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ABSTRACT: An efficient implementation of geometrical deriva-
tives at the Hartree−Fock (HF) and current-density functional
theory (CDFT) levels is presented for the study of molecular
structure in strong magnetic fields. The required integral
derivatives are constructed using a hybrid McMurchie−Davidson
and Rys quadrature approach, which combines the amenability of
the former to the evaluation of derivative integrals with the
efficiency of the latter for basis sets with high angular momentum.
In addition to its application to evaluating derivatives of four-
center integrals, this approach is also applied to gradients using the
resolution-of-the-identity approximation, enabling efficient opti-
mization of molecular structure for many-electron systems under a strong magnetic field. The CDFT contributions have been
implemented for a wide range of density functionals up to and including the meta-GGA level with current-density dependent
contributions and (range-separated) hybrids for the first time. Illustrative applications are presented to the OH and benzene
molecules, revealing the rich and complex chemistry induced by the presence of an external magnetic field. Challenges for geometry
optimization in strong fields are highlighted, along with the requirement for careful analysis of the resulting electronic structure at
each stationary point. The importance of correlation effects is examined by comparison of results at the HF and CDFT levels. The
present implementation of molecular gradients at the CDFT level provides a cost-effective approach to the study of molecular
structure under strong magnetic fields, opening up many new possibilities for the study of chemistry in this regime.

1. INTRODUCTION

Interest has grown over recent years in the nonperturbative
calculation of electronic structure in strong magnetic fields.1−17

Such calculations are of interest since they are one means by
which static response properties with respect to an applied
magnetic field may be evaluated but also since they are essential
for modeling the behavior of molecular systems in strong
magnetic fields that cannot be treated perturbatively and of the
kind found on stellar objects such as magnetic white dwarf
stars.18−20 Molecular hydrogen has been observed in spectra
from nonmagnetic white dwarf stars,21 suggesting that
molecules and even chemistry may be possible in such extreme
environments. The behavior of carbon nanomaterials, such as
nanographenes, under strong magnetic fields achievable in
laboratories has long been of interest. Nonperturbative response
of such systems to a magnetic field is expected as the area of the
molecules perpendicular to the magnetic flux increases; for
larger systems these effects are predicted to be observable at
much lower field strengths.22 Nonperturbative effects have also
been observed in the context of doped semiconductor materials;
see for example the study of Murdin et al.23 on phosphorus
doped silicon. In recent years, there has been significant progress
in extending accurate quantum chemical methods to treat
molecular systems under such conditions where standard
perturbative treatments are no longer applicable.

Initial developments and investigations concerned the
application of Hartree−Fock theory to systems in strong
magnetic fields,1,2 with subsequent work employing config-
uration interaction,24 coupled-cluster theory,9 equation of
motion coupled-cluster theory,10,11 current−density functional
theory,12,13 and most recently the calculation of spectra using
real-time time-dependent self-consistent field methods.6−8,17

Several electronic structure packages have been developed or
generalized to treat systems in strong magnetic fields, starting
with the LONDON quantum chemistry program24 and followed by
the BAGEL program,25 the CHRONUSQ package,26 TURBOMOLE,27

and our own development code QUEST.28

Central to these developments has been the use of Gaussian-
type London atomic orbitals (LAOs),29 which comprise a
standard Gaussian basis function multiplied with a complex
plane-wave phase factor dependent on the external magnetic
field and the gauge origin. Their use allows gauge-origin
independent energies and properties of systems in strong
magnetic fields to be computed in finite basis sets.
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The use of LAOs however has been characterized by
computational inefficiency, since the complex phase factor
precludes the use of existing optimized molecular integral codes
for the evaluation of integrals over LAOs. Furthermore, the
algorithms for integral evaluation become more complicated
and the operation count itself increases by a factor of 4 when
working with complex arithmetic.
In previous work,15 an efficient and simple approach for the

evaluation of molecular integrals over LAOs was proposed and
implemented. A generalized form of the widely employed
resolution-of-the-identity (RI) approximation to avoid the need
to evaluate four-index electron repulsion integrals (ERIs) over
LAOs has been presented and implemented by Reynolds and
Shiozaki30 and Pausch and Klopper.27 Overall, these develop-
ments have enabled the computational study of much larger
systems in strong magnetic fields than previously possible.
For the study of chemistry in strong magnetic fields, however,

it is essential to be able to calculate optimized geometries, and
indeed transition states, of molecular systemssince only then
is it possible to investigate the changes in molecular structure
and orientation relative to the field and ultimately chemical
reactivity that occur in strong magnetic fields. Previous work in
this area by Tellgren et al. presented analytical gradients in
strong magnetic fields for the restricted Hartree−Fock (HF)
approach.3 A novel approach involving a linear transformation of
the basis functions was utilized to generate the required
derivatives.
In the present work, a new and simple method is presented for

the evaluation of derivative integrals over LAOs, building on the
previous approach presented for integrals over LAOs and its
implementation.15 This leads to a more computationally
efficient implementation than the linear transformation method
used in ref 3. With these, analytical derivatives of the restricted
and unrestricted HF wave functions are constructed and, for the
first time, full analytical derivatives of the exchange−correlation
(xc) energy in current-density functional theory (CDFT) are
presented and implemented. The utility of these methods, and
the complexity of chemistry under the influence of a magnetic
field, is demonstrated with a detailed analysis of the electronic
structure and optimized geometries of two small molecules in
strong magnetic fields.
This work is organized as follows: Section 2 contains an

overview of LAOs and details the generalization of common
intermediates used in integral evaluation to use with LAOs. In
Section 3, the evaluation of molecular integrals over LAOs is
summarized; this is immediately followed by the extension of
these methods to derivative integrals over LAOs, derived in
Section 4. The construction of HF analytical gradients from
these is described in Section 5 and the extension to CDFT
presented in Section 6. The application of these developments to
two systems of interest, the OH diatomic molecule and the
benzene molecule, is analyzed in Section 7. An overall
perspective on this work and directions for future investigation
are subsequently given in Section 8.

2. INTEGRALS AND DERIVATIVE INTEGRALS OVER
LAOS

2.1. London Atomic Orbitals. A standard unnormalized
Cartesian Gaussian-type orbital (GTO) has the general form

∑φ = − − −
μ

μ
α

=

− | − |μx y z dr( ) ( A ) ( A ) ( A ) ea x
a

y
a

z
a

K
r A

1

x y z
a 2

(1)

where the function is centered at A = (Ax, Ay, Az), has angular
momentum a = (ax, ay, az), and has Ka exponents {αμ} with
respective contraction coefficients {dμ}. LAOs are a generalized
form of GTOs,29 comprising the form in eq 1 multiplied by a
complex phase factor,

ω φ= − ·r r( ) ( ) ea a
ik ra (2)

where ka is the wave vector of the London plane wave
= × −k A O( )a

1
2

, depending on the external magnetic field

and the position of the LAO relative to the gauge-originO. In
the limit of | | = 0, the LAO in eq 2 will reduce to the
correspondingGTO in eq 1. As described in ref 15, the basis may
be transformed from the Cartesian representation to the solid
harmonic representation with LAOs in the same way as for
GTOs, with coefficients constructed explicitly with the method
of Schlegel and Frisch31 or alternatively by recurrence relation as
described in ref 32.

