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Abstract 

In this paper, a novel model for the dynamic reliability analysis of a polymer electrolyte membrane 

fuel cell system is developed to account for multi-state dynamics and ageing. The modelling approach 

involves the combination of physical and stochastic sub-models with shared variables. The physical 

model consists of deterministic calculations of the system state described by variables such as 

temperature, pressure, mass flow rates and voltage output. Additionally, estimated component 

degradation rates are also taken into account. The non-deterministic model is implemented with 

stochastic Petri nets which model the failures of the balance of plant components within the fuel cell 

system. Using this approach, the effects of the operating conditions on the reliability of the system 

were investigated. Monte Carlo simulations of the process highlighted a clear influence of both purging 

and load cycles on the longevity of the fuel cell system. 
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1. Introduction 

 

A recently published report on the world’s energy status highlighted that despite record amounts of 

energy been generated from renewable sources, fossil fuel consumption still rose at a high rate [1]. As 

a result global CO2 emissions continued to increase which is unacceptable if the targets of the Paris 

Agreement are ever to be reached [2]. Therefore it is essential to develop efficient and sustainable 

power generation technologies that will help to shift the global energy landscape away from fossil 

fuels. One of leading consumers of fossil fuels is transportation. Hence reducing the dependency of 

transport on such fuels    is essential. Electric vehicles (EVs) are the prime candidates for reducing this 

dependence. Among the different types of EVs, fuel cell-powered vehicles (FCV) have the potential 

to form the future of energy consumption. 

 

1.1. PEM Fuel Cell Technology 

Fuel cells (FCs) are a class of power generation devices that use hydrogen fuel to produce electrical 

power. The output power is the result of the direct transformation of chemical energy stored within the 



fuel by an electrochemical process. There are different types of FCs, but in this work polymer 

electrolyte membrane fuel cells (PEMFC’s) are investigated. At the heart of a PEMFC is the polymer 

membrane, the primary function of which is to conduct protons from the anode to the cathode. At 

either side of the membrane are catalyst layers that facilitate the chemical reactions. Next to the catalyst 

are the gas diffusion layers (GDLs) which deliver the reactants to the reaction sites evenly through the 

diffusion process. The combination of the membrane, catalyst and GDLs forms a single component 

called the membrane electrode assembly (MEA). The MEA is sandwiched between two bipolar plates, 

which provide structural backbone to the fuel cell, and supply reactant gases via the gas flow channels 

embedded in them. The operating principles of a PEMFC is shown in Figure 1. During the fuel cell 

operation, the hydrogen gas is supplied at the anode electrode. Hydrogen diffuses through the GDL to 

the anode catalyst layer where the oxidation reaction (Equation 1) releases the electrons (e– ) and 

hydrogen ions (H+). 

 2𝐻2 → 4𝐻+ + 4𝑒−      (1) 

The released electrons flow to the cathode electrode through an external circuit, thus generating useful 

work. At the same time, the protons move to the cathode through the membrane. The oxygen (whether 

as air or pure) supplied to the cathode facilitates the reduction reaction (Equation 2) in which electrons 

and protons are consumed to create water molecules (H2O) and generate some by-product heat. 

𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂        (2) 

Equations 1 and 2 show that the only by-products of the fuel cell operation are water vapour and heat, 

which is advantageous compared to conventional internal combustion engines. 

 

Figure 1: PEM fuel cell operating principle 

1.2. Balance of plant components 

A single PEMFC generates about 1 V, so in order to produce higher voltages, multiple cells are 

connected in series to create a fuel cell stack. Additional components and sub-systems are required 



to create the necessary conditions for efficient FC stack operation. Hydrogen fuel is usually stored in 

compressed tanks, while air is delivered to the stack from the atmosphere by fans or compressors. The 

reactant supply sub-systems consists of pipes, valves, mass flow controllers, pressure regulators and 

filters. Temperature regulation is achieved by either circulating liquid coolant (e.g. water) or air fans 

or blowers. Gas humidification equipment is also important in order to maintain appropriate levels of 

water content within the membrane. All the balance of plant components aim to maintain the stack at 

constant temperature, pressure and humidification with minimized disturbance. Any deviations from 

a set operating point will lead to decreased stack performance and increased rates of degradation. 

 

1.3. PEM Fuel Cell Reliability Issues 

Current generations of PEM fuel cells face a number of issues that limit their lifetime performance. 

The reliability of the total PEM fuel cell system is determined by the durability of each individual 

component. For example, membrane degradation affects the membranes ion and water transport 

properties, catalyst layer deterioration causes the decrease of chemical reaction activity, whilst ageing 

of the gas diffusion layer hinders the supply of reactants to the reaction sites. In addition to the ageing 

process, variations in the operating conditions imposed by the auxiliary equipment may accelerate or 

decelerate the degradation effects. For example, failures in the cooling subsystem may create high 

temperatures (i.e. above 80 ◦C) which boosts the reaction kinetics, but, simultaneously, increases the 

rate of catalyst and membrane degradation [3]. On the other hand, low temperatures facilitate 

conditions for liquid water accumulation in the gas supply channels and the MEA, which leads to 

flooding, causing a drop in voltage output. Faults in the reactant supply sub-systems creates reactant 

starvation, which leads to the creation of local hotspots and further membrane disintegration. 

In other words, PEM fuel cell durability is governed not only by natural ageing processes, which 

cannot be averted, but also by the operating conditions imposed on it by the environment and the 

supporting equipment [3]. Therefore, reliability of the PEM fuel cell is directly linked to the reliability 

of the auxiliary equipment and it is crucial to design the system such that the influence of auxiliary 

equipment failures on the fuel cell stack is minimized. Reliability assessment of PEM fuel cells is 

important in order to provide estimations for expected lifetime predictions of the system and advise 

on possible hardware optimizations. 

2. Literature Review 

2.1. Classical Reliability Analysis 

Reliability analysis of any engineering system is a process that requires detailed understanding of all 

components, their respective functions and the overall goal that the system needs to achieve. Several 

techniques exist to help perform such analysis, for example Failure Mode and Effects Analysis 

(FMEA) and Hazard and Operational Analysis (HAZOP). Further investigations into Probabilistic Risk 



Analysis can be performed with deductive methods like Fault Trees (FTs) or Event Trees (ETs). 

Mathematical modelling techniques such as Petri nets (PNs) and simulation can also be applied when 

reliability of the system depends on sequences and inter-dependencies of various events. 

One high-level FMEA was a part of a report by the US Department of Transportation on the safety 

of compressed hydrogen electrical vehicles [4]. The main objective of the report was to assess the 

likelihood, criticality and potential consequences of hydrogen leaks occurring in the vehicle. For the 

purposes of the FMEA, the authors classified the fuel cell components into three functional sub-systems 

– compressed hydrogen fuel storage, hydrogen flow control and the fuel cell stack. Other authors 

developed FMEA with the focus on fuel cell components and materials. Wang et al. provides detailed 

findings on the investigations of the causes and consequences of fuel cell materials degradation [3]. 

