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Abstract

Landslide-tsunamis are generated by masses, such as landslides or icebergs, im-
pacting into water bodies. Such tsunamis resulted in major catastrophes in the
recent past. Generic research into landslide-tsunamis has widely been conducted
in idealised water body geometries at uniform water depths. However, varying
bathymetries can significantly alter landslide-tsunamis. This article investigates
this effect in a 2D flume using selected idealised bathymetries to provide meth-
ods to predict the transformed wave characteristics downwave of each feature.
The selected bathymetries are: (a) linear beach bathymetries, (b) submerged
positive and negative Gaussian bathymetric features and (c) submerged posi-
tive and negative step bathymetries. The hydrodynamic model SWASH, based
on the non-hydrostatic non-linear shallow water equations, was used to simu-
late 9 idealised landslide-tsunamis (1 approximate linear, 2 Stokes, 2 cnoidal
and 4 solitary waves), for a total of 184 tests. The analysed parameters include
the free water surface, wave height and amplitude. Shoaling in (a) is repre-
sented by either Green’s law or the Boussinesq’s adiabatic approximation up
to wave breaking with an accuracy of −7% to +10% for cnoidal and solitary
waves, respectively. The results are then analysed with an (i) Artificial Neural
Network and (ii) a regression analysis. (i) shows a smaller Mean Square Error
(MSE) of 0.0027 than (ii) (MSE = 0.024) and good generalisation in predicting
the transformed wave characteristics and, after defining the best dimensionless
parameters, (ii) provides empirical equations to predict transformed waves. In
addition, simulations were conducted in a 3D basin to investigate the combined
effect of the bathymetry and geometry. The efficient use of the developed pre-
diction methods is demonstrated with the 2014 Lake Askja landslide-tsunami
where a good accuracy is achieved compared to available numerical simulations.
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1. Introduction1

1.1. Overview2

Tsunamis generated by mass movements (e.g. landslides and icebergs) can3

be highly destructive events occurring both in enclosed water bodies (Evers4

et al., 2019b; Gylfadóttir et al., 2017; Harbitz et al., 2014; Panizzo et al., 2005)5

and the open sea (Chen et al., 2020; Watt et al., 2012; Watts et al., 2005). The6

term “tsunami” usually applies to impulse waves in the open sea, but it is also7

used herein to refer to impulse waves in enclosed water bodies. Landslides can be8

subaerial, i.e. initially located above the Still Water Level (SWL), or submarine,9

i.e. initially located below the SWL. A catastrophic subaerial landslide-tsunami10

occurred in the Vajont reservoir in Italy in 1963 where the generated wave11

overtopped the dam and caused approximately 2000 casualties (Panizzo et al.,12

2005). Another subaerial landslide-tsunami was generated in 2014 in Lake Askja13

in Iceland reaching a run up of 80 m (Gylfadóttir et al., 2017). Landslide-14

tsunamis generated by submarine landslides can be similarly destructive, such as15

the 10 m high tsunami which impacted Papua New Guinea in 1998 and caused16

2100 casualties (Synolakis et al., 2002). These catastrophes can significantly17

affect people lives and economies of entire countries. Globally, the assessment of18

potential landslide-tsunamis is relevant especially for “high risk” countries such19

as China and Norway, where the number of artificial reservoirs and enclosed or20

constrained water bodies is large. For this reason, reliable hazard assessment21

techniques are required.22

1.2. The effect of the bathymetry on landslide-tsunami propagation23

The most reliable approach to perform landslide-tsunami hazard assessments24

is either a case-specific laboratory or a numerical study that fully considers25

the details in the water body geometry and bathymetry (Bellotti et al., 2012;26

Winckler and Liu, 2015). However, studies for the prediction and investigation of27

landslide-tsunamis for hazard assessment are commonly conducted under more28

idealised conditions, such as simple water body geometries (2D, laterally con-29

strained waves and 3D, laterally unconstrained waves; Evers et al., 2019a; Heller30

and Spinneken, 2013, 2015; Huber and Hager, 1997; Jiang and LeBlond, 1994;31

Kranzer and Keller, 1959; Panizzo et al., 2005; Watts et al., 2005; Wiegel et al.,32

1970). This further involves a uniform water depth h to investigate effects (e.g.33

of the water body geometry) without being affected by a varying bathymetry.34

However, the effect of the bathymetry may become important during tsunami35

propagation especially close to the shore, i.e. it needs to be taken into account36

during hazard assessment (e.g. Bellotti et al. 2012; Couston et al. 2015; Ro-37

mano et al. 2013). A benchmark test case was carried out by Fuchs et al. (2010)38

analysing landslide-tsunamis propagating over a trapezoidal breakwater in a 2D39

geometry.40

More studies on idealised long waves were mainly conducted of shoaling on41
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beaches or over obstacles. One of these studies is that by Synolakis and Skjel-42

breia (1993) who analysed the shoaling of solitary waves on a plane beach iden-43

tifying two shoaling regions and two post breaking regions. The shoaling ones44

were gradual shoaling, where the wave amplitude a follows Green’s law (Green,45

1838), and an additional rapid shoaling following the Boussinesq’s adiabatic46

approximation (Synolakis and Skjelbreia, 1993) for beaches with an inclination47

≤ 1/50. The two post breaking regions were modelled with empirical equations.48

Similar conditions were numerically investigated by Pringle et al. (2016) who es-49

timated h at which shoaling diverges from Green’s law. Knowles and Yeh (2018)50

also investigated shoaling of solitary waves, identifying the ratio L0/Lf , with L051

(subscript 0) as the wavelength approaching the beach and Lf as the submerged52

beach length, as a crucial parameter to determine the shoaling process. More53

recently, Lalli et al. (2019) presented a generalised formulation of Green’s law54

taking refraction and diffraction on generic bathymetries into account. However,55

to the authors knowledge, there are no further studies providing universal and56

easy to apply methods specifically designed to predict landslide-tsunamis down-57

wave of a bathymetric feature.58

To address this research gap, the effect of the bathymetry on idealised59

landslide-tsunamis (non-linear waves representing real landslide-tsunamis) prop-60

agation was systematically studied. Herein, the effect of linear beaches and sub-61

merged features (i.e. positive and negative Gaussian and step shaped bathyme-62

tries) on these idealised landslide-tsunamis is studied, for hazard assessment,63

mainly using a 2D geometry. These conditions show analogies with gravity wave64

propagation over submerged natural or artificial features. For this reason, previ-65

ous studies that investigated non-linear wave propagation over a bar and wave66

transmission over low crested structures (Beji and Battjes, 1993; d’Angremond67

et al., 1997; van der Meer et al., 2005; Strusinska-Correia and Oumeraci, 2012,68

among others) are useful to identify the relevant parameters for the present69

study. van der Meer et al. (2005) proposed a relationship to predict the trans-70

mitted significant wave height by using the incident wave parameters and the71

submerged feature characteristics. The ratio Rc/Hm0i, with Hm0i being the in-72

cident significant wave height and Rc as the crest freeboard of the structure,73

was identified as the main parameter. Likewise, wave transformation induced74

by a sudden change in h, i.e. a step, is a relevant case for the present research;75

this was numerically investigated by Lara et al. (2011).76

The 2D geometry was chosen in the present study to separate the effects77

of the bathymetry and the water body geometry, apart from Section 6.3 where78

their combined effect is investigated. The three different bathymetry classes79

were chosen to reflect a range of conditions in nature. These also involve beach80

bathymetries, as knowledge of the wave characteristics at the shoreline is useful81

for the design of structures. The term “transformed” is used in this study to de-82

fine the wave characteristics resulting from propagation over different bathyme-83

tries, e.g. the wave amplitude past a step. As for the incident wave conditions,84

wave trains are considered (except for solitary waves) as, in general, they repre-85

sent real tsunamis better than individual waves when using idealised waves and86

using them avoids spurious numerical contaminations that may occur if a single87
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packet of the same type of waves propagates in still water.88

To predict the transformed wave characteristics, the numerical results are89

analysed by using an Artificial Neural Network (ANN) and regression analysis.90

The ANN is a sensible choice for this type of investigation due to the com-91

plexity of the physical processes involved. An ANN links a specific set of input92

variables to output ones without assumptions on the relationships among the93

involved variables showing benefits in identifying correlations that are usually94

difficult to determine e.g. with a regression analysis. In addition, ANNs were95

previously successfully used for solving similar coastal engineering problems96

(Baldock et al., 2019; van Gent et al., 2007; Meng et al., 2020; Panizzo and97

Briganti, 2007; Panizzo et al., 2005; Pourzangbar et al., 2017, amongst others).98

1.3. Aims and Structure99

The aim of this study is to efficiently predict wave parameters downwave of100

bathymetric features or at shorelines for hazard assessments. This is achieved101

through numerical investigation of the effect of the bathymetry by modelling ide-102

alised landslide-tsunamis (approximate linear, Stokes, cnoidal, solitary waves)103

mostly in a 2D geometry. This leads to the development of an ANN and empir-104

ical equations based on regression analysis. In addition, the combined effect of105

the bathymetry and water body geometry is studied to obtain insight on their106

non-linear interaction.107

The remainder of this article is structured as follows. In Section 2 the108

methodology with the numerical setup, boundary conditions, calibration and109

validation processes are explained. The characteristics of the used ANN and the110

rationale behind the variables included in the regression analysis are also intro-111

duced. The water surface time series and the wave heights for each bathymetry112

are analysed in Section 3. The development of the ANN and the results of the113

regression analysis are shown in Sections 4 and 5, respectively. In Section 6, the114

combined effect of the bathymetry and geometry is analysed and discussed for a115

3D geometry. In addition, the results of both predictive approaches are analysed116

and applied to the 2014 Lake Askja case. Finally, Section 7 highlights the main117

conclusions and future work.118

2. Methodology119

The numerical investigation in this study was conducted with the non-120

hydrostatic Non-Linear Shallow Water Equations (NLSWEs) numerical model121

SWASH (Stelling and Duinmeijer, 2003; Zijlema and Stelling, 2005; Zijlema122

et al., 2011). SWASH is well suited for this study as it can accurately simulate123

fundamental phenomena such as frequency dispersion (using multiple layers),124

diffraction, shoaling and breaking for landslide-tsunami propagation over the125

three different selected bathymetry classes (Section 2.1). A Simple architecture126

for the ANN was defined (Section 2.2) and, using knowledge of the physical127

processes involved, the non-dimensional parameters for the regression analysis128

were defined (Section 2.3).129
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2.1. Numerical setup130

SWASH v4.01 was used to model the propagation of idealised landslide-131

tsunamis in mainly 2D geometries with regular grids. SWASH solves the depth132

averaged non-hydrostatic NLSWEs which were expanded in Stelling and Zijlema133

(2003) to the multi-layer case used herein.134
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Figure 1: Schematic representations of the three investigated bathymetries with the most rel-
evant parameters: (a) linear beach, (b) Gaussian bathymetric features and (c) step
bathymetries.

