al., 2010; Spreng et al., 2010; Sugiura, 2016). Consequently, we were 

also interested in determining whether RSNs mapping onto frontal and parietal association areas are 

more affected by aging than visual, auditory, and somatomotor RSNs.  

Since previous task-based and resting-state fMRI studies reported aging-related reductions 

of BOLD signal power in a variety of cortical areas (Allen et al., 2011; D’Esposito et al., 1999; 

Handwerker et al., 2007; Hesselmann et al., 2001; Mehagnoul-Schipper et al., 2002; Riecker et al., 

2006; Taoka et al., 1998; West et al., 2019; Zonneveld et al., 2019), we predicted a widespread 

decline of BOLD signal amplitude with age across RSNs. According to recent boundary-based FC 

work (Han et al., 2018), network structure does not change drastically with age. Consequently, we 

expected a large degree of architectural stability throughout the adult lifespan. Lastly, since 

previous structural and functional imaging work showed frontal and parietal association cortices to 

be particularly vulnerable to aging processes (Grady et al., 2016; Damoiseaux, 2017; Fabiani, 2012; 

Raz et al., 2005; Sugiura, 2016; Wig, 2017), we expected frontal and parietal association networks 

to display the largest age differences in FC and BOLD signal amplitude. 
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MATERIALS AND METHODS 

Participants 

For this cross-sectional study, we recruited 105 healthy volunteers (45 men, 60 women) across the 

entire adult human lifespan (16 volunteers per decade of life, on average; age range: 18-85; Table 1) 

through online, newspaper, and poster advertisements. Of those, 78 participants were Caucasian 

(74%), 17 Asian (16%), 7 Latin American (7%), 2 (2%) Persian and 1 Arab (1%) Canadians. 

According to the 20-item Edinburgh Handedness Inventory (Oldfield, 1971), 12 of the participants 

were left-handed [individuals with laterality quotient ≥ +80 were determined as right-handed]. All 

participants had no lifetime psychiatric disorders and no reported psychosis or mood disorders in 

first-degree relatives, as assessed by the Anxiety Disorders Interview Schedule—IV (Brown et al., 

2001; Di Nardo et al., 1994), which assesses for anxiety, affective, and substance use disorders. 

Medical exclusion criteria were defined as those active and inactive medical conditions that may 

interfere with normal cognitive function: cerebrovascular pathology, all tumors or congenital 

Table 1. 
Age-specific demographic information of this study’s participants. Volunteers ≤ 39 years of age were 

classified as young adults; volunteers who were ≥ 60 years were classified as old adults, and those between 40 

and 59 years of age were classified as middle-aged adults. These age splits were consistent with our earlier 

volumetric work (Malykhin et al., 2017). 
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malformations of the nervous system, diabetes, multiple sclerosis, Parkinson's disease, epilepsy, 

organic psychosis (other than dementia), schizophrenia, and stroke. Furthermore, medications that 

directly affect cognition, including benzodiazepines, antipsychotics, anticholinergic drugs, and 

antidepressants were also exclusionary. The participants’ demographic information is summarized 

in Table 1. 

An in-person interview was conducted to assess each participant’s cognitive abilities. Older 

subjects with mild cognitive impairment (MCI) and dementia were excluded from the study. MCI 

was defined by the presence of cognitive complaints (documented on the AD-8, Galvin et al., 2007) 

with documented impairment on the Montreal Cognitive Assessment (MOCA) test (Nasreddine et 

al., 2005). All of our participants attained MOCA scores between 26 and 30. Dementia was defined 

according to the DSM-IV criteria with Clinical Dementia Rating (CDR) as an additional screening 

tool in older (>50 years of age) participants (Hughes et al., 1982). CDR was used to assess 

functional performance in 6 key areas: memory, orientation, judgment and problem solving, 

community affairs, home and hobbies, and personal care. A composite score from 0 to 3 was 

calculated. All of our participants met the cutoff score of <0.5 for the total CDR score. To screen 

older volunteers for depression, the Geriatric Depression Scale was used (Yesavage et al., 1982). 

Designed to rate depression in the elderly, a score of >5 is suggestive of depression, and a score >10 

is indicative of depression. All of our elderly (>50 years of age) participants had a cutoff score of 4 

and below. Lastly, all older (>50 years of age) participants were assessed for vascular dementia 

with the Hachinski Ischemic Scale (HIS; Hachinski et al., 1975). A score above 7 out of 18 has 89% 

sensitivity. HIS scores of all elderly participants were 3 or lower. Written informed consent was 

obtained from each participant, and the study was approved by the University of Alberta Health 

Research Ethics Board. 

 

Data acquisition 

All images were acquired on a 4.7 T Varian Inova MRI scanner at the Peter S. Allen MR 

Research Centre (University of Alberta, Edmonton, AB) using a single-transmit volume head coil 

(XL Resonance) with a 4-channel receiver coil (Pulseteq). 200 functional volumes were collected 

axially (in parallel to the AC–PC line) using a custom-written T2*-sensitive Gradient Echo Planar 

Imaging (EPI) pulse sequence sensitive to blood oxygenation level-dependent (BOLD) contrast 

[repetition time (TR): 3000 ms; echo time (TE): 19 ms; flip angle: 90°; field of view (FOV):  
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216 × 204 mm2; voxel size: 3 × 3 × 3 mm3; 45 interleaved slices; phase encoding direction: anterior 

to posterior; GRAPPA parallel imaging with acceleration factor 2 (Griswold et al., 2002)]. For the 

resting-state portion of the scan, subjects were instructed to remain still, stay awake, and keep their 

eyes closed. To estimate B0 inhomogeneity, two gradient echo images with different echo times 

were acquired with coverage and resolution matching those of the functional MRI data  

[TR: 500 ms; TE1: 4.52 ms; TE2: 6.53 ms; flip angle: 50°; FOV: 216 × 204 mm2; voxel size:  

3 × 3 × 3 mm3; 45 interleaved slices]. A whole brain T1-weighted 3D Magnetization Prepared Rapid 

Gradient-Echo (MPRAGE) sequence [TR: 8.5 ms; TE: 4.5 ms; inversion time: 300 ms;  

flip angle: 10°; FOV: 256 × 200 × 180 mm3; voxel size: 1 × 1 × 1 mm3] was used to acquire 

anatomical images for tissue segmentation and registration to standard space. 

 

Image preprocessing 

Functional images were processed using SPM12 (Wellcome Trust Centre for Neuroimaging, 

UCL, UK), FSL (Jenkinson et al., 2002; Smith et al., 2004), and ANTS (Avants & Gee, 2004; 

Avants et al., 2008) software packages. Prior to registration, MPRAGE images underwent 

correction for intensity non-uniformity using N3 software (Sled et al., 1998) and SPM12 bias 

correction algorithm. Subsequently, each participant’s structural images were segmented into tissue 

probability maps using SPM12 unified segmentation. 

Functional data were preprocessed with a series of steps commonly used in the field (Fig. 

1a). The first four functional volumes of each dataset were discarded to ensure T1-equilibrium. 

SPM12 FieldMap toolbox was used to estimate B0 distortions and to generate voxel displacement 

maps caused by B0 inhomogeneity. The unified ‘realign & unwarp’ function in SPM12 was used to 

correct geometric distortions in fMRI data caused by B0 inhomogeneity and to realign all fMRI 

volumes to the first functional volume (SPM12; Andersson et al., 2001). Following the realignment 

procedure, fMRI images underwent correction for slice acquisition-dependent time shifts. To ensure 

optimal tissue alignment between the anatomical and functional data, fMRI datasets were registered 

to matching T1-weighted anatomical scans using boundary-based registration (FSL; Greve & Fischl, 

2009). To register RS-fMRI data to the MNI template, the SyN algorithm (ANTS; Avants et al., 

2008) was used to compute tissue deformation fields based on T1-weighted structural data. 

Normalized fMRI datasets were resampled to a 2 × 2 × 2 mm3 voxel size and smoothed with a 6-

mm FWHM Gaussian kernel (SPM12; Wellcome Trust Center for Neuroimaging, UCL, UK). 
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Manual labeling of subject-level independent components 

We employed Probabilistic Independent Component Analysis with an automated estimation 

of the number of independent components (FSL; Beckmann & Smith, 2004) to remove motion-

related, cardiovascular, and respiratory signals from our RS-fMRI data. ICA-based fMRI denoising 

strategies have two major advantages over scrubbing and spike regression approaches: (1) they 

preserve autocorrelation properties of the RS-fMRI signal, and (2) they are able to capture complex 

interactions between various noise sources (Pruim et al., 2015a). Since no other studies have 

performed noise component labeling on our 4.7 T Varian scanner, we performed manual 

identification of noise components in every subject. Building an automated classifier for ICA-based 

(e.g., FIX classifier; Salimi-Khorshidi et al., 2014) denoising using the current dataset was not 

feasible, as it would have necessitated removing subjects from our sample of 105 individuals to 

train a brand new classifier, reducing the study sample size. 
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Consequently, a single rater (SH) labeled all components as (1) potential resting-state 

network or (2) noise based on the criteria outlined in Griffanti et al. (2017). As advised by Pruim et 

al. (2017), only unambiguous noise components were labeled for removal. To this end, spatial 

maps, time-courses, and power spectra of every component were manually inspected. First, eye 

ghosting, scanner noise, cardiovascular, and respiratory components were identified by manual 

inspection. Components labeled as scanner noise were identified by two criteria: (1) majority of 

spatial activation outside the gray matter, and (2) distinct power spectrum pattern, dominated by 

high-frequency spikes – generally above 0.11 Hz – with little to no power represented by lower 

Fig. 1. Overview of image processing pipeline. (a) preprocessing of structural and functional data prior to group 

ICA decomposition; (b) fMRI decomposition into constituent signal sources using group ICA; (c) postprocessing of 

network time courses; (d) postprocessing of network spatial maps. Green, pipeline input; cyan, pipeline output. 

Outputs of panels (c) and (d) were used to study brain aging. 
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frequencies (i.e., < 0.10 Hz). Cardiovascular and respiratory noise sources were identified based on 

Griffanti et al. (2017) guidelines, while head motion artefacts were identified using Griffanti et al. 

(2017) criteria with the aide of a fully automated head motion component classifier ICA-AROMA 

(Pruim et al., 2015a).  

Inter-rater and intra-rater reliabilities for component classification were performed on 100 

components, chosen semi-randomly from 16 subjects. This reliability set consisted of 50 ‘noise’ and 

50 ‘signal/unclear’ ICs, based on a prior (1 month earlier) classification by SH. The intra-rater 

reliability was assessed by SH, who classified those 100 ICs into ‘remove’/‘retain’ categories twice, 

with a 2-week interval between each classification. The ‘remove’/‘retain’ inter-rater reliability was 

assessed by two independent analysts – SH and NVM. Intra-rater and inter-rater Dice Similarity 

Coefficients (DSCs) for ‘remove’/‘retain’ categories were 0.93/0.93 and 0.92/0.91, respectively. 

