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Background.  Evidence suggests that repeated influenza vaccination may reduce vaccine effectiveness (VE). Using influenza 
vaccination program maturation (PM; number of years since program inception) as a proxy for population-level repeated vaccina-
tion, we assessed the impact on pooled adjusted end-season VE estimates from outpatient test-negative design studies.

Methods.  We systematically searched and selected full-text publications from January 2011 to February 2020 (PROSPERO: 
CRD42017064595). We obtained influenza vaccination program inception year for each country and calculated PM as the difference be-
tween the year of deployment and year of program inception. We categorized PM into halves (cut at the median), tertiles, and quartiles 
and calculated pooled VE using an inverse-variance random-effects model. The primary outcome was pooled VE against all influenza.

Results.  We included 72 articles from 11 931 citations. Across the 3 categorizations of PM, a lower pooled VE against all influ-
enza for all patients was observed with PM. Substantially higher reductions were observed in older adults (≥65 years). We observed 
similar results for A(H1N1)pdm09, A(H3N2), and influenza B.

Conclusions.  The evidence suggests that influenza VE declines with vaccination PM. This study forms the basis for further 
discussions and examinations of the potential impact of vaccination PM on seasonal VE.

Keywords.  seasonal influenza; systematic review; test-negative design; vaccination program; vaccine effectiveness.

Influenza is responsible for considerable morbidity and mor-
tality every year worldwide. Following influenza vaccination, 
antibody titers to influenza antigens may persist for months. 
However, the changing nature of influenza viruses, particularly 
the influenza A type (antigenic drift) [1], warrants reformula-
tion of vaccine each influenza season in an attempt to match 
vaccine with the circulating virus strains [2]. Vaccination is 
therefore recommended each season for better protection 
against circulating virus strains. However, vaccine seroresponse 
may be impaired with repeated vaccination [2].

Generally, seasonal influenza vaccination is recommended 
for individuals at least 6 months old, with an emphasis on those 

at higher risk of developing complications such as the very 
young (<5), older adults (≥65), pregnant women, and indi-
viduals with certain health conditions [3, 4]. Many countries 
have adopted annual influenza vaccination policies and have 
established annual vaccination programs. Many vaccination 
programs are not publicly funded (paid for from the public 
purse) at inception. Publicly funded vaccination in some coun-
tries is only available to some of the at-higher-risk population 
subgroups, whereas some countries (or regions within some 
countries) offer universal vaccination (free for all). In addi-
tion, recommended influenza vaccines in each season may vary 
slightly across countries. However, publicly funded vaccination 
programs, even in some countries that have universal vaccina-
tion policies, was initially for a few at-higher-risk population 
subgroups, before gradually being expanded to cover all eli-
gible persons. Nevertheless, these programs have led to some 
increases in vaccination rates and, with the introduction of the 
test-negative design (TND) [5, 6] in influenza vaccine effective-
ness (VE) estimations, have reignited interest in the potential 
impact of repeated influenza vaccination.

Studies in the late 20th century were either inconclusive 
[7] or found no evidence of a negative impact of repeated 
influenza vaccination [8]. In particular, a large randomized 
controlled trial in the United States of America found some 
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variations in infection rates between groups given 1 or more 
influenza vaccinations but noted no consistent pattern of dif-
ferences in relation to number of successive seasonal vaccin-
ations [9]. Recent studies have found reduced influenza VE 
in individuals who received prior repeated influenza vaccin-
ations [10, 11]. A systematic review reported lower influenza 
VE against A(H3N2) and influenza B but not for A(H1N1) in 
individuals vaccinated in both current and previous seasons 
compared with those vaccinated only in the current season 
[12].

While accumulating evidence suggests that repeated influ-
enza vaccination may reduce VE at the individual level, the im-
pact on overall annual program effectiveness is still not clear. 
Understanding this impact may influence policy regarding 
population-wide annual influenza vaccination. We assessed the 
impact of repeated influenza vaccination on vaccine program 
effectiveness using influenza vaccination program maturation 
(PM; number of years since program inception) as a proxy for 
population-level repeated vaccination.

METHODS

We conducted a systematic review and meta-analysis following 
the Cochrane Handbook for Systematic Reviews of Interventions 
guidelines [13]. Our findings are reported following the guide-
lines of the Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA) [14]. The systematic review 
was registered in the International Prospective Register of 
Systematic Reviews (PROSPERO: CRD42017064595). Details 
of our methods have been reported in a previous publication 
[15].

Literature Search Strategy

A methodologist designed a search strategy for the review 
in MEDLINE (Ovid). The search strategy was reviewed by 
a knowledge synthesis librarian using the PRESS check-
list [16]. The final search strategy (Supplementary Table 1) 
was adapted for other bibliographic databases, and the fol-
lowing databases were searched for literature: MEDLINE 
(Ovid), Embase (Ovid), PubMed, Scopus (Elsevier), and Web 
of Science. Google Scholar and relevant websites were also 
searched for literature. The literature search was conducted 
in April 2017. Updated searches were carried out in July 2018 
and February 2020.

Literature Selection

All retrieved unique citations were imported into a specially 
designed Microsoft (MS) Access 2016 database (Microsoft 
Corporation, Redmond, WA, USA) for screening. We were only 
interested in TND studies of seasonal influenza VE conducted 
in outpatient settings after the 2009/2010 influenza pandemic.