2D geometries were investigated using numerical flumes with a uniform width135

of 0.6 m in the y′ direction. Three different classes of bathymetries were inves-136

tigated, namely (a) linear beach bathymetries (Fig. 1a), (b) positive and nega-137

tive Gaussian bathymetric features (Fig. 1b) and (c) positive and negative step138

bathymetries (Fig. 1c). Bathymetries (a) and (c) were chosen to assess the im-139

pact of landslide-tsunamis on the opposite coast in a basin. The main reason140
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for investigating (b) was to expand the set of conditions with an underwater141

feature (e.g. a shoal, submerged island or structure) that can alter the tsunami142

offshore before reaching the coast. For each wave condition a simulation with143

h = constant was carried out as reference for the results. A coordinate system144

with x′ = 0 at the interface between the generation and propagation zones is145

used, as in Ruffini et al. (2019). Two different coordinate systems were defined146

in the flume length direction, x′ with the origin at the wave generation bound-147

ary and x′′ with the origin at x′ = 10h0 with h0 as the initial water depth,148

where the water depth changed for (a) and (b). The use of a uniform h region149

after wave generation ensured that the waves were stable at the start of the150

bathymetric feature. Wave gauges were placed at intervals of ∆x′′ = h0 starting151

from x′′/h0 = 0.152

The beach inclinations 1/20, 1/30, 1/50 and 1/70 were defined by the ratio153

h0/Lf as shown in Fig. 1a, with Lf being the submerged length of the feature.154

Gaussian shapes are given by155

z′′(x′′) = [(h0 − hf )e−(x′′−c1)2/(2c22)]− h0 (1)

where hf is the water depth at the crest/trough of the feature, c1 is the position156

of the centre of the Gaussian bathymetric feature at x′′ = 25h0 and c2 = 6.67h0157

specifies its width. Note that for this bathymetry, Lf is defined as the first half158

of the feature. 10 different cases classified by hf (Table 1) were chosen, 5 positive159

and 5 negative cases. The same ten values were also used for the step where the160

instantaneous change in water depth occurs at 25x′′/h0 (Table 1). Note that161

the step occurs between two adjacent grid points.162

Table 1: Ratios between the water depth hf at the crest/trough and the initial water depth
h0 for both the Gaussian and step tests.

Positive cases Negative cases

hf

h0

0.1 1.3
0.2 1.6
0.3 1.7
0.4 1.8
0.7 1.9

The numerical model was compiled with the Intel compiler 2017 and Intel-163

MPI libraries for the use with multiple processors using the Message Passing164

Interface (MPI) protocol. A stripwise decomposition method along the y′−axis165

was chosen. All simulations were carried out using the High Performance Com-166

puting (HPC) cluster of the University of Nottingham.167

2.1.1. Boundary conditions168

All numerical tests were carried out with a wave source width of b′ = 0.60 m169

and the incident water surface elevation ηi of the wave conditions as input for170

which the fundamental parameters are summarised in Table 2. Hi is the incident171

wave height, T the incident wave period (note that there is no subscript since its172

value does not change during propagation), Li the incident wavelength, ai the173
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incident wave amplitude and ci the wave celerity. Note that, in the following,174

the definition H = a + ath applies, where ath is the wave trough, reducing for175

linear waves to H = 2a.176

Different slide scenarios lead to different wave types usually associated with177

theoretical non-linear waves (e.g. Heller and Hager, 2011; Panizzo et al., 2005).178

For this reason, all ηi time series for the investigated idealised landslide-tsunamis,179

are calculated using 5th order Stokes (Fenton, 1985), 5th order cnoidal (Fenton,180

1999) and 1st order solitary (Boussinesq, 1872) wave theories. Approximate lin-181

ear waves are used for grid calibration, consistently with Ruffini et al. (2019), and182

to expand the range of wave conditions. This wave type can also be associated183

to very dispersive landslide-tsunamis which, with increasing propagation dis-184

tance, will approximate H/a ≈ 1, similarly as linear waves (Evers et al., 2019b;185

Heller and Hager, 2011; Heller and Spinneken, 2015; Panizzo et al., 2005). In186

Table 2, the approximate linear waves and non-linear wave conditions specified187

with “I” are the same as in Ruffini et al. (2019). Conditions referred as “II”188

are additional wave conditions, one for each of the non-linear Stokes, cnoidal189

and solitary wave types. Two more wave conditions, namely “III” and “IV”,190

were added for the Gaussian and step bathymetries with hf/h0 = 0.1 to 0.4 to191

expand the dataset for the ANN. The wave parameters for every wave condition192

in Table 2 are based on Heller and Hager (2011). Each incident wave condition193

was investigated in every bathymetry described in Section 2.1, apart from “III”194

and “IV”, resulting in 184 tests in total.195

Table 2: Wave conditions used in this study with the wave parameters based on Heller and
Hager (2011). The wave conditions marked with * are only used in a subset of the
tested bathymetries.

Wave condition h0 (m) Hi (m) T (s) Li (m) ai (m) ci (m/s)
Approximate linear 0.600 0.040 0.876 1.190 - -

Stokes I 0.600 0.100 1.000 1.530 - -
Cnoidal I 0.300 0.155 1.740 2.830 0.110 1.630
Solitary I 0.300 0.159 - - 0.159 1.969
Stokes II 0.600 0.240 1.910 4.120 - -

Cnoidal II 0.300 0.208 1.430 2.740 0.164 1.910
Solitary II 0.300 0.173 - - 0.173 1.903

Solitary III* 0.300 0.164 - - 0.164 1.850
Solitary IV* 0.300 0.175 - - 0.175 1.740

The wave generation boundary was defined as a segment at x′ = 0 m using a196

weakly reflective boundary condition (Blayo and Debreu, 2005). This assumes a197

wave direction perpendicular to the boundary with an incident depth averaged198

velocity ūi defined by199

ūi = ±
√
g

d
(2ηi − η) (2)

including the total water depth d, gravitational acceleration g and the total (in-200

cident + reflected) water surface elevation η. In addition, all lateral walls were201

represented by closed boundaries with zero flux velocity (Stelling and Zijlema,202
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2003). For simulations involving wave trains, only steady wave heights after the203

initial warming up of the model were considered and a ramping up function was204

added to smooth the wave initiation in each simulation. To avoid wave reflec-205

tion from the downwave end of the domain, a sponge layer (Dingemans, 1997),206

with a length of at least 3Li, was used for the Gaussian and step bathymetry207

cases. For solitary waves the sponge layer was 15 m long. Wave breaking was208

considered in all simulations. In SWASH this was achieved by switching to the209

hydrostatic computation, therefore using the intrinsic dissipation mechanism of210

the NLSWEs for breaking waves (Zijlema et al., 2011), in the presence of steep211

bore-like waves. These waves were tracked when the vertical speed of the free212

water surface ∂η/∂x′ exceeded the default of 0.6
√
gh, where 0.6 represents the213

maximum local surface steepness. The calculation at that specific point switched214

back to non-hydrostatic only if ∂η/∂t′ < 0. A second, lower, threshold for ∂η/∂x′215

was used at 0.3
√
gh to label neighbouring points to simulate the persistence of216

wave breaking (i.e. presence of wave breaking in more than a single point at a217

given time).218

Finally, the formulation based on Manning’s roughness coefficient n was219

chosen for the bottom friction coefficient cf as220

cf =
n2g

d1/3
(3)

In the present study, n = 0.009 s/m1/3 for glass was chosen for all geometries221

to mimic the 2D experimental conditions of Heller and Hager (2011).222

2.1.2. Calibration and numerical schemes223

All cases were simulated using a Cartesian grid with ∆x′ = ∆y′ = 2.5 cm,224

consistently with Ruffini et al. (2019), for which the results satisfied the sym-225

metry and convergence of the solution. SWASH uses higher order dispersion226

relations with the order matching the number of layers over the water depth.227

Higher values of kh, with k being the wave number, require more layers. 2 lay-228

ers were chosen in the present work; tests carried out in SWASH (2016) show a229

maximum error between the numerical and the shallow water wave celerities of230

1% for kh ≤ 7.7.231

Approximate linear and Stokes I waves were simulated using a higher order232

upwind discretisation scheme for the vertical advection term of the u-momentum233

equation, where u is the depth averaged velocity in the x′-direction, while the234

default 1st order upwind scheme was used for the remaining waves. This was235

necessary to reduce numerical dissipation, observed in the approximate linear236

and Stokes I wave propagation, using the 1st order scheme (SWASH, 2016). For237

these wave types the central differencing scheme was also used for the vertical238

advection term of the w-momentum equation, where w is the depth averaged239

velocity in the z′-direction (SWASH, 2016). In addition, for the step bathymetry240

for approximate linear and Stokes I waves, the central differencing scheme for241

the horizontal advection term of the u-momentum equation, was replaced with242

the backward differencing scheme to eliminate instabilities caused by the de-243

fault one. Finally, for the step bathymetries with hf/h0 = 1.7, 1.8 and 1.9 for244
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approximate linear waves and hf/h0 = 1.8 and 1.9 for Stokes waves I and II,245

the bottom step had to be smoothed over 3-4 neighbour grid points to avoid246

model crashing. Only 4.0% of the simulations were smoothed, thus the impact247

on the overall results is very limited.248

Finally, the time integration, relying on the Courant-Friedrichs-Lewy condi-249

tion and wave celerity, for the present study is defined as250

Cr = ∆t′
(√

gd+
√
u2 + v2

)√
1

∆x′2
+

1

∆y′2
≤ 1 (4)

where Cr is the Courant number, ∆t′ the time step, v the depth-averaged ve-251

locity in the y′−direction and ∆x′ and ∆y′ are the distances between two grid252

points in the direction of the wave propagation x′ and the perpendicular direc-253

tion y′. To calculate the time step, minimum and maximum Cr thresholds were254

applied in order to accurately control the convergence of the solution.255

2.2. Artificial Neural Network256

ANNs are structured in layers, as shown in Fig. 2, with different functions.257

The input layer is composed of m variables. For this study, these variables in-258

clude 4 different input parameters taken from simulations with h = constant at259

x′′/h0 = 0, namely H0/h0, a0/h0, L0/h0 and T (g/h0)1/2, as well as the recipro-260

cal of the bathymetry inclination Lf/(h0−hf ) and the ratio between the water261

depth over the feature and the initial water depth hf/h0 representing the role262

of the bathymetry. The last two parameters were chosen to easily identify and263

approximate the main characteristics of every bathymetry. The output variables264

are the transformation coefficient Kb = Hb/H0, i.e. the ratio of the transformed265

wave height Hb after each bathymetry (subscript b) feature with H0, and the266

amplitude transformation coefficient Ka,b = ab/a0, i.e. the ratio between the267

transformed wave amplitude ab and a0, respectively. Therefore, 6 input and 2268

output parameters were used.269

Input

Wn,m

Bn

Wp,o

Bo

Output

n o

Hidden layer 1 Output layer

m

Wp,n

Bp

p

Hidden layer 2

Figure 2: ANN scheme in which m represents the number of inputs, n and p the number of
neurons and o the number of outputs.