Thus, our manual component labelling showed a high degree of consistency, with more than 9 out 

of 10 ICs receiving identical labels in intra-observer and inter-observer evaluations. 

Eye ghosting and dominant head motion artefacts (e.g., global signal drifts with spatial maps 

localized exclusively to the skull) were removed using ‘aggressive’ option in fsl_regfilt, while all 

other artefacts were removed using ‘soft’ regression option in fsl_regfilt (Beckmann & Smith, 2004; 

Griffanti et al., 2014). Griffanti et al. (2014) demonstrated that ‘soft’ regression produces a good 

data cleanup without sacrificing network signals. Consequently, this was our primary approach for 

noise removal. 

Lastly, prior to running the group ICA decomposition, each subject’s denoised RS-fMRI 

dataset was intensity-normalized (Fig. 1a). Intensity normalization has been previously shown to 

improve the test-retest reliability of group-level ICA decompositions (Allen et al., 2010). It also 

ensures that resting-state BOLD signal fluctuations in every subject are scaled to % signal change 

units. 

 

Group independent component analysis 

Recent FC studies revealed that there are multiple regions in the human brain that participate 

in more than one RSN, primarily in the frontal and parietal association cortices  (Liao et al., 2017; 

Mueller et al., 2013; Yeo et al., 2014). Group ICA (GICA; Calhoun et al., 2001) with a newer 

generation of subject-level reconstruction techniques can capture many of these FC complexities 

(Allen et al., 2012; Du et al., 2017; Yeo et al., 2014), while also foregoing the need to make 



  
11 

 

  

somewhat arbitrary choices about which seeds/atlases one ought to use in connectivity comparisons. 

Here, we used the GIFT toolbox for MATLAB to perform group-level data-driven network 

decomposition (Calhoun et al., 2001; http://icatb.sourceforge.net/groupica.htm). Below we outline 

detailed choices of the parameters we used in our decompositions (see Fig. 1b for flow-chart form). 

Because our data underwent substantial noise cleansing at the individual level, resulting in 

reduced source dimensionality, we chose not to set the ICA model order based on previously 

published literature. Instead, we estimated model order by running the Infomax ICA algorithm (Bell 

& Sejnowski, 1995) 200 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso). This approach 

renders Independent Component estimation insensitive to initial search parameters of the ICA 

algorithm, and directly estimates component reliability for each model order (Himberg et al., 2004). 

The ICASSO implementation in the GIFT toolbox provides quality estimates for all component 

clusters via the intra-cluster and extra-cluster similarity index, Iq. Our goal was to find the ICA 

model order such that Iq for all component clusters was 0.80 or higher, which resulted in 49 

components. The initial subject-specific principal component analysis (PCA) retained 95 principal 

components (PCs) using standard decomposition. On average, 95 PCs explained 92.3% (range: 

87.7-99.7, SD = 1.99) of variance in each preprocessed subject-specific fMRI dataset, while 

providing some data compression to reduce the computational demands. We used group-

information guided ICA (GIG-ICA; Du & Fan, 2013), which uses group-level ICs to guide subject-

level ICA, for computing subject-level ICs and time courses (Fig. 1b). Inter-individual differences 

in network structure exist (Gordon et al., 2017; Laumann et al., 2015), and GIG-ICA is better 

positioned to capture those inter-individidual differences than back-reconstruction or dual 

regression (Du et al., 2016). 

Group-level RSN ICs were identified by two viewers (SH and NVM) who manually 

inspected the aggregate spatial maps and power spectra. Specifically, when evaluating the average 

power spectra, two well-established metrics were used: (1) dynamic range, and (2) low frequency to 

high-frequency power ratio [for details see, Allen et al. (2011) and Robinson et al. (2009)]. We 

employed a relatively conservative labelling scheme, whereby only components resembling 

previously-identified networks (Allen et al., 2011; Power et al., 2011; Yeo et al., 2011) were 

classified as RSNs. Given our set of criteria, we successfully identified 21 RSN ICs [subsequently 

termed (network) components or simply RSNs]. 
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Subject-specific network time courses were detrended (involving removal of the mean, 

slope, and period π and 2π sines and cosines over each time course) using the multi-taper approach 

(Mitra & Bokil, 2008) with the time-bandwidth product set to 3 and the number of tapers set to 5 

(Fig. 1c). The RSN spatial maps were thresholded to ensure that our analyses were focused on the 

subset of voxels, which are most consistently associated with the network time courses across all 

subjects in our sample (Fig. 1d). Thresholding was based on the distribution of voxelwise t-scores 

using a model-based approach outlined in Allen et al. (2011). According to this model, the 

distribution of voxelwise t-statistic scores can be approximated by a linear combination of 1 normal 

and 2 gamma functions (Suppl. Fig. 1). The normal distribution represents network-irrelevant 

voxels, while the two gamma functions represent positive and negative network sources (i.e., areas 

positively and negatively correlated with the network’s time course). Mathematically, this 

relationship is explained by equation 1. 

 

𝐭 ≈ 𝑝c1𝑁(𝐭c|𝜇c, 𝜎c) + 𝑝c2𝐺(𝐭c − 𝜇c|𝛼c1, 𝛽c1) + (1 − 𝑝c1 − 𝑝c2)𝐺(−𝐭c − 𝜇c|𝛼c2, 𝛽c2)       (1) 

 

Values of the six parameters (μc, σc, αc1, βc1, αc2, βc2) were estimated by minimizing the root-mean-

squared-deviation (RMSD) between the modeled and empirical t-statistic distributions using the 

SIMPLEX algorithm (Nelder & Mead, 1965). In order to ensure that the optimal global solution 

was obtained, the optimization algorithm was initiated 15,000 times, each time with a different set 

of randomly chosen values. The most relevant solutions for thresholding purposes are μc and σc 

parameters of the normal distribution, as the normal distribution represents network-irrelevant 

voxels. Here, we thresholded our spatial maps at t ≥ μc + 3σc. We found this threshold to be a good 

compromise between sensitivity and specificity: in all networks, t ≥ μc + 3σc threshold was stricter 

than False Discovery Rate (FDR) q < .05 and stricter than FDR q < .01 in 8 RSNs, while, on 

average, 56% of RSN-related voxels were retained. All subsequent mentions of component 

topography and intra-network connectivity refer to thresholded ICs. 

Since Allen et al. (2012) demonstrated that in the presence of spatial variability, network 

amplitude is best captured as a product of time course standard deviation and peak spatial map 

intensity (here, the average intensity value of the top 1% of IC’s voxels), we used this measure as a 

proxy for RSN amplitude. Because of the pre-ICA intensity normalization, the resulting amplitude 

values were (approximately) in percent signal change units. To ensure that IC spatial maps 
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represent only network topography, as opposed to topography + activation, we normalized all RSN 

spatial maps by network amplitude (Allen et al., 2011). Network components were visualized using 

open-source Visualization Toolkit software (VTK; Schroeder et al., 2006). 

 

Modeling age relationships for network amplitude 

 To build models for each RSN’s amplitude’s relationship to age, we relied on the fractional 

polynomial [polynomial set: age−2, age−1, age−0.5, ln(age), age1, age2, age3] framework (Royston & 

Altman, 1994; Sauerbrei & Royston, 1999; Sauerbrei et al., 2006). The fractional polynomial (FP) 

technique controls for overfitting by restricting shape complexity if a model with k + 1 powers does 

not produce a statistically better fit than a model with k powers.  

Since the residual normality and residual homoscedasticity assumptions of the OLS 

estimator were violated in our RSN amplitude data (see Suppl. Table 1), we used L1 (i.e., least 

absolute deviation), as opposed to L2 (i.e., least squares), regressions to estimate the aging 

trajectories. Unlike L2 models, which build trajectories to explain the population mean, L1 

regressions produce fits explaining the population median, and are more robust to heteroscedastic, 

highly skewed data with severe outliers (Dielman, 2005; Lawrence & Shier, 1981; Wimble et al., 

2016). Custom-written MATLAB scripts employing the SIMPLEX algorithm (Nelder & Mead, 

1965) were used to find optimal L1 solutions for all the least absolute deviation regressions. 

Statistical significance tests were performed sequentially: (1) best-fitting FP2 (i.e., fractional 

polynomial model with 2 age power terms) vs. best-fitting FP1, (2) best-fitting FP1 (i.e., fractional 

polynomial model with 1 non-linear age power term) vs. linear, (3) linear vs. constant. The test 

statistic that we used to evaluate all L1 regressions was: 

 

𝐹𝐿𝐴𝐷 =
2(SARreduced−SARfull)

𝜏̂
                                                                                                        (2) 

 

where SARreduced and SARfull represent the sum of absolute values of the residuals for the reduced 

and full models, respectively. The denominator parameter τ is the L1 estimate of residual variability 

for the full model (for more details on L1 significance testing see Birkes & Dodge, 1993). To 

estimate FLAD distributions under each null hypothesis, we performed Monte Carlo simulations 

(Suppl. Fig. 2), using conceptual framework that is similar to Freedman & Lane’s (1983) 

permutation tests for L2 regressions. Consistent with the Freedman & Lane (1983) approach, we 
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treated our sample’s L1 regression coefficients as proxies of the true population-level relationship. 

For each significance test, we first estimated L1 residuals for the reduced model. However, rather 

than permuting those residuals (the assumption of residual exchangeability was severely violated in 

our data; see Suppl. Table 1), we first split the L1 residuals into 3 age groups: young adult [N = 43; 

age range: 18-39 years, mean = 27.1 years], middle-aged [N = 31; age range: 41-59 years, mean = 

50.0 years], and old adult [N = 31; age range: 61-85 years, mean = 70.3 years]. Each age group’s 

residuals were then used to estimate (using MATLAB’s ksdensity function) separate residual 

distributions for young, middle-aged, and old adults (see Suppl. Fig. 2 for examples). Those 

distributions were subsequently bias-corrected to ensure that the average median of each 

distribution was centered at 0. In residual simulations, if an individual’s age was under 27 years of 

age, all residuals were randomly sampled from the ‘young’ distribution exclusively. Similarly, for 

every individual above 70 years of age, residuals were randomly sampled from the ‘old’ distribution 

exclusively. For individuals between 27 and 70 years of age, sampling was performed 

probabilistically from the two distributions closest to a given subject’s age with weights varying as 

a linear function of age (e.g., residuals for a 60-year-old had a 50/50 percent chance of being 

sampled from the ‘middle-aged’ or ‘old’ distribution; residuals for a 65-year-old had a 25/75 

percent chance of being sampled from the ‘middle-aged’/‘old’ distribution, respectively). Such 

probabilistic sampling smoothed out transitions between age groups by blending neighbouring 

residual distributions. Lastly, our simulated residuals were added to the previously-estimated null 

hypothesis (i.e., reduced) model, generating one null hypothesis dataset. Each of our FLAD 

distributions was constructed from 25,000 such simulations (see Suppl. Fig. 2 for a flow-chart 

example of linear vs. FP1 model comparison). System-level Holm–Bonferroni correction for 

multiple comparisons was applied for FP-selected vs. null (i.e., constant) model comparisons [3 

comparisons for the somatomotor system, 4 comparisons for the visual system, 1 comparison for the 

auditory system, 6 comparisons for the default system, 1 comparison for the dorsal attention system, 

2 comparisons for the executive control system, and 4 comparisons for the multi-system/mixed 

components].  