We considered for inclusion only country-specific studies 
published in a full-text manuscript, irrespective of language 

of publication. Influenza diagnosis/confirmation was by a re-
verse transcriptase polymerase chain reaction (RT-PCR) assay 
or viral culture of a respiratory specimen. Study participants 
must have received seasonal influenza vaccine at least 14 days 
before onset of influenza-like symptoms. The symptoms must 
not have started more than 7 days before presentation for med-
ical consultation. We included only multivariable-adjusted end-
season VE estimates against all influenza, influenza A subtypes 
A(H1N1)pdm09 and A(H3N2), and influenza B. We excluded 
studies on hospitalized patients and mixed hospitalized and 
outpatient data that could not be separated. We also excluded 
studies conducted in care homes, schools, military barracks, 
prisons, and within unique subgroups such as individuals with 
chronic diseases.

Two systematic reviewers independently screened the 
identified unique citations against the eligibility criteria 
using a 2-stage sifting approach to screen titles/abstracts 
and full-text articles. All included studies were examined 
for overlap or duplication of data. Disagreements between 
the reviewers were resolved through discussion or involve-
ment of a third reviewer. The number of ineligible citations 
at the title/abstract screening stage and both the number 
and reasons for ineligibility at the full-text article screening 
stage were documented and are presented graphically as per 
PRISMA guidelines.

Data Extraction

One reviewer extracted data from the included studies using 
Microsoft Excel 2016 (Microsoft Corporation, Redmond, WA, 
USA), and a second reviewer independently checked the extracted 
data for errors. We extracted basic study details, participants’ 
characteristics (sample size, mean age, age range, sex distribu-
tion), and vaccine information (method of vaccination status 
confirmation). We also extracted respiratory specimen (type 
and swab time), influenza diagnostic/confirmatory test, adjusted 
covariates in VE analysis, and outcome/results (multivariable-
adjusted VE against all influenza, influenza A subtypes A(H1N1)
pdm09 and A(H3N2), and influenza B; and their associated 95% 
CIs). We determined vaccine antigenic similarity with circulating 
virus strains using reports from the World Health Organization 
(WHO), national influenza centers, and region/country-specific 
centers for disease control.

We contacted the WHO, national departments of health/
public health agencies, and national centers for disease con-
trol for annual influenza vaccination program inception year 
for each country irrespective of program rollout plans, public 
funding of programs, and within-country regional differences 
in program inception (Supplementary Table 2). In countries 
with decentralized provincial/state health authorities where 
there was no single, countrywide inception year, we considered 
the earliest regional program inception year to be the program 
inception year for the country.
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Study Quality Assessment

In the absence of a validated quality assessment tool for TND 
studies, we improvised quality assessment by examining relevant 
study characteristics that could introduce bias, such as the methods 
of determination of vaccination status, participants’ enrollment, 
and inclusion of age and/or medical condition, among other 
covariates, in the logistic regression model for VE analysis. We 
synthesized quality assessment in a tabular form for visualization.

Data Synthesis and Analysis

Relevant characteristics of the included studies were synthesized 
in a tabular form. Data management and analysis were imple-
mented in STATA (version 13; StataCorp LP, TX, USA). Our 
primary outcome was pooled influenza VE against all influenza 
across categories of vaccination PM. Our secondary outcome 
was pooled influenza VE against influenza A subtypes A(H1N1)
pdm09 and A(H3N2) and influenza B across categories of vac-
cination PM. We determined seasonal influenza vaccination 
PM by calculating the number of years from the year of pro-
gram inception for each country to the beginning of each re-
ported influenza season. We then grouped vaccination PM into 
categories: 2 (Q2, cut at the median), 3 (Q3, tertiles), and 4 (Q4, 
quartiles). We explored study variation (excess heterogeneity) 
using random-effects meta-regression [17].

We repeated the above PM categorization across levels of 
vaccine antigenic similarity with circulating virus strains after 
identifying vaccine antigenic similarity as a potential source of 
heterogeneity across the studies. We pooled adjusted VE estimates 
and associated 95% CIs using an inverse-variance random-effects 
model. We assessed and quantified statistical heterogeneity be-
tween pooled VE using I2 [18]. We utilized the χ  2 test to assess 
the statistical significance (P value) of the difference between 
pooled VE across categories of vaccination PM [19]. Where ap-
propriate (≥10 studies), we assessed for publication bias statisti-
cally using Egger’s regression test [20]. We conducted subgroup 
analysis using VE estimates reported specifically for older adults 
(>65 years), an important subgroup for influenza vaccination. We 
also conducted subgroup analysis by study country geographical 
region (hemisphere) for only the primary outcome.

RESULTS

We identified 11  931 citations, from which we included 72 
full-text articles that met our inclusion criteria (Figure 1) 
[21–92]. Relevant study characteristics are summarized in 
Supplementary Table 3, and a geographic heat map and graph-
ical representation of the included articles are presented in 
Supplementary Figure 1. Overall, there were 59 articles from 

All retrieved citations (n = 11 931)

Medline = 3882
EMBASE = 7182
PubMed = 235
Scopus = 365

Web of  science = 122
Google scholar = 145

Duplicaates removed
(n = 3800)

Citations removed
(n = 7941)

Citations screened at title and abstract
(n = 8131)

Articles identified
from reference
list of  included
papers (n = 2)

Full-text screened
(n = 192)

Included articles
(n = 72)

Excluded with reasons
(n = 120)

Study design: 32
Study population: 33
Study outcome: 29

Unadjusted results: 12
I-MOVE studies: 10

Unknown vaccination
Program start: 4

Figure 1.  Modified Preferred Reporting Items for Systematic Reviews and Meta-Analysis flowchart (study selection process).
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the Northern hemisphere and 13 articles from the Southern 
hemisphere. PM ranged from 1 to 64 years. Study quality as-
sessment is summarized in Supplementary Table 4.

