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Abstract  

Light-weight, flexible and highly porous ceramic are very attractive to engineering applications due 

to their good inertness, stable and excellent mechanical properties. We here report such SiC nanowire 

(SiCNW) sponges and demonstrate their multi-functionalities. They were simply generated by 

reacting SiO2 with the sustainable kitchen sugar, using NH4Cl as a blowing agent. The as-grown 

highly porous SiCNW sponges exhibit a core-shell structure, with an extremely low density in the 

range of 115-125 mg/cm3 (against 3.21 g/cm3 for the bulk). The core part is comprised of short and 

tangled SiC whiskers with SiC flakes embedded, whilst the shell layer consists of numerous smooth 

SiCNWs of hundred micrometres long. These sponges exhibit a compressive modulus of ~1.35 MPa 

and recoverability under cyclic compression loading for 100 cycles at a strain of 20%. Meanwhile, 

the SiCNW sponges exhibit interesting electromechanical sensing capability with a gauge factor up 

to 87 and stable wide-range compression-resistance responses that are hundreds of times better than 

those of carbon-based composite sensors. Furthermore, the high porosity (96.1% - 96.4%) of sponges 

gives rise to a very low thermal conductivity of merely 1.01 W/mK at room temperature, 

demonstrating their excellent thermal insulation potential. These light-weight, highly porous, 

thermally insulating features of the SiCNW sponges can be further exploited in electromechanical 

micro-devices for monitoring structural damage or capturing impacts, at high temperature 

environment. 
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Introduction 

Recently, three dimensional nanostructures with electromechanical sensing capabilities have been 

exploited as piezoresistive sensors for pressure detection,1 vibration and noise monitoring,2 human 

motion capturing,3 and interactive wearable devices.4 Typically, the resistive pressure-sensors show 

advanced features of huge simplicity and high energy-efficiency.5 Composites pressure sensors made 

from soft polymers with a conductive filler phase such as graphene or carbon nanotubes have been 

intensively investigated, however the aggregation issue of these carbon materials due to their high 

aspect ratios results in a series of drawbacks including non-linearity, hysteresis effect, and the drift 

of resistance value that caused by unrecoverable plastic deformation.6,7,8 Another shortcoming is that 

the limited stiffness of the carbon-polymer composites significantly narrows its dynamic sensing 

ranges, which made them suitable only for very small loads detection.9 Moreover, their instability at 

high temperatures suppresses their utilisations for demanding conditions. Metallic sensors that are 

commonly used in structural strain monitoring suffer from limited measuring strains of less than 2%, 

despite their appreciable good linearity and sensitivity.6   

In this context, light-weight and resilient porous ceramic sponges that consist of numerous tangled 

ceramic nanofibers are considered as an ideal alternative since they possess competent mechanical 

strength, resistance to brittleness, and certain degree of compressive recoverability. The elasticity-

dependant electrical conductivity of TiO2 nanofibrous sponges during repeated compression has been 

reported.10 Nanostructured silicon carbide (SiC) with large specific surface area,11 good thermal 

stability, strong chemical inertness,12 and superior thermal insulation performance compared with its 

dense and bulk counterpart,13,14 has been considered as a promising candidate for sensing components 

in microelectromechanical systems (MEMS).15 

As one of the simplest and most cost-effective approaches, in-situ carbothermal reduction has been 

an effective technique for SiC nanomaterials synthesis.16 Based on the low-cost silicon oxide (SiO2, 