 Because of sampling-related uncertainty, model choice in data-driven model selection can 

vary from one dataset to the next. To minimize the effects of model selection uncertainty, we 

performed weighted model averaging for all of our non-linear fits. Model averaging was performed 

on a subset of all plausible regression shapes, up to the last statistically significant FP order. Since 
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our RSN amplitude datasets did not satisfy the criteria of theory-driven model averaging, we used 

bootstrap model selection frequencies as proxies for model selection uncertainty (for an overview of 

model averaging see Burnham & Anderson, 2002). Bootstrap model averaging was done iteratively. 

First, a crude model-averaged fit was estimated using paired bootstrap sampling (100 samples). For 

each paired bootstrap sample, the model with the smallest sum of absolute error terms was selected 

using a repeated (50 times) 20-fold cross-validation. Next, estimates of model selection uncertainty 

were refined by bootstrapping that average fit’s residuals. In order to preserve age-specific residual 

properties (same issues as L1 hypothesis testing), all bootstrap samples of the residuals were 

performed in an age-restricted manner (SD = 3 years, relative to each subject’s age). During this 

refined estimation of model selection uncertainty, 500 bootstrap samples were taken, and the model 

with the smallest sum of absolute error terms was chosen as the best model for each bootstrap 

sample using a repeated (100 times) 20-fold cross-validation. These refined model selection 

frequencies were used to compute the final model averaged fits for all non-linear (i.e., FP1 and FP2) 

models. 

 To verify our L1 regression results, we also performed amplitude comparisons among the 

three major age groups [young: under 40 years (mean age = 27.1 years); middle: 40-59 years (mean 

age = 50.0 years); old: 60 years and older (mean age = 70.3 years)]. A bias-corrected bootstrap test 

for statistical significance (50,000 samples) on the difference of age group medians was used for 

statistical inference. Significance was declared when the FWE 95% bias-corrected accelerated 

(BCa) confidence interval (CI) excluded zero. System-specific (as above) Holm–Bonferroni 

correction for multiple comparisons were carried out sequentially. Initially, we tested the 

significance of group comparisons with the largest amplitude differentials (typically young vs. old) 

among all RSNs of a brain system (e.g., visual, default, somatomotor, etc.). If statistically 

significant, follow-up Holm–Bonferroni-corrected comparisons [3 tests: (1) young vs. middle, (2) 

middle vs. old, and (3) young vs. old] were performed to determine whether network amplitude 

differed in the other age group comparisons.   

 

Modeling age relationships for spatial maps 

Permutation-based F-tests (50,000 permutations using FSL’s randomize function with 

threshold-free cluster enhancement option; Smith & Nichols, 2009) were used to test for the 

presence of linear or quadratic relationships to age in component topography. Clusters with 
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statistically significant relationships to age were cleaned up by (1) removing all clusters with 

volume smaller than 80 mm3, representing 1-3 native-space voxels, (2) removing all clusters 

dominated (i.e., 50% or more) by white matter (WM) or cerebrospinal fluid (CSF) signal, and (3) 

removing clusters, in which grey matter contribution to the cluster peak (top 30% of voxels with the 

strongest association to age) was less than 50%. All age clusters that survived this cleanup 

procedure were followed up with parametric fractional polynomial regression (RA2 model 

selection; Ambler & Royston, 2001). Similar to RSN amplitude methodology, if non-linearity tests 

were significant, bootstrapping was used to account for model selection uncertainty by building 

model-averaged fits. 

 Finally, because it is well established that cortical grey matter (GM) volume is negatively 

correlated with age (Good et al., 2001; Fjell et al., 2009a; Raz et al. 1997, 2004, 2005), we 

examined whether adding a cluster’s GM volume would eliminate statistical association to age in 

spatial map regions showing age effects. To answer this question, we performed cluster-level 

regressions (i.e., RSN signal averaged across a cluster) with subject age and local GM density as the 

independent variables. Significant regression coefficients for age are indicative of age-related 

differences in network topography that cannot be fully accounted for by age-related changes in 

regional GM volume. Our GM density maps were estimated in native space using SPM12 

automated tissue segmentation pipeline, and were subsequently registered to the MNI template 

using the same transformation matrices that we used for normalizing our fMRI data.  

 

Between-component connectivity 

The most common approach to building graphical models of brain organization is to use 

time course correlation coefficients as proxies for connectivity (Craddock et al., 2013; Smith et al., 

2011). However, this approach suffers from two significant limitations: (1) a lack of control for 

communication via indirect paths, and (2) a reliance on somewhat arbitrary thresholding. To avoid 

these issues, we implemented a sparse precision matrix estimation procedure when reconstructing 

inter-IC connectivity graphs (Craddock et al., 2013; Epskamp & Fried, 2018; Rubinov & Sporns 

2010; Smith et al., 2011; Zhu & Cribben, 2018). Instead of relying on arbitrary thresholds, sparse 

estimation methods shrink spurious or indirect connections to 0 by penalizing excessive model 

complexity (Smith et al., 2011; Zhu & Cribben, 2018). 
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 Zhu & Cribben (2018) used simulations to show that sparse network structure is best 

recovered using the maximum likelihood estimation of the precision matrix with the smoothly 

clipped absolute deviation (SCAD) regularization term as a penalty for model complexity. This 

approach belongs to a family of graph estimation techniques building on the graphical lasso 

framework (Friedman et al., 2008). Similar to the graphical lasso, incorporating the SCAD 

regularization term during graph estimation allows for the optimal balance between network 

complexity and network likelihood; however, relative to the more common LASSO penalty term, 

using SCAD reduces bias without sacrificing model stability (Fan & Li, 2001; Zhu & Cribben, 

2018). The SCAD penalty relies on two tuning parameters, a and ρ. To minimize the Bayes risk, 

Fan & Li (2001) recommend a = 3.7, which was used in the current study. The second tuning 

parameter, ρ, was selected using Bayesian Information Criterion (BIC) from a set of ρi = i × 0.01, 

with i = 1, 2, 3 ...,100. The ρ with the lowest BIC value was used to build final graphs (Fan et al. 

2009; Zhu & Cribben, 2018). Because temporal autocorrelation in the fMRI time series can produce 

biased FC estimates (Arbabshirani et al., 2014; Zhu & Cribben, 2018), each component’s time 

course was whitened prior to graph estimation. Furthermore, since averaging across subjects 

improves the stability of edge detection when using sparse graphical methods, inter-component FC 

was estimated on group-averaged (i.e., young, middle-aged, and old adults) covariance matrices. 

For reasons detailed in Rubinov & Sporns (2010), edges representing anti-correlations were 

removed from the estimated graphs. All sparse graphs were estimated using custom-written R 

functions, and Gephi (v0.9.2; Bastian et al., 2009) was used for graph visualizations. Follow-up 

graph summary metrics were computed using freely available Brain Connectivity Toolbox for 

MATLAB (Rubinov & Sporns, 2010), 

Since our inter-component FC was estimated at the group level, we relied on group 

comparisons [Young vs. Old, Young vs. Middle, Middle vs. Old], rather than on correlation-based 

methods, to study age differences in inter-component connectivity. Edge weight comparisons and 

weighted graph summary metrics were used to study age effects on FC strength, while unweighted 

graph summary metrics were used to study age differences in graph architecture, independent of FC 

strength. Mathematical definitions of all weighted and unweighted graph summary metrics that 

were used in this study are provided in the Supplementary Materials. 

Statistical significance for each graph-based age comparison was assessed using permutation 

tests (10,000 permutations), and false discovery rate (FDR)-corrected results are reported, for q = 
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.05 (Hochberg, 1988). Global graph summary metrics were corrected for 3 tests (i.e., Young vs. 

Old, Young vs. Middle, Middle vs. Old), node centrality metrics for 21 tests (i.e., 21 RSNs in each 

age comparison), and edge comparisons for 56-59 tests (depending on the number of non-zero 

edges in relevant age groups). Since this study was exploratory in nature, we also report edge 

weight differences that survived an uncorrected p <. 01 threshold. 

 

 

RESULTS 

 

1. Resting-state brain networks and their functional connectivity profiles 

Following group-level spatial ICA decomposition, we identified 21 ICs representing RSN 

sources: 3 somatomotor [SM1, SM3, SM3], 4 visual [Vis1, Vis2, Vis3, Vis4], 1 auditory [Au], 6 

default mode [DM1, DM2, ..., DM6], 1 dorsal attention [DA], 2 executive control [EC1, EC2], and 

4 ICs with spatial maps covering multiple brain systems, according to the Yeo et al. (2011) 

functional parcellation of the cerebral cortex. Here, we termed those multi-system ICs as mixed 

RSNs (Mix1-Mix4). Fig. 2 demonstrates the spatial topography of each network component in our 

study (see Suppl. Figs. 3-6 for additional views). 

 Consistent with the underlying physiology, our somatomotor RSNs map onto face, hand, 

and leg areas of the primary somatosensory and primary motor cortices. Similarly, our visual ICs 

approximate central/peripheral and primary/secondary visual processing pathways, while the default 

system was split into the dorsal medial (DM3, DM6), medial temporal (DM2), and core (DM1, 

DM4, DM5) subsystems. Although 3 default mode subsystems are typically emphasized in the 

previously published literature (Andrews-Hanna et al., 2010, 2014; Christoff et al., 2016), using 4.7 

T data, we obtained a more refined splitting of the DMN into its sub-components. RSNs of other 

cognitive systems, namely the dorsal attention and executive control, were captured by relatively 

few ICs (Fig. 2). 
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Our SCAD-regularized functional connectivity graph, representing direct inter-component 

FC for the entire (i.e., age-averaged) sample, revealed a high degree of functional specialization in 

the somatomotor and visual areas with few direct connections to other functional systems (Fig. 3). 

This is in contrast to the default, dorsal attention, and executive control RSNs, which demonstrated 

a high degree of interconnectedness with network components from other functional systems: DA, 

DM1, DM5, and EC2 RSNs each had 2 or more direct connections with systems other than their 

own. Most multi-system (i.e., mixed) network components served as bridge nodes connecting 

functionally segregated systems to each other (Fig. 3). 