Pooled VE Against all Influenza (All Patients)

Overall, we observed a lower pooled VE with PM across levels 
of Q2 and Q3 categories and across the first 3 levels of Q4, al-
beit with high heterogeneity (Table 1). Meta-regression revealed 
vaccine antigenic similarity with circulating virus strains as a 
possible explanation for the observed heterogeneity (P < .001). 
Therefore, we conducted meta-analysis within levels of vac-
cine antigenic similarity for this and other assessed outcomes. 
Among studies with antigenically similar vaccines, we observed 
a lower pooled VE with PM across levels of Q2 category, from 
54% (48%–59%) for less than median to 46% (41%–51%) for 
more than median, and the difference in VE was statistically 
significant (P =  .035) (Figure 2). We observed a lower pooled 
VE with PM across levels of Q3 category, from 55% (47%–62%) 
for tertile 1 (youngest PM) to 50% (41%–58%) for tertile 2 and 
to 45% (40%–50%) tertile 3 (oldest PM), although the differ-
ences in VE between tertiles 1 and 2 and between tertiles 2 and 
3 were both nonsignificant (Figure 3). We also observed a lower 
pooled VE with PM across levels of Q4 category: from 57% 
(48%–65%) for quartile 1 (youngest PM) to 52% (45%–57%) for 
quartile 2, and 46% (35%–55%) and 46% (41%–50%) for quar-
tiles 3 and 4, respectively. However, the differences in VE be-
tween quartiles 1 and 2, between quartiles 2 and 3, and between 
quartiles 3 and 4 were all nonsignificant (Figure 4). Largely sim-
ilar observations were made among studies with antigenically 
dissimilar/partially similar vaccines (Supplementary Figures 
2–4), and when limited to the Northern and Southern hemi-
spheres, particularly with high antigenic match (Supplementary 
Figures 5–10).

Pooled VE Against All Influenza (Older Adults)

We made similar observations to the analyses with all patients 
across levels of Q2 and Q3 categories and across 3 levels of Q4 
category, but with significantly lower heterogeneity (Table 1). 
Among studies with antigenically similar vaccines, we observed 
a lower pooled VE with PM across levels of Q2 category, from 
50% (34%–62%) for less than median to a much lower 23% 
(10%–35%) for more than median, and the difference in VE was 
statistically significant (P  =  .005) (Supplementary Figure 11). 
We observed a lower pooled VE with PM across levels of Q3 
category, from 56% (36%–69%) for tertile 1 (youngest PM) to a 
much lower 30% (10%–46%) for tertile 2 and to 24% (9%–37%) 
for tertile 3 (oldest PM). The difference in VE between tertiles 1 
and 2 was statistically significant (P = .037), but the difference in 
VE between tertiles 2 and 3 was nonsignificant (Supplementary 
Figure 12). We also observed a lower pooled VE with PM across 
levels of Q4 category, from 54% (31%–70%) for quartile 1 
(youngest PM) to 46% (23%–62%) for quartile 2 to 22% (–9% 

to 44%) and a slightly higher 24% (9%–37%) for quartiles 3 and 
4, respectively, although the differences in VE between quar-
tiles 1 and 2 and between quartiles 2 and 3 were nonsignificant 
(Supplementary Figure 13). There was a paucity of data to en-
able adequate assessment among studies with antigenically 
dissimilar/partially similar vaccines (Supplementary Figures 
14–16).

Pooled VE Against Influenza A Subtypes and Influenza B (All Patients)

When limited to studies with antigenically similar vaccines, we 
observed a lower pooled VE against A(H1N1)pdm09 with PM 
across levels of Q2 category (P = .023), Q3 category (mainly be-
tween tertile 1 [youngest PM] and tertile 2; P =  .065), and, to 
some extent, Q4 category. Q4 category did not show a consistent 
reduction across the 4 levels, mostly due to quartile 4 (oldest 
PM) being driven by studies from the United States (80%) 
(Supplementary Table 5). This was also the case for A(H3N2): 
Q2 (P =  .12) and Q3 (mainly between tertile 1 [youngest PM] 
and tertile 2; P = .15; with tertile 3 [oldest PM] driven by studies 
from the United States [86%]); and influenza B: Q2 (P = .38) and 
Q3 (mainly tertile 1 [youngest PM] and tertile 2; P = .33; with 
tertile 3 [oldest PM] driven by studies from the United States 
[87%]). No clear pattern was observed across the levels of Q4 
category for both, mostly due to quartile 4 (oldest PM) being 
driven by studies from the United States (100% and 75% for 
A(H3N2) and influenza B, respectively). Similar observations 
were made with regard to A(H1N1)pdm09 among studies with 
antigenically dissimilar/partially similar vaccines. We observed 
a lower pooled VE against A(H3N2) and influenza B with PM 
across levels of Q2 category and Q4 category among studies with 
antigenically dissimilar/partially similar vaccines. The opposite 
observation was, however, made across levels of Q3 category 
with regard to influenza B (Supplementary Table 5).