Fig. 2 shows the notation used to indicate each layer and its number of270

elements. The subscript m is the number of elements in the input layer, o the271

number of outputs and n and p are the number of neurons in the first and second272
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hidden layers, respectively. The input and target were first scaled between 1 and273

−1 as274

Yj = 2
(Xj −Xmin,j)

(Xmax,j −Xmin,j)
+ 1 (5)

where Yj and Xj are the scaled and unscaled arrays of the parameters, respec-275

tively, with j = m for the input and j = o for the outputs. Xmax,j and Xmin,j276

are the arrays of the maximum and minimum values of every variable in Xj,277

respectively. The hidden layers have the purpose of defining the connections278

between the inputs and targets and are composed of a predefined number of279

neurons. Here, two hidden layers were used, with the same number p = n of280

neurons, which provided the best performance. Each neuron in each layer has281

an initial and final activation value that determine the strength of the connec-282

tions between elements of different layers. For the first hidden layer the initial283

activation values form the array A1′n, defined by the weighted sum:284

A1′n = Wn,mYm +Bn (6)

where Wn,m is the weights matrix of n by m elements, and Bn is the bias array285

that identifies a constant for each neuron. The values of Wn,m and Bn are defined286

during the training of the ANN as explained in the next paragraph. The array287

of the final activation values for the first hidden layer A1n is determined using288

a Sigmoid symmetric transfer function:289

A1n = 2/(1 + e−2A1′
n)− 1 (7)

returning an array with n elements. A1n is used as the input for the second290

layer, for which the initial and final arrays of the activation values A2′p and A2p,291

respectively, were calculated following the same procedure, i.e. solving Eqs. (6)292

and (7) but using the weight matrix Wp,n and bias array Bp, specific for the293

second layer, resulting in an array with p elements.294

Subsequently, the activation values array of the output layer was found as295

A3′o = Wo,pA2p +Bo (8)

where Wo,p is the weight matrix of o by p elements and a bias array Bo specific296

for this layer (recall that o is the number of outputs of the ANN). The linear297

transfer function A3o = A3′o was used to determine the scaled output values298

predicted by the ANN. Finally, the normalisation based on Eq. (5) at the start299

of the calculation is reversed to determine the actual unscaled values of the300

output predicted by the ANN.301

The development of an ANN generally follows three steps: training, vali-302

dation and testing. The dataset was randomly divided with 80% employed for303

training, 10% for validation and the remaining 10% for testing. Training is an304

iterative process consisting of learning epochs (i.e training steps) that are used305

to increase the performance of the ANN in predicting the target values starting306

from the inputs. The development of the ANN was conducted with MATLABr
307
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in this study. The Levenberg-Marquardt optimisation algorithm (Hagan and308

Menhaj, 1994; Marquardt, 1963), the default algorithm in MATLABr, was309

used to minimise the performance parameter, which was the Mean Square Error310

(MSE) between target (known) and predicted values. The validation, occurring311

simultaneously to the training, was used to stop the former if the performance312

for this part of the dataset failed to improve for a specific number of epochs.313

The final weight matrices Wn,m, Wp,n and Wo,p and arrays Bn, Bp and Bo were314

defined at the end of these two steps. Finally, the testing is used to assess the315

generalisation of the ANN, e.g to find out if it applies to datasets other than316

those used for training, by comparing the MSE obtained for the two steps. The317

ANN was considered accurate and reliable when the MSE was at least of the318

order of 10−2 and close between the ones of the training and testing steps. This319

value was deemed acceptable in Panizzo and Briganti (2007) for a similar range320

of predictions.321

2.3. Choice of parameters for regression analysis322

Three non-dimensional parameters were used as independent variables to323

carry out the regression analysis. These parameters were chosen because they are324

readily available during hazard assessment of landslide-tsunamis, also this study325

builds upon the choice of parameters carried out in studies on wave transmission326

(Beji and Battjes, 1993; d’Angremond et al., 1997; van der Meer et al., 2005). All327

these studies identify as leading non-dimensional parameters the ones that best328

represents the wave energy transformation induced by the feature. Following329

this consideration, the first parameter chosen was hf/h0 as it identifies the330

amount of energy transformed downwave of each bathymetric feature by only331

considering the difference in h. Alternatively, the parameter (hf/h0)(a0/H0)332

was defined, i.e. a combination of hf//h0 and a0/H0, being indicative of the333

wave type allowing both the characterisation of the bathymetry and incident334

waves in a single parameter. The last parameter is hf/H0 in a stricter analogy335

with Rc/Hm0 as the main parameter in the prediction of wave transmission (e.g336

van der Meer et al., 2005) (Section 1.2).337

3. Results338

3.1. Water surface time series339

The time series for the first four wave types shown in Table 2 are hereafter340

discussed for the steepest slope or smallest hf for every bathymetry class il-341

lustrating the most extreme cases. Five consecutive T , after a steady H was342

reached in the simulations, are shown. For this representation the time t′ is343

taken as zero at the start of the first shown T . Fig. 3a shows η over the nor-344

malised time t′/T for the 1/20 beach at x′′/h0 = 0 (black solid line) compared345

with the one from Ruffini et al. (2019), where a flat bottom was used (red solid346

line), to show the effect of reflection. Reflection from the beach has a small effect347

on η in this case. The transformed η (dashed black line) measured at the shore-348

line suggests that approximate linear waves result in the largest loss of wave349
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energy during breaking for this bathymetry class. Here, H at the shoreline is350

3.2 times smaller than at x′′/h0 = 0. Fig. 3b shows the results for the Gaussian351

bathymetric feature for hf/h0 = 0.1 and η over the feature (x′′/h0 = 25, solid352

gray line) is also included. Given that the water depth returns to h0 after the353

hump, the energy dissipated due to breaking is much smaller than in Fig. 3a.354

The transformed wave at x′′/h0 = 50 recovers to an approximate linear wave355

but with a 1.5 times smaller H than at x′′/h0 = 0. Fig. 3c shows the results for356

the step case with hf/h0 = 0.1 where η at x′′/h0 = 0 is the bathymetry in which357

reflection is the strongest. Due to reflection upwave of the step, a is +58.6% of358

that of a flat bottom which is the reason behind the larger vertical axis in Fig.359

3. The transformed waves in this case were investigated at x′′/h0 = 31 instead360

of 25 to allow the waves to adapt to hf .361
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(Ruffini et al., 2019)x”/ h0 =  0 

TransformedOver feature

Figure 3: Normalised water surface elevation η/h0 versus time normalised with the wave
period t′/T for approximate linear waves for the (a) 1/20 beach (transformed
η at x′′/h0 = 30, i.e. at the shoreline), (b) Gaussian bathymetric feature with
hf/h0 = 0.1 (transformed η at x′′/h0 = 50) and (c) step with hf/h0 = 0.1 (trans-
formed η at x′′/h0 = 41).

Fig. 4 includes the results for Stokes I waves for the same bathymetries as362

in Fig. 3. Reflection becomes more significant than in Fig. 3 with η for the363

Gaussian bathymetric feature in Fig. 4b also being characterised by a phase364

lag at x′′/h0 = 0 compared to the results for a horizontal bottom. The beach365

bathymetry once again results in the largest wave dissipation, compared to the366

remaining bathymetry classes, with H at the shoreline 6.9 times smaller than at367

x′′/h0 = 0. Note that this behaviour is also due to the conditions under which368

each time series was recorded, especially for the beach where hf = 0. In that369

case the waves can not stabilise again since onshore of that position the idealised370

landslide-tsunami starts to run-up on the initially dry beach.371
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Figure 4: Normalised water surface elevation η/h0 versus time normalised with the wave pe-
riod t′/T for Stokes I waves for the (a) 1/20 beach (transformed η at x′′/h0 = 30, i.e.
at the shoreline), (b) Gaussian bathymetric feature with hf/h0 = 0.1 (transformed
η at x′′/h0 = 50) and (c) step with hf/h0 = 0.1 (transformed η at x′′/h0 = 41).
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Figure 5: Normalised water surface elevation η/h0 versus time normalised with the wave pe-
riod t′/T for cnoidal I waves for the (a) 1/20 beach (transformed η at x′′/h0 = 30, i.e.
at the shoreline), (b) Gaussian bathymetric feature with hf/h0 = 0.1 (transformed
η at x′′/h0 = 50) and (c) step with hf/h0 = 0.1 (transformed η at x′′/h0 = 41).

Fig. 5 shows the results for cnoidal I waves. In two of the three cases the372

waves break and propagate as bores at the point where the transformed waves373

are investigated. Note that for Fig. 5c the vertical axis has increased limits due374
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to the larger η values caused by the sudden decrease in water depth of the step375

bathymetry. In this case, reflection is more significant at x′′/h0 = 0 where the376

wave trough ath is 1.7 times larger than for the flat bathymetry, however, a is377

virtually unaffected.378

Solitary I waves are shown in Fig. 6 where the time is normalised as t′(g/h0)1/2,379

showing the same general behaviours as for the previous wave types. However,380

solitary waves dissipate much less energy E (where E = H2ρwg/8, with ρw381

being the water density) due to breaking. E at the shoreline becomes 1/4 of the382

incident one due to the transformed H being 1/2 of H0 (Fig. 6a). Fig. 6c reveals383

that a more than doubles at the step (x′′/h0 = 25) before breaking. The impact384

on the step also generates the largest reflected wave reaching x′′/h0 = 0 with385

cnoidal wave characteristics (a/ath = 7.5) at t′(g/h0)1/2 = 75.386
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Figure 6: Normalised water surface elevation η/h0 versus time normalised as t′(g/h0)1/2 for
solitary I waves for the (a) 1/20 beach (transformed η at x′′/h0 = 30, i.e. at the
shoreline), (b) Gaussian bathymetric feature with hf/h0 = 0.1 (transformed η at
x′′/h0 = 50) and (c) step with hf/h0 = 0.1 (transformed η at x′′/h0 = 41).

3.2. Wave heights distribution387

For the analysis of the distribution along the flume, H and a were calculated388

as the average over 10T (except for the solitary wave). Note that on the beaches389

H = a was considered downwave of the shoreline, where H was calculated as390

ηmax−z′′bed where ηmax is the maximum of η for each T and z′′bed is the bed level391

at each position. Only the value at the initial shoreline position was then used392

in the prediction methods, therefore excluding run-up.393

The H values along the beach were calculated at discrete intervals of ∆x′′ =394

h0 starting from x′′/h0 = 0. Fig. 7 shows the relative wave height H/h0 for the395

beach bathymetries for all ”I” wave conditions. By using the normalised vertical396

bathymetry coordinate z′′(x′′)/h0 on the horizontal axis H/h0 collapses on the397
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vertical axis for nearly all investigated wave types. The vertical dashed line at398

z′′(x′′)/h0 = 0 represents the shoreline position with negative values pointing399

offshore. Hence, positive values represent wet points on the initially dry beach.400
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Figure 7: Linear beach bathymetries: relative wave height H/h0 versus the normalised vertical
bathymetry coordinate z′′(x′′)/h0 for (a) approximate linear waves, (b) Stokes I
waves, (c) cnoidal I waves and (d) solitary I waves compared to Green’s law (Eq.
(9)), Boussinesq’s results (Eq. (10)) and decay laws after breaking (Eqs. (11) and
(12)). ( ) represents the position of the shoreline.