The work classifies the sources of degradation to be associated with internal and external causes. Rama 

et al. [9] developed an FMEA focussed on the five main causes of performance degradation in PEMFC: 

activation, ohmic and mass transport losses as well as efficiency deterioration and catastrophic failure. 

The authors identified 22 potential faults and 47 plausible causes and constructed the corresponding 

FT to describe the failure interactions. One major limitation of the FMEA approach is the fact that 

during the analysis only one independent failure mode is considered at a time. When, however, a 

system is complex and failure modes interact with one another, additional techniques such as Fault 

Tree Analysis (FTA) are necessary. 

The FT approach to reliability assessment of PEMFC’s is widely used among researchers in the field. 

A review paper by Steiner et al. [5] shows how fault tree analysis can be applied to various fuel cell 

failure modes. The authors presented two fault trees designed to represent flooding or drying of the 

membrane within PEMFC stacks and also illustrated the application of FTA to understanding the 

failures encountered in Solid Oxide Fuel Cell (SOFC) systems. However, no numerical evaluations of 

fault probabilities are provided in this publication. A paper by Placca and Kouta [6] describes the 

development of a fault tree to model the event  ‘Degradation of the fuel cell’. This was broken down 

into three major intermediate events: ‘Membrane degradation’, ‘Catalyst layer degradation’ and ‘Gas 

diffusion layers degradation’. These intermediate events were further broken down into more than 40 

basic events for which failure data was given. The authors performed 1000 simulations of 100 hours 

of fuel cell lifetime and concluded that membrane mechanical degradation is the most important 

intermediate event. This finding agrees with the results of the previously discussed FMEA analysis [4]. 

One major drawback of this publication is the fact that 100 hours of FC lifetime is negligible when the 

aim is to ensure that the fuel cells operate for at least 5000 hours. In a publication by Collong and Kouta 

[7] the authors applied FTA to the safety issues of automotive PEMFC’s. They created a FT for ‘Tank 

rupture’ and ‘Explosion of hydrogen release’. Due to the sparsity of failure rate data for PEMFC 

systems the authors used data obtained from the offshore reliability data base (OREDA) to quantify 

the tree. Brik et al. [8] also constructed a fault tree for the top event ‘fuel cell system degradation’ with 



intermediate events ‘auxiliary elements degradation’ and ‘fuel cell degradation’. The authors 

determined minimal cut sets, minimal combinations of basic events that cause the top event, but 

emphasised that it is impossible to quantitatively evaluate the top event probability because of the lack 

of data for all the basic events. Another fault tree analysis carried out by Whiteley et al. [10] showed 

that the Boolean logic of fault trees is not an ideal method for estimating the probability of fuel cell 

failure due to complex dependencies of failure modes under differing operating conditions. It was 

concluded that an alternative method which can deal with such dependencies is necessary. 

A modelling technique called Petri Nets (PN’s) is also applicable for reliability analysis and it 

provides the tools for representation of dependencies, [11]. Several researchers have applied PN’s to 

the reliability modelling of PEMFC. For instance, Wieland et al. [12] created a simple Petri net for 

automotive stack degradation and maintenance, multiple assumptions and simplifications were 

adopted in this model. Degradation modelling by means of Petri nets was carried out by Whiteley et 

al. [13]. The authors designed various Petri net modules corresponding to various phenomena leading 

to fuel cell degradation based upon previously conducted FMEA and FTA. The authors concluded 

that the addition of a fuel cell performance model would improve the simulation results by calculating 

the evolution of key variables alongside the degradation. 

 

2.2. Dynamic Reliability Assessment 

Dynamic Probabilistic Risk Assessment (DPRA) (also called dynamic reliability) is a field of study that 

aims to expand the classical RAMS techniques by taking into account the multi-state operational and 

failure mechanisms of the studied system and its changing environmental and operational conditions. 

A wide range of engineering systems are subject to dynamic operating conditions, so DPRA methods 

have been applied to a variety of areas: from nuclear safety engineering [14] to structural engineering 

[15] and rotating machinery [16]. However, the focus in this paper is on DPRA methods designed for 

complex systems consisting of multiple interacting components within different physical domains. 

In principle, such a dynamic approach offers more realistic reliability estimations, but it has not found 

widespread adoption within industry and remains largely in the domain of academic research due to the 

complexity of implementation and lack of generalised software tools [17; 18].  The difficulty arises 

from the fact that DPRA methods aim to capture the inter-dependence and interaction of both 

deterministic (continuous) and stochastic (discrete) dynamics of the system in order to obtain a more 

accurate reliability estimates. A formal mathematical definition of systems with such inter-

dependencies was established via a class of processes called Piece-wise Deterministic Markov 

Processes (PDMP) by Davis [19]. Various modelling tools such as Modelica modelling language [20], 

Matlab/Simulink [21] and Python [22] have been used by research teams to create and analyse PDMP-

type models.  

Due to the nature of PDMP, it is very difficult to obtain analytical solution, so a sampling approach 



such as Monte Carlo (MC) simulations are commonly used to obtain the solution. For example, 

Bouissou et. al. [23] investigated the temperature changes within a room heated by a heater with a 

constant failure rate λ=0.01/h and a constant repair rate µ=0.1/h. The authors implemented this PDMP-

type model in Modelica and used MC simulations to obtain a set of temperature trajectories within the 

room over 100 hours of operation. Lin et al. [24] used Matlab to implement a PDMP model of a pump 

with inter-dependent degradation mechanisms and employed MC simulations to obtain dynamic 

reliability curves. The results showed the device reliability sharply decreasing when inter-dependent 

failures occur. It was also demonstrated how the accuracy of the reliability estimations increases with 

higher number of MC trials. 

In general, there are several methods for implementing the system models suitable for DPRA, each with 

their own advantages and disadvantages. A comprehensive review of dynamic reliability methods by Shukla 

and Arul [25] discussed several DPRA methods such as Dynamic Fault Trees (DFT), Petri Nets (PNs), 

Stochastic Hybrid Automaton (SHA), and several others. The authors also propose a framework for qualitative 

comparison of these methods and highlight the fact that these methods can be used in conjunction with other 

modelling tools to represent the complex behaviour of the system. 

Taleb-Berrouane et al. [26] propose fusing Bayesian Networks (BNs) with Stochastic Petri Nets (SPNs). 

In this approach BNs represent the inter-nodal dependencies via conditional probabilities, while SPNs 

represent dynamic behaviour of the system. The authors use the proposed hybrid methodology to obtain 

dynamic probability distributions of initiator and intermediate events for pump failure event over 10 

years of its operation. 