Pooled VE Against Influenza A Subtypes and Influenza B (Older Adults)

Among studies with antigenically similar vaccines, we observed 
a lower pooled VE against A(H1N1)pdm09 with PM across 
only levels of Q2 category (Supplementary Table 6). There was 
not enough data to enable adequate assessment of A(H3N2). 
However, among studies with antigenically dissimilar/partially 
similar vaccines, we observed considerably lower pooled VE 
against A(H3N2) with PM across levels of Q2 category, Q3 cat-
egory (mainly between tertiles 1 [youngest PM] and 2), and, 
to some extent, across levels of Q4 category (Supplementary 
Table 6). We also observed a lower pooled VE against in-
fluenza B with PM across levels of Q2 category, Q3 category 
(mainly between tertiles 1 [youngest PM] and 2), and levels 
of Q4 category among studies with antigenically similar vac-
cines (Supplementary Table 6). There was not enough data to 
enable assessment among studies with antigenically dissimilar/
partially similar vaccines. None of the differences between VE 
across levels of the categories were statistically significant.
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Table 1.  Results of Pooled Vaccine Effectiveness Against All Influenza

All Patients

Influenza Type, Analyzed Subgroups/PM Categories No. of Studies Pooled VE (95% CI) I2, % Publication Bias, Egger’s Test P Value

All influenza  

Overall  

 Q2     

  Less than median 36 50 (42–57) 74.7 .067

  More than median 36 35 (29–40) 78.8 .239

 Q3     

  Tertile 1 (youngest) 26 50 (37–60) 74.7 <.001

  Tertile 2 22 41 (30–50) 78.6 .742

  Tertile 3 (oldest) 24 38 (32–43) 80.0 .571

 Q4     

  Quartile 1 (youngest) 21 52 (39–62) 67.3 .029

  Quartile 2 15 49 (36–59) 81.8 .315

  Quartile 3 18 23 (10–34) 66.7 .678

  Quartile 4 (oldest) 18 41 (36–47) 81.3 .432

Antigenically similar vaccine  

 Q2     

  Less than median 22 54 (48–59) 25.6 .071

  More than median 21 46 (41–51) 71.9 .564

 Q3     

  Tertile 1 (youngest) 17 55 (47–62) 34.5 .042

  Tertile 2 13 50 (41–58) 62.9 .654

  Tertile 3 (oldest) 13 45 (40–50) 71.2 .561

 Q4     

  Quartile 1 (youngest) 14 57 (48–65) 30.2 .163

  Quartile 2 8 52 (45–57) 18.7 –

  Quartile 3 13 46 (35–55) 78.7 .918

  Quartile 4 (oldest) 8 46 (41–50) 52.2 –

Antigenically dissimilar/partially similar vaccine  

 Q2     

  Less than median 15 30 (12–44) 67.5 .006

  More than median 14 20 (11–28) 52.1 .059

 Q3     

  Tertile 1 (youngest) 12 37 (12–55) 73.5 .004

  Tertile 2 9 13 (–4 to 27) 57.8 –

  Tertile 3 (oldest) 8 25 (18–31) 19.2 –

 Q4     

  Quartile 1 (youngest) 12 37 (12–55) 73.5 .004

  Quartile 2 3 17 (3–29) 0 –

  Quartile 3 7 10 (–18 to 31) 66.2 –

  Quartile 4 (oldest) 7 24 (17–31) 30.5 –

All Patients: Northern Hemisphere

Influenza Type, Analyzed Subgroups/PM Categories No. of Studies Pooled VE (95% CI) I2, % Publication Bias, Egger’s Test P Value

All influenza  

Overall  

 Q2     

  Less than median 30 38 (26–48) 81.1 .280

  More than median 24 38 (32–43) 80.0 .571

 Q3     

  Tertile 1 (youngest) 18 44 (28–57) 84.2 .309

  Tertile 2 18 23 (10–34) 66.7 .678

  Tertile 3 (oldest) 18 41 (36–47) 81.5 .432

 Q4     

  Quartile 1 (youngest) 15 39 (20–54) 80.4 .096

  Quartile 2 15 36 (20–49) 82.1 .810

  Quartile 3 12 32 (20–43) 79.4 .025

  Quartile 4 (oldest) 12 41 (35–47) 82.0 .451
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Antigenically similar vaccine  

 Q2     

  Less than median 17 50 (41–58) 61.2 .979

  More than median 13 45 (40–50) 71.2 .561

 Q3     

  Tertile 1 (youngest) 10 55 (45–63) 54.9 .940

  Tertile 2 12 43 (32–52) 73.7 .813

  Tertile 3 (oldest) 8 46 (41–50) 52.2 –

 Q4     

  Quartile 1 (youngest) 9 52 (43–61) 38.7 –

  Quartile 2 8 48 (30–61) 75.0 –

  Quartile 3 8 45 (36–53) 75.9 –

  Quartile 4 (oldest) 5 45 (40–50) 67.3 –

Antigenically dissimilar/partially similar vaccine  

 Q2     

  Less than median 12 12 (–9 to 29) 66.0 .163

  More than median 12 25 (17–31) 32.4 .230

 Q3     

  Tertile 1 (youngest) 8 23 (–8 to 45) 74.5 –

  Tertile 2 8 11 (–10 to 27) 62.3 –

  Tertile 3 (oldest) 8 25 (18–31) 19.2 –

 Q4     

  Quartile 1 (youngest) 7 24 (–14 to 50) 75.0 –

  Quartile 2 5 8 (–13 to 25) 44.1 –

  Quartile 3 6 18 (–4 to 35) 52.8 –

  Quartile 4 (oldest) 6 26 (20–31) 11.4 –

All Patients: Southern Hemisphere

Influenza Type, Analyzed Subgroups/PM Categories No. of Studies Pooled VE (95% CI) I2, %