2.2. Generalized Shell Pairs. Products of LAOs ωa(r) and
ωb(r) represent charge distributions,

∑ ∑ω ω* = [ | = |
μ ν

μ ν
= =

r r a b ab( ) ( ) (a b

K K

1 1

a b

(3)

where the notation [aμbν| represents the product of the μth and
νth individual contractions ofωa andωb, respectively, while (ab|
is the overall inner product of the two LAOs; if both are
primitive, the two definitions are equivalent.
As is the case for the product of twoGTOs, the product of two

LAOs yields a further Gaussian function. However, in this
generalized Gaussian product theorem, the product Gaussian
has its origin in the complex plane; for a pair of primitive s-type
LAOs, centered onA andB, with exponents α and β, contraction
coefficients da and db, and phase factors ka and kb, respectively,
the product may be written as
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It follows that the LAO shell-pair for each pair of primitive
functions requires only computation and storage of the
following quantities

χα β
ζ ζ

̃ = − ̃ =i
U UP P2 , 2 ,

1
2

,
2

,P P P P

(5)

where
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with which the product of two s-type LAOs in eq 4 can be
written more concisely as

ω ω* = χ χ χαβ ζ ζ ζ− | − | − · − · − | − ̃ |d dr r( ) ( ) e e ea b a b
iB A P r P( / ) ( /4 )2

P P P
2

(7)

If |ŨP|≤ 10−12, the pair of primitive functions may be considered
negligible and discarded from the shell-pair; this allows an
increasingly large proportion of the Gaussian product space to
be discarded as the system becomes larger. Within this
framework of (reduced) shell-pairs, the contraction of eq 3
may be applied as early as possible in each integral algorithm to
yield contracted integrals.
2.3. London Hermite Gaussian Functions. It is well-

established that the product of Cartesian (or spherical) Gaussian
functions may be represented as a linear combination of
Hermite Gaussian functions;33−36 the generalization to London
Hermite Gaussian functions can be written as1,37−40
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which may be written, in the notation of eq 3, as [p|. The use of
Hermite Gaussian functions as intermediates in integral
evaluation can provide a computational advantage since,
according to the Leibniz theorem, the differential operators
over the nuclear coordinates/Gaussian product center can be
moved outside of the integral over electronic coordinates.
Additionally, higher-order Hermite Gaussian functions can be
obtained from lower-order Hermite Gaussian functions by a
simple recurrence relation derived as

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz

l
moo
n
oo
i
k
jjjjj

y
{
zzzzz

|
}oo
~
oo

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz { }

χ

χ χ

χ χ

χ χ

χ ζ

− + ∂
∂

[ | = [ + |

[ + = − + ∂
∂

− + ∂
∂

× − + ∂
∂

− + ∂
∂

= − + ∂
∂

− + ∂
∂

× − + ∂
∂

−

ζ

ζ

− | − ̃|

− | − ̃ |

i

i i

i i

i i

i x

p p 1

p 1

P

P P

P P
e

P P

P
2 ( P )e

x
x

x
x

p

y

p

z

p

x

x

p

y

p

z

p

x

r P

r P

Px

P Px Py

Pz Px

P Px Py

Pz

x y

z

x y

z

2

2

(9)

The term (x − Px) may be moved in front of the differential by
using the relation
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whichmay be substituted back into eq 9, allowing the recurrence
relation to be obtained as
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The transformation between the Hermite Gaussian and
Cartesian Gaussian basis can be represented by
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where the transformation matrices may be obtained by
application of recurrence relations, derived as
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from which an expression for a transformation matrix element as
a linear combination of other transformation matrix elements
can be obtained as
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where additionally [ab|p] = 0 if p < 0 or p > a + b. The
transformation between Hermite and Cartesian Gaussian is thus
seen to be (i) not explicitly dependent onP and (ii) independent
of the London phase factor. For convenience in later discussions
and consistent with eq 5, UP will be included in the Hermite
Gaussian prefactor, yielding the modified definitions

[ | = ̃ [ | ] =ζ− | − ̃ |U0 00 0e , 1r P
P

2

(15)

3. MOLECULAR INTEGRALS

The methods by which derivative integrals are computed are
typically generalized forms of the methods for calculating the
integrals themselves. In the previous work of ref 15, several
approaches for the evaluation of molecular integrals were
presented in detail. In the interests of completeness, the aspects
of LAO integral evaluation on which the evaluation of derivative
integrals depend are reviewed here.

3.1. Overlap and Kinetic Energy Integrals. Both the
overlap and kinetic energy integrals can be resolved into the
product of their Cartesian components, which may be evaluated
straightforwardly using the Obara−Saika recurrence rela-
tions.1,15,41,42 The simplest of these is the two-center overlap
integral, defined between two LAOs as

∫ ω ω= *ab r r r( ) ( ) ( ) da b (16)

Using the definition of P̃ from eq 5, the Obara−Saika recurrence
relation for the overlap of two primitive LAOs can be
summarized as
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where the contracted integral is obtained by summation over all
primitive contributions and may be transformed into the
spherical harmonic basis if necessary.
The kinetic energy integrals can be evaluated as a linear

combination of overlap integrals; however, for LAOs their
evaluation is complicated by additional terms in the kinetic
energy operator, which are not present in the zero-field case. In
the Coulomb gauge, the kinetic energy operator is given by half
the squa re o f the k ine t i c -momentum opera to r
π ̂ = − ∇ + × −i r O( )1

2
, thus the kinetic energy integral is
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the x-component of the kinetic energy integral may be written as
the sum of mixed multipole-moment integrals obtained
straightforwardly from overlap integrals described in ref 15,
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with which the full kinetic energy integral over primitive LAOs is
given by
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where contracted integrals are obtained by summation over
primitive contributions, followed by transformation to the
spherical harmonic basis if required.
3.2. Nuclear Attraction Integrals. In contrast to the

overlap and kinetic energy integrals, the nuclear attraction
integrals (NAIs) are not fully separable into Cartesian
components (despite being one-electron integrals) due to the
Coulomb operator which defines the integral,
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whereC is the position of an atomic nucleus with unit charge. In
the present work, the Hermite Gaussian expansion described in
Section 2.3 will be substituted directly into eq 22, assuming
primitive LAOs, as the first step to deriving a method for its
evaluation,
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where the integral may be rewritten using the definition in eq 8
as
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leaving only an s-type Gaussian function, centered in the
complex plane, to be integrated over the Coulomb operator. The
Coulomb operator may then be eliminated by substituting it
with its Laplace transform,
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eventually yielding the one-dimensional integral43−45
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This one-dimensional integral can be identified as belonging to
the class of integrals,
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m zt
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1
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(27)

generally referred to as the mth-order molecular incomplete γ
function, or the Boys Function.46 These functions cannot be
evaluated analytically so must be approximated numerically;
methods by which this may be done are described else-
where.1,27,43,47−49 For convenience, the following intermediate
function is defined, combining the Boys Function with a
prefactor by which it is always multiplied

π
=z zG ( )

2
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Using the result in eq 26, the integral in eq 24 can be simplified
to
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Hence, integrals over Hermite Gaussian functions are
derivatives of the molecular incomplete γ function. Considering
the first derivative,
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it can be shown that higher-order derivatives of the incomplete γ
function, thus Hermite Gaussian integrals of arbitrary angular
momentum, may be obtained from linear combinations of the
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incomplete γ function at higher order. Defining a class of
auxiliary integrals
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the order of the Hermite Gaussian integral can be increased as
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where the final step involves the use of the relation in eq 10. This
yields a recurrence relation for the calculation of all required
Hermite integrals from higher-order molecular incomplete γ
functions,
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where, for each primitive integral, the shell-pair data and nuclear
position are used to calculate the parameters
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from which the auxiliary integrals are constructed as
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The integral over the original Cartesian Gaussian functions are
obtained by application of the transformation matrix con-
structed according to eq 14,
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which may then be contracted according to eq 3 and
transformed into the spherical Gaussian basis if required.
3.3. Electron Repulsion Integrals.Two-electron repulsion

integrals (ERIs) are typically the most computationally
expensive to compute, due to the large number which must be
evaluated and their individual complexity. In the case of LAOs,
the 8-fold permutational symmetry with respect to basis
functions for ERIs is reduced to 4-fold, doubling the number
of unique integrals to be computed. ERIs over LAOs are defined
as

∬ ω ω ω ω
| =

* *
| − |

ab cd
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d da b c d1 1 2 2

1 2
1 2

(37)

where the presence of the Coulomb operator again requires a
transformation similar to that for NAIs. The derivation of the
ERI is very similar to that of the NAI, with a set of shell-quartet
parameters45 defined by
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which may be constructed from shell-pair data, where η, ŨQ, and
Q̃ are the second shell-pair equivalents of ζ, ŨP, and P̃,
respectively. To derive the integral expression, it is first necessary
to substitute the Hermite Gaussian expansion of a primitive
shell-pair into eq 37,
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where the integral may be rewritten making the same re-
arrangements as in eq 24, as
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Using the Laplace transform of the Coulomb operator, this may
be reduced to an expression in the incomplete γ function,

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzz

i

k

jjjjjjj
y

{

zzzzzzz
i

k
jjjjjj

y

{
zzzzzz

ζη
ζ η

χ χ χ

χ χ χ

[ | ] = ̃ ̃
+

× − + ∂
∂

− + ∂
∂

− + ∂
∂

× − + ∂
∂

− + ∂
∂

− + ∂
∂

×

U U

i i i

i i i

Z

p q
2

P P P

Q Q Q

G ( )

x

p

y

p

z

p

x

q

y

q

z

q

P Q

Px Py Pz

Qx Qy Qz

0 PQ

x y z

x y z

(41)

Recurrence relations are derived analogously to the NAI,
defining a class of auxiliary integrals and applying the Leibnitz
rule for the nth derivative of a product to yield
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where the zeroth-order Hermite integrals are evaluated in terms
of shell-quartet quantities as
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Finally the integral may be transformed back to the original
Cartesian Gaussian basis by application of the transformation
matrices in a way similar to that of eq 36 as

∑ ∑[ | ] = [ | ] [ | ][ | ]
+ +

ab cd ab p cd q p q
p

a b

q

c d
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(44)

which can then be contracted according to eq 3 before
transformation to the spherical Gaussian basis if required.