To validate the results, each panel in Fig. 7 also includes Green’s law given401

by402

H = H0(h0/h)1/4 (9)

and Boussinesq’s results derived from the adiabatic solution403

H = H0(h0/h), (10)

representing the gradual and rapid shoaling zones (Synolakis and Skjelbreia,404

1993). Further, the two laws of Synolakis and Skjelbreia (1993) that model the405

decay due to breaking are406

H = H0(h0/h)−4, (11)
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and407

H = H0(h0/h)−1. (12)

Eq. (11) models the initial rapid decay stage, while Eq. (12) represents the suc-408

cessive gradual one. H/h0 for approximate linear and Stokes I waves (Fig. 7a,b),409

respectively, do not follow Green’s law closely until breaking (at z′′(x′′)/h0 =410

−0.12 for approximate linear and z′′(x′′)/h0 = −0.24 for Stokes I waves). The411

relative differences between the maximum predicted and modelled H and a be-412

fore breaking are calculated as ∆f(H or a) = (fpred/fnum − 1) × 100 with413

fpred as the predicted value by Eq. (9) or Eq. (10) (to calculate the ampli-414

tude, a and a0 are used instead of H and H0 in both equations) and fnum415

as the numerical results. These ratios are presented in Table 3. Values of up416

to ∆f(H) = +64% were found by using Eq. (9) for approximate linear and417

∆f(H) = +42% for Stokes I waves. However, using a instead of H, Eq. (9)418

provided better results (Fig. A.1a,b) with ∆f(a) = +14% for these two wave419

types (Table 3). After breaking, the two distinct decay zones from Synolakis420

and Skjelbreia (1993) describe the behaviour of H especially for the Stokes I421

waves (Fig. 7b), where a distinct change in decay from Eq. (11) to Eq. (12) can422

be noticed at z′′(x′′)/h0 = −0.20.423

In Fig. 7c, H/h0 for cnoidal I waves first follows Eq. (9) and subsequently,424

at z′′(x′′)/h0 = −0.86, starts to follow Eq. (10) such that both shoaling zones425

are present for this wave type. Due to this, H0 in Eq. (10) is replaced with426

the predicted H by Eq. (9). Eq. (10) is then applied from the position where427

the modelled H starts to diverge until breaking occurs. This applies to every428

investigated slope except for 1/20 where the rapid shoaling zone is absent.429

Table 3: Relative differences between the predictions based on Eqs. (9) and (10) and the
numerical results in Figs. 7 and A.1 for the maximum values of H and a before
breaking. * marks cases where Eqs. (9) and (10) are applied in succession, whereas
all the remaining cases are predicted by only using Eq. (9). To predict a, H is replaced
with a and a0 with H0 in Eqs. (9) and (10).

Beach inclination
1/20 1/30 1/50 1/70

Approximate linear H +38% +40% +57% +64%
a +10% +14% +14% +13%

Stokes I H +26% +37% +40% +42%
a +9% +9% +13% +11%

Cnoidal I H −4% +0.3%* −0.5%* −0.4%*
a −4% −7%* −7%* −6%*

Solitary I H +7% −0.4% +10%* +6%*
a +6% −0.01% +7%* +4%*

For solitary I waves (Fig. 7d) and slopes ≥ 1/30, H only follows Eq. (9)430

whereas, for slopes ≤ 1/50, it follows Eq. (9) and successively Eq. (10) from431

z′′(x′′)/h0 = −0.80. This is in line with Synolakis and Skjelbreia (1993) where432

both shoaling regions were only found for slopes ≤1/50. However, the decay433

after breaking is not well captured by Eqs. (11) and (12) where a smaller decay434
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for the solitary I waves is found. The agreement with Eqs. (9) and (10) is always435

better for more non-linear waves where ∆f up to +0.3% for cnoidal I waves and436

−0.4% for solitary I waves for the maximum H are found before breaking (Table437

3).438
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Figure 8: Positive and negative Gaussian bathymetric features: relative wave height H/h0
versus the relative distance x′′/h0 for (a) approximate linear waves, (b) Stokes I
waves, (c) cnoidal I waves and (d) solitary I waves. ( ) highlights x′′/h0 of the
maximum or minimum of the bathymetries.

Fig. 8 shows H/h0 over the normalised propagation distance x′′/h0 for each439

Gaussian bathymetric features for the approximate linear, Stokes I, cnoidal I440

and solitary I waves. For negative bathymetries (dashed lines) the waves are441

affected locally only at the deepest points and the transformed H coincide with442

that on a flat horizontal bottom. Differences are only found for the solitary I443

wave (Fig. 8d) because H/h0 recovers more slowly than for other wave types,444

resulting in a slightly lower transformed H/h0 than for h0 = constant. The445

positive Gaussian bathymetric features (solid lines) result in two distinct spatial446

distributions regardless of the wave type: if breaking occurs, it is always upwave447

of hf with a sharp loss of H/h0 afterwards; if breaking does not occur, the448

transformedH/h0 at x′′/h0 = 50 recovers to the same value as for h0 = constant.449

The only exception is, again, the solitary I wave (Fig. 8d) for hf/h0 = 0.7450

where the tsunami propagates over the bathymetry and the transformed H/h0451

increases by a factor of 1.06 compared to the one at x′′/h0 = 0. Note that for452

this specific case, the maximum H/h0 is found at x′′/h0 = 41, after the position453
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of hf , showing that shoaling affects H/h0 without causing breaking. H/h0 only454

starts to adjust again to the increasing h after that position.455
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Figure 9: Positive and negative step bathymetries: relative wave height H/h0 versus the rela-
tive distance x′′/h0 for (a) approximate linear waves, (b) Stokes I waves, (c) cnoidal
I waves and (d) solitary I waves. ( ) highlights x′′/h0 of the positive or negative
step.

The results for H/h0 for the steps are shown in Fig. 9. They confirm that456

the reflection is stronger (Section 3.1) for all cases with hf<h0, compared to457

the results for other bathymetry classes. This is particularly noticeable for ap-458

proximate linear waves (Fig. 9a) for which, for the step with hf/h0 = 0.1, H/h0459

are 1.8 times larger than the values for a flat bathymetry at x′′/h0 = 0. The460

transformed H/h0 at x′′/h0 = 31 increases as the step lowers reaching the value461

for a flat bottom when hf/h0 = 0.7 for approximate linear and Stokes I waves462

(Fig. 9a,b). In Fig. 9b,c modulations of H/h0 occur. This phenomenon is due463

to wave reflection from the step generating a partially standing wave with a464

modulation of Li/2 for Stokes I waves and cnoidal I waves. Note that for Stokes465

I waves in this specific case, the number of wave gauges to calculate H was466

doubled to avoid aliasing of the wavelength of the standing wave present up to467

x′′/h0 = 25.468

In the bathymetries where hf>h0, the step affects the transformed H/h0469

much less with values very close or slightly smaller than for a horizontal bottom.470

The only exceptions are the approximate linear waves, for which the values471
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are comparable to some of the ones with hf<h0. In addition, a small high472

frequency reflection is noticed for all wave types upwave of the step which are473

likely limitations of the numerical model in dealing with sudden changes in h.474

The corresponding figures to Figs. 7 to 9 for a are presented in Appendix A.475

4. Data analysis with an Artificial Neural Network476

The ANN was used to analyse the data of all simulations employing 6 input477

parameters, i.e. H0/h0, a0/h0, L0/h0, T (g/h0)1/2, Lf/(h0 − hf ) and hf/h0, to478

predict the 2 output parameters Kb and Ka,b (Section 2.2). The initial cali-479

bration and optimisation of the ANN architecture together with the final ANN480

error distribution are illustrated hereafter.481

4.1. Calibration and optimisation of the ANN482

The ANN was first calibrated to determine a suitable number of neurons483

for the present dataset. The Mean Square Error MSE and the Pearson correla-484

tion coefficient ρ(pred, target) were calculated for each ANN step. The MSE is485

defined as486

MSE =
1

N

N∑
j

(fpred,j − ftarget,j)
2

(13)

and ρ(pred, target) as487

ρ(pred, target) =
Cov(pred, target)

Std(pred)Std(target)
. (14)

In Eq. (13) fpred,j is the j-th sample of the predicted ANN output and ftarget,j488

is the corresponding ANN target and N is the number of samples in each sep-489

arate step (i.e. training, validation and testing). In Eq. (14) Cov(pred, target)490

is the covariance between output and target and Std(pred) and Std(target) are491

the standard deviations. ρ(pred, target) is used as complementary performance492

parameter to better measure the correlation between outputs and targets with493

1 representing complete correlation and 0 no correlation.494

Calibration and optimisation were performed by evaluating the best balance495

between increasing number of neurons and increasing performance, i.e lower496

MSE and higher ρ(pred, target). However, in the present application, increasing497

the number of neurons in each layer, at some point, results in negligible effects498

on the ANN performance, at the same time increasing the computational com-499

plexity results in bigger weight matrices and bias arrays.500

The data used in the training, validation and testing steps were randomly se-501

lected. Therefore, for a representative performance value for the ANN when test-502

ing different numbers of neurons, the median values of MSE and ρ(pred, target)503

were calculated after repeating randomisation and all ANN steps 30 times.504

The ANN was tested with 5, 10, 15, 20, 25 and 30 neurons for each of the 2505

hidden layers to compare the results and to identify the best number of neurons.506
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The performance is shown in Fig. 10 with the training and test steps compared507

including the median values for each number of neurons represented by the solid508

lines. Fig. 10a shows that the MSE steadily decreases but reveals very similar509

values for ≥ 15. The ρ(pred, target) (Fig. 10b) show the same behaviour with510

an inverse trend. For this reason, a final architecture using 2 hidden layers with511

15 neurons each was chosen as it also showed the best performance between512

the training and test steps. This is a good indicator of the capabilities of the513

ANN to predict a different dataset accurately. The values of the performance514

parameters for both training and testing of the final chosen ANN are presented515

in Table 4.516
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Figure 10: ANN performance comparison for different numbers of neurons for the training and
testing steps (a) MSE and (b) Pearson coefficient ρ(pred, target).

Table 4: Comparison between training and testing MSE and ρ(pred, target) for the chosen
ANN.

