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Surface topography measuring interference microscopy is a three-dimensional (3D) imaging technique that pro-
vides quantitative analysis of industrial and biomedical specimens. Many different instrument modalities and
configurations exist, but they all share the same theoretical foundation. In this paper, we discuss a unified theo-
retical framework for 3D image (interferogram) formation in interference microscopy. We show how the scattered
amplitude is linearly related to the surface topography according to the Born and the Kirchhoff approximations
and highlight the main differences and similarities of each. With reference to the Ewald and McCutchen spheres,
the relationship between the spatial frequencies that characterize the illuminating and scattered waves, and those
that characterize the object, are defined and formulated as a 3D linear filtering process. It is shown that for the case
of near planar surfaces, the 3D filtering process can be reduced to two dimensions under the small height approxi-
mation. However, the unified 3D framework provides significant additional insight into the scanning methods
used in interference microscopy, effects such as interferometric defocus and ways to mitigate errors introduced by
aberrations of the optical system. Furthermore, it is possible to include the nonlinear effects of multiple scatter-
ing into the generalized framework. Finally, we consider the inherent nonlinearities introduced when estimating
surface topography from the recorded interferogram.
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1. INTRODUCTION

Surface topography measuring interference microscopy [1]
(hereafter, just referred to as interference microscopy), and
closely related coherent imaging techniques, such as digital
holographic microscopy [2] and optical coherence tomography
(OCT) [3], are key tools for biomedical imaging and the surface
measurement of engineered materials. In the industrial area,
phase-shifting interferometry (PSI) [4] and coherence scan-
ning interferometry (CSI, also known as scanning white-light
interferometry [5]) are the two most common modalities of
interference microscopy (see Fig. 1) and have been used for
high-accuracy three-dimensional (3D) measurements in a
broad range of applications, due to their high sensitivity to small

variations in object geometry and low measurement noise (sub-
nanometer level) at all system magnifications [1]. Reviews of the
basic principles and applications of interference microscopy can
be found elsewhere [1,6,7].

Although interference microscopy is a well-established tech-
nique, enhancement in measurement capability and general
applicability have been driven by continuous advances in the
freedom and complexity of new product design, enabled by
precision manufacturing and additive manufacturing [8]. In
the absence of noise, environmental disturbances and mechani-
cal imperfections, the measurement accuracy of interference
microscopy is limited by the imaging model and the inversion
algorithm for object reconstruction. Understanding 3D image
formation is critical to future advancement of interference
microscopy. In this paper, “3D image” refers to the recorded
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3D interferogram from which the surface topography can be
reconstructed.

A. Signal Modeling in One and Two Dimensions

In traditional one-dimensional (1D) interferometry, the con-
trast of the interference fringes is determined by the optical path
length difference between the beams reflected from the sample
and the reference mirror. In CSI, fringes are modulated by the
coherence envelope (Fig. 1), determined by the degree of tem-
poral and spatial coherence. The 1D model can incorporate the
effect of high numerical aperture (NA), polarization effects, and
the optical properties of surface materials, including partially
transparent thin films [9]. As a single-point method, however, a
1D model cannot properly account for the finite resolution of a
real optical system.

A two-dimensional (2D) model considers the effects of sur-
face scattering and the finite 2D pupil of the imaging system
more accurately than a 1D model. Here, 2D corresponds to
the x -y plane that is perpendicular to the optical axis (i.e., the
z axis). The ability of an interference microscope to resolve the
fine structures of a given object is apparent from the Abbe theory
of image formation. Simplistically, the scattered/diffracted light
needs to be captured by the pupil to provide image contrast.
Assuming spatial shift invariance, the imaging capability of a 2D
imaging system can be characterized by its 2D transfer function,
specifically by the 2D coherent transfer function (CTF), which
is the scaled pupil function for coherent illumination (in a non-
interferometric system), and similarly by the 2D optical transfer
function (OTF), which is the autocorrelation of the 2D CTF for
incoherent illumination. These well-known concepts are central

Fig. 1. Typical setup of an interference microscope configured
with Köhler illumination and a Michelson objective lens. The image-
forming light path is filled in blue and the illumination light path
is drawn with a dashed line. The 3D interferogram is built up by
acquiring a sequence of images at different axial scan positions.
The fringe signal recorded by a camera pixel is modulated by the
coherence envelope. The measured topographies are of a precision-
manufactured star pattern (left) and a polycrystalline Ni material
subject to electrochemical jetting process.

to the linear (Fourier) theory of optical systems as described by
Goodman [10].