All influenza

Overall

 Q2    

  Less than median 9 62 (50–71) 12.1

  More than median 9 52 (46–57) 0

 Q3    

  Tertile 1 (youngest) 7 65 (51–75) 20.1

  Tertile 2 5 49 (37–59) 0

  Tertile 3 (oldest) 7 53 (46–59) 0

 Q4    

  Quartile 1 (youngest) 5 62 (38–77) 39.4

  Quartile 2 4 62 (46–73) 0

  Quartile 3 5 51 (39–60) 0

  Quartile 4 (oldest) 4 52 (44–59) 4.3

Antigenically similar vaccine

 Q2    

  Less than median 9 58 (47–67) 28.5

  More than median 4 52 (44–59) 4.3

 Q3    

  Tertile 1 (youngest) 5 69 (54–79) 26.8

  Tertile 2 4 49 (36–59) 0

  Tertile 3 (oldest) 4 52 (44–59) 4.3

 Q4    

  Quartile 1 (youngest) 5 69 (54–79) 26.8

  Quartile 2 4 49 (36–59) 0

  Quartile 3 2 58 (45–68) 0

  Quartile 4 (oldest) 2 49 (34–60) 45.6

Table 1. Continued

All Patients: Northern Hemisphere

Influenza Type, Analyzed Subgroups/PM Categories No. of Studies Pooled VE (95% CI) I2, % Publication Bias, Egger’s Test P Value
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DISCUSSION

We assessed the association between seasonal influenza vaccina-
tion PM and influenza VE utilizing evidence from TND studies 
in outpatient settings after the 2009/2010 influenza pandemic. 
Irrespective of our categorization of PM, we observed a largely 
consistent trend. Among studies with antigenically similar vac-
cines, VE against all influenza declined with PM, with higher de-
cline observed in older adults. Similar observations were made 
when limited to the Northern and Southern hemispheres. Overall, 
the difference in VE between the levels of PM categories was 
mostly statistically significant for the 2-level PM category (Q2). 
Considerably similar observations were made among studies 
with antigenically dissimilar/partially similar vaccines and with 
regard to VE against A(H1N1)pdm09, A(H3N2), and influenza 

B, except for a few inconsistencies (overall downward trend ap-
pears reversed) mainly due to higher VE in tertile 3 (oldest PM) 
compared with tertile 2 in some of the Q3 and Q4 categories. The 
inconsistencies were mainly driven by studies from the United 
States, which contributed 75% to 100% of the studies within these 
levels. Being from a more affluent country, this could reflect early 
adoption of quadrivalent, high-dose, adjuvanted, and recombi-
nant vaccines in the United States, which have been shown to 
offer improved efficacy [93, 94], and may therefore have reversed 
or arrested any downward trends in VE. Examination of influ-
enza VE over time in a large population of healthy people for 
whom vaccination is mandatory and vaccination and health care 
data are electronically available (for, eg, military and health care 
personnel) may help validate our findings.

Older Adults

Influenza Type, Analyzed Subgroups/PM Categories No. of Studies Pooled VE (95% CI) I2, % Publication Bias, Egger’s Test P Value

All influenza  

Overall  

 Q2     

  Less than median 12 43 (22–58) 30.2 .696

  More than median 12 23 (12–33) 0 .536

 Q3     

  Tertile 1 (youngest) 8 56 (37–69) 0 –

  Tertile 2 8 17 (–6 to 35) 9.9 –

  Tertile 3 (oldest) 8 26 (14–36) 0 –

 Q4     

  Quartile 1 (youngest) 7 54 (32–69) 0 –

  Quartile 2 5 35 (–3 to 59) 53.2 –

  Quartile 3 6 21 (–4 to 39) 0 –

  Quartile 4 (oldest) 6 24 (11–35) 0 –

Antigenically similar vaccine  

 Q2     

  Less than median 9 50 (34–62) 0 –

  More than median 8 23 (10–35) 0 –

 Q3     

  Tertile 1 (youngest) 6 56 (36–69) 0 –

  Tertile 2 7 30 (10–46) 4.4 –

  Tertile 3 (oldest) 4 24 (9–37) 0 –

 Q4     

  Quartile 1 (youngest) 5 54 (31–70) 0 –

  Quartile 2 4 46 (23–62) 0 –

  Quartile 3 4 22 (–9 to 44) 3.8 –

  Quartile 4 (oldest) 4 24 (9–37) 0 –

Antigenically dissimilar/partially similar vaccine  

 Q2     

  Less than median 4 5 (–46 to 38) 0 –

  More than median 3 21 (–1 to 39) 0 –

 Q3     

  Tertile 1 (youngest) 3 26 (–31 to 58) 0 –

  Tertile 2 2 –16 (–87 to 28) 0 –

  Tertile 3 (oldest) 2 24 (0–42) 0 –

Q2, Q3, and Q4 = categories of seasonal influenza vaccination program maturation; less than median = lower half of the sorted data; more than median = higher half of the sorted data.

Abbreviations: PM, program maturation; VE, vaccine effectiveness. 