4. DERIVATIVE INTEGRALS

In principle, the calculation of derivative molecular integrals
should not be a more complicated endeavor than the calculation
of the integrals themselves; since the differentiation is over a
nuclear coordinate, it can be moved inside of the integral over
electronic coordinates such that the derivative integral can be
rewritten as the integral over differentiated Gaussians. There-
fore, derivative integrals over Gaussian-type orbitals can be
expressed as a linear combination of integrals over Gaussian
functions of higher and lower angular momentum.
In practice, the assembly of derivative integrals is somewhat

more complex than the integrals themselves since they are much
more numerouseach integral is differentiated with respect to
the x-, y-, and z-components of each Gaussian center. The
complexity increases further when considering the derivatives of
LAOs, since differentiation of the phase-factor results in
additional terms not otherwise present.
4.1. Overlap and Kinetic Energy Integral Derivatives.

Following a similar logic to the discussion on integrals, the
derivative overlap and kinetic energy integrals are evaluated
using theObara−Saika recurrence relation. Given the product of
two primitive LAOs, described in Section 2.2 for s-type LAOs
and here generalized to higher angular momentum as
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the derivative of this overlap distribution with respect to the x-
coordinate of each Gaussian function in turn can be written as
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This translates reasonably straightforwardly into the derivative
of the overlap integrals, since this only requires the derivative
overlap distribution eq 46 to be integrated over the electronic
coordinates. The derivative integral for the overlap of two
primitive LAOs is therefore evaluated as
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which can then be contracted and transformed to spherical
harmonic representation as appropriate.
The derivative kinetic energy integrals are considerably more

complicated to evaluate since the kinetic energy integral over
LAOs and in the Coulomb gauge has manymore terms than that
over standard Gaussian functions. However, the derivative
kinetic energy integral remains fundamentally a linear
combination of overlap integrals; it is on this basis than the
derivative kinetic energy integrals are considered. Starting with
the definition,
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the derivative of each termmust be considered individually, each
of which is the sum of several terms shown in eq 20. For each
operator required for the kinetic energy integral,
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their contribution to the derivative kinetic energy integral is
given by
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These terms are assembled into the first term in eq 48, with
analogous expressions readily obtained for the π̂y and π̂z
components, to yield the full derivative integral which may be
contracted and transformed to spherical harmonics as
appropriate.

4.2. Nuclear Attraction Integral Derivatives. Derivative
NAIs are computed using a method slightly different from that
used for derivative overlap and kinetic energy integrals. In
Section 3.2, the analytical formulas for calculating the NAIs were
presented using Hermite Gaussian intermediates; here it will be
shown that this approach can be adapted relatively straightfor-
wardly for the calculation of derivative integrals.
Substituting the differentiated overlap distribution eq 46 into

the Hermite Gaussian expansion eq 12 gives an expression for
the transformation betweenHermite Gaussian functions and the
differentiated overlap distribution,
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It follows that a set of differentiated expansion coefficients can

be defined as
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However, these only account for the derivative with respect to

the positions of the two Gaussian basis functions. To compute

the derivative with respect to the nuclear coordinate, it is

necessary to generalize the definition of the Hermite integral in

eq 31 to include a additional index,
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where the nucleus has no phase factor associated with it. By

analogy to eq 42, a set of modified recurrence relations by which

the order may be incremented on the nuclear index can be

obtained as
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The derivatives of the nuclear attraction integral may then be

assembled as
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then contracted and transformed into spherical harmonics as
necessary.

4.3. Electron Repulsion Integral Derivatives. Derivative
ERIs are computed in the same way as the derivative NAIs are
computed, described in the preceding Section 4.2. Once again,
the use of Hermite Gaussian intermediates simplifies the
evaluation of integral derivatives since the construction of
differentiated expansion coefficients eq 52 enables the
derivatives over basis functions to be assembled from the
Hermite integrals over an angular momentum range increased
by one.
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4.4. Modified Approach to Constructing LAO Deriva-
tive ERIs. The Hermite Gaussian expansion approach in the
McMurchie−Davidson algorithm significantly simplifies the
construction of derivative integrals.33,34,50 However, for LAOs
the recurrence relation used to construct the Hermite integrals
has significantly more terms than that for standard GTOs and as
a result it scales poorly with angular momentum of the shell-
quartet.
One approach to improve the efficiency of the derivative ERI

computation while retaining the relative simplicity of the
McMurchie−Davidson algorithm is by constructing the
Hermite integrals directly using the Rys quadrature meth-
od.51−53 In the Rys quadrature scheme, the zeroth-order terms
are not computed from the scaled molecular incomplete γ
function but from the standard Gaussian prefactors and the Rys
quadrature weights wλ as

15,30,53,54

λ λ

λ
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where the integrand is resolved into the three Cartesian
components. For higher-order integrals, angular momentum
can be incremented using the following recurrence relations
which are analogous to those in eq 42,
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where tλ
2 are the roots of the Rys polynomial. The resolution of

the integrand into Cartesian components allows angular
momentum to be incremented separately in each direction,
resulting in a vertical recurrence relation (VRR) that scales more
favorably with angular momentum than that in eq 42 (or indeed
the Head-Gordon−Pople recurrence relation,55 discussed in ref
15). Hermite integrals are obtained by multiplying the relevant
x-, y-, and z-components of the 2D integrals and summing over
the Rys polynomial nodes,

∑ λ λ λ[ | ] =
λ=
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N
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(0)

1
(64)

where N is the number of Rys quadrature points; for the case of
the integral derivative,N = (Lp + Lq + 2)/2. This summation step
is generally the computational bottleneck of the Rys quadrature
approach, scaling less favorably with angular momentum than
the comparatively inexpensive VRR.
To improve the efficiency of this evaluation, Lindh et al. have

developed the reduced multiplication scheme for the calculation
of integrals56 and derivative integrals.57 In the construction of
[p|q] integrals, each combination of x- and y-components is
frequently combined with multiple z-components; thus,
creation of an xy-intermediate to be combined with many z-
components in summation over Rys quadrature nodes can
reduce the number of individual multiplications required by the
number of quadrature points for each reuse of the intermediate.
Additionally, unnecessary multiplication by unity is avoided by
discarding λ(0, 0; )x and λ(0, 0; )y from summations where

these occur; λ(0, 0; )z cannot be discarded as it carries the Rys
weights and other prefactors.
The Hermite integral constructed in eq 64 can simply be

substituted into the construction of the derivative ERIs in eqs
58−61 and contracted with the differentiated expansion
coefficients to yield the required derivative ERIs. Following
the approach of ref 15, in which it was found that the greatest
efficiency in integral evaluation may be reached by selecting the
appropriate integral algorithm for each shell quartet according to
its total angular momentum and contraction length, in the
present work the algorithm with which the Hermite integrals
were constructed was chosen according to the criteria in Table 1.

5. HARTREE−FOCK GRADIENTS
The force on a given nucleus is evaluated from the contraction of
the density matrices with the derivative integrals. Since

derivative integrals are computed with respect to the positions
of the basis functions in the integral, they do not necessarily
contribute to the derivative over each nucleus. For a molecular
system, the x-derivative of the one- and two-electron integrals
with respect to a given nucleus N can be written as58
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from which the analytical gradient for a Hartree−Fock wave
function is constructed as3
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where Dab is the density matrix, given by the sum of the spin-
density matrices, Dab = Dab

α + Dab
β , and Wab is the energy-

weighted density matrix, constructed from the spin-density and
Fock matrices Fab

σ as

∑ ∑=
σ

σ σ σW D F Dab
cd

ac cd db
(67)

The contraction of this term with the derivative overlap integrals
accounts for the re-orthonormalization of the molecular orbital
coefficients in the derivative of the SCF wave function.