Imaging models of interference microscopy that consider the
effects of a finite 2D pupil have been developed to study instru-
ment response, including nonlinear effects, such as the “batwing
effect” near the sharp edge of a step [11] and measurements of
rectangular gratings [12]. 2D modeling has also been applied to
challenging problems in high NA imaging, including for com-
plex, optically unresolved surface structures, using pupil-plane
integration and rigorous diffraction models [13].

A simple and commonly used model for scattering from thin
objects or near planar surfaces, such as thin phase gratings, is
based on the small height approximation. In this approximate
model, the object/surface is treated as a small perturbation
from a datum plane; the phase of the field at the datum plane
is assumed to be directly proportional to the surface height
variation [10]. In this case, the finite resolution of a real optical
system will combine scattered components of similar phase
and, providing that multiple scattering is negligible, linearity
is assured. One way to determine the validity condition of this
approximation is known as the Rayleigh criterion [14], accord-
ing to which the maximum phase variation caused by the surface
height variation should not exceed π/2 within the resolution
cell, corresponding to a total height variation of λ/8 for normal
incidence. In interference microscopy, the small height approxi-
mation used in conjunction with the 2D transfer function has
recently been coined the 2D elementary Fourier optics (EFO)
model [15]. We note here that the Rayleigh criterion is quite
stringent, and in practice, it need only apply over a finite region
defined by the resolution of the optical system. In this way, the
method can be applied in a piecewise manner with a locally
varying datum plane, as further discussed in Section 6.

B. Image Formation in Three Dimensions

The application of interference microscopy to a large range of
3D objects [8] provides the motivation for a comprehensive
analysis of 3D imaging that inherently accounts for surface
height variations greater than the depth of field, as frequently
observed in practice. As shown in the following, 3D image
formation depends strongly on the light illuminating the object
and the scattered light propagating through and recorded by the
imaging system.

The fundamental assumption that there is no multiple scat-
tering (also applied in 1D and 2D models) simplifies the 3D
imaging process. Under this assumption, scattering and record-
ing are expected to be linear filtering processes applied to an
appropriately defined object function. The most widely used
linear scattering model for weak scattering objects is the (first)
Born approximation [16]. Also, the Kirchhoff approximation
(also known as the Kirchhoff theory of scattering or the physical
optics method [14]) that has less restrictive conditions for valid-
ity has been widely used for scattering from surfaces of materials
that have a refractive index much larger than unity.

Under these approximations, the linear filtering process
can be characterized by a 3D transfer function that applies to a
specific 3D representation of the object. The linear relationship
between an object’s scattering potential and the holographic
recording of the scattering data was first studied by Wolf [17]
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and, shortly afterwards, by Dändliker and Weiss [18]. 3D recon-
struction of the scattering potential based on Wolf’s method was
demonstrated by Fercher et al. [19]. McCutchen [20] showed
that an imaging system can be characterized by the generalized
3D pupil, such that the 3D diffraction pattern that is gener-
ated when a lens produces an image of a point source can be
calculated from the Fourier transform of the 3D pupil function,
corresponding to the 3D amplitude point spread function (PSF)
calculated from the Fourier transform of the 3D CTF. In the
context of confocal microscopy, a series of studies on the image
formation and 3D transfer function have been conducted by
Sheppard and his colleagues [21–27]. The connection between
interferometric imaging and confocal microscopy can be under-
stood by observing that the reference beam in interferometric
imaging acts like a synthetic confocal pinhole. 3D microscopic
imaging and 3D transfer function theory are summarized
elsewhere [28].