MSE ρ(pred, target)
Training 0.0011 0.99
Testing 0.0027 0.98

4.2. ANN error distribution517

The regression plot based on the chosen ANN is shown in Fig. 11a with the518

comparison between the target values (horizontal axis) and the output predic-519

tions (vertical axis) for the complete dataset with Kb and Ka,b combined. The520

dashed lines are the 95% confidence intervals to determine the spread of the521

predictions from the perfect agreement (solid line) confirming the good perfor-522

mance of the ANN with intercepts at ±0.076. Fig. 11b shows the error columns523

chart with the classes of errors between targets and outputs on the horizontal524

axis and the number of instances for each class on the vertical axis. In addition,525

the normal distribution of the error was tested and verified for two different526

variations of Kolmogorov-Smirnov tests (Öner and Deveci Kocakoç, 2017). Ap-527

pendix B includes more details on the ANN including Wn,m, Wp,n, Wo,p, Bn,528

Bp and Bo.529
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5. Regression Analysis530

Regression analysis of the numerical results of all 184 simulations was also531

used to obtain empirical equations for the investigated idealised landslide-tsunamis.532

The variability of Kb and Ka,b was tested against different input parameters to533

find a simple correlation to forecast the idealised landslide-tsunamis downwave of534

different bathymetries. The three different non-dimensional parameters hf/h0,535

(hf/h0)(a0/H0) and hf/H0 (Section 2.3), were chosen to describe Kb and Ka,b.536

The values from test 3 of Fuchs et al. (2010) were also included to compare the537

predictions of the newly derived equations with laboratory measurements.538

Fig. 12a shows the relation between Kb and the ratio hf/h0. The best fit to539

the data was achieved with the following curve (black line):540

Kb = 0.23 + 0.77

(
2(hf/h0)

1 + (hf/h0)2

)
; MSE = 0.021. (15)

Kb = 0.23 in Eq. (15) ensures that the curve intersects the median of the data541

at hf/h0 = 0 and the pre-term (1− 0.23) = 0.77 assures that the curve reaches542

the physically meaningful value Kb = 1 at hf/h0 = 1 (corresponding to h =543

constant). 75% of the data lies within the ±30% bounds which is a surprisingly544

small scatter, considering the wide range of bathymetries represented simply545

by hf/h0. When approaching hf/h0 = 1, Kb > 1 in some cases. This is due546

to H being enhanced by the bathymetry through shoaling and reflection and547

either not breaking or not fully recovering to its original value downwave of the548

feature.549
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Figure 12: Transformation coefficient Kb for all wave types and bathymetries versus (a) hf/h0
with ( ) Eq. (15) and (b) (hf/h0)(a0/H0) with ( ) Eq. (16); ( ) represent
the ±30% bounds.

The parameter (hf/h0)(a0/H0) is presented on the horizontal axis of Fig.550

12b allowing to better consider the initial wave conditions (Section 2.3). For551

example, solitary waves (a0/H0 = 1) only depend on hf/h0, hence they remain552

at the same positions in Fig. 12a and b. The best fit of the data in Fig. 12b was553

achieved with a hyperbolic tangent (tanh) as554

Kb = 0.23 + 0.77 tanh[1−(hf/h0)(a0/H0)](4[(hf/h0)(a0/H0)]3/2);

MSE = 0.024.
(16)

Eq. (16) represents the data for (hf/h0)(a0/H0) ≥ 1.4 with the maximum devi-555

ation equal to +6.5% between the predicted and numerical values. The data for556

both Stokes and cnoidal waves for (hf/h0)(a0/H0) ≤ 0.4 are better represented557

by Eq. (16) (Fig. 12b) than by Eq. (15) (Fig. 12a). However, a small number of558

points are shifted slightly further away from the prediction curve such as for the559

approximate linear waves when (hf/h0)(a0/H0) ≤ 0.44. Eq. (16) is designed to560

reach Kb = 1 when (hf/h0)(a0/H0) = 0.75, which is the average value between561

linear (a0/H0 = 0.5) and solitary (a0/H0 = 1) waves for h = constant. Eq. (16)562

also better agrees with the experimental value from Fuchs et al. (2010).563

The variability of Kb against hf/H0 is shown in Fig. 13 with a zoom pro-564

vided in Fig. 13b. Here the prediction law is presented similarly to Eq. (15)565

as566

Kb = 0.23 + 0.77

(
1.29(hf/H0)

0.59 + (hf/H0)1.1

)2

; MSE = 0.024. (17)

The equation was designed to reach Kb = 1 at hf/H0 = 5 and to decrease567

afterwards due to bottom friction. Eq. (17) closely follows the data of Kb in568
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Fig. 13a for hf/H0 ≥ 5 and Fig. 13b shows that it better represents the results569

for hf/H0 ≥ 1 than for hf/H0 < 1. Overall, Eq. (17) results in a slightly less570

good fit than Eqs. (15) and (16).571
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Figure 13: Transformation coefficient Kb for all investigated wave types and bathymetries
versus hf/H0; ( ) represents Eq. (17) and ( ) ±30% bounds with (a) for
the entire dataset and (b) for a zoom in the range 0 < hf/H0 < 5.

The equivalents to Eqs. (15) to (17) for Ka,b are given by572

Ka,b = 0.34 + 0.66

(
2(hf/h0)

1 + (hf/h0)2

)8/5

; MSE = 0.025 (18)

Ka,b = 0.34 + 0.66
(

1.35[(hf/h0)(a0/H0)]
0.39+[(hf/h0)(a0/H0)]1.65

)2

; MSE = 0.027 (19)

Ka,b = 0.34 + 0.66

(
1.29(hf/H0)

0.59 + (hf/H0)1.1

)3

; MSE = 0.031 (20)

The fits of Eqs. (18) to (20) to the data are shown in Appendix C.573

As Eqs. (15) to (20) reduce to a constant value for hf = 0 (corresponding to574

the shoreline in the beach bathymetry), the variability of Hb/h0 is investigated575

separately for these cases where Hb = ab = ηmax− z′′bed at the shoreline. Fig. 14576

shows the data for Hb/h0 for all beaches. The best data fit is represented by577

Hb/h0 = 8(Lf/H0)−1; MSE = 0.002 (21)

578

valid in the range 35 ≤ Lf

H0
≤ 1050 and spanning from deep to shallow water.579

Eq. (21) generally follows the simulation results and slightly underestimates580

approximate linear waves, i.e. the waves with the smallest H0 and, in turn,581

larger Lf/H0. However, approximate linear waves are unlikely to be generated582

during a landslide-tsunami event, especially in 2D or a narrow geometry.583
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6. Discussion584

Together with a discussion of the results, this section illustrates the perfor-585

mance of the new empirical equations by taking the variability of the bathymetry586

into account. In addition, a comparison between 2D and 3D geometries with587

variable bathymetries is conducted to investigate the combined effect of the588

bathymetry and water body geometry. Recommendations on the best suited589

forecast method for each initial condition are also given. Finally, a hazard as-590

sessment procedure is illustrated with the 2014 Lake Askja landslide-tsunami.591

6.1. Effect of the bathymetry592

It has been validated that Green’s law, i.e. Eq. (9), can be applied for all the593

investigated wave conditions during the shoaling process on beach bathymetries.594

However, only for cnoidal and solitary waves (Table 7) shoaling can be divided595

into gradual (Eq. (9)) and rapid (Eq. (10)). For solitary waves the transition596

from the first to the latter occurs for beach slopes ≤ 1/50 in agreement with597

Synolakis and Skjelbreia (1993). If a prediction is needed in a section where h598

decreases over the feature, these equations may be used up to shallow water599

breaking, e.g. H/h > 0.78 (Dean and Dalrymple, 1991), as highlighted in Table600

7. In addition, approximate linear, Stokes and cnoidal waves follow the two de-601

cay laws in Eqs. (11) and (12) after breaking with small run-ups (Section 3.2).602

Solitary waves are larger due to the much larger momentum involved and lower603

energy dissipation.604

For bathymetries other than beaches, hf plays a major role for the initiation605

of breaking and reflection, heavily affecting Hb/h0, ab/h0 and the upwave con-606

ditions. The latter is not directly important for the main propagation direction607

of tsunamis, but it is an important factor to consider in hazard assessment,608
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especially when h is rapidly decreasing. In general, the effects caused by these609

phenomena are inversely proportional to hf/h0. Hb even reduces to 0.16 of H0610

for cases with hf/h0 = 0.1 and the reflected H enhances the upwave H by611

up to a factor of ∼ 1.5 (Fig. 9b) for the step bathymetry with hf/h0 = 0.1.612

When hf/h0 > 1, Hb/h0 is little or not affected compared to values found for613

a horizontal bathymetry, whereas ab/h0 is noticeably affected due to the waves614

adjusting to the larger water depth and becoming more symmetrical with re-615

spect to the mean water level.616

Apart from those in Section 6.3, all numerical simulations were carried out617

in a 2D geometry in this study, hence excluding the effect of the water body618

geometry. For this reason, in real and wider water body geometries, the effect619

of the bathymetry is expected to be smaller since the energy spreads on a larger620

area, as discussed in Section 6.3.621

6.2. Regression analysis equation performance622

The prediction capabilities of Eqs. (15) to (20) are summarised in Table623

5 comparing their MSE values. Note that, even though discrepancies between624

target and predicted values are not negligible, a wide range of conditions with625

non-linear effects were investigated. Additionally, it is stressed that the main626

goal was to develop equations able to capture the general physics of the problem627

with a good balance between ease of application for hazard assessment and628

accuracy. In Fig. 15 each equation, represented by different markers, is solved629

for every investigated initial condition and their predictions are compared with630

the numerical results.631
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Figure 15: Comparison of target values and prediction for (a) Kb by using Eqs. (15) to (17)
and (b) Ka,b for Eqs. (18) to (20).
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Table 5: Prediction capabilities for the equations derived through regression analysis.

Variable Equation MSE
Kb Eq. (15) 0.021
Kb Eq. (16) 0.024
Kb Eq. (17) 0.024
Ka,b Eq. (18) 0.025
Ka,b Eq. (19) 0.027
Ka,b Eq. (20) 0.031

Eqs. (16) and (19) represent the best compromise between accuracy and a632

detailed description of the initial condition of the incoming tsunamis. These633

tsunami characteristics are captured by a0/H0, which is indicative of the wave634

types. In addition, they achieved the closest fit to the results from Fuchs et al.635

(2010) (Section 5). Table 7 summarises the most suitable prediction methods636

for different conditions.637

6.3. The effects of the bathymetry and water body geometry combined638

To gain insight into the combined effects of the bathymetry and the water639

body geometry, additional simulations were conducted in a 3D geometry, by640

using a rectangular numerical domain of up to 77 m by 45.2 m, using a rectan-641

gular grid. These simulations involved approximate linear and solitary I waves642

spanning from deep- to shallow-water conditions. They were conducted with643

a uniform h (0.60 m for deep-water and 0.30 m for shallow-water) and for the644

steepest positive Gaussian bathymetric feature with hf/h0 = 0.1, with the wave645

source b′ = 0.6 m at the radial distance of r′ = 0 m. Wave gauges were placed646

at wave propagation angles of γ′ = 0◦, 30◦, 45◦ and 60◦ at intervals of a relative647

radial distance ∆r′ = 2.5h0.648

The results of these tests are shown in Fig. 16 for H, and in Fig. D.1 for649

a, with a direct comparison between the results with and without the Gaussian650

bathymetric feature. The waves follow the same decay in both bathymetries up651

to the location of hf where shoaling occurs. In Fig. 16 three isolated peaks of652

different magnitudes and at different relative distances are found for each γ′ in653

both wave types. By using the wavefront length (Ruffini et al., 2019)654

lw = b′ + 2r′θrad, (22)

where θrad is the water body side angle in radians, the decay of the peaks655

follows approximately Green’s law for h = constant. By further considering the656

variability with γ′, the decay follows657

Hp(r′, γ′, θ)/h0 = Hp,0/h0

(
lw,0

lw(r′, θ)

)1/2

cos2 (γ′ψ). (23)

In Eq. (23), Hp(r′, γ′, θ) is the wave height of the peak at the position r′ and658

γ′ for a defined water body side angle θ, Hp,0 is the peak at γ′ = 0◦, lw,0659

the corresponding wavefront length and ψ is a wave-type specific multiplication660

factor. ψ = 1/3 for the approximate linear and ψ = 4/5 for the solitary I waves.661

The same relationship applies to a using Eq. (23) by substituting H with a and662

26



using ψ = 1/3 for the approximate linear and ψ = 3/5 for the solitary I waves.663

These peaks are not present in the results for the 2D geometry (Fig. 8) due to664

the laterally constraint wave energy.665
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Figure 16: Comparison of the normalised wave height H/h0 with r′/h0 and the propagation
angle γ′ for a 3D geometry with h = constant and the positive Gaussian bathymet-
ric feature with hf/h0 = 0.1 for (a) approximate linear and (b) solitary I waves.
( ) represent the positions of the crests of the bathymetries and the shaded
areas represent the bathymetries.