Codetta-Raiteri and Bobbio [27; 28] applied two different types of PNs, Generalised Stochastic Petri 

Nets (GSPNs) and Fluid Stochastic Petri Nets (FSPN) in the dynamic reliability analysis of a heated tank 

problem. After performing MC simulations, the authors concluded that both methods provide 

satisfactory results. However FSPNs allow for greater modelling flexibility, while GSPNs would not be 

able to handle more complex systems where multiple continuous variables are involved. One drawback 

of FSPNs is the fact that the ODEs governing the continuous-time evolution of the system must be coded 

directly into the PN structure. This means that the model code must be written for a specific modelling 

purpose and cannot be reused in different scenarios. 

Manno et al. [29] recognised the fact that when adapting FSPNs and Coloured Petri Nets (CPNs) for 

DPRA both deterministic and stochastic aspects of the process are fused together and cannot be 

separated. The authors, thus, suggested to ‘separate the concerns’ and implement the two aspects of 

system behaviour independently from each other. The non-deterministic side is represented by a 

Stochastic Activity Network (SAN), which is another extension of the stochastic PNs. The method was 

applied to an air conditioning system. Chiacchio et al. [30] continued the analysis of the same system 

but proposed using Stochastic Hybrid Automaton (SHA) to implement the stochastic events within the 

system. The SHA is an approach which breaks down a system into a physical and a stochastic model 

that are coupled together with shared variables and synchronising mechanisms.  



Recently, Chiacchio et al. [21] developed a Matlab/Simulink toolbox called SHyFTOO dedicated to 

solving Stochastic Hybrid Fault Tree Automaton (SHyFTA) problems. The authors deployed this 

toolbox to study of an electric motor reliability subjected to seasonal variations in ambient temperature. 

Comparing the device unreliability calculated by using the SHyFTA and conventional FTA revealed 

that FTA yields lower reliability after the first 9000 hours of motor operation. This is due to the inability 

of the FTA to consider nonlinear degradation rates of the ball bearing caused by the temperature 

variations. 

Rychkov and Chraibi [31] used a Python based toolbox called PyCATSHOO to study DPRA of the 

decay heat removal system of a nuclear reactor during the design phase. The MC simulations allowed 

the researchers to compute a set of temperature trajectories of the sodium coolant and determine which 

sequence of events leads to the temperature exceeding a critical threshold and calculate the 

corresponding failure probability. 

An alternative way to represent the system for dynamic reliability is through the use of so-called ‘smart’ 

components [18, 25, 32]. The main principle of this approach is to explicitly code both nominal and 

faulty physical behaviours of individual components within the system. Consequently, system models 

com- posed of such fault-augmented components, are inherently suitable for reliability estimations via 

simulations. One example of using this approach was demonstrated by Schallert [33, 20] who developed 

a set of fault-augmented models of basic electrical components using an object-oriented modelling 

language called Modelica. These component models were then used to create a system model of an 

aeroplane electric network and dispatch reliability over 200 flight hours was calculated to be 0.869. The 

approach incorporates the capabilities of a classical RAMS technique such as FT’s into a physics-based 

simulation model. The smart component method was also used for nuclear safety by Shukla and Arul [34]. 

The application of DPRA concepts to reliability assessment of PEMFCs is highly attractive, especially 

in automotive applications because the degradation rates of the stack depend on the different modes of 

operation and discrete events such as start/stop cycles. However, to the best of authors knowledge, only 

one study in this area was published by Fecarotti et al [35]. The authors introduced ideas of DPRA in 

evaluating the reliability characteristics of PEMFC systems and developed a CPN model of the full FCS 

containing the fuel cell stack and all the main auxiliary components within its cooling, humidification 

and gas supply sub-systems. The model also included modelling of maintenance procedures. Performing 

the model simulations several thousand times provided statistical estimations of the expected lifetime of 

the system under pre- defined operating conditions and maintenance schedule. The developed CPN 

model does not take into account the degraded state of the stack due to the changes of operating 

conditions, resulting in a more static view of system reliability, so a more detailed stack representation 

is desirable. Additionally, this modelling approach, suffers from the same limitation as FSPN and the 

code cannot be easily adapted and extended to include some of the more nuanced fuel cell dynamics or 

even model some other engineering system altogether. The proposed approach can be used for DPRA, 



but it suffers from modelling limitations due to the fact that the physical properties of the system have to 

be interpreted in a modelling paradigm, originally not designed for this use. 

 

To summarise this section, several conclusions can be drawn. Dynamic reliability is an active area of research 

with a large potential to expand the classical RAMS techniques for analysis of complex engineering 

systems exhibiting hybrid dynamics. Although various modelling paradigms (e.g. PNs, SHAs and 

‘smart’ components) are capable of representing such systems, there is only one primary method for 

evaluating the reliability– through simulation. Furthermore, DPRA studies published in the literature 

tend to analyse systems, continuous dynamics of which are fully described within one or two physical 

domains, whereas such an analysis of multi-domain systems is largely unexplored. 

Therefore, the development of dynamic reliability tools in general and application of such tools to 

PEMFCs are two attractive areas of research. Consequently, this paper has two objectives. First 

objective is to outline an approach to the development of an extended PEMFC model that satisfies the 

four fundamental requirements of dynamic reliability methods mentioned above. Second objective is to 

demonstrate how such a model can be used for dynamic reliability analysis. 

 

3. Modelling Method 

The modelling approach proposed in this paper aims to rectify the limitations of classical reliability 

modelling techniques by considering the physical behaviour of the system together with possible 

events occurring during the system lifetime. In order to do this, two sub-models – deterministic and 

stochastic are developed and linked together to create an overall hybrid model. In the following 

sections, the deterministic sub-model is discussed first, followed by the stochastic one. 

 

4. Deterministic Model 

The model is developed with the bond graph approach and is an extension of the model developed by 

Vasilyev et al. [36]. The original model contains a set of differential equations that describe the 

continuous time dynamics of state variables such as pressure, temperature and mass flows. Quantities 

such as membrane thickness were assumed constant. The model is implemented using object-oriented 

approach using physics-based modelling language Modelica. 

In this work in order to take into account the ageing and degradation mechanisms previously static 

parameters related to the membrane electrode assembly are made dynamic. Time-evolution of these 

variables dictates the power output of the fuel cell system. Some of the most important equations are 

provided here, but more information can be found in various books and publications, for example [37]. 

In order to differentiate between the static and dynamic quantities the superscript † is used to mark the 

variables that are modified to incorporate degradation. 