Coupland and Lobera [29] compared the 3D transfer func-
tion of monochromatic optical tomography, (reflection-mode)
confocal microscopy and interference microscopy (using quasi-
monochromatic illumination) and showed that these methods
are equivalent under the Born approximation [16]. For mea-
surement of materials that have strongly reflecting surfaces, such
as a perfect conductor, Coupland et al. [30] explicitly showed
the derivation of the 3D image formation and effective trans-
fer function of CSI by starting from the equation of potential
scattering and considering the boundary conditions of the
Kirchhoff approximation. Lehmann and Xie [31,32] used the
Kirchhoff approximation to model scattering from a profile of a
prismatic rectangular grating and the signal of a CSI instrument
with an NA of 0.9. This quasi-3D model is limited to the plane
of incidence and implemented by integrating over all incident
angles and the spectral component of the light source. This
model should yield the same result as the 3D model described
in Ref. [30], but for an instrument with a slit pupil. Another
quasi-3D model [31,32] uses the small height approximation to
describe the scattering process, and uses the so-called Richards–
Wolf model that is based on the Debye diffraction integral
[33] to describe the diffraction by the aperture of the imaging
system and the electric field distribution in the vicinity of the
focal region of a lens. Similar to the concept of McCutchen’s 3D
pupil, high NA can be incorporated in the Debye diffraction
integral.

C. Motivation and Aim

Although the major components of the 3D imaging theory for
interference microscopy have been developed and documented,
the use of the 3D theory in the design and development of new
surface-measuring interferometric imaging methods is advanc-
ing slowly (see [8] for an overview of the latest advances in CSI).
The main reasons include the difficulty of understanding the
3D theory due to its complexity, inconsistencies in the previous
derivations, and the missing links between scattering and imag-
ing processes, between the 2D and 3D imaging theories, and
among different approximations in the context of interference
microscopy.

In this paper, we generalize the theoretical framework for 3D
image (interferogram) formation in interference microscopy.

This work brings together the work to date, aligns the results
given by Sheppard et al. [25,34–38] and Coupland [29,30], as
well as Born and Wolf [16], Beckmann and Spizzichino [14]
and Goodman [10], and demonstrates how they are connected.
Also discussed are the links between the Born and the Kirchhoff
approximations, between Ewald and McCutchen spheres, and
the relationship between the spatial frequencies of the scat-
tered waves, the 3D object function and the (interferometric)
image.

We consider that the object is illuminated with an angular
spectrum of plane waves, each of which gives rise to a spectrum
of scattered waves to be collected by the objective lens. In con-
focal microscopy with a coherent source, the amplitude of the
scattered field is summed over the incident angular spectrum,
such that images can be calculated from any appropriate model
for the scattering process [25,39]. We will show this result is
also valid for interference microscopy, where the 3D imaging
requires the combination of two or more interferometric mea-
surements of the optical field scattered from an object with
different illumination conditions, or equivalently, by measuring
the interference observed as the object is scanned through focus,
as in CSI.

Throughout the work, we will use the scattering amplitude
(defined in Section 2.A) as the thread to link scattering with 3D
image formation. Although the analysis will be focused on the
linear (i.e., single scattering) regime and the scalar case, it will be
briefly shown that the theoretical framework supports scattering
models in the nonlinear (i.e., multiple scattering) regime and
with considerations of polarization effects. Moreover, an aber-
rant system can also be described under this framework. The
fundamental similarities and differences between the different
scanning methods in interference microscopy is explained with
the theory of defocus.

Finally, we derive the 2D image formation in interference
microscopy within the 3D theoretical framework and give an
insight into the relationship of the small height approximation
with the Kirchhoff approximation. The linear regime for surface
measurement is also discussed.

2. SCATTERING IN THE LINEAR REGIME

A. Basis of the Scalar Theory for Scattering

We start our analysis with the integral equation of potential scat-
tering [16]. The scattered field produced by a scattering medium
occupying a volume� in free space (Fig. 2) is expressed as

Us (r)=
∫
�

VB
(
r′
)

U
(
r′
) e j k0|r−r′|

|r− r′|
d3r ′, (1)

where j =
√
−1, vector r specifies the location of point P in the

3D space, and vector r′ specifies the location of a point inside�.
The scattering potential of the medium is defined as

VB (r)=
1

4π
k2

0

[
n2 (r)− 1

]
, (2)

where k0 = 2π/λ is the wavenumber, λ is the wavelength in free
space, n(r) is the spatial distribution of the refractive index, and
n(r)= 1 outside�. The total field U(r) can be expressed as the
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Fig. 2. Light scattered by an inhomogeneity in free space.
Observation point P is distant from the scattering object.

sum of the incident field Ui (r) and of the scattered field Us (r),
i.e.,

U (r)=Ui (r)+Us (r) . (3)

The term VB (r)U(r) in Eq. (1) can be considered as the distri-
bution of source points in� that emit light.