Table 1. Continued
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There are currently no similar published studies to compare 
our findings against. However, our findings could be compared 
against what is currently known regarding repeat vaccination. 
Influenza vaccine remains the only vaccine regularly refor-
mulated and administered every year due to influenza virus 
antigenic evolution. Whereas some studies have reported that 
repeated influenza vaccination may increase the risk of in-
fluenza infection, especially the A(H3N2) [80, 95, 96], others 
have reported no evidence of loss of protection including 
against A(H3N2) even when the circulating virus strains are 
antigenically dissimilar from the vaccine component [97]. A re-
cent publication demonstrated that repeat seasonal influenza 
vaccination reduced antibody-affinity maturation to hemag-
glutinin 1 (HA1) domain of all 3 influenza virus strains irre-
spective of the vaccine platform [98]. The study highlighted an 
important influence of repeat vaccination on antibody-affinity 

maturation, which may contribute to lower influenza VE, as we 
observed. A recent systematic review and meta-analysis of 20 
studies (including TND, cohort, and case–control) observed 
lower influenza VE against A(H3N2) and influenza B, but not 
against A(H1N1), in individuals vaccinated in both current and 
previous seasons compared with those vaccinated only in the 
current season [12]. These findings are similar to our findings, 
except for A(H1N1). However, it is not clear if data from hos-
pitalized patients were included among the analyzed studies. 
Such inclusion may explain the observed lack of difference 
found with regard to A(H1N1). A study investigated the impact 
of repeated vaccination on VE against A(H3N2) and influenza 
B in the United States [11]. Utilizing 5 years of vaccination data, 
the authors found that current-season VE against A(H3N2) 
was significantly higher among vaccinated individuals with no 
prior vaccination history compared with those with a frequent 

Publication

Less than median

Subtotal (I2 = 25.6%, P =.134)

Subtotal (I2 = 71.9%, P =.000)

McAnemey 2015
McAnemey 2015
McAnemey 2015
Nunes 2014
Sullivan 2013
Levy 2014
Van-Doom 2017
Levy 2014
Darvishian 20 17
Sullivan 2014
Levy 2014
Darvishian 20 17
Kelly 2016
Van-Doom 2017
Skowronski 2012
Regan 2019
Pierse 2016
Fielding 20 16
Skowronski 2014
Regan 2019
Skowronski 2014
Chan 2019

Canada
Canada
Spain
Germany
Spain
France
Germany
France
UK
UK
USA
UK
USA
USA
USA
UK
USA
USA
USA
USA
USA

1
2
4
11
13
13
13
14
14
15
15
15
15
15
17
17
17
18
18
19
19
19

20
22
27
28
29
30
30
30
45
46
47
47
47
48
48
48
49
49
52
53
54

Country Program Maturation, y VE (95% Cl)
%
Weight

–50 0 50

VE

100

More than median
Skowronski 2015
Skowronski 2017
Jimenez-Jorge 2012
Englund 2013
Jimenez-Jorge 2015
Vilcu 2018
Helmeke 2015
Vilcu 2018
Pebody 2016
Pebody 2017
Treanor 2012
Pebody 2019
Cowling 2016
Ohmit 2014
Cowling 2016
Pebody 2020
Cowling 2016
McLean 2015
Jackson 2017
Flannery 2019
Rolfes 2019

South Africa
South Africa
South Africa
Portugal
Australia
Australia
Netherlands
Australia
Netherlands
Australia
Australia
Netherlands
Australia
Netherlands
Canada
Australia
New Zealam
Australia
Canada
Australia
Canada
Hong Kong

54 (2, 79)
57 (16, 78)
87 (67, 95)
68 (21, 87)
73 (47, 86)
68 (33, 85)
59 (25, 78)
52 (0, 77)
–14 (–157, 49)
45 (10, 67)
49 (30, 63)
50 (17, 70)
52 (20, 71)
69 (44, 83)
37 (17, 52)
60 (41, 73)
56 (35, 70)
54 (42, 63)
59 (43, 70)
40 (18, 56)
50 (33, 63)
59 (41, 72)
54 (48, 59)

1.91
2.33
1.28
1.34
2.41
2.03
2.83
2.04
1.68
3.92
7.42
3.79
3.73
2.99
8.87
5.66
5.75
10.79
7.36
7.64
8.09
6.15
100.00

68 (58, 76)
46 (32, 57)
39 (–18, 68)
70 (40, 85)
63 (41, 77)
10 (–32, 39)
38 (1, 61)
18 (–34, 50)
52 (41, 62)
40 (23, 53)
59 (51, 66)
15 (–6, 32)
40 (28, 50)
47 (36, 56)
54 (41, 64)
44 (27, 58)
51 (43, 58)
49 (43, 55)
48 (40, 55)
40 (33, 47)
38 (32, 44)
46 (41, 51)

4.43
5.20
1.47
1.31
2.44
3.20
2.47
2.31
5.43
4.96
5.88
5.29
5.85
5.88
4.79
4.51
6.46
7.00
6.74
7.04
7.32
100.00

Figure 2.  Forest plot of vaccine effectiveness (VE) against all influenza across Q2 category (all patients: studies with antigenically similar vaccine). Less than me-
dian = lower half of the sorted data; more than median = higher half of the sorted data. 
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vaccination history (P = .01). A similar observation was made 
with respect to influenza B (P = .05). These findings align largely 
with our findings in both all patients and older adults, and par-
ticularly within our Q2 category, although we observed an op-
posite trend within the Q3 category when data were limited to 
studies with antigenically dissimilar/partially similar vaccines 
for all patients. An explanation for such a trend may be differ-
ences in study characteristics, particularly patient age and co-
morbidity status. Another explanation could be the increasing 
use of quadrivalent influenza vaccines over trivalent vaccines in 
the older programs, which are in the more affluent countries. 
In recent years, seasonal influenza vaccines increasingly con-
tain both influenza B strains (2 distinct lineages) in addition 
to the influenza A  subtypes (quadrivalent vaccine) instead of 
just having a single component for influenza B in addition to 2 

influenza A subtypes (trivalent vaccine), as was previously the 
case. This may have concealed the trend toward a reduced VE 
with repeated vaccinations, particularly for influenza B.