Fig. 2. Resting-state functional networks identified by the group-level independent component analysis. 
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2. Network amplitude and age 

Our L1 regression analyses showed that signal amplitude in every RSN was negatively 

associated with age (all corrected ps < .05; Figs. 7-9). Non-linearity tests were statistically 

significant in only 4 out of 21 RSNs — SM2, SM3, Vis3, and DA — indicating that linear models 

provide a reasonable explanation of the association between age and BOLD signal amplitude in 

most brain areas. In a typical 75-year-old, the system-averaged (i.e., averaged across 6 default mode 

components, 4 visual components, 3 somatomotor components, etc.) BOLD signal amplitude was 

reduced by 61% in the somatomotor system, 63% in the visual system, 41% in the auditory system, 

37% in the default system, 53% in the dorsal attention system, and 38% in the executive control 

system, when compared to a typical 25-year-old (Figs. 4-5). The smallest (30% or less) age-

associated decline of BOLD amplitude was observed in the default mode and Mix4 ICs (Fig. 5), 

while all of the somatomotor and visual ICs showed >50% BOLD amplitude reduction from young 

adulthood to old age (Fig. 4). 

Fig. 3. Graphical representation of the intrinsic inter-component functional connectivity. Only positive 

correlations are shown. Edge thickness represents the magnitude of SCAD-regularized partial correlation for 

network component pairs. Node size represents the magnitude of unweighted eigenvector centrality. 

Coordinates depict the number of within-system (left number) and between-system (right number) 

connections. Node colors represent functional systems to which each network component belongs: SM, 

somatomotor (blue); V, visual (red); Au, auditory (green); DM, default mode (cyan); DA, dorsal attention 

(yellow); EC, executive control (magenta); Mix, mixed (black). 
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Fig. 4. L1 fractional polynomial regression plots showing relationships between age and RS-fMRI amplitude in all 

(a) somatomotor, (b) visual, and (c) auditory networks. Red arrows represent relative differences in resting-state 

fluctuation amplitude between a median 25-year-old and a median 75-year-old. 
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Fig. 5. L1 fractional polynomial regression plots showing relationships between age and RS-fMRI amplitude in all 

(a) default, (b) attention-related, and (c) mixed components. Red arrows represent relative differences in resting-

state fluctuation amplitude between a median 25-year-old and a median 75-year-old. 
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To determine whether a common brain-wide process is responsible for the observed BOLD 

amplitude decline with age, we performed a principal component analysis (PCA) on the amplitude 

data from all network ICs. Only the first principal component, explaining 58% of the RSN 

amplitude variability, was statistically significant in this PCA decomposition. This principal 

component (Fig. 6) was positively correlated with every RSN (correlation coefficients between .545 

and .865) and negatively correlated with age (r = -.553, p < .001). 

 

 

Age group comparisons of the RSN amplitude and amplitude variability were statistically 

significant in most young vs. old tests, with some networks also showing statistically significant 

differences in young vs. middle and/or middle vs. old comparisons (Suppl. Figs. 7-9). However, 

unlike the continuous models, which showed age-associated decline of BOLD amplitude in every 

RSN, group amplitude comparisons did not detect any age differences in the DM2 and Mix4 

network components. In all instances where young vs. old comparisons were statistically 

significant, median RSN amplitude was larger in young adults than in middle-aged and old adults, 

and larger in middle-aged adults than in old adults, suggesting a continuous and progressive 

reduction in RSN signal amplitude throughout life. Lastly, old adults had significantly lower inter-

individual BOLD amplitude variability in all sensorimotor (SM1-3, Vis1-4, and Au) ICs, two 

default mode ICs (DM2 and DM3), two attention (DA and EC1) ICs, and three mixed (Mix1-3) ICs 

[all corrected ps < .05; see Suppl. Table 1]. Six network components – DM1, DM4-6, Mix4, and 

EC2 – showed no age differences in BOLD amplitude’s inter-individual variability (all ps > .1). 

Fig. 6. Principal component representing 

amplitude variability common to all RSNs. 

Because aging trajectories for individuals RSNs 

were either linear or FP1 models, the age 

relationship trendline for this principal component 

represents a model-averaged fit of L1 linear and 

FP1 models.  
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3. Component topography and age 

Across all network components, we identified 23 clusters with either linear or non-linear 

statistical relationship to age (Table 2; Figs. 7-10). Age relationship clusters were present in 5 out of 

8 sensorimotor ICs, 4 out of 6 default mode ICs, 2 out of 3 attention/control ICs, and 2 out of 4 

mixed ICs, suggesting that age effect on RSNs’ spatial map profiles is not limited to one particular 

functional system. Most of those age relationship clusters (19 out of 23) represented reduced intra-

component connectivity among the elderly; however, a small number (4 out of 23), restricted to the 

DM1 and DA RSNs, showed areas with stronger intra-component connectivity in old age. With the 

exception of a few clusters, age relationships were linear. 

 

Fig. 7. Clusters with statistical relationships to age for sensorimotor ICs. Each cluster represents brain 

region(s) with age differences in network topography. Regression plots represent voxel-averaged fractional 

polynomial follow-ups. Because spatial maps were normalized by peak activation amplitude, values close 

to 1 represent network core, while those close to 0 represent network periphery. 
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The largest clusters, representing age differences in network topography, belonged to the 

Mix4 IC. Those two clusters (clusters V & W; Table 2) were located within the bilateral inferior 

frontal gyrus and bilateral orbitofrontal cortex [BA44-47], roughly corresponding to the Broca’s 

area and nearby cortices. Participation of these brain areas in Mix4 RSN declined from 

moderate/high in young adults (normalized activation of 0.4 and higher) to weak (normalized 

activation < 0.4) in old adults, which is indicative of BA44-47 areas becoming increasingly 

disconnected from the rest of the network with age. Two other large clusters (1) cluster K, 

belonging to the DM4 RSN, and (2) cluster F, belonging to the Vis4 RSN, also showed a reduction 

in intra-component connectivity with age. Four clusters with the strongest association to age (i.e., 

largest absolute correlation with age) were clusters F, W, V, and C, belonging to the Vis1, Vis4, and 

Mix4 RSNs (Table 2). All 4 clusters showed negative linear relationships to age with correlation 

coefficients ranging between -.54 and -.58. Cluster C was localized within the left lingual, 

intracalcarine, and precuneus cortices, while cluster F’s anatomy was restricted to the right fusiform 

gyrus (Table 2). Clusters V and W and their anatomical profiles were described above. 

GM volume was negatively associated with age in 21 out of 23 clusters. However, adding 

regional GM volume as an extra variable to cluster-level age regressions did not eliminate age 

effects in 21 out of 23 clusters (Table 2), demonstrating that age differences in component structure 

were not driven solely by age effects on cortical GM. Despite these overall trends, it is important to 

note that adding local GM volume as a regressor of no-interest, eliminated age effects in clusters A 

and L (SM1 and DM4 RSNs, respectively). Together, these observations indicate that age 

differences in component topography are partially driven by age differences in regional GM. 

Furthermore, since cluster GM volume and intra-component connectivity were statistically 

associated in 17 clusters (assessed using distance correlation with 50,000 permutation tests for 

significance), causal study designs are needed for an accurate estimation of the extent to which 

structural and functional changes in the aging brain produce age differences in network topography. 
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Fig. 8. Clusters with statistical relationships to age for the default mode ICs. Blue clusters represent negative 

association to age; red clusters represent positive association to age. 
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Fig. 10. Clusters with statistical relationships to age for multi-system (i.e., ‘Mixed’) ICs. All statistically significant 

clusters in ‘Mixed’ ICs showed negative associations to age. 
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    Cluster I  56, −54, 12 right middle temporal gyrus, 

right angular gyrus 

[BA39, BA22] 

 176 linear ↑ [R
2
 = .211]  linear ↓ [R

2
 = .103] r = .450 [p < .001] 

Default Mode 2 

    Cluster J −8, −66, 16 left supracalcarine cortex, 

left precuneous cortex, 

left intracalcarine cortex 

[BA30, BA18, BA23, BA31] 

 1,328 nonlinear ↓ [R
2
 = .231]  linear ↓ [R

2
 = .436] r = −.446 [p < .001] 

Default Mode 4 

    Cluster K −4, 40, −2 left anterior cingulate gyrus, 

right anterior cingulate gyrus, 

left paracingulate gyrus, 

right paracingulate gyrus, 

left frontal pole 

[BA32, BA24, BA9, BA10] 

 3,392 linear ↓ [R
2
 = .182]  linear ↓ [R

2
 = .513] r = −.208 [p = .018] 

    Cluster L    2, 34, 20 left anterior cingulate gyrus, 

right anterior cingulate gyrus, 

left paracingulate gyrus, 

right paracingulate gyrus 

[BA32, BA24] 

 1,400 linear ↓ [R
2
 = .173]  linear ↓ [R

2
 = .646] n.s. 

    Cluster M −42, 14, −6 left insular cortex 

[BA13] 

 224 linear ↓ [R
2
 = .238]  linear ↓ [R

2
 = .437] r = −.420 [p < .001] 

Default Mode 6 

    Cluster N −52, −32, 2 left superior temporal gyrus 

[BA22, BA21] 

 1,448 linear ↓ [R
2
 = .253]  linear ↓ [R

2
 = .257] r = −.407 [p < .001] 

    Cluster O   52, −32, 2 right superior temporal gyrus 

[BA22, BA41] 

 840 linear ↓ [R
2
 = .230]  linear ↓ [R

2
 = .339] r = −.341 [p < .001] 

Dorsal Attention 

    Cluster P   44, −60, 46 right lateral occipital cortex, 

right angular gyrus, 

right supramarginal gyrus 

[BA39, BA40, BA7, BA19] 

 1,488 nonlinear ↑ [R
2
 = .278]  linear ↓ [R

2
 = .422] r = .536 [p < .001] 

    Cluster Q −48, −52, 48 left angular gyrus, 

left supramarginal gyrus 

[BA40] 

 144 linear ↑ [R
2
 = .207]  linear ↓ [R

2
 = .090] r = .447 [p < .001] 

 
 

Table 2. 
Topographical age differences in network structure. This table complements Figs. 7-10.  
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4. Inter-component functional connectivity and age 

Lastly, we examined the effects of age on inter-component FC. First, we built sparse 

graphical representations of inter-IC communication for the young, middle-aged, and old adult 

groups. Those graphs are visualized in Fig. 11. 

Descriptively, a core set of 31 connections was identified in every age group, suggesting that 

the overall pattern of the brain’s functional organization did not differ drastically among age groups 

(Fig. 12). Most unweighted graph summary metrics, computed from binarized graphs, support this 

conclusion: global efficiency, transitivity, density, radius, diameter, characteristic path length, and 

centralization did not show any age statistical differences [all qs > .10, see Table 3 for details; see 

Suppl. Materials for mathematical definitions]. The only unweighted summary metric that attained 

statistical significance in our age comparisons was the number of intra-system connections. 

Specifically, the young adult group had fewer intra-system connections (a total of 15 edges) than 

middle-aged or old adult groups (a total of 19 edges in each group) [both qs < .05]. Despite 

differences in the number of intra-system connections, age groups did not show any statistical 

differences in the number of inter-system connections [all uncorrected ps > .10, see Table 3 for 

details]. 