SiO, or SiOC), various forms of porous carbon template (graphene foam (GF),17,18 carbonised 

dough13) were used to create porous SiC via carbonisation.12 The resultant structures strongly depend 

on the initial C/SiO2 matrix and interaction between reagents. However the control of SiC crystal 

growth and the formation of porous structure at high temperatures remain challenging, since improper 

product structures could lead to poor mechanical properties.19,20 To achieve SiCNW sponges with 

better shape stability, efforts have been focused on the growth of SiC nanowires on substrates such 

as C/C composites,21 and macroscopic SiC host.22 Electrospinning has emerged as a frequently used 

technique for producing SiO2-containing polymer nanowires, which can be used as starting materials 

in the carbothermal reaction for SiC nanowire formation.23,24 Wang et al. synthesised well-aligned 
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SiC nanofibers through carbothermal reaction of silicon and electrospun PAN precursor.25 However, 

electrospun fibres are generally created in the form of a close-packed membrane so they cannot easily 

be transformed to 3D structures, thereby restricted their wide applications.10 To overcome this, 

additional freeze-casting technique was required to assemble them into 3D aerogels.26 Hence, a 

simple and efficient approach for the development of SiCNW sponges is needed. 

Inspired by a facile template/catalyst-free sugar-blowing technique,27,28 which created the 3D strutted 

graphene (SG), this study demonstrates the generation of SiCNW sponges via a one-step in-situ 

template/catalyst-free carbothermal reaction using SiO2 and sugar-derived carbon. The 

microstructure, mechanical properties, and thermal conductivity of the as-obtained SiCNW sponges 

will be investigated comprehensively, and the pressure-dependent electrical responses will be 

illustrated for the first time, which makes an original contribution to utilising SiCNW sponges as a 

pressure sensor. 

Experimental methods 

SiCNW sponge fabrication 

The NH4Cl porogen (Sigma-Aldrich, UK, ≥99.5% purity,) was first mixed with sugar (kitchen-use 

sugar from Whitworths Co.) at a weight ratio of 1:1. The granular NH4Cl/sugar mixture were 

grounded into fine powders before being blended with SiO2 powder (approx. 99%, particle size: 0.5-

10 µm, Sigma-Aldrich) at different weight ratios, and the mixed powders were then subjected to a 

pressure at 5 bar using a mould with a dimension of 12.5 × 25 × 4.5 mm2, to prepare the green bodies. 

This green body was finally treated at 1500 °C, at a ramping rate of 5 °C/min and a dwell time of 4 h 

in Ar atmosphere (flow rate 70 ml min-1). To obtain pure SiC sponges from the as-synthesised SiC/C 

composites, a further thermal treatment at 800 °C for 2 h in air was performed to remove the 

superfluous carbon via oxidation. 

Characterisation 

The XRD powder diffraction patterns were recorded on a Bruker D8 Advance diffractometer with a 

Cu Kα radiation (λ = 0.154 nm, operated at 40 kV and 40 mA), at a time interval of 1 s and a step 

size of 0.02°, within the 2θ range from 10° to 80°. ICDD cards No. 01-089-2352 and 01-075-0254 

were used for the identification of α-SiC and β-SiC, respectively. Their weight percentage was 

determined via the Rietveld refinement method.  SEM observations were performed using a Hitachi 

S3200N SEM-EDS machine. TEM investigations were carried out using a JEM-2100 TEM, operated 

at 200 kV. For the TEM sample preparation, the crushed SiC samples were ultrasonically dispersed 

in ethanol for 10 min and the suspension was then dropped onto a holey carbon coated copper grid 
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(300 mesh, Agar). Thermal gravimetric analysis was conducted using a TA SDT Q600 TGA-DSC 

instrument, at a ramping rate of 10 °C min−1 under an air environment. Fourier-transform infrared 

(FTIR) spectroscopy was conducted by means of a Tensor-27 FTIR spectrometer in the wavenumber 

range of 2000-500 cm−1. 

The cyclic compression test of SiC nanowire sponges at a pre-set strain of 20% was carried out on a 

Lloyds EZ20 advanced universal mechanical testing system, using a 500 N detection cell at a loading 

rate of 8 mm min-1.  

