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ABSTRACT
Artificial agents trained by deep reinforcement learning will likely
encounter novel situations after deployment that were never seen
during training. Our agent must be robust to handle such situations
well. However, if we cannot rely on the average training or vali-
dation reward as a metric, then how can we effectively evaluate
robustness? We take inspiration from the practice of unit testing in
software engineering. Specifically, we suggest that when designing
AI agents that collaborate with humans, designers should search for
potential edge cases in possible partner behavior and possible states
encountered, and write tests which check that the behavior of the
agent in these edge cases is reasonable. We apply this methodology
to build a suite of unit tests for the Overcooked-AI environment,
and use this test suite to evaluate three proposals for improving
robustness. We find that the test suite provides significant insight
into the effects of these proposals that were generally not revealed
by looking solely at the average validation reward. For our full
paper, see arxiv.org/abs/2101.05507.
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1 INTRODUCTION
We would like to build agents that collaborate with humans in order
to help them accomplish their goals, a setting that has recently been
tackled with deep RL [2, 6, 8]. While deep RL has shown remarkable
success in training agents that perform well on average [1, 11, 13],
the learned policies are often not robust to new situations [5], which
precludes deployment in many practical settings with stringent
robustness requirements [3, 9].

While there are several approaches we could use to improve
robustness, it is hard to evaluate these approaches. We care about
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Figure 1: By observing the training distribution and probing
the state space, the system designer can identify likely areas
that lack robustness, and create unit tests for those areas. On
the right is an example of a state robustness test. Since the
partner (green) is holding a plate, the agent (blue) should get
an onion for the left pot, regardless of how its partner plays.

the average reward on the deployment distribution, but the true
deployment distribution is never available, because the deployment
of the agent itself changes the distribution of inputs it receives [10].
Even pairing the learned agent with people in a user study is not
usually representative of the performance at deployment time, since
in many realistic domains there is a long tail of unusual edge cases
that would not be seen during evaluation but would eventually
happen after deployment.

Taking inspiration from software engineering, our core insight
is that a suite of unit tests can provide significant additional ro-
bustness information beyond existing metrics such as the average
training or validation reward. Our main contribution is a method-
ology for designing such a unit test suite in the human-AI collabo-
ration paradigm. We demonstrate the utility of our methodology in
Overcooked, a two-player cooperative cooking environment [2, 4].

2 DEVELOPING UNIT TESTS
A collaboration task is defined by an environment and a particular
partner. So, an agent should be robust to edge cases in the envi-
ronment (state robustness), as well as to the possible partners that
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Figure 2: Comparison of unit test scores (LHS) and validation reward (RHS) for deep RL agents trained with and without
diverse starts, with and without a population (comprised of 20 human models), and using ToM vs. BC agents.

it must play with (agent robustness). Robustness to partners often
requires the agent to keep track of history; we term unit tests for
this kind of behavior agent robustness with memory tests. Given
this categorization, our methodology consists of the following steps
(for further details, see the full paper [7]): 1) Identify qualitative
situations for each test category; 2) Concretize each situation to
a unit test; 3) Observe and probe the trained agents to find new
situations for which unit tests should be made.

3 EXPERIMENTS
We applied our methodology to Overcooked; an example unit test
can be found in Figure 1. The primary goal of our experiments was
to evaluate how useful the test suite is in surfacing information
about trained agents.

All of the agents we evaluate are trained via deep RL. The start-
ing point we consider for improving robustness is to pair the deep
RL agent, during training, with a human model, where as a baseline
we use a model trained by behavior cloning (BC) on human-human
gameplay data [2]. In our experiments, we manipulate several dif-
ferent factors for further increasing robustness: improving human
model quality with a parameterized Theory of Mind (ToM) agent;
training with a diverse population of both BC and ToM agents;
and initializing from states visited in human-human gameplay (“di-
verse starts”). Here we only present the results of the diverse starts
experiments; see the full paper for the remaining results [7].

We report both the average score on unit tests, as well as the
validation reward for each agent, computed as the average reward
the agent obtains when partnered with human models from a suite
of 20 validation agents. This validation reward is not meant as a
measure of the robustness of the agents to novel situations, but
rather as a baseline to compare the unit test suite against.

Our main hypothesis (H1) was that the unit tests and the valida-
tion reward would supply different information, and will therefore
often not be in agreement. We also expected that using diverse
starts would increase state robustness (H2).

3.1 Results
Figure 2 shows that, for diverse starts, the unit tests and the valida-
tion reward suggest opposite conclusions, in agreement with H1:
we see a notable increase in robustness when using diverse starts,

for both state robustness and agent robustness with memory tests,
whereas the validation reward either stays the same (for popula-
tion of 1) or decreases (for population of 20). It appears that using
diverse starts confers robustness at the cost of validation reward,
an effect that has also been observed with adversarial examples in
image classification [12]. On the axis of robustness, we see thatH2
is supported since diverse starts produces an increase in unit test
performance across all but one test category and model type.

Hypothesis H1 was also supported beyond these diverse starts
results. For example, when using a single ToM agent as the partner,
we found that different categories of unit test were affected while
average reward stayed the same; and when using a mixed popula-
tion of BC and ToM agents the unit test robustness remained the
same while average reward was improved. Another key finding
was that training with a population of 10 BC and 10 ToM agents
achieved the greatest robustness.

4 CONCLUSION
In this work, we proposed a methodology for creating a unit test
suite to evaluate the robustness of collaborative agents, and showed
that such a test suite can provide significant information about
robustness that may not be available from just the validation reward.

A given test suite will never be final: there will likely always be
more edge cases to include. As different types of failure modes are
found or imagined, they can be added into the test suite. We do
not claim that unit testing allows us to achieve perfect robustness:
rather, we see them as a major improvement over the current status
quo of evaluating reward on random rollouts (which only tests the
edge cases that are encountered randomly). Current deep RL agents
are clearly not robust – none of the agents we tested scored above
65% in Overcooked – suggesting that our approach can serve as a
useful metric for the foreseeable future.
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