 

 

 

    Cluster R −8, −72, 60 left lateral occipital cortex 

[BA7] 

 112 linear ↓ [R
2
 = .193]  n.s. r = −.451 [p < .001] 

Executive Control 2 

    Cluster S   38, 58, 14 right frontal pole 

[BA10, BA9] 

 480 linear ↓ [R
2
 = .169]  n.s. r = −.408 [p < .001] 

Mixed 3 

    Cluster T   52, −58, 8 right middle temporal gyrus 

(temporooccipital part), 

right lateral occipital cortex 

(inferior division) 

[BA39, BA37] 

 352 linear ↓ [R
2
 = .203]  linear ↓ [R

2
 = .181] r = −.356 [p < .001] 

    Cluster U −50, −54, 12 left middle temporal gyrus 

(temporooccipital part), 

left angular gyrus 

[BA39] 

 104 linear ↓ [R
2
 = .160]  nonlinear ↓ [R

2
 = .077] r = −.354 [p < .001] 

Mixed 4 

    Cluster V −48, 16, −6 left inferior frontal gyrus 

(pars triangularis and  

pars opercularis), 

left orbitofrontal cortex, 

left frontal operculum 

[BA47, BA44, BA45, 

BA46, BA22, BA13] 

 7,192 linear ↓ [R
2
 = .295]  linear ↓ [R

2
 = .542] r = −.280 [p < .001] 

    Cluster W   50, 24, −4 right inferior frontal gyrus 

(pars triangularis and  

pars opercularis), 

right orbitofrontal cortex, 

right frontal operculum, 

right frontal pole 

[BA45, BA47, BA44,  

BA46, BA9, BA13] 

 6,464 linear ↓ [R
2
 = .322]  linear ↓ [R

2
 = .483] r = −.394 [p < .001] 

Abbreviations: BA, Brodmann Area; n.s., statistically not significant. 
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Fig. 11. Graphical representation of direct between-component connectivity, separated by age group. Only positive 

correlations are shown. Edge thickness represents functional connectivity strength (i.e., magnitude of SCAD-

regularized partial correlations). Node size of each network component represents its unweighted eigenvector 

centrality. Coordinates depict the number of within-system (left number) and between-system (right number) 

connections. Node colors represent functional systems: blue, somatomotor (SM); red, visual (V); green, auditory (Au); 

cyan, default mode (DM); yellow, dorsal attention (DA); magenta, executive control (EC); black, mixed (Mix). See 

Fig. 2 for anatomical profiles of individual network components. 

Fig. 12. A core set of inter-component connections 

that were present in every age group (i.e., young, 

middle-aged, old). Edge thickness represents 

connectivity strength, collapsed across age groups. 

SM, somatomotor (blue); V, visual (red); Au, 

auditory (green); DM, default mode (cyan); DA, 

dorsal attention (yellow); EC, executive control 

(magenta); Mix, mixed (black). 
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Contrary to results from binarized graphs, we observed substantial age differences if 

weighted graphs were used to compute graph summary metrics (Table 3; see Suppl. Materials for 

mathematical definitions of weighted vs. unweigted graph summary metrics). The average edge 

thickness of all non-zero positive edges was greater in the young adult group than in the old adult 

group [Mdiff = 0.055, q < .010], and greater in the young adult group than in the middle-aged group 

[Mdiff = 0.0424, q < .050]. However, the average edge thickness of the middle-aged group did not 

differ from that of the old adult group [uncorrected p > 0.10], suggesting that inter-IC partial 

correlation strength declines with age and that this decline is more pronounced in early aging. 

Furthermore, the aforementioned age differences in edge weight were driven by intra-system, not 

inter-system, connections (Table 3). Our age comparisons of weighted efficiency metrics – global 

efficiency, network radius, network diameter, and characteristic path length – revealed a gradual 

loss of connectivity efficiency with age [efficiencyyoung > efficiencymiddle > efficiencyold; for details, 

see Table 3].  

Table 3. 
Global graph summary metrics, separated by age group, for binary and weighted graphs represnting inter-component 

functional connectivity. 
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Next, we investigated node centrality measures to determine whether there were any age 

differences in component importance to the rest of the connectome. Similar to the unweighted 

global metrics, the unweighted degree, closeness, and betweenness centralities did not show any 

statistically significant age differences [all qs > .10, see Suppl. Table 2]. For the unweighted 

eigenvector centrality, we observed one statistically significant age difference in our Mix2 node: 

lower centrality in old relative to young adults [EigenCentralityyoung = 0.9705, EigenCentralityold = 

0.405, q ≈ .050]. Weighted betweenness centrality also did not show any statistically significant age 

effects. However, unlike binary closeness centrality, weighted closeness centrality was reduced in 

old relative to young adults in all 21 RNS (Table 4). Age differences in weighted degree and/or 

eigenvector centrality were found in SM2, Vis1, Au, DM1, DM2, DM6, DA, EC2, Mix1, Mix2, and 

Mix4 RSNs (see Table 4 for details), further demonstrating that age effects are represented 

primarily by connectivity strength, not an outright presence or absence of functional connectivity. 

 

 

 

Table 4. 
Age differences in node centrality for weighted between-network functional connectivity graphs. Abbreviations: 

SM, somatomotor; Vis, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control. 
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To determine which edges were most responsible for the above age differences in weighted 

global summary metrics and weighted node centralities, we performed age comparisons of 

connectivity strength on each non-zero edge in our graphs. After correcting for multiple hypothesis 

testing (FDR < .05, 56-59 tests), age differences were found in young vs. old and young vs. middle-

aged, but not in middle-aged vs. old comparisons (Fig. 13, Table 5). These age effects were 

represented by 5 connectivity differences in the young vs. old comparison [SM2 ↔ Mix1, DM6 ↔ 

Mix4, Au ↔ Mix1, EC1 ↔ EC2, EC2 ↔ Mix4], and 3 connectivity differences in the young vs. 

middle-aged comparison [SM2 ↔ Mix1, EC2 ↔ Mix4, DM1 ↔ Mix3]. All but one (i.e., DM1 ↔ 

Mix3) differences in edge weight displayed a reduction in FC with age, and all but one (EC1 ↔ 

EC2) involved one of the transition multi-system ‘Mixed’ ICs. Because this study employed a novel 

graph estimation methodology and was exploratory in nature, we are also presenting age group 

differences in weight strength that survived uncorrected p < .01 statistical comparisons. Lowering 

the statistical threshold resulted in 8 additional edges showing age differences (Fig. 13, Table 5). 

More than half of those additional edges were in the middle-aged vs. old adult comparison. 

 

 

 

 

 

 

 

 

 young (r) middle (r) old (r) young vs. middle 

(uncorrected p) 
middle vs. old 

(uncorrected p) 
young vs. old 

(uncorrected p) 
FDR-corrected  

age differences 
        

SM2 ↔ Mix1 0.460 0.243 0.107 p < .001 n.s. p < .001 young > old 

young > middle 

EC2 ↔ Mix4 0.147 0.000 0.000 p < .002 n.s. p < .001 young > old 

young > middle 

 

EC1 ↔ EC2 0.270 0.211 0.094 n.s. p < .040 p < .003 young > old 

 

Au ↔ Mix1 0.173 0.088 0.000 n.s. n.s. p < .003 young > old 

 

DM6 ↔ Mix4 0.205 0.094 0.000 n.s. n.s. p < .005 young > old 

 

DM1 ↔ Mix3 0.000 0.127 0.103 p < .002 n.s. p < .040 young < middle 

 

Vis1 ↔ Vis2 0.433 0.271 0.271 p ≈ .010 n.s. p < .007 none 

 

DM1 ↔ DM3 0.000 0.131 0.150 p < .006 n.s. p < .020 none 

 

DM5 ↔ EC1 0.311 0.349 0.192 n.s. p < .002 p < .020 none 

 

DM3 ↔ DM6 0.233 0.257 0.103 n.s. p < .003 p < .030 none 

 

DM5 ↔ DM6 0.174 0.144 0.306 n.s. p < .005 p < .020 none 

 

SM2 ↔ SM3 0.317 0.366 0.192 n.s. p < .009 n.s. none 

 

Mix3 ↔ Mix4 0.000 0.115 0.000 p < .020 p < .010 n.s. none 

 

	

Table 5. 
Age differences in edge connectivity strength for weighted between-IC functional connectivity graphs. Only 

edges that survived the uncorrected p < .01 threshold in at least one age comparison are shown.  Abbreviations: 

SM, somatomotor; Vis, visual; Au, auditory; DM, default mode; DA, dorsal attention; EC, executive control. 

This table accompanies Fig. 13. 
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Fig. 13. Graphical representations of uncorrected (top) and FDR-corrected (bottom) age differences in inter-IC 

functional connectivity. Red edge color represents lower functional connectivity in the older group; blue edge color 

represents greater functional connectivity in the older group. Edge thickness represents the magnitude of functional 

connectivity differences in each age comparison. Abbreviations: SM, somatomotor; V, visual; Au, auditory; DM, 

default mode; DA, dorsal attention; EC, executive control. See Fig. 2 for anatomical profiles of each node/RSN. 
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DISCUSSION 

In the current study, we investigated age differences for three primary features in ICA-based 

RSN decompositions: network amplitude, spatial topography of network sources, and inter-

component functional interactions. For RSN amplitude, our findings led to three main conclusions: 

(1) BOLD amplitude is negatively associated with age in all networks, and a single process might 

underly these global amplitude trends; (2) sensorimotor networks, and not frontal and parietal 

association networks, showed the steepest amplitude reduction with age; (3) compared to young 

adults, old adults showed reduced inter-individual variability in network amplitude. For 

RSN/component topography, age differences in network structure were modest, and except for a 

few clusters in the parietal association areas, represented reduced intra-network connectivity. 

Finally, our age comparisons of inter-component functional connectivity revealed a large degree of 

age invariance in inter-network interactions. Where present, age differences in inter-component FC 

were captured by weighted, as opposed to unweighted, graph summary metrics. Together, weighted 

graph summary metrics indicate weakened inter-system (e.g., visual ↔ default mode, somatomotor 

↔ attention) communication in old age, driven by age differences in functional communication via 

‘Mixed’ (or multi-system) network components. To our best knowledge, this is the first high-field 

RS-fMRI study to provide such a comprehensive overview of alterations in the human brain’s 

functional architecture for the entire adult lifespan. 

 

Network amplitude and age 

Our results showed that healthy cognitive aging was associated with a reduction of BOLD 

signal amplitude in every brain system. These findings are consistent with two previous studies that 

also used ICA to study age effects on FC (Allen et al., 2011; Zonneveld et al., 2019). In the first 

study, Allen et al. (2011) showed that aging was associated with a widespread reduction in low-

frequency BOLD signal power (< 0.15 Hz). However, Allen et al. (2011) focused predominantly on 

maturation and early aging, with 80% of their sample falling in the 13-30 age range, and only 7 

(~1.2%) subjects older than 50 at the time of data collection. In the second study, Zonneveld et al. 