The pressure-dependent electrical response was analyzed by KEITHLEY 2612B System Sourcemeter 

Instruments that connected with an Instron ElectroPlus E10000 All-Electric Dynamic Test Instrument 

and a computer for data collection. The sample was placed between two parallel copper plate 

electrodes. The dynamic resistance responses of the sensor system were examined by applying a 

cyclic compressive load on the sample at 1 Hz between 50 N and 250 N for 400 s. 

Thermal diffusivity evaluations of the nanocomposites were conducted on a NETZSCH LFA 467 

HyperFlash machine. Prior to testing, the 1 cm2 samples were spray-coated with a thin layer of 

graphite, to improve the signal to noise ratio and enhance the light emission/absorbance during 

analyses. The thermal conductivity (λ) was extrapolated from the dataset obtained from thermal 

diffusivities (α), using λ = αρCp, where ρ and Cp represent the density and specific heat capacity of 

the sample, separately. An average value was obtained from the software after 3 runs. 

Results and Discussion 

1. Fabrication of SiCNW sponges  

The starting materials containing sugar and SiO2 with different weight ratios (1.25:1, 1.5:1, 1.75:1, 

2:1) were mechanically mixed, and NH4Cl with the same weight of sugar was added as the porogen. 

The mixture was pressed into rectangular blocks of 12.5 × 25 mm2 prior to sintering during which the 

in-situ carbothermal reaction took place. Our prerequisite results based on the XRD analyses (Figure 

S1) showed that a sugar/SiO2 weight ratio of at least 1.75:1 was enough for the depletion of SiO2 

powders. As shown in Figure 1, the compacted green body led to little shrinkage and good 

morphology control over the final products. The bulk densities of resultant light-green SiCNW 

sponges range from 115 mg cm-3 to 125 mg cm-3, and the theoretical porosity is estimated using the 

following equation: 

Pt = (1 - 
Pb

Pd
) × 100% 
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Where the Pt, Pb, and Pd represent the porosity, bulk density, and particle density, respectively. The 

calculated porosity of the foams is 96.1% - 96.4%.  

During sintering, with the increase of temperature at a controlled rate of 5 °C min-1, the molten sugar 

was gradually polymerised to melanoidin at around 250 °C. The melanoidin then underwent a series 

of deoxidation, dehydrogenation, solid-phase carbonisation, and multi-phase graphitisation at high 

temperature, before resulting in the final carbon product.27 Meanwhile, a porous structure was 

simultaneously created by the gaseous HCl and NH3 released from decomposing of NH4Cl: 

NH4Cl(s) → HCl(g) + NH3(g) 

The abundant active sites within the sponge led to further carbothermal reaction between C and SiO2: 

SiO2(s) + 3C(s) → SiC(s) + 2CO(g)  

To determine the heating temperature for the superfluous carbon elimination treatment, TGA under 

air environment was conducted between 20-1000 °C. The SiC/C composite shows a 24.4% weight 

loss from 530 °C to 750 °C, which corresponds to loss of CO2 due to the reaction of C and O2 and 

converts to a SiC content of 75.6% within the composites, as shown in Figure 2a. A 1.5% weight 

increase from 750 °C to 1000 °C is due to the oxidation of SiC after the carbon content was fully 

burnt off (oxidised). Based on these results, an additional thermal treatment at 800 °C for 2 h in air 

was designed to remove the excessive carbon residue in the sponge.  

 

Figure 1. Digital photos of the raw powder mixture, green body and sintered sponge obtained at 1500 

°C for 240 min, showing the well-preserved geometry after sintering. 

 

2. Morphological and structural characterisation 

Figure 2b shows the XRD results of the as-obtained samples before and after the carbon removal 

treatment. Peaks at 35.7°, 41.4°, 60°, 71.8° and 75.6° correspond to the (111), (200), (220), (311) and 

(222) planes of β-SiC, whilst the peak at around 33.6° indicates the coexistence of hexagonal phases 
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(α-SiC).29 A weight percentage between the two polytypes is determined to be 64.5:35.5 by the 

Rietweld refinement method (Figure S2). Meanwhile, the disappearance of the broad peak at around 

14.8° for the pure SiC sponge shows the successful elimination of amorphous carbon compounds. No 

other crystalline peaks are detected.  