It has been suggested that the protection conferred by in-
fluenza vaccine in a season could prevent the natural immu-
nity from exposure to circulating influenza viruses, and may 
therefore increase the risk of infection and impact VE in sub-
sequent seasons [7]. The “antigenic distance” phenomenon has 
also been proposed, suggesting that negative interference from 
the previous seasonal influenza vaccine on the current season’s 
VE may occur when the previous and current season’s vac-
cines are antigenically closely related, but the previous season 
and the current circulating influenza virus strains are largely 
antigenically distinct [99]. Furthermore, evidence from studies 
on animals suggests that repeated vaccination could affect the 

Publication

Tertile 1 (youngest)

Tertile 2

Tertile 3 (oldest)

Subtotal (I2 = 34.5%, P =.081)

Subtotal (I2 = 62.9%, P =.001)

Subtotal (I2 = 71.2%, P =.000)

McAnemey 2015
McAnemey 2015
McAnemey 2015
Nunes 2014
Sullivan 2013
Levy 2014
Van-Doom 2017
Levy 2014
Darvishian 20 17
Sullivan 2014
Levy 2014
Darvishian 20 17
Kelly 2016
Van-Doom 2017
Skowronski 2012
Regan 2019
Pierse 2016

Australia
Canada
Australia
Canada
Hong Kong
Canada
Canada
Spain
Germany
Spain
France
Germany
France

1
2
4
11
13
13
13
14
14
15
15
15
15
15
17
17
17

18
18
19
19
19
20
22
27
28
29
30
30
30

45
46
47
47
47
48
48
48
49
49
52
53
54

Country Program Maturation, y VE (95% Cl)
%
Weight

–50 0 50

VE

100

Fielding 2016
Skowronski 2014
Regan 2019
Skowronski 2014
Chan 2019
Skowronski 2015
Skowronski 2017
Jimenez-Jorge 2012
Englund 2013
Jimenez-Jorge 2015
Vilcu 2018
Helmeke 2015
Vilcu 2018

South Africa
South Africa
South Africa
Portugal
Australia
Australia
Netherlands
Australia
Netherlands
Australia
Australia
Netherlands
Australia
Netherlands
Canada
Australia
New Zealamd

54 (2, 79)
57 (16, 78)
87 (67, 95)
68 (21, 87)
73 (47, 86)
68 (33, 85)
59 (25, 78)
52 (0, 77)
–14 (–157, 49)
45 (10, 67)
49 (30, 63)
50(17, 70)
52(20, 71)
69 (44, 83)
37 (17, 52)
60(41, 73)
56 (35, 70)
55 (47, 62)

UK
UK
USA
UK
USA
USA
USA
UK
USA
USA
USA
USA
USA

Pebody 2016
Pebody 2017
Treanor 2012
Pebody 2019
Cowling 2016
Ohmit 2014
Cowling 2016
Pebody 2020
Cowling 2016
McLean 2015
Jackson 2017
Flannery 2019
Rolfes 2019

54 (42, 63)
59 (43, 70)
40 (18, 56)
50 (33, 63)
59 (41, 72)
68 (58, 76)
46 (32, 57)
39 (–18, 68)
70 (40, 85)
63 (41, 77)
10 (–32, 39)
38 (1, 61)
18 (–34, 50)
50 (41, 58)

52 (41, 62)
40 (23, 53)
59 (51, 66)
15 (–6, 32)
40 (28, 50)
47 (36, 56)
54 (41, 64)
44 (27, 58)
51 (43,58)
49 (43, 55)
48 (40, 55)
40 (33, 47)
38 (32, 44)
45 (40, 50)

3.65
4.36
2.55
2.64
4.48
3.85
5.14
3.88
3.26
6.74
10.85
6.55
6.47
5.39
12.20
8.94
9.04
100.00

10.62
8.78
8.96
9.23
7.92
9.56
10.54
4.20
3.82
6.29
7.68
6.35
6.04
100.00

6.77
6.03
7.52
6.54
7.47
7.52
5.77
5.35
8.54
9.57
9.06
9.65
10.20
100.00

Figure 3.  Forest plot of vaccine effectiveness (VE) against all influenza across Q3 category (all patients: studies with antigenically similar vaccine). 
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development of cross-reactive immunity against influenza 
subtypes, suggestively facilitated by a decreased virus-specific 
CD8+ T-cell response [100]. Repeated seasonal vaccination has 
also been shown to affect development of virus-specific CD8+ 
T-cell immunity in children [101]. These studies suggest that 
repeated influenza vaccination may adversely affect VE, which 
could be a plausible biological explanation of our review find-
ings. However, the issue of reduced influenza VE with repeated 
vaccination is multifaceted.