(2019) found that advanced age was associated with lower mean signal amplitude in most RSNs; 

however, the authors did not study the entire adulthood and sampled older adults exclusively. 

In the current study, we demonstrated that the fMRI signal amplitude of most RSNs declines 

linearly throughout the entire adult lifespan. In networks with non-linear trajectories, we observed a 
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rapid reduction of BOLD amplitude in young adulthood, followed by a more gradual decline in 

middle and late adulthood. Furthermore, we demonstrated that a single source of variance could 

explain age differences in BOLD amplitude in most RSNs, suggesting that a common set of 

biological processes might be responsible for these BOLD amplitude effects. According to our 

results, the largest young vs. old amplitude differences were localized primarily within visual and 

somatomotor RSNs. Because previous structural imaging studies showed that GM in the primary 

sensorimotor regions is not as vulnerable to age-related atrophy as frontal GM (Fjell et al., 2009a, 

2009b; Leong et al., 2017; McDonald et al., 2009; Raz et al., 1997, 2004, 2005, 2010; Resnick et 

al., 2003), it is unlikely that cortical atrophy is the only cause of declining RSN amplitude in old 

age. Finally, we would like to point out that RSN amplitude among old adults was not only smaller 

but also had lower inter-individual variability. 

Most previous studies on the relationship between BOLD amplitude and age were task-

based, and not resting-state (Cabeza et al., 2002, 2004; Grady et al., 1994; D’Esposito et al., 1999; 

Fabiani et al., 2014; Gutchess et al., 2005; Hesselmann et al., 2001; Hutchinson et al., 2002; Levine 

et al., 2000; Logan et al., 2002; Madden et al., 1996; Park et al., 2003, 2004; West et al., 2019). 

Experiments that employed motor paradigms to investigate age effects on the sensorimotor cortex 

reported: (1) smaller activation clusters in old adults (D’Esposito et al., 1999, 2003; Handwerker et 

al., 2007; Hesselmann et al., 2001; Mehagnoul-Schipper et al., 2002; Riecker et al., 2006); (2) age 

differences in BOLD response timing and BOLD response shape (Handwerker et al., 2007; 

Stefanova et al., 2013; Taoka et al., 1998; West et al., 2019); and (3) elevated noise levels among 

the elderly, relative to task-evoked activity (D’Esposito et al., 1999; Kannurpatti et al., 2011). In the 

visual system, a wide variety of task-based neuroimaging experiments revealed reduced BOLD 

activation (Grady et al., 1994; Fabiani et al., 2014; Ross et al., 1997; West et al., 2019; Wright & 

Wise, 2018). These age effects were detected not only in fMRI experiments, but also in Positron 

Emission Tomography (PET) and functional Near-Infrared Spectroscopy (fNIRS) studies, which 

employed a wide variety of visual paradigms, ranging from pure perception to face matching, 

working/episodic memory, and visual attention (Ances et al., 2009; Buckner et al., 2000; Cabeza et 

al., 2004; Fabiani et al., 2014; Grady et al., 1994; Handwerker et al., 2007; Hutchison et al., 2013; 

Levine et al., 2000; Li et al., 2015; Madden et al., 1996; Park et al., 2003; Rieck et al., 2015; Ross et 

al., 1997; Spreng et al., 2010; Ward et al., 2015; West et al., 2019). Age differences in activation 

amplitude were also identified in brain regions belonging to the default system (Grady et al. 2006; 
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Lustig et al. 2003; Miller et al. 2008; Persson et al. 2007; Sambataro et al., 2010). However, the 

DMN’s activity differences during task-based studies were reported as reduced or failed 

deactivation in old adults since the default system is more active at rest than during cognitively 

demanding tasks (Park & Reuter-Lorenz, 2009; Persson et al., 2007, 2014; Raichle & Snyder, 

2007). The same biological changes might be responsible for amplitude differences in both resting-

state and task-based fMRI research. This idea is supported by evidence from Yan et al. (2011), who 

showed that – at least in the visual cortex – the magnitude of RS-fMRI fluctuations was predictive 

of task-induced activation. 

Each brain region’s BOLD signal time course represents a complex interplay of four 

dynamic factors: local blood volume, rate of local blood flow, local vascular reactivity, and local 

rate of cerebral metabolic oxygen utilization (CMRO2) (Cohen et al., 2004; Kim, 2018; Kim & 

Ogawa, 2012; Uludağ & Blinder, 2018; Uludağ et al., 2009; Wright & Wise, 2018). Reduced 

BOLD amplitude in old adults can be driven by lower cerebral blood flow (CBF), lower 

cerebrovascular reactivity (CVR), or higher CMRO2. It is well documented that aging causes 

substantial changes in the cerebral vasculature, including stiffening of the vessel walls, reduction of 

the capillary density, and thickening of the capillary basement membrane (for reviews see, 

D’Espotio et al., 2003; Farkas & Luiten, 2001; Wright & Wise, 2018). In vivo work using PET and 

Arterial Spin Labeling (ASL) methods showed that aging individuals display lower CBF and lower 

CVR, when compared to healthy young adults (Aanerud et al., 2012; Beason-Held et al., 2008; 

Bertsch et al., 2009; Chen et al., 2011; Galiano et al., 2019; Hutchison et al., 2013; Kety, 1956; Liu 

et al., 2013; Lu et al., 2011; Melamed et al., 1980; Peng et al., 2014; Wright & Wise, 2018; 

Yamaguchi et al., 1986). Consequently, age effects on RSN amplitude might be driven by 

cardiovascular risk factors (Aanerud et al., 2012; D’Esposito et al., 2003; Farkas & Luiten, 2001; 

Gagnon et al., 2015; Hillman, 2014; Kety et al., 1956; Liu, 2013; Melamed et al., 1980; Zonneveld 

et al., 2019). For instance, a recent whole-brain RS-fMRI study by Zonneveld et al. (2019) reported 

a positive relationship between RSN amplitude and systolic blood pressure. However, it is unlikely 

that age effects on RSN amplitude are driven exclusively by age differences in blood pressure. Only 

1 volunteer in our middle-aged cohort had a history of elevated blood pressure, while the other 30 

did not. Nonetheless, when compared to young adults, our middle-aged volunteers displayed lower 

group-level measures of RSN amplitude in multiple network components. Furthermore, a 

comparison of RSN amplitude between old adults with a history of high blood pressure to those 
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without did not reveal any amplitude differences in our RSN data (all uncorrected ps > .10). It is 

worth noting, however, that only individuals with no history of high blood pressure or those whose 

high blood pressure was controlled by medications or lifestyle adjustments were recruited for this 

study. To what extent our RSN amplitude results might generalize to a broader population with a 

more severe history of cardiovascular disease is a topic that merits further research. 

In addition to vascular factors, it is plausible that the aging process affects CMRO2, 

modulating the oxy-/deoxy-hemoglobin ratio in the regional cerebral vasculature, which in turn 

affects the fMRI-measured T2
* contrast. Unlike CBF and CVR, CMRO2 is a direct measure of 

neuronal metabolic demands (Cohen et al., 2004; D’Espotio et al., 2003; Kim, 2018; Kim & 

Ogawa, 2012; Uludağ & Blinder, 2018; Wright & Wise, 2018), and age differences in CMRO2 

likely represent differences in spiking rates and neurotransmitter trafficking (D’Espotio et al., 2003; 

Kim & Ogawa, 2012; Logothetis et al., 2001). Unfortunately, human imaging literature is 

inconclusive on the direction of CMRO2 changes in healthy aging: some studies (e.g., Aanerud et 

al., 2012) reported lower CMRO2 in old adults, while others reported the opposite pattern (e.g., Lu 

et al., 2011; Peng et al., 2014). Additional research, employing quantitative high-resolution (1.8-

mm isotropic or less) fMRI techniques, is needed to determine the exact cause of brain-wide age 

differences in RSN amplitude that were observed in this study. 

 

Functional connectivity and age 

By combining GIG-ICA with sparse graphical methods we demonstrated a substantial 

degree of age-invariance in network architecture, a result that is in agreement with recent non-ICA-

based RS-fMRI studies (e.g., Chan et al. 2017; Grady et al., 2016; Han et al., 2018). Specifically, 

almost half of our network components displayed no age differences in component structure, and 

among the ones that did, age effects were captured by small (2% of IC volume, on average) regional 

clusters. Similarly, age comparisons of various unweighted graph summary metrics in our inter-

component FC analyses revealed a relatively age-invariant graph structure. 

To our knowledge, only three other studies used GICA or similar techniques for 

investigating brain-wide age differences in network topography (Allen et al., 2011; Huang et al., 

2015; Vij et al., 2018). In the first such study, Allen et al. (2011) employed IC scaling methods 

similar to the ones used in our current work, and reported declining intra-network connectivity in 

every network that could not be fully accounted for by age-related volumetric differences in cortical 
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GM volume. This is similar to our observations: except for a few clusters, age effects on network 

topography could not be fully accounted for by age differences in regional GM volume, indicating 

that functional connectivity provides information about brain aging beyond what can be explained 

using cortical thickness/volume alone. In the second study, Huang et al. (2018) computed average 

intra-network connectivity metrics for the entire IC by collapsing spatial map intensity values 

across all voxels in a network. The authors reported negative associations between age and intra-IC 

connectivity in 5 RSNs: auditory, ventral default mode, right executive control, sensorimotor, and 

visual medial. No positive associations between age and spatial map intensity were detected. 

However, because the authors estimated age relationships for connectivity measures collapsed 

across all of IC’s voxels, it was not clear which of the IC’s regions were responsible for the 

aggregate age effects, and whether any of their network ICs disaplyed age-associated restructuring 

(i.e., some regions positively associated with age, and others negatively associated with age). In the 

third study, Vij et al. (2018) reported negative associations between RSN volume and age in most 

functional systems with sensorimotor (i.e., visual, somatomotor, auditory) networks being 

especially vulnerable to age-related decline. However, those negative associations between RSN 

volume and age were not limited to sensorimotor regions: executive, salience, and basal ganglia 

networks also displayed lower component volumes in aging adults. In addition, 2 network 

components — posterior default mode and central executive control — showed positive 

associations with age, indicating that at least in some cognitive regions of the brain there is a pattern 

of intra-network reorganization occurring throughout life, as opposed to an outright loss of network 

structure. Despite these insights, it should be noted that Vij et al. (2018) defined network volume as 

the number of voxels in a subject’s component map above a predifined z-statistic cut-off. 

Consequently, it was not clear whether age differences in RSN volumes were caused by age 

differences in network structure or age differences in network amplitude. 