Carbothermal reaction hugely depends on the nature of the starting materials, along with the extent 

of SiO2-C interactions and the temperature regime.12 Higher C content over Si is energetically more 

favourable, since more carbon could accelerate the carbonisation of free Si and suppress the formation 

of free Si. The XRD result together with TGA analysis indicate that an adequate composition of the 

starting material and thermal treatment conditions for the formation of SiC have been obtained. 
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Figure 2. (a) TGA result of the as-obtained SiC/C before the carbon removal treatment. (b) XRD 

profiles of the as-obtained SiC/C and purified SiC sponges after the carbon removal at 800 °C. 

 

From the fracture surface of SiCNW sponges shown in Figure 3a-d, a rough core-shell feature is 

visible. The core part is comprised of interconnected and tangled SiC whiskers with a small number 

of flakes. The whiskers are a few hundred nm to tens of µm in length, and the flakes are up to µm in 

size. These shorter whiskers in the core is owing to the pre-applied compact pressure which gives rise 

to relatively closed porous structure, restricting the free movement of gaseous SiO and CO, and as a 

result hinders the growth of SiCNWs. By contrast, owing to the exposure to the flowing Ar, a 

continuous supply and transport of Si- and C- containing gaseous reactants at the external surface of 

the greenbody was realised, so that SiCNWs of ~100-200 µm long constituting a shell layer with a 

thickness of ~160-220 µm were generated. This evidently displays the principle of catalyst-free 

vapor-solid (VS) mechanism, where the morphology of nanowires is largely dictated by the 

interaction of gaseous reactants. 

TEM analyses confirm that the morphologies of nanofibers from the shell and core parts are similar 

(inset of Figure 3c and d). They exhibit diameters ranging from 20 nm to 200 nm, with majority in 

the range of 50-80 nm. Further EDS analyses (inset of Figures 3c and d) verify that these nanowires 

contain Si and C, with a trace amount of O that is inevitable due to SiO2 always forming a thin layer 

on the SiC surface as a by-product. The content of O element in the nanowires from the shell is higher 

than that of the core counterpart, which is opposite to the distribution of the C element, suggesting 

the shell functions as the oxidation resistant layer. High resolution TEM observations (Figures 3e and 

f), together with selected area electron diffraction (SAED, Figure 3e, inset), have revealed the 

stacking faults along the (111) direction of the SiC nanowire, which agrees well with the XRD 

analysis that the SiC is dominantly  phase.  
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Figure 3 (a, b) SEM images of the core-shell feature of the sponge. (c, d) SEM images of the 

nanowires from the shell and core regions, respectively, and the inset showing TEM images of 

individual nanowires and their corresponding TEM - EDS analyses. (e, f) High magnification TEM 

images of a nanowire. Inset in image (e) is its SAED pattern. 
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These long and smooth SiC nanowires are evidently generated by the catalyst-free Vapor-Solid (VS) 

mechanism, which is associated with the reaction between Si- and C-containing gaseous reactants in 

multiple steps. Firstly, SiO gas is generated on the interface between SiO2 and carbon source via 

following reactions:30 

SiO2 (s, l) + C (s) → SiO (g) + CO (g) 

SiO2 (s, l) + CO (g) → SiO (g) + CO2 (g) 

Subsequently, SiO gas reacts with active gaseous carbon source and generates SiC nanowire nucleus, 

which grow into nanowires by a continuous supply of SiO and CO gas, the mass transport of C is also 

facilitated by the flow of Ar gas:31 

SiO (g) + 3CO (g) → SiC (s) + 2CO2 (g)   

 