5.1. Analytical Gradients with the Resolution-of-the-
Identity Approximation. The cost of evaluating two-electron
integrals can be reduced by employing the RI approximation. In
the RI method, two-center charge distributions are expanded in
an atom-centered auxiliary basis (P,Q); four-center integrals are
approximated by a contraction of three-center integrals with the
inverse of the Coulomb metric of the auxiliary functions

∑| ≈ | [ ] |−ab cd ab P J cd Q( ) ( ) ( )
PQ

PQ
1

(68)

where the three-center integrals and Coulomb metric are
respectively defined as
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For the auxiliary functions, standard GTOs are used; LAOs
cannot be used in the single-center expansion of charge
distributions as they would yield an unphysical gauge-origin
dependence in the charge distribution. Using standardGTOs for
this purpose simply assumes that charge distributions in nonzero
magnetic fields are well-approximated by their zero-field

Table 1. Angular Momentum and Contraction Criteria by
Which the AlgorithmUsed toCompute theHermite Integrals
for a Given Shell Quartet Is Selecteda

angular momentum 0−2 3−6 7+

primitive McMD Rys Rys
contracted McMD McMD Rys

aMcMD refers to the algorithm detailed in Section 3.3, while Rys
refers to the method presented in Section 4.4.
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equivalents. The use of the RI approximation to accelerate
calculations using LAOs is discussed extensively in ref 27.
In the present work, the RI approximation is employed to

accelerate the calculation of analytical derivatives over LAOs;
derivative electron-repulsion integrals are approximated as
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This construction may be simplified and made more efficient by
defining the intermediates,
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with which the two-electron derivative integral term is
constructed as

∑≈ {Ξ Θ + Θ Ξ }Iabcd
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ab
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ab
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cd
PN ,N ,Nx x x

(73)

The judicious use of the Rys quadrature method described in
Section 4.4 is also employed in the evaluation of the two-center
and three-center derivative integrals used in the RI approx-
imation here, maximizing the advantage that this approach
provides.

6. ANALYTICAL GRADIENTSWITH CURRENT DENSITY
FUNCTIONAL THEORY

In the present work, analytical derivatives are also computed for
Kohn−Sham current-density functional theory59−62 in order to
provide insight into the effects of correlation on optimized
geometries in strong magnetic fields. In CDFT, the exchange−
correlation energy Exc is typically approximated at each point in
space by some function f of local or semi-local quantities
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(74)

Functionals which depend only on the densitylocal density
approximations (LDAs), the density, and its first derivative
generalized gradient approximations (GGAs) or the density and
its first and second derivatives (some meta-GGAs) are
unchanged from their zero-field forms. However, if the
functional is dependent on the kinetic energy density τσ as is
the case for most meta-GGAs, dependence on the paramagnetic
current density jpσ is required to ensure the xc energy is invariant
with respect to gauge transformation.63−66 These quantities, in
addition to the electron density ρσ and its derivatives can be
evaluated from the basis of LAOs in which the Kohn−Sham one-
electron orbitals are expanded and the spin density matrix as

∑

∑

∑

∑

∑

ρ ω ω

ρ ω ω ω ω

ω ω ω ω

τ ω ω

ρ ω ω ω ω

ω ω

= *

∇ = [∇ * + ∇ * ]

= [∇ * − ∇ * ]

= ∇ ·∇ *

∇ = [∇ * + ∇ ·∇ *

+ ∇ * ]

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

D

D

i
D

D

D

r r r

r r r r r

j r r r r r

r r r

r r r r r

r r

( ) ( ) ( ) (75)

( ) ( ) ( ) ( ) ( ) (76)

( )
2

( ) ( ) ( ) ( ) (77)

( )
1
2

( ) ( ) (78)

( ) ( ) ( ) 2 ( ) ( )

( ) ( )

(79)

ab
ab a b

ab
ab a b a b

p
ab

ab a b a b

ab
ab a b

ab
ab a b a b

a b

2 2

2

6.1. Matrix Elements of the XC Potential. The
contribution to the Kohn−Sham potential arising from the xc
energy is defined as the functional derivative of the xc energy
with respect to the density,
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δρ

=v
E

r
r

( )
( )

( )xc
xc

(80)

which, for an xc functional dependent on the density and its
derivatives, collectively denoted ξ as in eq 74, can be written as67
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For meta-GGA functionals with a dependence on the kinetic
energy density or indeed the paramagnetic current density, the
partial derivative of f cannot be written in the same way since
these are implicit and not explicit functionals of the density.
In finite basis-set Kohn−Sham calculations, a simplification

may be used to evaluate the xc potential contribution to the
Hamiltonian matrix,68
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With the expression in eq 81, this becomes
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Since the kinetic energy density and paramagnetic current
density are explicit functionals of the density matrix, their
contribution to the xc matrix can be computed from the
derivative of the energy with respect to the density matrix as an
extension of eq 82,
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Combining and simplifying the expressions in eq 83 and eq 82,
the total expression for the matrix elements of the xc potential in
CDFT can then be summarized as
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6.2. XC Contribution to Nuclear Gradient. For a
functional of the density and its derivatives ξ, the gradient of
the xc energy with respect to nuclear position is defined as67
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Derivatives of the kinetic energy density and paramagnetic
current density can be evaluated using an approach similar to
that of eq 84, yielding an extension to eq 86 of
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Collecting the terms from eq 86 and eq 87 together, the xc
contribution to the gradient may be evaluated in the AO basis as
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For completeness, the full expression for the nuclear gradient in
Kohn−Sham CDFT is therefore given by
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7. RESULTS AND DISCUSSION
The methods for computing one- and two-electron derivative
integrals described in Section 4, along with xc analytical
derivatives for CDFT described in Section 6.2, have been
implemented in the QUEST electronic structure code,28 which is
used in the present work for the geometry optimization of two
small molecules in strong magnetic fields. These examples
exhibit different, but general, features of chemical structure and
bonding in extreme magnetic fields.
Magnetic fields in the order of 0.1B0 are known to exist on the

surfaces of magnetic white dwarf stars,18−20 for which the
atmospheres are often dominated by hydrogen and helium but
are thought to be abundant in many other elements.69−71 Many
studies have examined the effects of strong magnetic fields on
atomic energy levels,72−75 essential for interpreting the spectra
observed from these stellar objects. Astrochemical observations
also suggest that simple diatomic molecules exist in the
atmospheres of magnetic white dwarf stars.21,76,77 Modeling
the effects of strong magnetic fields on the spectra of molecules
has been much more limited than the studies on atoms,78,79

although they have become the subject of increasing interest
more recently.5,14 While molecular studies have become more
common, the effects of magnetic field strength on molecular
geometry have had much less consideration.80 As such, the first
system we consider will be the OH diatomic molecule, the
properties of which in strong magnetic fields have been the
subject of recent astrochemical interest.81 In particular, we will
see that the behavior of this small system under the strong
magnetic fields considered here is well-explained by consid-
eration of orbital paramagnetic interactions with the field.
In ref 82, the potential for conjugated molecules to remain

bound even with disruption of their electronic structure was
highlighted, noting that even if the π-system is disrupted, the σ-
framework could remain intact. In that and more recent
studies,22,82,83 the Hückel−London approach was used to
examine the relative energies of these states as a function of
field. In such studies, changes in molecular structure
concomitant with changes in the electronic configuration are
neglected. As the simplest of the aromatic hydrocarbons,
benzene may be considered archetypal for examining the effects
of applied magnetic fields on the structure of such systems. As
described in ref 22, nonperturbative effects are expected to occur
at much lower field strengths for larger conjugated aromatic
hydrocarbons such as nanographenes due to their much larger
surface area perpendicular to the magnetic flux. In the present
work we will see that benzene exhibits significant structural
changes in strong magnetic fields. In contrast to the OH
molecule, these changes are driven primarily by the spin−
Zeeman effect.