Rather than z-scoring our IC spatial maps, we normalized our IC spatial maps by BOLD 

amplitude, which more accurately captures true group differences in spatial features (Allen et al., 

2011, 2012). We also performed voxel-based age comparisons, enabling us to detect both increases 

and decreases in intra-component FC. According to our age comparisons of IC topography, the 

three largest age-relationship clusters were localized within the frontal lobes, and all three showed 

negative linear relationships between the amplitude-normalized SM intensity and age. Two of those 

clusters belonged to the ‘Mixed 4’ network component and were located primarily within the 
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bilateral inferior frontal gyrus and bilateral orbitofrontal cortex. The third cluster represented 

bilateral anterior cingulate and bilateral paracingulate regions of the DMN’s frontal subsystem. In 

addition to frontal lobes we identified age relationship clusters in the parietal, visual, and temporal 

regions of the brain. Of these, parietal networks deserve special attention since only the parietal 

association cortex contained clusters representing both positive and negative correlations to age, 

indicating age-related network restructuring in those regions. A number of recent studies, 

employing different network estimation techniques, reported similar age effects on functional 

organization of the parietal association cortex (Grady et al., 2016; Meunier et al., 2009; Onoda & 

Yamaguchi, 2013; Park et al., 2010). 

Initial imaging evidence for altered network dynamics in old age was demonstrated in task-

based fMRI and PET experiments, which showed an over-recruitment of frontal and parietal 

association cortices in older cohorts in a wide variety of cognitive tasks (Cabeza et al., 2002, 2004; 

Davis et al., 2008; Grady et al., 1994; Gutchess et al., 2005; Li et al., 2015; Logan et al., 2002; 

Rypma & D’Esposito, 2000; Rajah & D’Esposito, 2005; Schneider-Garces et al., 2010; Spreng et 

al., 2010; Sugiura, 2016). Age effects on network dynamics were reported even in simple motor 

experiments, during which older adults showed greater activity in the ipsilateral somatomotor 

cortex, supplementary motor and premotor areas, basal ganglia, as well as association regions in the 

parietal cortex (Kim et al., 2010; Riecker et al., 2006; Tsvetanov et al., 2015). This additional 

activity seems to be compensatory in nature and plays a vital role in maintaining cognitive 

performance in old age (Fera et al., 2005; Park & Reuter-Lorenz, 2009; Rossi et al., 2004; Solé-

Padullés et al., 2006; Schneider-Garces et al., 2010). 

Recently, interest has grown in graph theory and its ability to summarize age effects on the 

brain’s functional architecture (Rubinov & Sporns, 2010; Damoiseaux, 2017; Wig, 2017). In 

general, brain aging studies that employed graphical models to study FC indicate functional 

dedifferentiation among old adults, typically manifesting as a less distinct or less stable grouping of 

certain brain areas into network communities (Chan et al., 2014; Chong et al., 2019; Geerligs et al., 

2015; Grady et al., 2016; Keller et al., 2015; Onoda & Yamaguchi, 2013; Spreng et al., 2016; Vij et 

al., 2018). However, since almost all previous connectivity studies that relied on graphical methods, 

estimated their graphs using bivariate, not partial correlations, their results may have been 

confounded by indirect connections (Epskamp & Fried, 2018; Smith et al., 2011). To our best 
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knowledge, this is the first study to combine sparse graphical estimation methods with ICA-based 

network extraction to investigate age effects on inter-component FC. 

Consistent with other graph-based FC studies of brain aging, our weighted efficiency-related 

graph summary metrics (i.e., global efficiency, characteristic path length, network diameter, 

network radius) suggest that functional communication in the human brain becomes increasingly 

inefficient with age [Efficiencyyoung > Efficiencymiddle-aged > Efficiencyold]. Furthermore, as 

evidenced by weighted closeness and betweenness centralities, age differences were primarily 

characterized by a widespread reduction in network integration in old relative to young adults – and 

not by any particular IC’s importance to the overall information flow in the brain. Despite this 

broad loss of network efficiency in old age, our unweighted graph summary metrics indicate that 

the fundamental network architecture is stable in young, middle, and late adulthood. We also want 

to point out that age differences in the overall edge weight were more pronounced in young vs. 

middle-aged comparisons than in middle-aged vs. old comparisons indicating relatively early aging 

effects on FC. In general, intra-system FC strength was more vulnerable to aging than inter-system 

FC strength; however, certain inter-system connections, especially those connected to the “Mixed” 

ICs, also showed age-associated FC decline that was evident by middle adulthood. 

Contrary to some previous research (e.g., Betzel et al., 2014; Chan et al., 2014; Geerligs et 

al., 2015; Spreng et al., 2016), we did not find substantial evidence for greater inter-system 

integration in old age: almost all edges with age differences in our FDR-corrected age comparisons 

represented connections between one of the clearly defined RSNs and one of the ‘Mixed’ (i.e., 

multi-system) RSNs. Because those ‘Mixed’ RSNs act as hubs that interconnect multiple functional 

systems with each other, declining FC between these multi-system RSNs and other systems, is also 

indicative of less efficient network architecture. Of particular note here is the loss of connectivity 

between the DM6 and Mix4 components with age. Structurally, the Mix4 IC showed the largest 

topographical age differences, especially in the bilateral inferior frontal gyrus. As these regions 

become increasingly disconnected from the rest of the component with age, the entire IC loses its 

connectivity to the DM6 network. With a less strict statistical threshold (uncorrected p < .010), we 

identified additional age differences in inter-component connectivity, primarily among various 

default mode sub-systems (Andrews-Hanna et al., 2014; Christoff et al., 2016). Early FC 

experiments showed that communication between distant areas of the DMN, especially between the 

medial frontal and posterior cingulate/retrosplenial hubs, declines with age (Andrews-Hanna et al., 
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2007; Damoiseaux et al. 2008; Wu et al., 2011). More recent work, employing not only cross-

sectional but also longitudinal designs, produced mixed results with some groups supporting the 

early findings (e.g., Geerligs et al., 2015; Grady et al., 2016; Ng et al., 2016) and others finding no 

age effects (Hirsiger et al., 2016; Persson et al. 2014). Our inter-component connectivity results 

demonstrated a relatively complex pattern of age-related network reorganization within this system. 

Age-related shifts in the DMN’s organization could represent age differences in spontaneous 

thought processes or changes in network architecture away from long-range communication to 

favour anatomically proximal short-range communication (as suggested by Tomasi & Volkow, 

2012). Even though our data suggest age differences in the architecture of the default mode system, 

these findings should be interpreted with caution since they did not survive the FDR correction for 

multiple hypothesis testing. 

 

Limitations 

In light of our results on network amplitude, caution should be exercised when interpreting 

such measures without additional knowledge of how non-BOLD contribution to the fMRI time 

series is affected in healthy aging. For similar reasons, findings from other studies on functional 

dedifferentiation with age should also be interpreted with caution, since age effects on BOLD 

amplitude (and consequently temporal SNR) might be responsible for lower correlation strength in 

old adults, which in turn would result in less stable estimates of network community structure. 

Because of technical and computational limitations, we relied on linear and quadratic regression 

models in our initial screening for topographical differences in component topograhy. We do not 

consider this to be a major issue in our study as most linear, curved, and u-shaped patterns can be 

detected using quadratic and linear fits.  To further mitigate the downsides of linear and quadratic 

fits (Aghamohammadi-Sereshki et al., 2019; Fjell et al., 2010), all clusters showing statistical age 

differences were followed-up with fractional polynomial modelling. 

It is important to keep in mind that head motion has been shown to modulate FC in multiple 

RSNs (Mowinckel et al., 2012; Power et al., 2012; Van Dijk et al., 2012). As is typically reported in 

the field (e.g., Madan, 2018), our older participants were not as still inside the scanner as younger 

ones. Since we employed some of the most rigorous techniques for removing head motion artifacts 

in our customized preprocessing pipeline, we believe that our findings on age differences in RSN 

structure represent true age differences in neurovascular coupling and functional connectomics 
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(Mowinckel et al., 2012; Power et al., 2012; Van Dijk et al., 2012). Additional research, employing 

physical restrains (Power et al., 2019), as opposed to post-acquisition clean-up techniques, is 

needed to eliminate any residual concerns about the effects of head motion on FC studies of brain 

aging. 

Lastly, we need to emphasize that our study was cross-sectional. A longitudinal sample is 

needed to confirm our results as true aging effects, rather than a byproduct of cohort differences. 

Future research would benefit from addressing the issue of sex differences in brain aging. Even 

though we did not attain sufficient statistical power to perform sex comparisons in our inter-

network connectivity graphs (< 15 males in middle-aged and old adult groups), we were able to test 

for male vs. female differences in network topography and BOLD amplitude. Those analyses did 

not reveal any statistically significant sex effects or interactions. However, in those tests too, 

potential consequences of limited statistical power come to mind: it is plausible that sex differences 

in brain aging are subtle, necessitating a larger sample size for sex effect detection using statistical 

testing. 

 

 

Acknowledgements: This project was supported by the Canadian Institutes of Health Research 

(CIHR) operating grant (MOP11501) and the Natural Sciences and Engineering Research Council 

of Canada (NSERC) operating grant (06186) to N.V.M. S.H. was supported by CIHR Doctoral 

Scholarship. The work of I.C. was partially supported by the NSERC operating grant (06638) and 

the Xerox Faculty Fellowship, Alberta School of Business. 

 

 

 

 



  
45 

 

  

References 

Aanerud, J., Borghammer, P., Chakravarty, M. M., Vang, K., Rodell, A. B., Jónsdottir, K. Y., 

Møller, A., Ashkanian, M., Vafaee, M. S., Iversen, P., Johannsen, P., & Gjedde, A. (2012). 

Brain energy metabolism and blood flow differences in healthy aging. Journal of Cerebral 

Blood Flow and Metabolism, 32, 1177–1187. 

 

Aghamohammadi-Sereshki, A., Hrybouski, S., Travis, S., Huang, Y., Olsen, F., Carter, R., 

Camicioli, R., & Malykhin, N. V. (2019). Amygdala subnuclei and healthy cognitive aging. 

Human Brain Mapping, 40, 34–52. 

 

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlicek, M., 

Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., 

Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J., Clark, V. P., Feldstein Ewing, S. W., 

Filbey, F., Ford, C. C., Hutchison, K., Jung, R. E., Kiehl, K. A., Kodituwakku, P., Komesu, 

Y. M., Mayer, A. R., Pearlson, G. D., Phillips, J. P., Sadek, J. R., Stevens, M., Teuscher, U., 

Thoma, R. J., & Calhoun, V. D. (2011). A baseline for the multivariate comparison of 

resting-state networks. Frontiers in Systems Neuroscience, 5, 2. 

 

Allen, E. A., Erhardt, E. B., Eichele, T., Mayer, A. R., and Calhoun, V. D. (2010). “Comparison of 

pre-normalization methods on the accuracy of group ICA results”, in 16th Annual Meeting 

of the Organization for Human Brain Mapping, 6–10 June, Barcelona, Spain. 

 

Allen, E. A., Erhardt, E. B., Wei, Y., Eichele, T., & Calhoun, V. D. (2012). Capturing inter- subject 

variability with group independent component analysis of fMRI data: a simulation study. 

NeuroImage, 59, 4141–4159. 

 

Ambler, G., & Royston, P. (2001). Fractional polynomial model selection procedures: investigation 

of type I error rate. Journal of Statistical Computation and Simulation, 69, 89–108. 