 

4.1. Voltage Output 

The maximum electrical potential of an ideal fuel cell at open circuit and given temperature 

and pressure is determined by the Nernst equation: 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = −
Δ𝐺

2𝐹
+

𝑅𝑇

2𝐹
 𝑙𝑛 (

𝑝𝐻2√𝑝𝑜2

𝑝𝐻2𝑜
)      (3) 

 

where G is the change of Gibbs free energy, F is the Faraday constant (96 485C=mol), R is the ideal 

gas constant (8.314 J mol-1 K-1), T is the temperature (K), 𝑝𝐻2
, 𝑝𝑂2

, 𝑝𝐻2𝑂 are partial pressures of 

hydrogen, oxygen and water vapour (Pa). However, as soon as the electrical load is applied to the cell, 

different voltage loss mechanisms begin to occur. As a result the output voltage is expressed by the 

following equation: 

𝑈𝑐𝑒𝑙𝑙 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑛𝑐    (4) 

Where terms act, ohm,conc describe the voltage loss phenomena described in the following 

sections. 

4.1.1. Activation Losses and Catalyst Degradation 

Activation losses act represent the amount of energy consumed to overcome the activation barrier 

and sustain the electrochemical reaction: 

 

𝜂𝑎𝑐𝑡
† =

𝑅𝑇

𝛼𝐹
 𝑙𝑛 [

𝑖+ 𝑖𝑙𝑜𝑠𝑠
†

𝑖0
† ]    (5)  

 

where i is the current density, iloss describes the amount of current density loss due to the direct electron 

transfer through the membrane bypassing the external load and  is the transfer coefficient. As the 

fuel cell ages the parameters iloss and i0 change in value, the evolution of i0 is described below with 

iloss considered in section 4.1.2. The exchange current density i0 is a characteristic of the reaction rate 

and it is a function of temperature, partial pressure of the reactants and catalyst layer properties [38]. 

For the cathode electrode i0 is given by Equation 6: 

𝑖0
† = 𝑖0

𝑟𝑒𝑓
 

𝐴𝑒𝑐

𝐴𝑓𝑐
 (

𝑝𝑂2

𝑝𝑂2

𝑟𝑒𝑓)

0.5

𝑒𝑥𝑝 [−
Δ𝐺∗

𝑅𝑇
 (1 −

𝑇

𝑇𝑟𝑒𝑓)]   (6) 

Where 𝑖0
𝑟𝑒𝑓

= 1 × 10−9  [25] is the reference exchange current density, Aec is the catalyst 

electrochemical surface area, Afc is the nominal area of the PEMFC, 𝑝𝑂2
is the partial pressure of oxygen 

at the catalyst layer, 𝑝𝑂2

𝑟𝑒𝑓
 and Tref are reference pressure and temperature, G*=66 kJ mol-1 is the 

activation energy of the oxygen reduction reaction at the cathode electrode. 



It is known that over time the catalyst electrochemical surface area decreases due to a process during 

which smaller Pt- particles agglomerate into larger ones, thus reducing the total geometric area of the 

catalyst particles Ageo [3]. The geometric and electrochemical surface areas are proportional to each other 

with the coefficient of proportionality dependent on the MEA properties. Zhang and Pisu [39] estimated 

that Aec/Ageo = 0.63 and proposed a first-order ODE to describe the degradation of the catalyst geometric 

area as expressed in Equation 7: 

𝑑𝐴𝑔𝑒𝑜

𝑑𝑡
=  −Φ𝐴

4𝑘1

9𝑉𝑃𝑡
2  

𝑀𝑃𝑡

𝜌𝑃𝑡
 
𝐹𝛼1

𝑅𝑇
𝑒𝑥𝑝 [

𝐹

𝑅𝑇
(Δ𝜙𝐶 − 𝑈1

𝜃 +
𝛼1𝐴𝑔𝑒𝑜

𝑉𝑃𝑡
)] 𝐴𝑔𝑒𝑜

3 𝛼𝑟𝛽𝑟
2  (7) 

where A is a fitting parameter, k1 =  1 x 10
-9

mol/cm
2
/s and U1

 = 1.18 V are the rate constant and 

the standard equilibrium potential of Pt dissolution reaction respectively, MPt =195.1 g/mol and 

Pt=21.45 g/cm3 are the molar mass and density of Pt respectively,  = 1.14 10-10 is a constant 

parameter, parameters r = 1.1 and βr = 0.038 characterise the radius of the Pt-particle groups relative 

to the mean radius of the total particle population. ∆φc is the phase potential difference between the 

electrolyte phase and the cathode phase calculated using Equation 8: 

Δ𝜙𝐶 =  𝑈𝑐𝑒𝑙𝑙 + 𝑖. 𝐴𝑓𝑐 . 𝑅𝑜ℎ𝑚    (8) 

The initial value of Ageo is calculated using Equation 9 assuming that each Pt is a perfect sphere. 

𝐴𝑔𝑒𝑜
0 = 4𝜋𝑟𝑃𝑡

2 𝑁𝑃𝑡     (9) 

where rPt is the average radius of Pt-particles and NPt is the number of particles in the group. Similarly, 

the volume of the platinum catalyst is estimated using Equation 10: 

𝑉𝑃𝑡 =
4

3
𝜋𝑟𝑃𝑡

3 𝑁𝑃𝑡    (10) 

 

4.1.2. Ohmic Losses and Membrane Degradation 

Ohmic losses ohm result from the fuel cell’s internal resistance to the transport of charged particles 

(electrons and ions), i.e. ohmic Rohm and ionic Rion resistances: 

ohm=I(Rion+Rohm)   (11) 

where I is the current load.  It is important to note that Rion is a strong function of water content within 

the membrane. 

Modelling membrane degradation is also limited to primarily using empirical or semi-empirical 

relations due to the complexity of interacting mechanisms and lack of experimental data. 

Nevertheless, Chandesris et al. [40] recently suggested the following equation to describe the 

mechanism of membrane thinning due to fluoride (F–) release: 



𝑣𝐹− =  Φ1
Δ𝑝𝑂2

𝑝𝑟𝑒𝑓  
𝛿𝑚𝑒𝑚

0

𝛿𝑚𝑒𝑚
† exp [

𝛼𝑒𝑞𝐹

𝑅𝑇
 𝑈𝑐𝑒𝑙𝑙] exp [−

Δ𝐺∗∗

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓)]  (12) 

where 𝑣𝐹− is the fluoride release rate,  = 1.7 × 10−7 µg/cm/h is a fitting parameter, pref = 101,325 

Pa is the reference pressure and Δ𝑝𝑂2
=  𝑝𝑐,𝑂2

− 𝑝𝑎,𝑂2 is the difference between partial pressures of 

O2 at cathode and anode sides. The initial and effective thickness of the membrane are denoted by   

𝛿𝑚𝑒𝑚
0  and †

mem, eq = 0.54 is an equivalent transfer coefficient and ∆G∗∗ = 75 kJ mol-1 is the activation 

energy of the chemical reactions causing degradation. 