Table 6: Transformed wave height ∆Hb = (Hb,g/Hb,h − 1) × 100 and amplitude ∆ab =
(ab,g/ab,h − 1) × 100 differences between the Gaussian bathymetric feature with
hf/h0 = 0.1 and the horizontal bathymetry for 2D (subscript 2D) and 3D (subscript
3D) geometries for γ′ = 0◦.

Geometry Wave condition ∆Hb ∆ab
2D approximate linear −27.9% −25.7%
2D solitary I −43.0% −42.0%
3D approximate linear +2.45% +2.26%
3D solitary I −41.0% +14.2%

∆Hb,3D − ∆Hb,2D ∆ab,3D − ∆ab,2D
2D versus 3D approximate linear +30.4% +28%
2D versus 3D solitary I +2.0% +56.2%

The results of H and a for both the 2D and 3D geometries are summarised666

in Table 6 using ∆Hb = (Hb,g/Hb,h − 1)× 100 and ∆ab = (ab,g/ab,h − 1)× 100667

between the Gaussian (subscript g) and the horizontal (subscript h) bathyme-668

tries. Note that a comparison can only be drawn between 2D and 3D for γ′ = 0◦669

at x′ = r′ = 60h0 (corresponding to x′′ = 50h0) as this is the only direction670

available in 2D. The additional directions γ′ > 0◦ are included in 3D only to671

investigate the lateral energy spread. The results of H at γ′ = 0◦ between the672

two geometries show that, in 2D, ∆Hb = −27.9% whereas for the 3D geometry673

∆Hb = −2.45% (Table 6). Very similar values, as expected for the approximate674
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linear waves with H ∼= 2a, are also found for a. The behaviour of solitary I waves675

is more complex since the difference at γ′ = 0◦ is very similar for H between676

the 2D (∆Hb = −43.0%) and 3D (∆Hb = −41.1%) geometries. In contrast,677

the a behaviour compared to a 2D geometry changes (Table 6). Note that this678

difference for a between 2D and 3D is due to the wave not having fully recovered679

after propagating over the bathymetry for the 3D case.680

These results show that the application of Eqs. (15) to (20) gives a better681

prediction ofH in geometries other than 2D for more shallow-water waves, where682

the effect of the bathymetry is significant, with a decay difference between 2D683

and 3D of only ∆Hb,3D − ∆Hb,2D = 2.0%. However, for deep-water waves the684

relations derived for a 2D geometry may underestimate the wave characteristics685

by up to ∆Hb,3D −∆Hb,2D = 30.4% if used in a 3D geometry (Table 6) where686

the transformed waves are almost unaffected by the changing bathymetry (Fig.687

16a). A summary of the best suited forecast method for each possible initial688

condition is presented in Table 7.689

Table 7: Summary of the best suited forecasting methods for different initial conditions. Equa-
tions with * are from Synolakis and Skjelbreia (1993). The wave types can be derived
with the wave type product T from Heller and Hager (2011).

Stokes waves Cnoidal waves Solitary waves

Shoaling on beaches in
laterally constrained

geometries (2D)

Eq. (9)*
to predict H (for a

replace H with a
and a0 with H0

in Eq. (9)).

Eq. (9)* for h0/Lf ≥ 1/20
Eqs. (9)* and (10)* for

h0/Lf < 1/20 to
predict H (for a replace
H with a and a0 with

H0 in Eqs. (9) and (10)).

Eq. (9)* for h0/Lf ≥ 1/30
Eqs. (9)* and (10)* for

h0/Lf < 1/30 to
predict H (for a replace
H with a and a0 with

H0 in Eqs. (9) and (10)).
Effect of the bathymetry
in laterally constrained

geometries (2D)

Eqs. (16) and (19)
or ANN to predict

Kb and Ka,b.

Eqs. (16) and (19)
or ANN to predict

Kb and Ka,b.

Eqs. (16) and (19)
or ANN to predict

Kb and Ka,b.

Effect of the geometry and
bathymetry in laterally

unconstrained geometries (3D)

Semi-empirical equations
Eqs. (E.2) and (E.3)
to predict Hb and ab.

Semi-empirical equations
Eqs. (E.2) and (E.3)
to predict H and a

at the start of the bathymetric
feature, then Eqs. (16)

and (19) or ANN to
predict Kb and Ka,b.

Semi-empirical equations
Eqs. (E.2) and (E.3)
to predict H and a

at the start of the bathymetric
feature, then Eqs. (16)

and (19) or ANN to
predict Kb and Ka,b.

6.4. Real case application690

The 2014 Lake Askja landslide-tsunami is used to validate the ANN and691

Eqs. (16) and (19). All predictions are compared to the numerical results of692

Gylfadóttir et al. (2017). Gauge 22 (g22) of Gylfadóttir et al. (2017) in Fig. 17693

is used for this purpose. This gauge is positioned immediately downwave a steep694

decrease in h, i.e. the contour lines are close to each other (Fig. 17). Shoreward695

the bathymetry flattens with a much smaller inclination up to the shoreline.696

Appendix E describes a complete procedure to estimate the wave character-697

istics when both the effects of the bathymetry and water body geometry are698

significant. This includes the steps from Ruffini et al. (2019) and additional699

steps, marked with *, which are only relevant for changing bathymetries (Table700

7). Step 1: The dimensional parameters are defined, as summarised in Table 8,701

where the landslide width b, thickness s, mass ms, density ρs, impact velocity702

Vs, slope angle α, water density ρw and water depth h are shown. In Table 9703
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the landslide non-dimensional parameters are summarised including the slide704

relative thickness S, the slide relative mass M , the slide Froude number F, the705

wave type product T and the impulse product parameter P. Step 2: T reveals706

that the landslide-tsunami is a cnoidal wave. Step 3: The initial tsunami char-707

acteristics are calculated (taken from Ruffini et al. (2019) for this case) for a 2D708

geometry based on Heller and Hager (2010) including the maximum wave height709

HM and amplitude aM as well as the coupling distance dM between generation710

and propagation zones (Table 9).711
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Table 8: Dimensional landslide parameters for the 2014 Lake Askja case.

b (m) s (m) ms (kg) ρs (kg/m3) α (◦) Vs (m/s) ρw (kg/m3) h (m)

550.0 35.5 2×1010 2000 10.4 30.1 1000 138.0

Step 4: The initial water body side angles θ1 = 32.4◦ and θ2 = 44.1◦ are712

evaluated at the slide impact sides (Fig. 17) and used to calculate the wavefront713

length lw(r = dM , θ) = 550 + 32.4(π/180)531 + 44.1(π/180)531 = 1259 m at714

the interface between generation and propagation zones where r is the radial715

distance from the slide impact. As the geometry already starts to diverge at716

r = 0 rather than at r′ = 0, r′ is replaced with r in Eq. (22) (Ruffini et al.,717

2019). Step 5: Energy conservation is applied for the 2D values HM and aM718

(Table 9) to consider the reduction of the wave magnitude due to the wider719

geometry compared to 2D resulting in H(r′ = 0, γ′ = 0◦, θ) = HM (r′ = 0, γ′ =720

0◦, θ = 0◦)[b/lw(r′ = 0, θ)]1/2 = 43.3[550/1259]1/2 = 28.6 m and a(r′ = 0, γ′ =721

0◦, θ) = 22.9 m (Eq. (E.1)).722
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Table 9: Non-dimensional landslide parameters for the 2014 Lake Askja case.

S M F T P dM (m) HM (m) aM (m)

0.26 1.91 0.82 1.21 0.49 531 43.3 34.7

Step 6*: A line (dashed black line in Fig. 17) joining the centre of the land-723

slide to the gauge position is drawn, indicating the wave propagation direction.724

The coordinates of the deepest point upwave of the steep bathymetry is used725

to identify the starting position of the bathymetric feature with x′′ = 0 and726

to obtain the initial water depth h0 = 143 m. Step 7: For that specific point,727

indicated with g22o (r = 1822 m, γ = 32.0◦, see Fig. 17), where γ is the728

propagation angle from the slide impact, the geometry side angles are calcu-729

lated as θ3 = 19.2◦ and θ4 = 44.1◦ and the wavefront length lw(r = 1822730

m, θ) = 550 + 19.2(π/180)1822 + 44.1(π/180)1822 = 2563 m. r′ is again re-731

placed by r in Eq. (22). Step 8: H0 and a0 at g22o are calculated using Eqs.732

(E.2) and (E.3) resulting in H0 = 19.94 m with β = 1.03 and a0 = 13.18 m733

with β = 0.85 (Table E.1). The effect of the water body geometry is taken into734

account up to this position, which is then used as the new coordinate system735

origin x′′ = 0 at the start of the bathymetric feature for Eqs. (16) and (19) as736

well as the ANN. Step 9*: The water depth hf = 26 m at g22 (x′′ = 939 m)737

is calculated to define hf/h0 = 0.18. Step 10*: Eqs. (16) and (19) are applied738

and the results are multiplied by H0 and a0, respectively, to find Hb and ab.739

The wave characteristics are summarised in Table 10 and compared with the740

numerical results of Gylfadóttir et al. (2017) at g22 as discussed below together741

with the results from the ANN.742

Table 10: Predicted wave parameters based on Eqs. (16) and (19) compared to the numerical
parameters of Gylfadóttir et al. (2017) at g22. The values (∆f = fpred/fnum−1)×
100 are shown in brackets.