 

Ances, B. M., Liang, C. L., Leontiev, O., Perthen, J. E., Fleisher, A. S., Lansing, A. E., & Buxton, 

R. B. (2009). Effects of aging on cerebral blood flow, oxygen metabolism, and blood 

oxygenation level dependent responses to visual stimulation. Human Brain Mapping, 30, 

1120–1132. 

 

Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric 

deformations in EPI time series. NeuroImage, 13, 903–919. 

 

Andrews-Hanna, J. R. (2012). The brain's default network and its adaptive role in internal 

mentation. Neuroscientist, 18, 251–270. 

 

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & 

Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 

56, 924–935. 

 



  
46 

 

  

Arbabshirani, M. R., Damaraju, E., Phlypo, R., Plis, S., Allen, E., Ma, S., Mathalon, D., Preda, A., 

Vaidya, J. G., Adali, T., & Calhoun, V. D. (2014). Impact of autocorrelation on functional 

connectivity. NeuroImage, 102 Pt 2, 294–308. 

 

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image 

registration with cross-correlation: evaluating automated labeling of elderly and 

neurodegenerative brain. Medical Image Analysis, 12, 26–41. 

 

Avants, B., & Gee, J. C. (2004). Geodesic estimation for large deformation anatomical shape 

averaging and interpolation. NeuroImage, 23 Suppl 1, S139–50. 

 

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and 

manipulating networks. In: Third International AAAI Conference on Weblogs and Social 

Media, pp. 361e362. Available at: http://aaai.org/ocs/ index.php/ICWSM/09/paper/view/154. 

 

Beason-Held, L. L., Kraut, M. A., & Resnick, S. M. (2008). I. Longitudinal changes in aging brain 

function. Neurobiology of Aging, 29, 483–496. 

 

Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for 

functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23, 137– 

152. 

 

Bell, A. J., & Sejnowski, T. (1995). An information-maximization approach to blind separation and 

blind deconvolution. Neural Computation, 7, 1129–1159. 

 

Bertsch, K., Hagemann, D., Hermes, M., Walter, C., Khan, R., & Naumann, E. (2009). Resting 

cerebral blood flow, attention, and aging. Brain Research, 1267, 77–88. 

 

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural 

and functional connectivity among resting-state networks across the human lifespan. 

NeuroImage, 102 Pt 2, 345–357. 

 

Birkes, D., & Dodge, Y. (1993). Alternative methods of regression. Hoboken, NJ, USA: John Wiley 

& Sons, Inc. 

 

Brown, T. A., Di Nardo, P. A., Lehman, C. L., & Campbell, L. A. (2001). Reliability of DSM-IV 

anxiety and mood disorders: implications for the classification of emotional disorders. 

Journal of Abnormal Psychology, 110, 49–58. 

 

Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause 

decline and reserve factors that compensate. Neuron, 44, 195–208. 

 

Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic 

functional connectivity MRI. Nature Neuroscience, 16, 832–837. 

 



  
47 

 

  

Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E., & Morris, J. C. (2000). Functional 

brain imaging of young, nondemented, and demented older adults. Journal of Cognitive 

Neuroscience, 12 Suppl 2, 24–34. 

 

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural 

and functional systems. Nature Reviews. Neuroscience, 10, 186–198. 

 

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical 

information-theoretic approach (2nd ed.). New York: Springer-Verlag. 

 

Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: 

compensatory brain activity in high-performing older adults. NeuroImage, 17, 1394–1402. 

 

Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task- 

independent and task-specific age effects on brain activity during working memory, visual 

attention and episodic retrieval. Cerebral Cortex, 14, 364–375. 

 

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group 

inferences from functional MRI data using independent component analysis. Human Brain 

Mapping, 14, 140–151. 

 

Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., Song, X.-W., Xia, M.-R., 

Shu, N., Dong, Q., Milham, M. P., Castellanos, F. X., Zuo, X.-N., & He, Y. (2014). 

Topological organization of the human brain functional connectome across the lifespan. 

Developmental Cognitive Neuroscience, 7, 76–93. 

 

Chan, M. Y., Alhazmi, F. H., Park, D. C., Savalia, N. K., & Wig, G. S. (2017). Resting-state 

network topology differentiates task signals across the adult life span. Journal of 

Neuroscience, 37, 2734–2745. 

 

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased 

segregation of brain systems across the healthy adult lifespan. Proceedings of the National 

Academy of Sciences of the United States of America, 111, E4997–E5006. 

 

Chen, J. J., Rosas, H. D., & Salat, D. H. (2011). Age-associated reductions in cerebral blood flow 

are independent from regional atrophy. NeuroImage, 55, 468–478. 

 

Chong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J.-H., Lo, J. C., Chee, M. W. L., & Zhou, J. H. 

(2019). Longitudinal changes in the cerebral cortex functional organization of healthy 

elderly. Journal of Neuroscience, 39, 5534–5550. 

 

Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind- 

wandering as spontaneous thought: a dynamic framework. Nature Reviews. Neuroscience, 

17, 718–731. 

 



  
48 

 

  

Cohen, E. R., Rostrup, E., Sidaros, K., Lund, T. E., Paulson, O. B., Ugurbil, K., & Kim, S.-G. 

(2004). Hypercapnic normalization of BOLD fMRI: comparison across field strengths and 

pulse sequences. NeuroImage, 23, 613–624. 

 

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. 

O. J. (2015). State of the aRt personality research: A tutorial on network analysis of 

personality data in R. Journal of Research in Personality, 54, 13–29. 

 

Craddock, R. C., Jbabdi, S., Yan, C.-G., Vogelstein, J. T., Castellanos, F. X., Di Martino, A., Kelly, 

C., Heberlein, K., Colcombe, S., & Milham, M. P. (2013). Imaging human connectomes at 

the macroscale. Nature Methods, 10, 524–539. 

 

Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., 

McGuire, P., & Bullmore, E. T. (2013). Cognitive relevance of the community structure of 

the human brain functional coactivation network. Proceedings of the National Academy of 

Sciences of the United States of America, 110, 11583–11588. 

 

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. 

NeuroImage, 160, 32–40. 

 

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, 

S. M., & Rombouts, S. A. R. B. (2008). Reduced resting-state brain activity in the “default 

network” in normal aging. Cerebral Cortex, 18, 1856–1864. 

 

Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The 

posterior-anterior shift in aging. Cerebral Cortex, 18, 1201–1209. 

 

Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. Neuroscientist, 17, 

107–123. 

 

D'Esposito, M., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the 

coupling of neural activity to the bold hemodynamic response. NeuroImage, 10, 6–14. 

 

D'Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with 

ageing and disease: a challenge for neuroimaging. Nature Reviews. Neuroscience, 4, 863– 

872. 

 

Di Nardo, P. A., Brown, T. A., & Barlow, D. H. (1994). Anxiety Disorders Interview Schedule for 

DSM-IV—Lifetime Version (ADIS-IV-L). Psychological Corporation, San Antonio, TX. 

 

Dielman, T. E. (2005). Least absolute value regression: recent contributions. Journal of Statistical 

Computation and Simulation, 75, 263–286. 

 

Drton, M., & Perlman, M. D. (2004). Model selection for Gaussian concentration graphs. 

Biometrika, 91, 591–602. 

 



  
49 

 

  

Du, Y., Allen, E. A., He, H., Sui, J., Wu, L., & Calhoun, V. D. (2016). Artifact removal in the 

context of group ICA: A comparison of single-subject and group approaches. Human Brain 

Mapping, 37, 1005–1025. 

 

Du, Y., & Fan, Y. (2013). Group information guided ICA for fMRI data analysis. NeuroImage, 69, 

157–197. 

 

Du, Y., Lin, D., Yu, Q., Sui, J., Chen, J., Rachakonda, S., Adali, T., & Calhoun, V. D. (2017). 

Comparison of IVA and GIG-ICA in brain functional network estimation using fMRI data. 

Frontiers in Neuroscience, 11, 267. 

 

Duff, E. P., Makin, T., Cottaar, M., Smith, S. M., & Woolrich, M. W. (2018). Disambiguating brain 

functional connectivity. NeuroImage, 173, 540–550. 

 

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. 

Psychological Methods, 23, 617–634. 

 

Fabiani, M. (2012). It was the best of times, it was the worst of times: a psychophysiologist's view 

of cognitive aging. Psychophysiology, 49, 283–304. 

 

Fabiani, M., Gordon, B. A., Maclin, E. L., Pearson, M. A., Brumback-Peltz, C. R., Low, K. A., 

McAuley, E., Sutton, B. P., Kramer, A. F., & Gratton, G. (2014). Neurovascular coupling in 

normal aging: a combined optical, ERP and fMRI study. NeuroImage, 85 Pt 1, 592–607. 

 

Fan, J., & Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle 

Properties. Journal of the American Statistical Association, 96, 1348–1360. 

 

Farkas, E., & Luiten, P. G. M. (2001). Cerebral microvascular pathology in aging and Alzheimer’s 

disease. Progress in Neurobiology, 64, 575–611. 

 

Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., Lee, S., Zoltick, B., 

Meeter, M., Myers, C. E., Gluck, M. A., Weinberger, D. R., & Mattay, V. S. (2005). Neural 

mechanisms underlying probabilistic category learning in normal aging. Journal of 

Neuroscience, 25, 11340–11348. 

 

Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., de Lange, A.-M. G., Amlien, I. K., 

Røgeberg, O. J., & Walhovd, K. B. (2015). Functional connectivity change across multiple 

cortical networks relates to episodic memory changes in aging. Neurobiology of Aging, 36, 

3255–3268. 

 

Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., 

Brewer, J. B., & Dale, A. M. (2009a). One-year brain atrophy evident in healthy aging. 

Journal of Neuroscience, 29, 15223–15231. 

 



  
50 

 

  

Fjell, A. M., Walhovd, K. B., Westlye, L. T., Østby, Y., Tamnes, C. K., Jernigan, T. L., Tamnes, C. 

K., Jernigan, T. L., Gamst, A., & Dale, A. M. (2010). When does brain aging accelerate? 

Dangers of quadratic fits in cross-sectional studies. NeuroImage, 50(4), 1376–1383. 

 

Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D. H., 

Greve, D. N., Fischl, B., Dale, A. M., & Walhovd, K. B. (2009b). High consistency of 

regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19, 2001– 

2012. 

 

Freedman, D., & Lane, D. (1983). A Nonstochastic Interpretation of Reported Significance Levels. 

Journal of Business & Economic Statistics, 1, 292. 

 

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the 

graphical lasso. Biostatistics, 9, 432–441. 

 

Galiano, A., Mengual, E., García de Eulate, R., Galdeano, I., Vidorreta, M., Recio, M., Riverol, M., 

Zubieta, J. L., & Fernández-Seara, M. A. (2019). Coupling of cerebral blood flow and 

functional connectivity is decreased in healthy aging. Brain Imaging and Behavior. 

http://doi.org/10.1007/s11682-019-00157-w 
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