The change in membrane thickness is then expressed in terms of the fluoride release rate as follows: 

𝑑𝛿𝑚𝑒𝑚
†

𝑑𝑡
=  −Φ2

𝑣𝐹−

𝜔𝐹−
𝜌𝑚𝑒𝑚    (13) 

Where 20.8 is a fitting parameter, 𝜔𝐹−=0.82 is the fraction of fluoride within Nafion and mem = 

0.001 97 kg/cm3 is the dry density of the membrane. Equation 12 shows that the fluoride release rate 

grows exponentially with increasing voltage, which means that when the fuel cell is at open circuit, 

the rate of membrane degradation is at its highest. 

The reduction of membrane thickness results in an increase of crossover currents, since it shortens 

the diffusion path through the membrane. This leads to an increase in the crossover current density 

which can be calculated as: 

𝑖𝑙𝑜𝑠𝑠
† =

𝑃𝑎𝑛𝐾𝐻2

𝛿𝑚𝑒𝑚
† 2𝐹    (14) 

Where 𝐾𝐻2 = 3.68 x10−16 mol Pa-1 cm-1 s-1 is the permeability of H2 through the membrane and pan is 

the total gas pressure in the anode volume. 

Furthermore, the ageing of the membrane also results in the change of its ionic conductivity 

properties. The following exponential relation was suggested by Jouin et al. [41]: 

𝑅𝑖𝑜𝑛
† = 𝑅𝑖𝑜𝑛 𝑒𝑥𝑝(𝛽𝑖𝑜𝑛𝑡)    (15) 

where Rion is the value of membrane ionic resistance and βion is the membrane degradation parameter. 

4.1.3. Concentration Losses 

The concentration overpotential ηcon occurs at higher current densities when the reactants are 

consumed faster than they are supplied. Under such conditions, the concentration of fuel or oxidant at 

the catalyst layer tends to 0 leading to drastically reduced voltage output. The effects of O2 partial 

pressure at cathode side is the primary factor for the occurrence of the concentration losses which can 

be expressed as follows [25]: 

𝜂𝑐𝑜𝑛
† =

𝑅𝑇

4𝛼𝐹
𝑙𝑛 (

𝑖𝐿
†

𝑖𝐿
†−𝑖

)     (16) 

Where iL is calculated using Equation 17: 



𝑖𝐿
† =

𝑧𝐹

𝑅𝑇
 

𝐷𝑔𝑎𝑠
†

𝛿𝐺𝐷𝐿
 𝑝𝑖      (17) 

Changes in mass transport properties of the GDL due to degradation can be expressed through 

the changes of the diffusivity of gases within the diffusion medium as follows [41]: 

           𝐷𝑔𝑎𝑠
† = 𝐷𝑔𝑎𝑠 + 𝛽𝐷𝑡  (18)   

where Dgas is the initial value of diffusivity of gases through the GDL and βD is the degradation 

parameter. 

Jouin et al.  [41] also suggest incorporating the increase of concentration losses by modifying 

Equation 16 with a degradation parameter βB as follows: 

𝜂𝑐𝑜𝑛
† (𝑡) = (

𝑅𝑇

4𝛼𝐹
+ 𝛽𝐵𝑡) 𝑙𝑛 (

𝑖𝐿
†

𝑖𝐿
†−𝑖

)   (19) 

Furthermore, the increase of internal ohmic resistance of the fuel cell was described by the following 

linear equation [41]: 

𝑅𝑜ℎ𝑚
† = 𝑅𝑜ℎ𝑚 + 𝛽𝑜ℎ𝑚𝑡     (20) 

where Rohm is the initial value of internal resistance, βohm is the parameter describing the rate of 

degradation. 

4.2. Pressure dynamics 

The ideal gas law determines the changes in reactant pressure within the volume of gas supply 

channels: 

𝑚𝑔𝑎𝑠𝑉𝑐ℎ

𝑅𝑇
 (

𝑑𝑃

𝑑𝑡
) =  ∑ 𝑚̇𝑔𝑎𝑠𝑖𝑛/𝑜𝑢𝑡    (21) 

 

where P is the total pressure of the gases in the gas flow channels, Vch is the volume of the channels 

and mgas is the total mass of gases. 

4.3. Thermal dynamics 

The temperature of the fuel cell changes according to the following energy balance equation: 

                 𝑐𝑝𝑚𝑓𝑐
𝑑𝑇

𝑑𝑡
= 𝑄̇𝑓𝑐 − 𝑄̇𝑐𝑜𝑜𝑙 ± 𝑄̇𝑎𝑚𝑏 + 𝐻̇𝑖𝑛 − 𝐻̇𝑜𝑢𝑡    (22) 

where cp is the specific heat capacity of the fuel cell, mfc is the mass of the cell,  Q̇ 
f c  is the amount 

of heat generated by the reaction, Q̇cool  is the amount of thermal energy exchanged with the 

coolant, Q̇amb  is the heat loss to the environment, Ḣin  and Ḣout  are the enthalpies of the gases 

carried in and out of the fuel cell stack calculated as follows: Ḣin/out  = cp,gasṁ gasTgas. 

4.4. Nitrogen Diffusion and Purging 

The existing model is augmented with an additional mechanism of nitrogen (N2) diffusion through 

the membrane. This phenomenon becomes important when the fuel cell is operated under ‘dead-end’ 



configuration. Such a configuration means that the outlet of the anode side of the fuel cell is closed, 

thus ensuring the increased H2 utilisation. However, as N2 diffuses through the MEA, the partial 

pressure of H2 drops. As a result, it becomes necessary to vent the N2 from the anode by opening the 

outlet controlled by a dedicated purge valve. According to Chen et al [42], the N2 flux, 𝑛̇𝑁2
 is given 

by: 

𝑛̇𝑁2
= 𝐷𝑁2

𝑝𝑐,𝑁2−𝑝𝑎,𝑁2

𝛿𝑚𝑒𝑚
†    (23) 

 

Where 𝑝𝑐,𝑁2 𝑎𝑛𝑑 𝑝𝑎,𝑁2
 are N2 partial pressure on the cathode and anode sides of the membrane and 𝐷𝑁2 

is the diffusion coefficient of N2 through the membrane and can be calculated from [43]:   

 𝐷𝑁2 =
𝑘𝑁2𝑝𝑐,𝑁2

𝐶𝑁2
         (24)  

Where 𝐶𝑁2
 is the N2 concentration in the cathode volume and 𝑘𝑁2 is the nitrogen permeability 

coefficient within the membrane. Calculated according to Equation 25 [44]: 

𝑘𝑁2
(𝑇𝑐𝑒𝑙𝑙) =  Φ𝑁2

(0.0295 + 1.21𝑓𝑣 − 1.93𝑓𝑣
2)𝑥10−14 × exp [

Δ𝐺𝑁2

𝑅
 (

1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑐𝑒𝑙𝑙
)]              (25) 

where Φ𝑁2 is an empirical parameter to be identified from experiments, Δ𝐺𝑁2 = 24 kJ/mol, Tre f = 303 

K and fv is the volume fraction of water inside the membrane. 