Let us define the origin of the coordinate system within �
(Fig. 2). If P is far away from the origin and� is small compared
to the distance O P , then∣∣r− r′

∣∣≈ r − s · r′, (4)

where s is a unit vector in the direction of O P and r = |r|.
In a Cartesian coordinate system, s= x̂+ ŷ+ ẑ and
r= rx x̂+ r y ŷ+ rz ẑ.

The Green’s function in the far field can be approximated as

e j k0|r−r′|

|r− r′|
≈

e j k0r

r
e− j k0s·r′ . (5)

Substituting Eq. (5) into Eq. (1), we obtain the scattered field in
the far field as

US (r)= f
(
ks, ki

) e j k0r

r
, (6)

where ks = k0s and ki = k0si are the scattered and incident wave
vectors, respectively, and

f
(
ks, ki

)
=

∫
�

VB
(
r′
)

U
(
r′
)

e− jks·r′d3r ′ (7)

is known as the scattering amplitude [16]. From Eq. (6), it is
clear that the scattered field behaves as a set of outgoing spherical
waves and the integral in Eq. (6) can be recognized as the Fourier
transform of the source distribution. The scattering amplitude is
generally nonlinear in terms of the scattering potential, and con-
sequently, the relationship between the scattered and incident
wave vectors is not unique.

B. Born Approximation

Equation (7) does not have a closed-form solution, as the total
field in � is dependent on the scattered field, but with specific
approximations can be linearized with sufficient accuracy to
gain useful insight into the measurement process. A widely used
approximation is the (first) Born approximation—a perturba-
tion method [16], where the incident wave can be considered
unaltered during its propagation through inhomogeneity �
(Fig. 2). Accordingly, the major conditions for the validity of the
Born approximation are that there is weak scattering, i.e., that
the refractive index contrast [n2(r)− 1] is small and/or the

size of the scattering object is limited, such that the phase per-
turbation at all points within � is also small. Under the Born
approximation, the total field in Eq. (7) can be replaced by the
incident field, i.e.,

U (r)≈Ui (r) . (8)

Considering a monochromatic plane wave Ui (r)= e jki·r

incident on the scattering object, and substituting Eq. (8) into
Eq. (7), the scattering amplitude under the Born approximation
is expressed as

f B (Ke)=

∫
�

VB
(
r′
)

e− jKe·r′d3r ′, (9)

where

Ke = ks − ki (10)

is called the Ewald vector (to be discussed in Section 3) and
implies the Bragg condition for diffraction [10]. From Eq. (9),
we know that the scattering amplitude can be calculated as the
Fourier components of the scattering potential evaluated at
spatial frequency Ke.

C. Kirchhoff Approximation for Surface Scattering

The Kirchhoff approximation has been extensively used for solv-
ing forward and inverse surface scattering problems [14,38,40].
Using the integral theorem of Helmholtz and Kirchhoff, the
scattered field can be expressed as a surface integral in which
Kirchhoff’s boundary conditions can be applied [14]. The first
boundary condition approximates the total field at a surface
point rs as the sum of the incident field and the reflected field
that is determined by the Kirchhoff (amplitude) reflection
coefficient R of the tangent plane at that point, thus,

U (rs)= (1+ R)Ui (rs) . (11)

The tangent-plane approximation is equivalent to dividing a
surface into small segments that are assumed to be locally flat.
The choice of R will be discussed in more detail in Section 2.D.
The second boundary condition assumes that the normal
derivative of the field is

∂U (rs)

∂n
= jki · n̂(1− R)Ui (rs) , (12)

where n̂ is the normal to the surface at rs.
The major validity condition of the Kirchhoff approximation

is that the radius of curvature of any surface irregularity must be
significantly greater than a wavelength. A surface that contains
many sharp edges and sharp points will reduce the modeling
accuracy [14]. Other conditions for validity of the Kirchhoff
approximation are listed below.