Predicted Gylfadóttir et al. (2017)

Hb (m) 7.8 (−49.4%) 15.4

ab (m) 5.8 (−40.2%) 9.7

To apply the ANN, step 9* requires the calculation of Lf/(h0 − hf ), T743

and L0 as additional parameters. First, the length of the feature Lf = 939 m744

is calculated as the distance between g22o and g22 and the difference in bed745

elevation as h0−hf = 117 m resulting in Lf/(h0−hf ) = 8.0. The offshore wave746

period is calculated using the maximum wave period T = TM = 9P1/2(h/g)1/2 =747

9 · 0.491/2 · (138/9.81)1/2 = 23.6 s with Eq. (4) from Heller and Hager (2010)748

and the wavelength is defined as L0 = cT = (9.81 · 143)1/2 · 23.6 = 884 m with c749

as the shallow water wave celerity. Step 10*: The ANN is applied using all the750

initial parameters defined in Section 2.2. The output of the ANN is Kb = 0.59751

and Ka,b = 0.74. These parameters, are used to obtain Hb and ab, respectively,752

which are summarised in Table 11.753
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Table 11: Wave parameters predicted by the ANN compared to the numerical parameters of
Gylfadóttir et al. (2017) at g22. The values (∆f = fpred/fnum−1)×100 are shown
in brackets.

Predicted Gylfadóttir et al. (2017)

Hb (m) 11.8 (−23.4%) 15.4

ab (m) 9.8 (+1.0%) 9.7

Eqs. (16) and (19) resulted in a deviation of ∆f(Hb) = −49.4% and ∆f(ab) =754

−40.2% (see Table 10), respectively, in predicting the wave characteristics of755

Gylfadóttir et al. (2017) (Table 10). The ANN results in a better overall perfor-756

mance (Table 11), with ∆f(Hb) = −23.4% and ∆f(ab) = +1.0%.757

The discrepancies found between the present study and Gylfadóttir et al.758

(2017) may be associated with the non-linear interaction of the effect of the759

bathymetry and water body geometry. The energy continues to spread laterally760

downwave of g22o whilst the wave is propagating over the bathymetric feature761

hence altering the effect on the waves and changing wave breaking which may762

occur sooner in the 2D geometry. Based on the investigation of the combined763

effect of the bathymetry and water body geometry (Section 6.3), the equations764

derived for a 2D geometry are expected to result in accurate predictions for765

Hb even in wider geometries for solitary waves. In fact, the same decays of766

approximately 40% were found in both 2D and 3D at γ′ = 0◦ (Table 6). How-767

ever, for less non-linear waves the decay predicted by these equations and the768

ANN may be too large. This is due to the bathymetry affecting Hb and ab very769

little, resulting in values close to the ones with a horizontal bathymetry. The770

landslide-tsunami classified as cnoidal wave (step 2) in the Lake Askja case is771

expected to be under-predicted by methods derived from 2D geometries due772

to the non-linearity being rather low for this wave type (H0/h0 = 0.14). This773

explains the lower values from the presented study compared to the values of774

Gylfadóttir et al. (2017) (Tables 10 and 11). However, a degree of uncertainty775

must also be attributed to Gylfadóttir et al. (2017) neglecting the deformation776

of the landslide, which has an impact, especially during tsunami generation.777

Further, in the direction of g22 the run-up was slightly overestimated compared778

to the real event indicating that the offshore waves at g22 were also larger than779

in reality.780

7. Conclusions781

This study is aimed at developing reliable prediction methods for landslide-782

tsunami hazard assessment by taking the effect of the bathymetry on idealised783

tsunami propagation into account. The non-hydrostatic non-linear shallow wa-784

ter model SWASH was used to conduct simulations, mainly in a 2D geometry785

(laterally constrained tsunami energy) with a uniform width of 0.60 m. This en-786

abled to separate the effect of the bathymetry from the effect of the water body787

geometry. Three different bathymetry classes were investigated: linear beach,788

submerged positive and negative Gaussian bathymetric features and positive789
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and negative steps with the water depth at the crest/trough of the bathymetric790

feature ranging from 0.1h0 ≤ hf ≤ 1.9h0, where h0 is the initial water depth.791

Nine different idealised landslide-tsunamis were simulated, ranging from deep-792

to shallow-water, i.e. one approximate linear, two Stokes, two cnoidal and four793

solitary waves (Table 2) over all aforementioned bathymetries (apart of two soli-794

tary wave conditions for which only selected bathymetries were used) resulting795

in a total of 184 tests.796

The spatial distribution of the wave height H and amplitude a for the beach797

bathymetry were first validated by using theoretical shoaling formulations for798

solitary waves (Synolakis and Skjelbreia, 1993). Two prediction methods were799

used to obtain the transformed idealised landslide-tsunami characteristics down-800

wave of every investigated bathymetry namely an Artificial Neural Network801

(ANN) and a regression analysis. Both methods were developed to forecast the802

transformation coefficient Kb = Hb/H0, i.e. the ratio between the transformed803

wave height Hb downwave of the bathymetric feature and the incident wave804

height H0, and the amplitude transformation coefficient Ka,b = ab/a0, i.e. the805

ratio between transformed ab and incident wave amplitude a0 to the initial ide-806

alised landslide-tsunami and bathymetry. The first method is capable of linking807

two sets of data without prior assumptions, which was convenient to investi-808

gate the large number of different conditions. However, the regression analysis is809

based on a physical understanding of the phenomenon and it considers a smaller810

number of input variables, allowing a simpler computation. This method relied811

on hf/h0, (hf/h0)(a0/H0) or, alternatively, hf/H0 as independent variables.812

In addition to the numerically simulated waves, the empirical equations were813

validated with a laboratory landslide-tsunami propagating over a trapezoidal814

breakwater from Fuchs et al. (2010). Despite of the ANN outperforming the815

empirical equations, both methods are suitable to be used due to their comple-816

mentary strengths and weaknesses.817

A comparison was also conducted between simulations in 2D and 3D ge-818

ometries to quantify the effect of the bathymetry and the water body geometry819

combined. Simulations were carried out with h = constant and with a Gaus-820

sian bathymetric feature with hf/h0 = 0.1 as an extreme case. This showed821

that in 3D propagation, approximate linear Hb and ab are much less affected822

by the bathymetry than by the geometry, as expected. For more non-linear823

waves, such as solitary waves, the difference between 2D and 3D is small for824

Hb when the propagation angle is γ′ = 0◦. The contribution of the bathymetry825

to propagation is similar in 2D and 3D for shallow-water waves, for which only826

∆Hb,3D − ∆Hb,2D = 2% is expected. On the other hand, for more deep-water827

waves the contribution of the geometry becomes more relevant in respect to the828

bathymetry one for 3D propagation. Under these conditions the results are un-829

derestimated by up to ∆Hb,3D−∆Hb,2D = 30.4% using the proposed prediction830

methods. Note that, with the 3D geometry, the most extreme cases were inves-831

tigated and this combined effect is less relevant for more laterally constrained832

water body geometries, as summarised in Table 7.833

A step by step calculation procedure was illustrated with the 2014 Lake834

Askja case and its results were compared with the simulations of Gylfadóttir835
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et al. (2017). Better performance were generally found with the ANN compared836

to the equations based on the regression analysis (Eqs. (16) and (19)). The837

agreement of the ANN with the simulated values of Gylfadóttir et al. (2017)838

with ∆f(Hb) = −23.4% against ∆f(Hb) = −49.4% when Eq. (16) was used839

and ∆f(ab) = +1.0% for the ANN against ∆f(ab) = −40.2% by using Eq. (19).840

These discrepancies are associated with the non-linear interaction of the effect841

of the bathymetry and geometry combined and also due to the assumptions842

made by Gylfadóttir et al. (2017).843

The methods presented herein are derived from studying idealised landslide-844

tsunamis in a 2D geometry. When applied to a 3D geometry the predictions are845

more accurate for more shallow-water waves, while more deep-water waves tend846

to be under-predicted (Table 7). However, considering the satisfactory agree-847

ment for the 2014 Lake Askja event, the relations and the ANN developed in848

this study are suitable for initial landslide-tsunami hazard assessment and ex-849

pand the capability of generic hazard assessment methods.850

Future work should consider a wider range of bathymetries by adding cases851

such as trapezoidal breakwaters and obstacles reaching above the SWL (e.g.852

islands), both in numerical simulations and laboratory experiments. This will853

allow to further expand the ANN prediction capabilities.854

Acknowledgements855

The authors would like to thank Prof. Nicholas Dodd for helpful suggestions856
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Notation861

A1′ [-] = initial activation values array of the first hidden layer of the ANN
A1 [-] = final activation values array of the first layer of the ANN
A2′ [-] = initial activation values array of the second hidden layer of the ANN
A2 [-] = final activation values array of the second layer of the ANN
A3′ [-] = initial activation values array of the output layer of the ANN
A3 [-] = final activation values array of the output of the ANN
a [L] = wave amplitude
ath [L] = wave trough amplitude
B [-] = bias array
b [L] = slide width at the slide impact location
b′ [L] = source width at the coupling location
Cov [-] = covariance
Cr [-] = Courant number
c [L/T] = wave celerity
c1 [-] = position of the centre of the Gaussian bathymetric feature
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c2 [-] = width of the Gaussian bathymetric feature
cf [-] = bottom friction coefficient
d [L] = total water depth
dM [L] = coupling distance
E [ML2/T2] = wave energy
e [-] = exponential
F [-] = slide Froude number
fnum [-] = numerical value
fpred [-] = predicted value
ftarget [-] = target value
g [L/T2] = gravitational acceleration
H [L] = wave height
Hm0i [L] = incident significant wave height
Hp [L] = peak wave height
h [L] = water depth
hf [L] = water depth at the bathymetric feature
Ka,b [-] = amplitude transformation coefficient
Kb [-] = transformation coefficient
k [L−1] = wave number
L [L] = wavelength
Lf [L] = bathymetric feature length (first half for Gaussian bathymetric feature)
lw [L] = wavefront length
M [-] = relative slide mass
ms [M] = slide mass
N [-] = number of samples
n [T/L1/3] = Manning’s coefficient
P [-] = impulse product parameter
Rc [L] = crest freeboard of a structure
r [L] = radial distance from the slide impact
r′ [L] = radial distance from the coupling location
S [-] = relative slide thickness
Std [-] = standard deviation
s [L] = slide thickness
T [-] = wave type product
T [T] = wave period
t′ [T] = time from when the wave reaches the coupling location
u [L/T] = depth averaged velocity in x′−direction
ui [L/T] = incident velocity
Vs [L/T] = slide impact velocity
v [L/T] = depth-averaged velocity in y′−direction
W [-] = weight matrix
w [L/T] = depth-averaged velocity in z′−direction
X [-] = unscaled array of ANN variables
Xmax [-] = array of maximum values of ANN variables during training
Xmin [-] = array of minimum values of ANN variables during training
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x′ [L] = x′-coordinate from the coupling location
x′′ [L] = x′′-coordinate from the start of the bathymetric feature
Y [-] = scaled array of ANN variables
y′ [L] = y′-coordinate from the coupling location
z [L] = elevation above sea water level
z′ [L] = z′-coordinate from the coupling location
z′′ [L] = z′′-coordinate from the start of the bathymetric feature
z′′bed [L] = seabed z′′-coordinate