7.1. Computational Details. In the present work, geometry
optimization in the presence of magnetic fields of varying
strength is carried out with both HF and CDFT using the cTPSS
xc functional,12,84 both in the unrestricted formalism. Since both
the energy and its first derivative must always be real, a standard
quasi-Newton optimization algorithm commonly used in
conventional geometry optimizations may be readily employed
for optimization in a magnetic field.85−88
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One important consideration however is the coordinate
system that is used; the system of internal coordinates is often
convenient in geometry optimization since the coupling
between different modes of coordinate displacement, for
example representing bond stretching and torsional motion, is
minimized.89,90 In the presence of a magnetic field, it is not just
the positions of atoms relative to each other in the molecule that
is important but also the orientation of themolecule with respect
to the magnetic field, which is not described by standard internal
coordinates.
For all calculations presented in this work a quasi-Newton

method, in which the initial Hessian is approximated by the
identity matrix and updated at each step with the gradient by the
Broyden−Fletcher−Goldfarb−Shanno (BFGS) approach, was
employed.91−94 Optimization was carried out in Cartesian
coordinates,89,95,96 in which the orientation of the molecule with
respect to the field is most straightforwardly accounted for. In all
cases, the convergence criteria were as follows: the largest
element of the gradient and of the ensuing step <3× 10−4 au, the
root-mean-square of the gradient and of the ensuing step <2 ×
10−4 au, and the change in energy between steps <5 × 10−6 au.
For both molecules considered here, uncontracted forms of

the Dunning basis sets97 were used to represent the molecular
orbitals; uncontracting the basis increases its flexibility and may
improve its ability to represent electron densities distorted by
application of a strong magnetic field (conditions for which the
exponents and contraction coefficients were not optimized).5,10

For the OHmolecule, the basis used was u-aug-cc-pCVTZwhile
for benzene it was u-aug-cc-pVDZ; these two molecules were
considered in magnetic fields up to 0.20B0 and 0.15B0,
respectively (B0 = ℏe−1a0

−2 = 2.3505 × 105 T), in which ranges
the basis sets selected should provide an adequate description of
field-induced density changes.14,98

Additionally for benzene, the RI approximation was employed
to accelerate the calculations, with the u-aug-cc-pVDZ-RI basis
used as the auxiliary basis;99 recent work has shown that RI may
be used with LAOs in a similar way to its use with standard
GAOs.16,27,30

7.2. Equilibrium Geometry of OH. In this section, the
equilibrium geometry of the OH diatomic molecule with Ms =
−1/2 in strong magnetic fields is investigated. For this system,
the potential energy curve can be correctly represented from
equilibrium to dissociation using a single determinant. However,
even for this simple molecule, the presence of a magnetic field
significantly complicates the potential energy surface, with
consideration of the underlying physics required to interpret the
optimized geometries obtained.
The nature of chemical bonds can change significantly in the

presence of strong magnetic fields, both due to the changes in
energy that occur due to the field but also due to the effect of the
field on the molecular orbitals themselves. In general terms, a
chemical bond may be stabilized or destabilized by the presence
of a magnetic field due to the competition between two effects:
the change in the energy of the bound molecule with field
strength and the change in the energies of the dissociation
fragments with field strength. The energy of the boundmolecule
depends on its orientation with respect to the field, while the
energy of the atomic dissociation limits are orientation
independent. As the magnetic field strength varies, the energy
of the system in these two arrangements may change at different
rates and as a result the bonding may be significantly stablilized
or destablilzed by the field.80,100,101

The presence of the magnetic field can also cause changes in
the electronic structure and energy of a chemical bond that
cannot be explained in terms of its zero-field electronic structure.
In the presence of a magnetic field, the molecular point group
may be reduced to one of lower symmetry since only symmetry
operations with which the combined molecule and field are
unchanged remain. The point group in a magnetic field can be
shown to be that comprised of the symmetry operations present
in both the zero-field molecular point group and that of a
uniform magnetic field: C∞h. In general, only rotation axes
parallel to the field, mirror planes perpendicular to the field, and
the center of inversion, if present, will remain.102

Therefore, depending on the orientation of the field relative to
the molecule, certain symmetries present in the zero-field
electronic structure are broken; new types of interactions
between molecular orbitals can then result and contribute to the
exotic chemistry exhibited in strong magnetic fields. Perhaps the
most well-known example is that of perpendicular paramagnetic
bonding in H2 induced by a strong magnetic field applied
perpendicular to the internuclear axis.103 A more general
analysis of these phenomena has recently been presented by
Austad et al. in ref 104.
For the purposes of this work, the effect of the magnetic field

on the equilibrium geometry of the OH molecule can be
rationalized by considering a magnetic field aligned along the z-
axis, for which the Hamiltonian can be written as

̂ = ̂ + ̂ + ̂ + +

= ̂ + ̂

s l x y
1
2

(2 )
1
8

( )z z z z0
2 2 2

0 (90)

where ̂
0 is the zero-field electronic Hamiltonian, sẑ the spin

angular momentum operator, and lẑ the orbital angular
momentum operator. These terms result in the spin−Zeeman
and orbital paramagnetic contributions to the energy in a field,
respectively, while the final term yields the diamagnetic
contribution to the energy. The spin- and angular momentum-
dependent terms can cause an increase or decrease in the energy
with respect to field strength, whereas the diamagnetic term will
always result in an increase in the energy with field strength; due
to its quadratic dependence on , it will always become the
dominant term at sufficiently high field strengths.
At zero field, the point group of the OH molecule is C∞v and

its electronic ground state and first excited state have the
electronic configurations

σ σ σ π π

σ σ σ π π

| Π⟩ = | ⟩

| Σ ⟩ = | ⟩

αβ αβ αβ αβ β

αβ αβ β αβ αβ

− +

+
− +

1 2 3 1 1 (91)

1 2 3 1 1 (92)

2
1 1

2
1 1

respectively. These dissociate into oxygen and hydrogen atoms
in the manner

| Π⟩ → +

| Σ ⟩ → +

β αβ β α

αβ αβ β

− +

+
−

p p p s

p p s

O(2 2 2 ) H(1 ) (93)

O(2 2 ) H(1 ) (94)

2
1 0 1

2
1 0

where the different molecular states dissociate into combina-
tions of oxygen and hydrogen atoms of different configu-
rations.105−107 For simplicity of notation, the 1s and 2s orbitals
are omitted from the electronic configuration of the oxygen
atoms; however, they are occupied as 1sαβ2sαβ in all cases, and
this is assumed throughout.
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Potential energy curves for the ground state of OH in the
absence of a magnetic field, with the optimized geometry and
energies relative to the ground-state dissociation products in eq
93 are shown in Figure 1, computed with both HF and TPSS.
This confirms that the correct equilibrium geometry of the
ground state is located by geometry optimization in the absence
of a field using both HF and TPSS, asymptotically approaching
the expected dissociation products. The equilibrium geometry
of the first excited state would require optimization on an
excited-state potential energy surface, not considered in the
present work.
At zero field, the 2Π state of OH is the lowest in energy for all

bond lengths computed, from equilibrium to near-dissociation.
Furthermore, the only stationary points along the potential
energy curve are at equilibrium and in the dissociation limit;
hence, the equilibrium geometry is located easily from different
starting geometries. We will consider optimizations starting
from 1.6 and 3.2 au here for different field strengths and
orientations.
The binding energy at zero field is significantly lower for HF

than for TPSS, exhibiting the expected underbinding of diatomic
molecules at the HF level as described in, for example, ref 108 at
zero-field and ref 103 in strong magnetic fields. Therefore, the
present discussion will focus on results obtained with cTPSS;
however, the equivalent results obtained with HF may be found
in Section S1 of the Supporting Information.
7.2.1. OH in a Magnetic Field Parallel to the Bond.

Considering a uniform magnetic field applied parallel to the
internuclear axis of the OH molecule, a reduction in symmetry
occurs since the∞σv mirror planes have normals perpendicular
to the field and, hence, no longer describe the symmetry of the
system in the field. The infinite-order axis of proper rotation
along the internuclear axis,C∞

ϕ , however remains; thus, the point
group of the OH molecule in a field parallel to the internuclear
axis becomes C∞. The symmetries by which the molecular
orbitals in eqs 91 and 92 are characterized remain the same in
this case, with the only significant difference being the reduction
in symmetry of the excited state from |2Σ+⟩ → |2Σ⟩.
Importantly, since the electrostatic potential and the magnetic

vector potential remain cylindrically symmetric around the
internuclear axis, the orbital magnetic quantum number remains
a good quantum number quantized along the internuclear axis.
The initial change in energy of the molecule with respect to

magnetic field strength can be approximated from the
expectation value of magnetic term of the Hamiltonian eq 90 as

⟨Ψ| ̂ |Ψ⟩ = + +M M
1
2

( 2 ) ( )z l s z
2

(95)