1) The Kirchhoff reflection coefficient needs to be constant.
This condition is fulfilled in the case of a perfect conductor
at any angle of incidence. Alternatively, if the angles of
incidence are not too large (e.g., less than 45◦) and/or the
refractive index contrast between the material and the sur-
rounding medium is small, R is approximately a constant
(see Section 2.D).
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2) Shadowing and multiple scattering effects are negligible.
Alternatively, a second-order Kirchhoff approximation
and an appropriate shading function need to be considered
[41–43].

3) The observation of the scattered field must be distant from
the scattering object.

The validity of the Kirchhoff approximation for surface
scattering has been studied extensively by many researchers in
the areas of acoustics and optics, such as [43–45].

A widely cited expression for surface scattering under the
Kirchhoff approximation is sometimes referred to as the
Beckmann–Kirchhoff solution [14]. This solution follows
from the principle of stationary phase, such that only the specu-
lar reflection from the tangent-plane has a major contribution to
the scattered field. The solution can be simplified using spatial
frequencies [24,25,38,40], such that (in a similar manner to
Eq. (21) of [25]) the scattering amplitude can be written

fK (Ke)=
K2

e

2Ke · ẑ

∞∫
−∞

FK (r) e− jKe·rd3r , (13)

where FK (r) is referred to as the “foil model” of the surface [30]
and is expressed as

FK (r)= RW (r) δ
[
rz − Zs

(
rx , r y

)]
, (14)

where δ() is a 1D Dirac delta function that follows the surface
height Zs (rx , r y ) of a homogeneous material as a function of
the lateral position. W(r) is an appropriate shading function
that may increase the accuracy of the Kirchhoff approximation,
e.g., by reducing the impact of sharp points or by taking account
of the shadowing effects at large angles of incidence (e.g., at 70◦

[46]).
Similar to Eq. (9), the scattering amplitude is the weighted

Fourier components of the foil model evaluated at spatial fre-
quency Ke. We will revisit the Kirchhoff weighting term in
Section 2.D. Here, the calculated scattering amplitude of a
prismatic random surface is shown in Fig. 3. The surface is
assumed to be perfectly conducting and is space-limited by a
Gaussian shading function. A monochromatic illumination
with λ= 0.6 µm is considered. The magnitude of the scat-
tering amplitude fK (Ke) is calculated for all Ke within the
half-circle, which has a radius of 2k0 (related to the Ewald lim-
iting sphere that will be discussed in Section 3.A). To access all
values of fK (Ke) within the half-circle (in the monochromatic
case), we should allow the illumination and observation to be
made for polar angles within±90◦ with respect to ẑ and for all
azimuthal angles. Usually, due to limited angles of illumination
and observation, the scattering amplitude can only be physically
measured within certain areas of the half-circle in K-space (see
Section 3.A).

D. Link between the Kirchhoff and Born
Approximations

Considering the profile of a prismatic surface [such as that in
Fig. 3(a)], with the plane of incidence in the plane of the paper,
the Kirchhoff reflection coefficient R can be replaced by the
Fresnel reflection coefficients. For a perfect conductor, the

Fig. 3. Far-field scattering (λ= 0.6 µm) from a perfect conducting
random surface represented by its (a) foil model. (b) Normalized
scattering amplitude | fK (Ke)| in K-space. The axes represent spatial
frequencies normalized by k0 = 2π/λ (in a Cartesian coordinate
system, K= K x x̂+ K y ŷ+ K z ẑ).