Greek symbols862

α [◦] = slide impact angle
β [-] = pre-factor in Eqs. (E.2) and (E.3)
γ [◦] = wave propagation angle from the slide impact
γ′ [◦] = wave propagation angle from the coupling location
∆a [-] = wave amplitude ratio
∆f [L] = relative difference between numerical and theoretical wave parameter
∆H [-] = wave height ratio
∆r′ [L] = r′-direction wave gauge spacing
∆t′ [T] = time step
∆x′ [L] = x′-direction grid size and horizontal distance
∆x′′ [L] = x′′-direction wave gauge spacing
∆y′ [L] = y′-direction grid size
∆z [L] = contours spacing in z-direction
η [L] = water surface elevation
ηi [L] = incident water surface elevation
ηmax [L] = maximum water surface elevation
θ [◦] = water body side angle
θrad [rad] = water body side angle in radians
π [-] = mathematical constant
ρs [M/L3] = slide density
ρw [M/L3] = water density
ρ(pred, target) [-] = Pearson correlation coefficient for the ANN
ψ [-] = pre-factor in Eq. (23)

Subscripts863

0 = incident value taken at x′′ = 0 for h = constant
2D = 2D geometry
3D = 3D geometry
b = transformed
g = Gaussian bathymetric feature
h = horizontal bathymetry
i = incident
j = counter for j-th data sample
M = maximum
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m = number of inputs for the ANN
n = number of neurons for the 1st hidden layer
o = number of outputs for the ANN
p = number of neurons for the 2nd hidden layer

Abbreviations864

ANN = Artificial Neural Network
MPI = Message Passing Interface
MSE = Mean Square Error
NLSWE = Non-Linear Shallow Water Equation
pred = Predicted
SWASH = Simulating WAves till SHore
SWL = Still Water Level
2D = Wave flume geometry
3D = Wave basin geometry

A. Wave amplitude distributions865

The wave amplitude of the approximate linear, Stokes I, cnoidal I and soli-866

tary I waves are presented for the beach bathymetry in Fig. A.1, the Gaussian867

bathymetric feature in Fig. A.2 and the step bathymetry in Fig. A.3.868
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Figure A.1: Linear beach bathymetries: normalised wave amplitudes a/h0 with z′′(x′′)/h0
for (a) approximate linear waves, (b) Stokes I waves, (c) cnoidal I waves and (d)
solitary I waves compared to Green’s law (Eq. (9)), Boussinesq’s results (Eq. (10))
and decay laws after breaking (Eqs. (11) and (12)). ( ) represents the position
of the shoreline.
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B. Details of the ANN869

Details of the chosen ANN are presented hereafter with all the required
elements to perform a calculation using Section 2.2. First, the inputs are scaled
between 1 and −1 with Eq. (5) where the arrays of the maximum and minimum
values of all 6 input variables for the training dataset are

Xmax =
[

83.330 0.589 0.589 10 9.950 1.900
]

(B.1)

Xmin =
[
−83.330 0.067 0.035 2.000 3.542 0.000

]
. (B.2)

The activation values for each neuron are then calculated by multiplying the
results with the weight matrix Wn,m plus the bias array Bn (Eq. (6)), which are

Wn,m =



−0.5296 −0.6885 1.0928 0.9096 −0.4310 0.5370
−0.6613 0.3443 0.5187 −0.8013 −0.5572 2.1533
0.1189 −0.7561 0.3990 0.8784 −0.5174 −1.9777
−1.3106 −0.1101 1.5049 0.9393 −0.3861 −0.1054
−1.8950 −0.8188 −0.5028 0.6529 0.2187 −0.1242
1.7557 −0.6158 −1.2368 0.9105 −0.9121 0.3668
0.3610 1.3275 1.1716 0.6196 0.8787 1.3374
0.1056 −1.2522 −0.0283 −0.1833 −1.2188 −1.1233
−1.1365 −0.4485 1.2414 0.8786 −0.2110 −1.3281
0.4484 0.8178 −0.3037 1.1311 1.2736 −0.2911
−0.4787 0.9562 −0.3034 −1.0019 0.3049 −1.9277
1.0140 −0.0724 1.1508 0.7257 0.7134 −1.7134
0.8220 0.4833 −1.5005 1.1575 0.6716 0.0861
−0.2139 −0.9094 −1.0225 −0.5123 0.8452 −1.5318
−0.4561 −0.2400 1.3462 −0.4849 −0.2768 1.3099



(B.3)

and

Bn =



2.7287
1.7854
−1.7649
1.2000
1.3712
−1.4016
−0.03271

0.2827
0.2374
1.0561
−1.7002
0.3765
1.1736
−1.5095
−2.3011



. (B.4)

The activation values are then treated with the Sigmoid symmetric function
(Eq. (7)). The process is again replicated for the second layer using the final
activation values of the first layer as inputs resulting in
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and

Bp =



−1.5673
−1.5310
1.1176
−1.0194
−0.4078
−0.3398
0.2032
0.0117
0.1145
−0.5637
−0.9280
−0.9596
−0.9244
1.5774
−1.8244



. (B.6)

The scaled output, representing the results of the ANN for the new input, is
then calculated using Eq. (6) with the output weight matrix

W ᵀ
o,p =



0.7397, 0.5437
0.0257,−0.4493
−0.2598, 0.3055
0.4970, 0.9532
0.6938, 0.4977

−0.6808,−1.0325
0.3187, 0.3403

−0.8505,−0.7570
−0.2803,−0.9016
0.0011,−0.3347
−0.3491,−1.0875

0.8740, 0.6773
−0.3991,−0.8662
0.3185,−0.9878
−0.8206,−0.0109



(B.7)

and the bias array

Bo =

[
−0.7149
0.1142

]
. (B.8)

Wo,p is presented in the transposed formW ᵀ
o,p due to space constrictions. Finally,

the output is scaled back using the inverse of Eq. (5) with

Xmax =
[

1.157 1.306
]

(B.9)

Xmin =
[

0.111 0.199
]
. (B.10)

C. Regression for Ka,b870

Fig. C.1 shows the regression analysis for at/a0 versus hf/h0 (Fig. C.1a) and871

(hf/h0)(a0/H0) (Fig. C.1b) with the solid black lines representing Eqs. (18) and872

(19), respectively. In general, a worse performance than for Eqs. (15) and (16)873

for Kb can be seen. This is mainly due to the larger data spread for hf/h0 > 1.4874

in Fig. C.1a and for (hf/h0)(a0/H0) > 0.8 in Fig. C.1b. Fig. C.2 shows the875

variability of Ka,b with hf/H0 and Eq. (20) represented by a solid black line.876
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Figure C.1: Transformation coefficient Ka,b for all investigated wave types and bathymetries
versus (a) hf/h0 with ( ) Eq. (18) and (b) (hf/h0)(a0/H0) with ( ) Eq.
(19); ( ) represent the ±30% bounds.
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Figure C.2: Transformation coefficient Ka,b for all investigated wave types and bathymetries
versus hf/H0 with ( ) Eq. (20) and ( ) the ±30% bounds for (a) the entire
dataset and (b) a zoom for the range 0 < hf/H0 < 5.

D. The effect of the bathymetry and water body geometry combined877

for a878

Fig. D.1 shows the effect of the bathymetry and water body geometry com-879

bined for a in a 3D geometry with hf/h0 = 0.1 at a Gaussian bathymetric880

feature. The decay of the maximum peaks can be defined with Eq. (23) with881

H replaced by a. The same ψ as for H for approximate linear waves is used882
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but a different ψ for solitary I waves (Section 6.3), namely ψ = 1/3 for the883

approximate linear and ψ = 3/5 for the solitary I waves.884
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Eq. (23) with H replaced by a 
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Figure D.1: Comparison of the normalised wave amplitude a/h0 with r′/h0 and the propa-
gation angle γ′ for a 3D geometry with h = constant and the positive Gaussian
bathymetric feature with hf/h0 = 0.1 for (a) approximate linear waves and (b)
solitary I waves. The vertical dashed lines highlight the positions of the crests of
the bathymetries.

E. Hazard assessment computation procedure885

The procedure to calculate the transformed wave heights considering both886

the effect of the bathymetry and the water body geometry is summarised here.887

1. Define the landslide width b, thickness s, mass ms, density ρs, impact888

velocity Vs, slope angle α, water density ρw and water depth h. Calculate889

the relative slide thickness S, relative slide mass M , slide Froude number890

F and the impulse product parameter P.891

2. Evaluate the wave type in 2D using the wave type product T based on892

Heller and Hager (2011).893

3. Calculate the maximum wave height HM for 2D and its position from the894

slide impact r = dM (Heller and Hager, 2010).895

4. Define θ1 and θ2 (Fig. 17) at the slide sides to approximate the current896

geometry with an idealised one up to r′ = 0 and calculate the wave front897

length lw(r′ = 0, θ).898

5. Compute H(r′ = 0, γ′ = 0◦, θ) by applying energy conservation899

H(r′ = 0, γ′ = 0◦, θ) = HM (r′ = 0, γ′ = 0◦, θ = 0◦)[b/lw(r′ = 0, θ)]1/2.
(E.1)

6*. Project a line from the slide centre to the point of interest, identify the900

start (i.e. the deepest point) x′′ = 0 of any bathymetric feature along that901

line and identify h0.902
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7. Define θ3 and θ4 at the slide sides to approximate the geometry up to903

an identified point to consider the expansion of the water body and cal-904

culate lw(r′, θ) with r′ being its position in the propagation zone. If the905

bathymetry is significantly changing then use the origin of the bathymetric906

feature defined in step 6.907

8. Calculate the incident wave height H0 or wave amplitude a0 using

H0(r′, γ′, θ)

h
/

(
b′

lw(r′, θ)

)1/2

= β
H(r′ = 0, γ′ = 0◦, θ = 0◦)

h
cos2

(
γ′

3

)
(E.2)

or

a0(r′, γ′, θ)

h
/

(
b′

lw(r′, θ)

)1/2

= β
a(r′ = 0, γ′ = 0◦, θ = 0◦)

h
cos2

(
γ′

3

)
(E.3)

from Ruffini et al. (2019), where β is a wave type specific pre-factor (Table908

E.1).

Table E.1: Pre-factors β for H (Eq. (E.2)) and a (Eq. (E.3)) for each investigated wave type
(Ruffini et al., 2019).

H a
Wave theory β β

5th order Stokes 1.10 1.01

5th order cnoidal 1.03 0.85
1st order solitary 1.20 0.84

909

9*. Calculate hf of the bathymetric feature for the desired position with x′′ >910

0. If the ANN is used, additional parameters are needed namely the length911

of the feature Lf between x′′ = 0 and the desired position at x′′ > 0, the912

incident wave period T (using Eq. (4) from Heller and Hager, 2010) and913

the wavelength calculated with the shallow-water wave theory L0 = cT .914

10*. Apply Eqs. (16) and (19), or the ANN, to find the transformation coeffi-915

cient Kb or the amplitude transformation coefficient Ka,b and solve them916

for Hb and ab, respectively.917
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