Thus, the orbital paramagnetic term is proportional to the
projection of the orbital angular momentum in the direction of
the applied field. The diamagnetic term is proportional to the
expectation value of the position squared in the plane
perpendicular to the field. It will therefore be nonzero for the
molecule in any orientation, but will be minimized when the area
of the charge density perpendicular to the field is minimized
which, in the case of a diatomic molecule, occurs where the field
is parallel to the internuclear axis. Therefore, the expression in eq
95 should provide a suitable model for interpreting the initial
behavior of the energy of a diatomic molecule with increasing
field strength parallel to the internuclear axis. In this analysis, it is

considered that the change in ⟨Ψ| ̂ |Ψ⟩0 on application of a
magnetic field is small compared to eq 95 over the range of field
strengths examined for this system.
For the two electronic states of OH in eqs 91 and 92, their

respective initial change in energy with field strength parallel to
the internuclear axis can be rationalized with eq 95 as

⟨ Π| ̂ | Π⟩ = − +

⟨ Σ| ̂ | Σ⟩ = − +

( ) (96)

1
2

( ) (97)

z z

z z

2 2 2

2 2 2

Since both electronic states of OHhaveMs =−1/2, the difference
between eq 96 and eq 97 arises due to the difference in the
orbital paramagnetic contribution to the energy. It would be
therefore expected that the |2Π⟩ state would remain the ground
state with increasing field strength parallel to the internuclear
axis. Geometry optimizations should then be expected to track
the change in equilibrium structure of this state as a function of
the magnetic field strength.
To investigate this, the ground-state geometry of OH was

optimized with magnetic fields of increasing strength between
0.0B0 and 0.2B0 applied parallel to the internuclear axis. In this
orientation, the energy is stationary with respect to the angle
between the internuclear axis and the field; thus, without
perturbation, themolecule remains in this alignment throughout

Figure 1. Potential energy curve of OH in the absence of a magnetic field, computed with HF and TPSS. Symbols + and × represent the equilibrium
geometries obtained by optimization from initial bond lengths of 1.6 and 3.2 au, respectively. The superposition of both solutions appears as an ∗
symbol. O(2p−1

β 2p0
αβ 2p+1

β ) + H(1sα) is abbreviated as O(ββ) + H(α).
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the optimization. The equilibrium bond length and the
respective binding energy (Ebind = EOH − EO − EH) for OH in
this series of magnetic fields are summarized in Table 2.

A clear trend can be observed from Table 2 in both the
equilibrium bond length and binding energy of OH; the
equilibrium bond length decreases with increasing field strength
aligned parallel to the internuclear axis, while the binding energy
becomes more negative. Both trends have the same
interpretation: the molecule is stabilized with respect to
increasing field strength parallel to the bond.
In addition, potential energy curves similar to those in Figure

1 were constructed for the |2Π⟩ state of OH in field strengths
over the range 0.0−0.2B0 with the internuclear axis aligned
parallel to the field. Individual states were tracked along the
potential energy curve using the maximum overlap method,
generalized for use with complex orbitals.16,109−112 These are
shown at field strengths of 0.1B0 and 0.2B0 in Figures 2 and 3,
respectively.
7.2.2. Dissociation Limit. For the atomic dissociation limit

the energy is independent of the orientation with respect to the
magnetic field and the energy of different atomic configurations
can be easily calculated as a function of field strength. In eq 93
the dissociation limit of the |2Π⟩ state at zero field was identified
as an O atom with Ms = −1 and the specific configuration
O(2p−1

β 2p0
αβ2p+1

β ). For single determinant models such as HF
and CDFT this configuration has lower energy than, for
example, the O(2p−1

αβ2p0
β2p+1

β ) and O(2p−1
β 2p0

β2p+1
αβ) configu-

rations. This is a manifestation of the well-known multiplet

problem for these methodswhere the configurations con-
tributing to the 3P state of the oxygen atom are not degenerate at
zero field.66,113 By convention, quantities such as binding
energies and atomization energies are calculated using the
lowest energy configuration predicted by a given theory and this
practice has been adopted in calculating the values of binding
energy in Table 2.
In the presence of a magnetic field, not only is the degeneracy

of multiplet components lifted but also each component may
display a different variation in energy as a function of field. It is
therefore interesting to consider the dissociation products with
different multiplet components. For the |2Π⟩ state, the
dissociation products given in eq 93 will have an initial variation
in energy with field strength as

⟨ + | ̂ | + ⟩

= − +

β αβ β α β αβ β α
− + − +p p p s p p p sO(2 2 2 ) H(1 ) O(2 2 2 ) H(1 )

1
2

( )z z

1 0 1 1 0 1

2
(98)

In contrast, the dissociation products O(2p−1
αβ2p0

β2p+1
β ) + H(1sα)

vary as

⟨ + | ̂ | + ⟩

= − +

αβ β β α αβ β β α
− + − +p p p s p p p sO(2 2 2 ) H(1 ) O(2 2 2 ) H(1 )

( )z z

1 0 1 1 0 1
2 (99)

We therefore expect that the energy of these dissociation
products will fall below those in eq 93 as the magnetic field
strength increases. As a result, care needs to be taken to select the
correct atomic configurations in calculating quantities such as
binding energies and atomization energies as a function of
magnetic field.
The energy of the dissociation products of OH containing

these different configurations of oxygen withMs =−1 are shown
as a function of field strength in Figure 4. It can be seen in Figure
4 that the change in the lowest-energy configuration of oxygen
withMs = −1 occurs at a field strength of 0.027B0 (compared to
0.008B0 with HF, shown in Figure S3). In the binding energies
presented in Table 2, it is assumed that the dissociation products
at each field strength contain the lowest-energy component of
the multiplet; this is confirmed in Figures 2 and 3, which show
that the |2Π⟩ state dissociates into the lower-energy Ms = −1
configuration of oxygen at those field strengths. We note that the

Table 2. Equilibrium Bond Length and Binding Energy of
OH at Zero Field and with a Magnetic Field Applied Parallel
to the Bond Axis, Computed with HF and cTPSSa

B/B0 Req
HF Req

TPSS Ebind
HF Ebind

TPSS

0.00 1.7974 1.8564 −0.10562 −0.17007
0.05 1.7967 1.8546 −0.10982 −0.17288
0.10 1.7954 1.8530 −0.11058 −0.17362
0.15 1.7932 1.8504 −0.11182 −0.17484
0.20 1.7902 1.8469 −0.11348 −0.17645

aBond lengths are in bohr and binding energies in hartree.

Figure 2. Potential energy curve of OH in a field of 0.10 B0 parallel and perpendicular to the O−H axis, computed with the cTPSS functional. Symbols
+ and × represent the equilibrium geometries obtained by optimization from initial bond lengths of 1.6 and 3.2 au, respectively. The superposition of
both solutions appears as an ∗ symbol. O(2p−1

αβ 2p0
β 2p+1

β ) + H(1sα) and O(2p−1
αβ 2p0

αβ) + H(1sβ) are abbreviated as O(ββ) + H(α) and O(αβ) + H(β),
respectively.
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multiplet problem for atomic species in magnetic fields has been
previously observed by Ivanov and Schmelcher in, for example,
refs 73 and 74.
In Figure 4 we also consider the dissociation products of the

|2Σ⟩ state, which are much higher in energy than those of the
|2Π⟩ state at zero field. However, they exhibit a more strongly
paramagnetic behavior and the most rapid initial decrease in
energy with magnetic field strength,

⟨ + | ̂ | + ⟩

= − +

αβ αβ β αβ αβ β
− −p p s p p sO(2 2 ) H(1 ) O(2 2 ) H(1 )

3
2

( )z z

1 0 1 0

2
(100)

which can be compared with eqs 98 and 99; since all three sets of
dissociation products have Ms = −1/2, the differences in eqs
98−100 are due to the orbital paramagnetic interaction with the
field. Accordingly, these dissociation products become the
lowest in energy at a field strength of 0.146B0 (compared to
0.165B0 withHF, shown in Figure S3). This is reflected in Figure
3, which shows the potential energy curve of the |2Π⟩ state
tending towards the higher of the two dissociation products.
However, the equilibrium geometry of the ground state is
correctly located in geometry optimization initialized from bond

lengths of both 1.6 and 3.2 au, parallel to the field. This would
suggest that the |2Π⟩ state is not crossed by another, tending to
the lower-energy asymptote, at an internuclear distance of 3.2 au
or less.