 

4.5. Parameter Estimation 

The equations in Sections 4.1-4.4 contain several empirical parameters, values of which need to be 

identified from experimental observations or from the literature. The degradation coefficients in the 

equations can be identified from publicly available ageing data obtained from a 5-cell stack with 

100cm2 active area over 1150 h of operation under constant conditions [45]. During the experiment 

the current load was set to 70 A, stack temperature maintained around 55 ◦C with a steady coolant flow 

of 2 L/min while anode and cathode pressures were also maintained constant at about 1.3 bar. The 

data was analysed to estimate the parameter values which are given in Table 1.  

Table 1: Estimated parameter values for the 5-cell stack. 

Symbol Value Units 

 0.55 - 

𝑅𝑜ℎ𝑚 0.41 /cm2 

𝑁𝑃𝑡 2.24 x 1016 - 

𝐴𝑔𝑒𝑜
0  19005 cm2 

𝑉𝑃𝑡 1.6 x 10-3 cm3 

Φ𝐴 2.5 x 106 - 



𝛽𝑅 3.127 x 10-9 /hr 

𝛽𝑖𝑜𝑛 2.058 x 10-8 hr-1 

𝛽𝐵 2.57 x 10-5 V/hr 

𝛽𝐷 1 x 10-6 cm2/(s×hr) 

 

Using the parameters listed in Table 1 the simulated voltage fits the experimental data exceptionally 

well with mean absolute error being only 8x10-3 V, and mean relative error of 0.25% as shown in 

Figure 2. 

Figure 2. Experimental and fitted voltage degradation over 1100 hours 

 

5 Stochastic Model 

The stochastic sub-model is dedicated to modelling failures of the supporting components within the 

fuel cell system. This part of the hybrid model operates in discrete-time domain and it is implemented 

with Stochastic Petri nets (SPNs) making it capable of representing different component states and 

events occurring during a fuel cell lifetime. 

Petri nets are a graphical and mathematical modelling tool for representation of a variety of systems and 

processes. A Petri net is a bipartite graph consisting of two types of nodes – places and transitions. A 

collection of places represents the set of possible system states. Transitions between the places 

correspond to various events that occur during the system lifetime. Tokens move between places via the 



transitions and the state of the system at any point in time is characterised by the marking of the Petri net 

by the tokens. The transitions fire when certain conditions are met. In the model developed here all 

transitions are timed and hence a delay is associated with all transitions once the condition for firing are 

met. For timed transitions the delay can be determined randomly or be predetermined intervals of time. 

Graphically, places are represented by circles and transitions are drawn as rectangles. 

Many software tools exist for creating and simulating PNs, but since the deterministic sub-model was 

developed using the Modelica language, it is natural to use a PN library within this modelling 

environment. So a library called PNlib developed by Proß & Bachmann [47] was applied for modelling 

the stochastic sub-model. This is an open-source library that contains the code and graphical 

representation for all essential Petri net elements. Figure 3 shows nets developed using PNlib for a 

component with (a) one failure mode and (b) two failure modes. A place marked with an integer k is 

said to contain k tokens. In (a) the two states C1_W and C1_FM1 represent the working and failed 

states of a generic component C1. When the place C1_W contains a token, as it does in Figure 3(a), 

then the transition T1 is said to be enabled and will fire after the delay associated with it. The delay in 

this example would be the time to failure of the component C1. When transition T1 fires it moves the 

token from C1_W to C1_FM thus representing a failure event. In (b) there are three states C2_W, 

C2_FM1 and C2_FM2 representing component C2 working, C2 failed in failure mode 1 and C2 failed 

in failure mode 2 respectively. There is a token in the place C2_W meaning that both transition T2 and 

T3 are enabled. The transition with the shortest delay will fire and the token marking state C2_W will 

be moved to the state corresponding to the respective failure mode (C2_FM1 or C2_FM2). Additional 

failure modes can be added in a similar fashion.  

                              

(a) One failure mode.                                                      (b)   Two failure modes 

Figure 3. Petri Net representation of component failure modes using PNlib in Modelica. 

 

Individual PN’s like those shown in Figure 3 have been implemented for each failure mode of each 

auxiliary component in the PEMFC system. In order to determine the delays associated with the 

transitions the times to failure for the components needs to be determined. In order to do this the 



probability of occurrence of each failure mode is modelled by a 2-parameter Weibull distribution. This 

distribution is one of the most commonly used in reliability engineering due its flexibility to fit many other 

probability distributions [48]. In this case, the probability of component failure at any instance in time 

can be characterised by an unreliability function F(t) which is given by: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [− (
𝑡

𝜂
)

𝛽
]                (26) 

where  is the shape parameter and  is the scale parameter. The transition firing intervals for 

each failure model tfire can be obtained by taking the logs of both sides of equation (26) and 

rearranging to give:  

𝑡𝑓𝑖𝑟𝑒 = 𝜂[−𝑙𝑛(1 − 𝐹(𝑡))]
1

𝛽⁄
    (27) 

Where F(t) takes values in the interval [0,1]. 

The auxiliary components considered in this work are based on the PEMFC system defined in 

[4]. Table 2 contains the list of components grouped by the corresponding sub-system and their 

respective failure modes. The values of parameters β and  are gathered from the literature [49; 

50] and listed in Table 2 along with the corresponding failure modes for the components. It is 

important to note that β = 1 for all the failure modes due to the fact that the reliability data is 

usually gathered under the assumption of constant failure rate. This assumption is justified if 

early life failures are eliminated by extensive testing before installation, while end-of-life 

failures are also eliminated because a component is assumed to be replaced before it reaches 

that point in its lifetime. 

 

Table 2: Component failure modes and the corresponding Weibull parameters. 

Sub-system Component Failure Mode β , 106 h Source 

Fuel supply H2 solenoid valve Fails to function 1 0.2 [38] 

 H2 supply line Leak or rupture 1 1 [38] 

Fuel processing Low-pressure H2 filter Restrict or limit flow 1 1 [38] 

  Hole in filter media 1 1 [38] 

 H2 humidifier Fails to function 1 0.004 [38] 

  Leak or rupture 1 0.004 [38] 

  Leak or rupture 1 0.01 [38] 

Air supply Air blower Fails to function 1 0.04 [38] 

 Air compressor Fails to function 1 0.008 [38] 

 Air flow meter Fails to function 1 0.05 [38] 

 Air line Leak or rupture 1 1 [38] 

Air processing Air filter Restrict or limit flow 1 1 [38] 



  Hole in filter media 1 1 [38] 

 Air humidifier Fails to function 1 0.004 [38] 

  Leak or rupture 1 0.004 [38] 

Thermal 

Management 
Radiator Restrict or limit flow 1  [38] 

  Fails to function 1  [38] 

 Coolant pump Fails to function 1 0.01 [37] 

  Leak or rupture 1 0.01 [38] 

 Coolant line Leak or rupture 1 1 [38] 

 

In order to integrate the stochastic and deterministic models, failures of the auxiliary components 

in the stochastic model need to be converted into disturbances to the process variables in the 

deterministic model. In the stochastic model the times to failure of the components are generated using 

equation (27), this defines the transition times in the PN modules and determines the placement of 

tokens in the models. Once a token resides in a component failure place, such as C1_FM1 in figure 

3(a), the Modelica Standard Library is used to generate a failure signal which is passed to the 

deterministic model where the relevant process variables are altered.  