3. Mechanical properties   

Uniaxial compression test was carried out to evaluate the compressive behavior of the sponges. As 

shown in Figure 4a, under ~10% strain, the low mechanical response with stress up to 127.7 kPa 

suggests that fluffy shell layer with thickness in the range of ~160-220 µm was first responded to the 

compression load. Three other regions are subsequently observed in the stress-strain graph: an elastic 

region, a short plateau region, and a densification region. From the linear elastic region, an estimated 

compressive modulus of ~1.35 MPa was obtained. It is worth noting that the compressive brittle 

failure manner that usually observed in ceramic materials is absent in this context. As illustrated in 

Figure 4b and c, the long fibres in the shell must have experienced serious densification during the 

test. Surprisingly, the morphological integrity of the sponge is well-preserved, without macroscopic 

fractures or cracks on the surface even at a 70% strain. This is probably accredited to the robustness 

of whiskers in the core part, which helped to maintain the initial morphology of the sponge. It is 

believed that the co-existence of SiC flakes also played a role in providing the good mechanical 

strength and structural integrity. The excellent compressive responses demonstrated by the SiCNW 

sponges have shown that the major drawbacks of brittleness and high flaw sensitivity known to 

traditional porous ceramic sponges have been overcome.  

The SiCNW sponges endured 100 loading-unloading compression cycles at a strain of ε = 20%, and 

exhibited certain degree of recoverability, as displayed in Figure 4d. Post-testing SEM examinations 

of the sponge (Figures 4e and f) showed that only the shell layer underwent irreversible 

deformation/condensation, and an 87% recovery to the original height of the sponge was achieved 
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after the first cycle which corresponds to a residue strain of 13%. However, the compressive response 

of the sponges was then stabilised after the first cycle, and they exhibited a 16% residual strain (from 

13%) and 68% of its original maximum stress even after 100 loading-unloading cycles, respectively. 

Further SEM examinations revealed that nanofibers in the shell layer were much denser than those of 

prior to testing, whist the nanofibers in the core part of the sponge appeared to have experienced 

negligible condensation and deformation (Figure 4f). Therefore, the discrete plastic deformation of 

the randomly tangled nanofibers in the shell layer is believed to have absorbed the majority of the 

sponge deformation during the cyclic compression testing, being the leading cause of the stress drop. 

The nanofibers in the core part underwent only an elastic deformation and were almost fully recovered 

after the load was released, as schematically presented in Figure 4g.  

  

Figure 4. (a) Compressive stress-strain curves of the SiCNW sponges. The inset of post-testing 

sample shows no noticeable cracks. (b and c) SEM images of the post-compression samples, with (b) 
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showing the overall shell part and (c) showing the core part. (d) Cyclic compressive stress-strain 

curves of the SiCNW sponges under a fixed strain of 20%. (e and f) SEM images of the post-

compression samples, of which (e) showing the overall shell part, and (f) presenting the core part.  

(g) Illustrating the different responses of the shell and core of the sponges during the compression 

test. 

 

To clarify the detailed cyclic compressive responses of the core part, we carefully peeled off the outer 

layer and then carried out the compression test under the same conditions. We found that the inner 

sponge was considerably more responsive and reacted more in the first cycle, as shown in Figure 5a. 

A yield point was observed on the stress-strain curve. Considering the SEM image shown in Figure 

5b, we believed that this yield point might correspond to the condensation of the SiC fibres and flakes 

in the core part. In subsequent cycles, the core part exhibited less recoverability, possibly due to the 

permanent deformation via knotting of some whiskers (Figure 5b inset),10 however, a new mechanical 

equilibrium was established.   

 

Figure 5. (a) Compressive stress-strain curves of the core part, and (b) SEM image of the post-test 

sample. Inset is a higher magnification image, and the dashed circle showing a knot assembled by the 

fibres. 