Even though we observed a trend that may suggest that VE 
declines with PM, cautious interpretation of our findings is 
necessary because of the limitations of our review and potential 
confounding that we could not explore. The studies reviewed 
differed by methods of participant enrollment, determination 

of influenza vaccination status, and respiratory specimen type. 
Sample size varied across studies, and statistical models differed 
significantly. However, in all of the studies, vaccination was at 
least 14 days before symptom onset, the respiratory specimen 
swab was collected within 7 days of symptom onset, and influ-
enza diagnosis was made using gold standards (RT-PCR or viral 
culture), satisfying major conditions for TND study of influenza 
VE. A significant weakness of our review is the nature of the 
ecological data and the impact that differences in important 
characteristics, such as age, sex, comorbidity status, prior his-
tory of influenza vaccination, and “healthy vaccinee” effect (bias 
because of more healthier individuals vaccinated over time), 
across studies might have had on our findings. It was also not 
possible to assess the impact of differences in vaccination rates 

Publication

Quartile 1 (youngest)

Quartile 2

Quartile 3

Quartile 4 (oldest)

Subtotal (I2 = 30.2%, P =.135)

Subtotal (I2 = 18.7%, P =.282)

Subtotal (I2 = 78.7%, P =.000)

Subtotal (I2 = 52.2%, P =.041)

McAnemey 2015
McAnemey 2015
McAnemey 2015
Nunes 2014
Sullivan 2013
Levy 2014
Van-Doom 2017
Levy 2014
Darvishian 20 17
Sullivan 2014
Levy 2014
Darvishian 20 17
Kelly 2016
Van-Doom 2017

Canada
Australia
New Zealamd
Australia
Canada
Australia
Canada
Hong Kong

1
2
4
11
13
13
13
14
14
15
15
15
15
15

20
22
27
28
29
30
30
30
45
46
47
47
47

48
48
48
49
49
52
53
54

Country Program Maturation, y VE (95% Cl)
%
Weight

–50 0 50

VE

100

Skowronski 2012
Regan 2019
Pierse 2016
Fielding 2016
Skowronski 2014
Regan 2019
Skowronski 2014
Chan 2019

South Africa
South Africa
South Africa
Portugal
Australia
Australia
Netherlands
Australia
Netherlands
Australia
Australia
Netherlands
Australia
Netherlands

54 (2, 79)
57 (16, 78)
87 (67, 95)
68 (21, 87)
73 (47, 86)
68 (33, 85)
59 (25, 78)
52 (0, 77)
–14 (–157, 49)
45 (10, 67)
49 (30, 63)
50(17, 70)
52(20, 71)
69 (44, 83)
57 (48,65)

Canada
Canada
Spain
Germany
Spain
France
Germany
France
UK
UK
USA
UK
USA

Skowronski 2015
Skowronski 2017
Jimenez-Jorge 2012
Englund 2013
Jimenez-Jorge 2015
Vilcu 2018
Helmeke 2015
Vilcu 2018
Pebody 2016
Pebody 2017
Treanor 2012
Pebody 2019
Cowling 2016

37 (17, 52)
60(41, 73)
56 (35, 70)
54 (42, 63)
59 (43, 70)
40 (18, 56)
50 (33, 63)
59 (41, 72)
52 (45, 57)

68 (58, 76)
46 (32, 57)
39 (–18, 68)
70 (40, 85)
63 (41, 77)
10 (–32, 39)
38 (1, 61)
18 (–34, 50)
52 (41, 62)
40 (23, 53)
59 (51, 66)
15 (–6, 32)
40 (58, 76)
46 (35, 55)

5.29
6.30
3.72
3.86
6.47
5.58
7.40
5.62
4.74
9.61
15.09
9.35
9.25
7.74
100.00

15.58
8.48
8.64
20.43
11.85
12.46
13.45
9.40
100.00

8.67
9.31
4.44
4.08
6.25
7.33
6.29
6.04
9.49
9.13
9.81
9.38
9.79
100.00

10.07
6.61
5.93
12.67
15.92
14.21
16.23
18.37
100.00

17
17
17
18
18
19
19
19

USA
USA
UK
USA
USA
USA
USA
USA

Ohmit 2014
Cowling 2016
Pebody 2020
Cowling 2016
McLean 2015
Jackson 2017
Flannery 2019
Rolfes 2019

47 (36, 56)
54 (41, 64)
44 (27, 58)
51 (43,58)
49 (43, 55)
48 (40, 55)
40 (33, 47)
38 (32, 44)
46 (41, 50)

Figure 4.  Forest plot of vaccine effectiveness (VE) against all influenza across Q4 category (all patients: studies with antigenically similar vaccine). 
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across studies. A lack of data resulted in a few data points for 
some outcomes, limited statistical power for some of the ana-
lyses, and precluded analysis in some cases. Nevertheless, find-
ings from this review contribute significantly to the evidence 
base and provide population-level insights that may be of use to 
public health decision-making.

A major strength of this systematic review is its uniqueness. 
To the best of our knowledge, it is the first review to assess the 
impact of seasonal influenza vaccination PM on influenza VE. 
The evidence considered in this review was based on influenza 
VE estimates from TND study type, widely credited with re-
ducing biases due to differential health care–seeking behavior 
between vaccinated and unvaccinated persons, differential 
misclassification of infection status, and easy access to study 
controls who are more representative of the case source pop-
ulation [5]. Our analysis was particularly in-depth, covering 3 
different categorizations of PM with a good spread of the data 
across levels of each category. We explored differences that 
may exist between influenza types/subtypes and compared the 
overall analyses with those for older adults, considering that 
this unique subpopulation is possibly the most adherent to in-
fluenza vaccination and, therefore, would likely present good 
insights with respect to the potential impact of PM on VE.

CONCLUSIONS

The evidence suggests that influenza VE declines with vaccina-
tion PM, with potentially higher reduction among older adults 
when compared with all patients. Our findings form the basis 
for further discussions and examinations of the potential im-
pact of influenza PM on seasonal VE but do not justify the cur-
tailment or cessation of national annual vaccination programs, 
which continue to offer substantial net public health benefit.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the 
corresponding author.
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