7.2.3. OH in aMagnetic Field Perpendicular to the Bond. In
a uniform magnetic field applied perpendicular to the
internuclear axis of the OH molecule, a much greater reduction
in symmetry occurs compared to the alignment of the field
parallel to the internuclear axis. In this case, the C∞

ϕ axis is no
longer a symmetry element. However, a mirror plane
perpendicular to the magnetic field, in the plane of the
internuclear axis does remain; the point group of the OH
molecule with a magnetic field perpendicular to the internuclear
axis thus becomes Cs. This point group has only two irreducible
representations, A′ and A″; the doubly degenerateΠ irreducible
representation of the zero-field C∞v point group corresponds to
a linear combination of theA′ andA″ irreducible representations
in the Cs point group: Π → A′ + A″.
Furthermore, since the electrostatic potential and magnetic

vector potential are no longer cylindrically symmetric around
the internuclear axis, the orbital magnetic quantum number is
not a good quantum number so the orbital paramagnetic
contribution to the energy is less straightforward to evaluate.
The reduced symmetry can allow a greater degree of mixing
between orbitals to occur, in some cases resulting in an orbital
angular momentum perpendicular to the internuclear axis
through mixing with orbitals of higher angular momen-
tum.103,104 The states themselves can be more difficult to
identify as a result; however, analysis of the symmetry properties
of themolecular orbitals of the two states that arise from the |2Π⟩
state upon application of a perpendicular magnetic field reveals
their electronic configurations to be

| ′⟩ = | ′ ′ ′ ″ ′ ⟩

| ″⟩ = | ′ ′ ′ ′ ″ ⟩

αβ αβ αβ αβ β

αβ αβ αβ αβ β

A a a a a a

A a a a a a

(1 ) (2 ) (3 ) (1 ) (4 ) (101)

(1 ) (2 ) (3 ) (4 ) (1 ) (102)

2

2

The |2A′⟩ state dissociates into O(2p−1αβ2p0αβ) + H(1sβ), whereas
the |2A″⟩ state dissociates into O(2p−1

αβ 2p0
β2p+1

β ) + H(1sα). As
shown in Figure 4 and discussed in Section 7.2.2, the first of
these dissociation products drops in energy below the latter at
field strengths of around 0.15−0.16B0.
In Figures 2 and 3, the potential energy curves are plotted for

both the |2A′⟩ and |2A″⟩ states of OH in magnetic fields of

Figure 3. Potential energy curve of OH in a field of 0.20 B0 parallel and perpendicular to the O−H axis, computed with the cTPSS functional. Symbols
+ and × represent the equilibrium geometries obtained by optimization from initial bond lengths of 1.6 and 3.2 au, respectively. The superposition of
both solutions appears as an ∗ symbol. O(2p−1

αβ 2p0
β 2p+1

β ) + H(1sα) and O(2p−1
αβ 2p0

αβ) + H(1sβ) are abbreviated as O(ββ) + H(α) and O(αβ) + H(β),
respectively.

Figure 4. Sum of energies of the isolated atoms O and H in three
possible configurations at dissociation as a function of field strength,
computed with cTPSS.
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strengths 0.1B0 and 0.2B0, respectively, oriented perpendicular
to the internuclear axis. In addition, the equilibrium geometry
obtained by geometry optimization from initial bond lengths of
1.6 and 3.2 au perpendicular to the field are plotted. It can be
seen in both Figures 2 and 3 that the energy of the molecule at
equilibrium is lower when aligned parallel to the field than
perpendicular; however, the energy of the perpendicular
orientation is stationary with respect to rotation relative to the
field. The symmetry in this orientation is comparatively high
since, upon rotation relative to the field, the system would lose
its symmetry with respect to the plane perpendicular to the field
and would be reduced to the C1 point group. Therefore, the
geometry may be optimized perpendicular to the field if the
initial geometry has this orientation.
Examination of the potential energy curves helps to the

interpret the results of geometry optimizations in a perpendic-
ular field. For the potential energy curve computed at 0.1B0,
shown in Figure 2, the energy of the |2A′⟩ state in the
perpendicular orientation is lowest at equilibrium but crosses
the |2A″⟩ state at a bond length of around 3.31 au. Therefore,
geometry optimization with an initial bond length of 3.2 au
tracks the |2A′⟩ state and correctly identifies its equilibrium
geometry, as is the case with an initial bond length of 1.6 au.
In a magnetic field of 0.2B0 perpendicular to the internuclear

axis, the dissociation products of |2A′⟩ are lower in energy than
those of |2A″⟩; however, the ordering of energies of the states at
equilibrium is the same as that at 0.1B0. Therefore, there is no
crossing of these two states along the potential energy curve as
there is at 0.1B0. The potential energy curves for OH in a

magnetic field of 0.2B0 perpendicular to the internuclear axis are
shown in Figure 3; the equilibrium geometry of the |2A′⟩ state is
correctly located from initial bond lengths of both 1.6 and 3.2 au
in these conditions.
This simple example reveals some of the complexity

associated with performing geometry optimization in a field.
In a field, it is important not only that the initial geometry is
sufficiently close to a local minimum for rapid convergence but
also that the orientation of the magnetic field relative to the
molecular frame is appropriate. Here we considered the high-
symmetry parallel (ground-state) and perpendicular (excited-
state) orientations. In general, it is necessary in the presence of a
field to consider different starting orientations relative to the
field to find the ground-state geometry. Furthermore, the
resulting solutions should be carefully analyzedfor example in
the perpendicular orientation at 0.1B0 the |

2A′⟩ and |2A″⟩ states
have similar energies at equilibrium and cross as the bond is
stretched, so analysis is essential to ascertain which state is
obtained in the geometry optimization. To facilitate this
assignment, the consideration of the symmetry of the system
in the presence of a magnetic field is invaluable. Despite this
complexity the geometry optimization using analytic derivatives
is able to efficiently locate all of the expectedminima, confirming
its utility for studying molecular structure and bonding in strong
magnetic fields.

7.3. Ground-State Structure of Benzene. In 2010
Caputo and Lazzeretti114 studied the geometrical effects of a
magnetic field on the benzene molecule by considering the
Lorentz force exerted on the atomic nuclei by the currents

Figure 5. Energy as a function of field strength for the optimized geometries of benzene withMs = 0, −1, −2, and −3, computed with Hartree−Fock
(upper panel) and cTPSS (lower panel). The field strengths at which the ground-state spin projection changes are indicated with dashed lines between
the energy at which this occurs and the horizontal axis.
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induced by the magnetic field. Tellgren et al.3 confirmed that the
Ms = 0 state (the zero-field ground state) exhibits a shortening of
the C−C bonds and extension of the C−H bonds in the
presence of a magnetic field of 0.1B0 perpendicular to the
molecular plane. Using the present implementation, which
allows for unrestricted HF and CDFT optimizations, we
investigate the behavior of not only the Ms = 0 state but also
theMs =−1,−2, and−3 states, in which two, four, and six of the
π electrons are unpaired, respectively, as a function of magnetic
field strength. In each case, the energy as a function of field
strength is plotted for the optimized geometries in Figure 5.
As expected, the closed shell Ms = 0 state has an energy that

rises diamagnetically. Consideration of theMs =−1,−2, and−3
states highlights the importance of the spin−Zeeman effect in
driving progressive unpairing of the π-electrons with increasing
field strengths. For HF, the Ms = −1 state decreases in energy
with field strength and becomes the ground state at 0.067B0. For
states of higher spin projection, the decrease in energy with field
strength is greater due to a larger spin−Zeeman effect; theMs =
−2 state becomes the ground state at 0.089B0, and theMs = −3
state becomes the ground state at 0.099B0. All of the states
considered become the ground state at |B| < 0.1B0.
While HF gives a qualitative description of the behavior of

these states as a function of field, accounting for correlation has a
significant effect on the quantitative picture; this can be seen by
comparing the upper and lower panels of Figure 5. While
qualitatively similar, the inclusion of correlation at the cTPSS
level leads to substantial differences in the field strengths at
which eachMs state becomes the ground state. In particular, the
Ms =−1 state is the ground state over a much wider range of field
strengths compared with that predicted by HF; this is principally
due to the greater stabilization of the Ms = −1 state for cTPSS
relative to HF. The Ms = −1 state becomes the ground state at
0.075B0, while the Ms = −2 state becomes the ground state at
0.129B0 and the Ms = −3 state becomes the ground state at
0.137B0.
In Figure 6 we show the characteristic structures obtained for

|B| = 0.1B0 for each Ms state. The structures obtained at the

cTPSS level are qualitatively similar to those obtained at the HF
level (see Figure S4 in the Supporting Information). Geometry
optimization in a field determines not only the structural
parameters of the molecule, such as bond lengths and angles, but
also the preferred orientation of the molecule relative to the
external magnetic field.
The Ms = 0 state has the familiar regular hexagonal

arrangement of carbon atoms, with the plane of the molecule
oriented perpendicular to the field. The point group of the
nuclear framework is D6h, while the point group of the electronic
structure in a magnetic field perpendicular to the plane of the
molecule is C6h. For theMs = −1 state, the π-system is disrupted
by uncoupling two electrons, and as a result there are two unique