 

All the above results suggest that the shell layer of the SiCNW sponges served as a protective layer 

that enabled the sponge to have compressive energy absorbing capabilities in the low strain regions 

(0 - ~10%), but the whiskers and flakes in the core part provided the mechanical strength and 

compressive recoverability for the sponge.  
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4. Pressure-dependent electrical response 

The electromechanical properties of the SiCNW sponges were examined by measuring the changes 

of resistance versus the cyclic load applied, and the results are displayed in Figure 6. As illustrated in 

Figure 6a and b, the electrical resistance decreased from 1007 Ω to 477 Ω with the rise of applied 

load from 50 N to 250 N (equals to the pressure from ~130.2 to ~651 kPa), but completely recovered 

upon unloading. Meanwhile, the sponge exhibited abnormally high sensitivity, with a strain gauge 

factor (GF) up to 87.27 at the very beginning of the test with strain change of no more than 1%, which 

dropped to 1.63 in the high strain range of 20.5-23.35%. During the loading-unloading process, 

numerous nanowires under compression would slide and bend which made them touching the 

neighbour nanowires. As a result, numerous temporary knot contacts would be created which acted 

as shortened conduction paths throughout the sample. Upon unloading, these temporary contacts 

would disappear, hence the resistance returned completely to its initial value.  

Given the excellent cyclic compression behaviour of the sponge with 20% strain, as presented earlier, 

it is interesting to investigate the dynamic resistance responses of the sensor system under cyclic 

compression. Figures 6c shows the interception of harmonic electrical resistance variations within 

cycles of 1-20 and 380-400. The SiCNW sponges exhibited superb sensing repeatability, with 

negligible decays even after 400 loading-unloading cycles. To explicitly compare the cyclic sensing 

performance of pure SiCNW sponges with composites sponges, the behaviour of the SiC/C nanowire 

sponge (without the elimination of carbon) was also assessed as a reference. The result (Figure S7) 

showed that the composite sponge exhibited much lower resistance, however, just like polymer-

MWNTs composites sensors that suffers drift almost in every cycle,6 they experienced pronounced 

drift during dynamic test, losing over 50% of its output resistance after 400 cycles. The low resistance 

is due to the existence of carbon that has higher electrical conductivity than SiC, however the signal 

drifting should also originate from the aggregation of the residue carbon. This complementary 

experiment confirmed that the purified SiCNW sponges offer higher sensitivity and greater 

reproducibility than that containing carbon residue for electric pressure sensor applications. This 

finding unambiguously suggests that the single-phase sponges better off composites-based sensors in 

terms of both the structural and electrical stabilities. 
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Figure 6. (a) Electrical resistance as a function of applied compressive strength. Inset shows the 

schematic setup for the pressure-dependent electrical response measurement. (b) Variation of 

electrical resistance change and applied pressure with compressing cycles. Gauge factors were 

derived from linear fitting. (c) Electrical resistance of SiCNW sponges at different compressing 

cycles, up to 400 cycles measured. 

 

5. Thermal insulation performance 

Compared with the intrinsic thermal conductivity of dense SiC (490 W/mK),32 the SiCNW sponge 

gives a rather low thermal conductivity ranging from 0.085 Wm-1K-1 to 0.13 Wm-1K-1 from -50 °C - 

200 °C (Figure 7). As conduction is dominant heat transfer mechanism in porous media, this density-

related property is largely dictated by the porosity since the pores act as phonon transport barriers that 

strongly affect the phonon mean-free-path. With the escalation of the test temperature, the higher 

phonons vibration velocity together with the increased phonons collision frequency give rise to the 

drop of the phonon mean-free-path, leading to the decline of thermal conductivity.33 An interesting 

relationship between porosity and thermal conductivity has been proposed, i.e. higher porosity 

corresponds to low thermal conductivity which is understandable, as summarised in Table 1. The 
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thermal conductivity of the SiCNW sponge is even lower than other porous SiC ceramics that were 

reported recently with similar porosities. This could be accredited to the relatively small diameters of 

the SiCNWs, suggesting that the present SiCNW sponges could act as excellent thermal insulators.  

 

Figure 7. Thermal conductivity of the purified SiC sponge. 