 

This is illustrated in Figure 4 which depicts a section of the resulting hybrid model. The lower part of 

Figure 4 represents the fuel supply sub-system, where the ‘Gas mix’ block determines the molar gas 

composition of the fuel; block ‘mSe’ represents the pressure source; block ‘Rth’ corresponds to a 

valve and the two thick arrows with letter ‘N’ indicate the direction of gas flow (for a more detailed 

description of each of these blocks see [36]). The upper part of Figure 4 contains a PN module 

representing a single failure mode of the valve with transition T1 and two places P1 and P2. The state 

of the component is interpreted from the presence or absence of token within P2 through blocks 

integerToBoolean and TriggeredTrapezoid, which generates the fault signal F(t). This signal serves 

as an input to a valve represented by bond-graphic block Rth and increases the valve resistance and 

consequently reducing its throughput. All other components listed in Table 2 are connected to the 

corresponding PN modules in the same fashion. 

 

Figure 4. Arrangement of blocks to translate the state of Petri net into the dynamic variables of the fuel 



supply sub-system of the overall physics-based model. 

 

6 Monte Carlo Simulations 

Simulation-based reliability analysis relies on the method called Monte Carlo simulation, which is 

often used when the model contains a high degree of uncertainty in its parameters and provides the 

means to analyse a wide number of possible scenarios of system life-time evolution. The method 

consists of iteratively generating a set of random input parameters, then using them to evaluate the 

deterministic model and recording the outputs. After completing a large number of simulations, 

statistical information about the system performance and its reliability characteristics can be gathered 

and assessed. 

6.1 Parameter Uncertainty 

The values of parameters  βohm, βion, βB, βD and ΦA listed in Table 1 are highly uncertain and strictly 

speaking cannot be used when attempting to simulate the behaviour of a different fuel cell stack even 

under similar operational conditions. The uncertainty comes from many sources such as natural unit- 

to-unit variability occurring during component manufacturing, assembly and operation. Furthermore, 

the values of these parameters often cannot be directly measured. Therefore, in order to account for the 

uncertainty in estimation, values of these parameters can be obtained from a set of random statistical 

distributions. Many types of such distributions exist, such as the already mentioned Weibull, 

exponential, uniform, normal and many others. Each of the distributions has a unique set of properties 

and can be used in various applications. The choice of a particular distribution can be guided by the 

experimental measurements, but when the data is scarce, an estimated distribution can be assumed. 

Noguer et al. [51] distinguished three types of parameter uncertainty: optimistic (normal distribution), 

pessimistic (uniform distribution) and realistic (Weibull distribution). It is impossible to infer the 

parameter uncertainty distribution from just one lifetime worth of measurements, so a guessed 

distribution is suggested. 

From Equations 15 and 18 to 20,  it can be inferred that the values of the degradation parameters 

βohm, βion, βB and βD should be located on the semi-infinite interval [0, ∞). The shape of the distribution 

can be assumed to be normal with the mean around the values in Table 1 and standard deviation of 25% 

of the mean. However, the normal distribution is defined on the range (-∞, ∞), but it can be truncated 

at 0 to obtain a truncated normal distribution defined on [0, ∞). Table 3 lists the parameters with 

associated distribution types and their suggested characteristic properties. 

Table 3: Degradation distributions characteristics. 

Parameter Distribution Interval Estimated 



Suggested 





Φ𝐴 Normal (−∞, ∞) 25x105 25x104 

ohm Truncated 

normal 

[0,∞) 5x10-5 1.6x10-5 

ion Truncated 

normal 

[0,∞) 5x10-5 1.6x10-5 

B Truncated 

normal 

[0,∞) 1x10-6 1.6x10-5 

D Truncated 

normal 

[0,∞) 1x10-6 1x10-5 

 

It is reasonable to suggest that the parameter uncertainty distributions may have different 

characteristics or shape for different operating regimes. For example, for steady-state operation, the 

standard deviation of a parameter may be smaller, while during dynamic operation, it can increase. 

However, additional empirical data for a variety of operating modes is needed to make an informed 

decision about this. Consequently, in this paper it is assumed that the distribution type remains the 

same for each operating mode and the standard deviation values in Table 3 are large enough to cover 

all operating modes. 

 

6.2. Simulation Design 

The durability target for the fuel cell system is 5000 h with 10 % loss of performance. 

Therefore, the simulations are set to run until 5000 h is reached and are stopped prematurely 

either when the degradation threshold of 10 % is reached or a failure of any of the supporting 

components occurs. In order to see how changes of operating conditions affect the system 

reliability, two scenarios are investigated. In the first scenario a constant current load of 70 A 

was applied to the fuel cell and the rest of the operating conditions were set to be the same as 

those in the dataset used to identify the model parameters. In the second scenario, a 

dynamically changing current profile corresponding to the New European Drive Cycle 

(NEDC) was applied. The current variations span a range of values between 0 and 100A and 

are depicted in Figure 5.  



 

Figure 5: New European Drive Cycle profile applied to the fuel cell. 

  

Figure 6: Monte Carlo simulation flow-chart. 

The Monte Carlo simulation is set-up using the Matlab environment and the process logic is illustrated 

in Figure 6. Matlab repeatedly calls the model executable file for a set number of simulations, nsim. 

After an individual simulation is complete, the necessary information such as the calculated stack voltage 

and the failure modes are extracted from the result file and stored in an output file for future analysis. 

This process is repeated until the total number of simulations is completed. 

There is no single way of selecting the total required number of Monte Carlo iterations since the output 



depends on the desired accuracy and the variance of parameters within the model [48]. In order to 

identify the stopping point, it was decided to monitor how the mean survival time of the system was 

changing with every iteration and stop the execution when a desired degree of convergence is reached. 

The resulting graph for the first scenario is depicted in Figure 7 (the graph is very similar for the second 

scenario and thus not shown here), which shows that after the initial oscillations during the first 200 

iterations, the mean survival time converged at approximately 2470 h. Therefore, it is sufficient to stop 

the algorithm execution when such convergence is reached. However, because the model contains 

different sub-systems, it is beneficial to perform a larger number of simulations in order to obtain a 

more detailed insight into the different failure modes of the system. Because of this, the Monte Carlo 

algorithm was stopped after 500 iterations were completed and the data was processed. 