C−C bond lengths: two of the C−C bonds (in the 1,4
configuration) are longer than the other four, forming an
irregular hexagon. The zero-field molecular point group of this
structure is D2h, which is reduced to C2h in the magnetic field, to
which it remains energetically favorable for the molecule to be
oriented perpendicular.
TheMs = −2 state exhibits further disruption of the π-system

since four electrons have been unpaired. The zero-field point
group is Cs, and the structure may be characterized as a half-chair
structure. In contrast to the other spin projections, the molecule
in the Ms = −2 state is oriented with the surface area
perpendicular to the magnetic field minimized. As the field
strength is increased, the orientation evolves such that themirror
plane in the molecular structure is increasingly parallel to the
magnetic field. However, since this alignment does not become
exact in the range of fields considered here, the overall point
group of the structure is reduced to C1 in a magnetic field.
In the Ms = −3 state, all six of the π-electrons have been

unpaired and there is no longer a π-system present; the
optimized structure adopts a chairlike conformation. At zero
field the point group of this structure would be D3d. In the
presence of a magnetic field, the molecule is oriented such that
its surface area perpendicular to the field is maximized; the
principal axis returns to alignment with the field, with the result
that the overall point group of the molecule in the field is S6.
While the HF and cTPSS structures are qualitatively similar

for each Ms, there are significant differences in quantitative
values of the structural parameters such as the C−C and C−H
bond lengths. Of particular interest is the variation of the
optimized C−C and C−H bond lengths in theMs = −1 state of
benzene with magnetic field strength, shown in Figure 7. There
are two sets of lines on each graph since there are two unique C−
C and C−H bond lengths in the irregular hexagonal geometry of
benzene; the dashed lines represent those for which there are
two bonds of that length, whereas the solid lines represent those
for which there are four bonds of that length. For this Ms state,
the variation of the C−C and C−H bond lengths is significantly
different for HF and cTPSS over the range of fields considered.
In particular, in Figure 7 it can be seen that the cTPSS structure
transitions from an irregular hexagon below ∼0.05 B0 to a
regular hexagon at higher field strengths.
For the states withMs = 0,−2, and−3 the variations of the C−

C and C−H bond lengths are qualitatively similar at the HF and
cTPSS levels. For the Ms = 0 state of benzene, the HF bond
lengths are predicted to be consistently shorter than those from
cTPSS. However, the variations of the C−C and C−H bond
lengths with increasing field strength follow a similar trend in
both cases, with C−C bond lengths decreasing and C−H bond
lengths increasing; this is consistent with the behavior observed
by Caputo and Lazzeretti114 and Tellgren et al.3 These are
shown in Figure S5 of the Supporting Information.
For the Ms = −2 state, the low-symmetry C1 structure and

rotation of the structure with changing field strength means that
there is little further information that can be obtained from this
analysis. For theMs =−3 state, however, the higher-symmetry S6
structure has all equivalent C−C bonds and all equivalent C−H
bonds. The C−H bond lengths decrease monotonically with
increasing magnetic field strength; the HF bond lengths are
consistently shorter than those from cTPSS. The C−C bond
lengths show a more complex behavior, first decreasing with
field strength before beginning to increase at higher fields, with
theHF bond lengths consistently longer than those from cTPSS;
this can be seen in Figure S6 of the Supporting Information. The

Figure 6. Optimized geometries of benzene in the presence of a 0.1 B0
magnetic field, computed with cTPSS, withMs = 0,Ms = −1,Ms = −2,
andMs =−3, from left to right, respectively. Unique C−C bond lengths
are indicated in au.
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complex behavior of the bonding in this state is interesting and
the development of tools for analysis of chemical bonding in
strong magnetic fields a focus for future work.

8. CONCLUSIONS
In this work, a simple and computationally tractable approach
for the evaluation of derivative integrals over LAOs, used in
electronic structure calculations in the presence of strong
magnetic fields, has been developed and implemented. This
builds on previous work in developing an efficient framework for
the evaluation of the molecular integrals themselves over LAOs
presented in ref 15. The principal focus here is on the
generalized McMurchie−Davidson algorithm1,33,34,37−40,115,116

due to its amenability to the evaluation of derivative integrals;
however, due to the superior efficiency of the Rys quad-
rature30,51−53,117 for integrals of high angular momentum, a
method using a hybrid of Rys and McMurchie−Davidson
approaches was proposed for the evaluation of derivative
integrals over LAOs.
The geometrical gradient of the electronic energy for

Hartree−Fock in the presence of a strong magnetic field using
LAOs3 was implemented in this work, both in the conventional
form using the derivatives of four-index ERIs but also in the RI
approximation, generalizing the principle of approximating ERIs
over LAOs using the RI approximation27,30 to the construction
of the full analytical gradient using two- and three-center
derivative integrals. In addition, full analytical first derivatives of
the exchange−correlation energy in CDFT were presented for
the first time, available for functionals of the LDA, GGA, and
meta-GGA types and their (range-separated) hybrids including
current-dependent contributions. This CDFT implementation
constitutes a cost-effective family of methods for studying
molecular structure in strong magnetic fields.
To provide an illustration of the interesting chemical

phenomena that these developments allow the exploration of,
a detailed analysis was presented for the optimized geometries of
two molecules in a range of magnetic field strengths. In the first
of these, the OH diatomic molecule, it was shown how the
magnetic field can profoundly affect the electronic state and
bonding in the molecule. For the atomic dissociation limit the
ground-state energies are independent of orientation relative to

the field; however, as the atoms become bound, the system gains
a preferred orientation relative to the field. This additional effect,
in combination with the usual Coulombic bonding interactions,
leads to a rather complex chemistry. Local stationary points were
located for several low-lying states with a magnetic field aligned
parallel and perpendicular to the internuclear axis. Calculating
the underlying potential energy curves explicitly confirmed the
accuracy of the geometry optimization using analytical
gradients. In addition, this analysis highlighted the importance
of the initial guess geometry and orientation relative to the field
in these calculations. In many regards, the challenges for
optimizing structures in the presence of magnetic fields are akin
to those found in excited-state geometry optimization, requiring
good initial guesses for the structures in the vicinity of desired
stationary points and careful analysis to identify the electronic
states obtained following the optimization. The reduction in
symmetry that can occur upon application of a magnetic field
further complicates matters. Nonetheless, the implementation in
the present work offers the possibility to rapidly locate the
relevant stationary points, which can be readily characterized by
their symmetry properties, opening-up the possibility of
exploring the exotic but rich chemistry of systems in the
presence of strong magnetic fields.
In the second example, the geometry of benzene was

optimized at a range of field strengths for states with several
spin projections. It was shown that the ground-state spin
projection and structure evolve from the familiar hexagonal
structure at low field with Ms = 0, through a distorted hexagon
with Ms = −1, to a half-chair conformation with Ms = −2 at
intermediate fields, before adopting a chairlike structure withMs
= −3 at higher fields. These structures reflect the disruption of
the π-system as it becomes more and more favorable to unpair
electrons in stronger fields. While HF and cTPSS calculations
revealed a similar qualitative picture, their comparison showed
that the inclusion of correlation can have a significant effect on
the predictions of the field strengths at which each state becomes
the ground state. A detailed analysis of the bonding in each
structure was presented, extending over previous analysis in the
literature for the Ms = 0 state.3,114

Access to the efficient evaluation of molecular gradients in the
presence of strong magnetic fields enables a wide range of

Figure 7. Equilibrium C−C (left) and C−H (right) bond lengths in benzene withMs =−1 as a function of field strength perpendicular to the plane of
the molecule (shown in Figures S4 and 6). In these structures, there are two unique C−C and C−H bond lengths; the solid lines indicate the length of
four of the C−C or C−H bonds, while the dashed lines indicate the length of the other two C−C or C−H bonds.
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applications to be considered. These include the study of
chemical reactivity by searching for minima, transition states,
and intrinsic reaction coordinates in strong fields, excited-state
geometry optimization in strong fields, ab initio molecular
dynamics in strong fields, and coupling of these approaches to
real-time electronic structure methods under these conditions.
Enabled by the developments presented here, these topics are
the focus of ongoing investigation, the results of which will be
presented in future work.
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