Table 1. Thermal conductivity of SiC sponges/foams of different porosities. 

Porosity (%) Thermal conductivity at 

room temperature (Wm-

1K-1) 

References 

40 19 34 

70 2 35 

83 0.19 36 

94.9-97.5 0.183-0.089 37 

92-98 0.1-0.6 38 

96.1-96.4 0.101  This work 

 

This light-weight SiCNW sponge generated via sugar-blowing assisted in-situ carbothermal reduction 

process displayed low density of 115-125 mg/cm3 and high porosity up to 96.4%. Different from most 

of the SiC sponges/foams that fail in a brittle manner under compression, this sponge with an exciting 

core-shell structure containing long and smooth nanowires in the shell layer and relatively short 

whiskers in the inner part provides a combination of excellent robustness and resilience during cyclic 
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compression. The monotonic and cyclic compression tests have revealed that the shell layer 

comprising highly flexible nanowires contributes to the recoverability (at a ε = 20%) and outstanding 

brittleness resistance, whilst the inner part ensures the high compressive strength and structural 

integrity.  

Benefiting from the intrinsically stable and flexible structural characteristics, the multifunctional 

SiCNW sponges offer a variety of unique advantages:  

First is its pressure-dependant electromechanical performance. Compared with most currently 

developed foam-like sensors that focused on finger force detection, the present sensors are capable 

of large dynamic compressive load measurements in the higher regime of ~130.2 - ~651 kPa. This 

offers great potential for monitoring vibration, acoustics, and structural damage, or impacts to human 

body. The present SiCNW sensor also provides large resistance response, ranging from 500 to 1000 

Ω, which is 500 times wider than that of carbon-polymer composites-based sensors,9 thus offering 

much higher reliability. Further, unlike carbon-based nanostructures that rely on strong Van der 

Waals interactions between them, the connections of SiCNWs within the core-shell structure of the 

sponge not only create good sensing capability but also provide excellent structural robustness and 

compressibility, since they are less likely to aggregate upon testing. Therefore, the resistance 

remained constant over many cycles, which means a good damage tolerant and drift-free response.  

Additionally, owing to the nanowire constituents and the high sponge porosity, the SiCNW sponges 

exhibit superior thermal insulation performance to other porous ceramics, with a thermal conductivity 

of merely 0.101 Wm-1K-1. This excellent thermal insulation property demonstrates huge potentials 

for utilisations in harsh environments including high temperatures, corrosive, etc, which are in high 

demand for applications in thermal energy conversion systems, electronic devices, and heat-resisting 

materials that can be hardly fulfilled by polymer or carbon-based sponges.  

Conclusion 

In summary, we have created lightweight multifunctional SiCNW sponges via the simple sugar-

blowing assisted carbothermal reduction. The material with unique core-shell macrostructure exhibits 

a combination of low density, high compressive strength, and recoverability under cyclic compressive 

loading. Although the shell layer experienced an initial densification under the first compression, the 

abundant rigid SiC whiskers in the core part provide high structural robustness. We have 

demonstrated that the SiCNW sponge as pressure sensor possesses high sensitivity, large resistance 

response, and excellent stability, being a promising candidate for fabricating electromechanical 

device by substituting current polymer-carbon composites. Combined with their low thermal 
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conductivity and high chemical stability, the SiCNW sponges are envisaged to be highly useful for a 

series of energy-storage and electronic applications.  

 

Supporting Information 

XRD profiles of SiC/C with different starting sugar:SiO2 contents; Weight percentage of α-SiC and 

β-SiC in purified SiC sponges; Digital photos of SiC/C and SiC sponges; FT-IR spectra of SiCNW 

sponges; SEM images of the as-obtained SiC/C sponges; Comparison of compressive modulus 

between present SiCNW sponges with other carbon and ceramic nanostructures; Electrical resistance 

of SiC/C sponges under cyclic compression load for 400 cycles.  
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