 

 

 

Figure 7: Mean survival time versus the number of Monte Carlo runs. 

 

7 Simulation Results 

After the defined number of simulations is complete, the collected data is sorted and expressed as shown 

in Table 4. Each simulation run constitutes an individual observation. The first column contains the 

observation numbers, the entries in the second column signify whether the fuel cell system failed (F) or 

survived until the cut-off point of 5000 h and was suspended (S). Since the failure times of the 

suspended runs are unknown, these values are censored and not included in the analysis. The last 

column in this table signifies the corresponding system failure mode as denoted by the sub-system name 

or labelled as ’unknown’ if an observation was suspended. 

Table 4: Table of times to failure. 

Observation number State Failure time (hr) Failure mode 



1 F 1395 Thermal management 

2 F 2487 Fuel supply 

3 F 1693 Stack  

4 S 5000 Unknown 

… … … … 

500 F 3152 Air supply 

 

The collected lifetime data was analysed for the scenarios considered. Figure 8 shows a histogram of 

the times to failure for the case when a constant current load of 70 A was applied to the fuel cell.  

 

Figure 8. Histogram of system times to failure under constant 70A load. 

This histogram reveals a pattern for failure occurrences of the system. It can be seen that although there 

are some early-life failures (up to 1600 h to 1800 h), the majority of failures take place between 

approximately 2000 h and 3400 h. After 3400 h the frequency decreases and falls off to almost 0 by 

5000 h. Similarly, histograms for scenarios 2 and 3 are shown in Figures 9 and 10. 

 

Figure 9. Histogram of system times to failure under dynamic NEDC load. 



 

Figure 10. Histogram of system times to failure under constant 70 A load, but with anode purging 

(dead-end anode). 

Histograms in Figures 8, 9 and 10 can significantly differ from each other visually depending on the 

column width, thereby making it difficult to compare the results. A more comprehensive way of 

analysing the data is by plotting an empirical Cumulative Distribution Function (eCDF). This provides 

a normalised overview of the survival data by calculating the cumulative sum of all the columns in the 

histogram and expressing it as a proportional value between 0 and 1. Figure 11 shows the calculated 

eCDF’s for the three scenarios considered.  

Figure 11.  Empirical CDFs for different scenarios. 

Also shown are values for the scenario when the fuel cell is operating in the ‘dead-end’ configuration. 

By observing the baseline eCDF, it can be seen that the probability of system failure by 2000 h is 

approximately 19%, but by 4000 h the probability soars to 84 %. Only 5 % of the population survive to 

5000 h. The mean and median survival times for this case are 2978.69 h and 3147 h respectively. It is 

believed that the change in the slope of the eCDF after 2000 h is due to the occurrence of two different 

failure modes within the stack. 



The eCDF calculated for the dynamic (NEDC) current load scenario yields a worse reliability 

performance than at constant load. At 2000 h, the probability of failure is 40 % and at 4000 h it reaches 

97 %. The mean and median survival times for this case are 2083.84 h and 2204 h respectively. Such 

poor survivability of the system compared to the baseline is explained by the fact that the stack is 

operating in very intensive conditions, with large voltage variations constantly occurring as a result of 

repeating NEDC cycles. 

The purging scenario also shows worse reliability characteristics than the base scenario. The mean and 

median survival times for this case are 2494.09 h and 2613 h respectively. An apparent increase in the 

failure probability can be seen after 2000 h, while unreliability in the early life remains almost the same 

as the baseline case. This observation is explained by the fact that each purging event subjects the 

membrane to additional mechanical stress caused by the periodic and abrupt pressure variations, thereby 

contributing to membrane degradation and failures. 

To sum up, system reliability is shown to be low for all three cases, exhibiting the worst-case scenario 

of system lifetime. Probability of baseline scenario survival at the target time of 5000 h was found to 

be 5%, while the other two cases exhibit even lower probability. This is due to harsh operating 

conditions imposed on the stack. In reality, the stack will not be subjected to constant loads for extended 

periods of time. Likewise, dynamic loads in real vehicles occur only when driving. 

The difference between reliability characteristics of the three investigated scenarios displayed in Figure 

11, demonstrates the capability of the proposed model to calculate the dynamic reliability characteristics 

of PEMFC systems under varying operating conditions and control strategies. 

Since the model was developed using open-source libraries and software, potential alterations can easily 

be implemented without requiring third-party licenses and tools. The model can be further extended to 

take into account daily and seasonal variations of ambient air temperature and humidity in different 

geographical locations. Using the model, a system designer can change the hardware configuration and 

set the corresponding reliability characteristics of the auxiliary components, define a different duty 

cycle (for example defined by automotive drive profiles such as WLTP, US06, etc.) and specify the 

climatic conditions. Performing another set of MC simulations using reconfigured model will yield a 

new dynamic reliability characteristic specific to the given model configuration and use case. 

Comparing the obtained dynamic reliability metrics for different system configurations can guide 

improvements in hardware design, control and maintenance strategy optimisation, as well as help with 

defining a more informed warranty policy. The ability to perform such analysis is a significant 

advantage over classical reliability methods, which cannot easily take into account variations in system 

operation during it’s lifetime. 

 



8 Conclusions 

In this paper, a novel modelling approach for reliability assessment of PEM fuel cells was presented. 

The approach expands the continuous-time deterministic dynamics of the system with discrete-time 

stochastic behaviour. The deterministic model was obtained by extending the model developed by 

Vasilyev et al. [36] to account for degradation and natural aging of the fuel cell. As failures of auxiliary 

components can lead to the disruption of conditions within the fuel cell and exacerbate degradation the 

failure of these components was modelled using Petri Nets and integrated with the deterministic model. 

The simulation of the resulting model enables dynamic reliability analysis of a fuel cell system to be 

performed. In this paper different Monte Carlo simulation scenarios were designed to observe the 

effects of changing operating conditions on the reliability of the system. The results show the clear 

influence of both purging and load cycles on the lifetime of a PEMFC system. Such results can be used 

to define a more robust maintenance strategy, assist with hardware design while achieving both 

improvements in performance and reliability. 

The dynamic reliability analysis demonstrated in this paper can be further improved by incorporating 

dynamic ambient conditions, thereby demonstrating the effect of seasonal variations on the reliability 

of the system. Furthermore, performing MC simulations with more realistic load-cycles applied to the 

FC system will provide a more realistic lifetime prediction. Additional empirical data can be used for 

improved parameter estimation, making component degradation rates more accurate. Expanding on the 

Petri net aspect of the model provides an excellent opportunity to incorporate a more sophisticated 

system representation. For example, as well as modelling component failures can be expanded to 

include various maintenance schedules and spare parts availability. 
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