Fresnel reflection coefficients for s and p polarizations only
differ in phase (π ), as

Rs =−1, R p =+1. (15)

In these circumstances, the scattered field is always in the plane
of incidence, and depolarization will not occur if the incident
wave is purely s - or p-polarized. However, in general, a non-flat
surface depolarizes. Considering an unpolarized incident wave
and applying the principle of stationary phase, the standard
Beckmann–Kirchhoff solution for a 3D surface [14] has been
derived by setting R = 1 for a perfect conductor to simplify
the complex depolarization problem. As stated in Ref. [14], the
choice of R = 1 was based on the fact that the reflected wave
must have the same amplitude as the incident wave. R can also
be interpreted as an effective Fresnel reflection coefficient given
by

Re =
R p − Rs

2
. (16)

The effective reflection coefficient has been considered in the
context of confocal microscopy with an axially symmetric sys-
tem, where the object is illuminated by an angular spectrum of
plane waves [47]. For a perfect conductor, Re = 1. Note that the
negative sign in Eq. (16) is an artifact of the conventional choice
of coordinates, as for normal incidence, there is no physical
difference between s and p polarizations. For normal incidence
from air to a medium,

Re =
ns − 1

ns + 1
, (17)

where ns is the refractive index of the scattering medium. If the
condition ∣∣n2

s − 1
∣∣� cos θi (18)

is satisfied (where θi is the angle of incidence), then
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Re ≈
1

2
ln ns . (19)

The accuracy of the approximation in Eq. (19) is discussed
elsewhere [47]. Now, recalling Eqs. (13) and (14), letting the
shading function equal unity and replacing the Kirchhoff reflec-
tion coefficient R by the effective reflection coefficient Re , we
have

fK (Ke)=
K2

e

2Ke · ẑ

∞∫
−∞

Re δ
[
rz − Zs

(
rx , r y

)]
· e− jKe·rd3r .

(20)
By considering that the surface is flat and level, the Fourier
spectrum will be constant along the K z axis and zero else-
where. However, fK (Ke) is not constant along K z due to the
Kirchhoff weighting factor. The Ewald vectors (Ke) aligned
with the K z axis are associated with specular reflection, such
that Ke · ẑ= 2k0 cos θs , where θs is the angle subtended by
the scattered wave vector and the K z axis. A perfect conductor
should reflect radiation independent of angle. The dependency
of the scattering amplitude on (cos θs )

−1 arises as the object is
defined by the foil model of the surface that can be considered as
a single layer of atoms. This is consistent with that observed in
the context of imaging confocal microscopy [21,36].

Using the differentiation property of the Fourier transforma-
tion [48], we have

F {δ (rz)} =F
{
∂

∂rz
Hstep (rz)

}
= j K zF

{
Hstep (rz)

}
,

(21)
where F{ } denotes a Fourier transform and Hstep( ) denotes a
Heaviside step function. Now, we can convert the foil represen-
tation of the object to an equivalent bulk material [36], defined
in the region rz ≤ Zs (rx , r y ), by rewriting Eq. (20) as

fK (Ke)=
jK2

e

2

∞∫
−∞

Re Hstep
[
rz − Zs

(
rx , r y

)]
· e− jKe·rd3r .

(22)
Similarly, by taking the term K2

e inside the Fourier integral of
Eq. (22), we have

fK (Ke)=

+∞∫
−∞

VK (r) e− jKe·rd3r , (23)

where

VK (r)=
1

2 j
∇

2 Re Hstep
[
rz − Zs

(
rx , r y

)]
(24)

is a form of scattering potential that is appropriate for large-
angle backward scattering and can be considered to represent
a dipole layer following the surface as a result of the Laplacian
operator [36,38]. The Born scattering potential VB (r) defined
in Eq. (2) represents the bulk material and is often used for
studying small-angle forward scattering under the Born
approximation. The difference of the object representations
is illustrated in Fig. 4. The Kirchhoff scattering potential is more
realistic for large-angle scattering, as backscattering occurs as a

Fig. 4. Schematic illustration of different representations of an
object.

result of changes in refractive index, rather than the value of the
refractive index itself [38].

For a dielectric material, we consider the effective reflection
coefficient in Eq. (19), which is assumed to be a constant at the
surface. Consequently, we have

VK (r)=
1

4 j
∇

2 {ln ns · Hstep
[
rz − Zs

(
rx , r y

)]}
=−

1

4 j
∇

2 {ln ns · Hstep
[
−rz + Zs

(
rx , r y

)]}
=

j
4
∇

2 ln n (r) . (25)

For a weak scattering potential, ns is close to unity, as assumed
in the Born approximation. Taking the first term of the binomial
expansion of ln n(r), we have

VK (r)=
j
8
∇

2 [n2 (r)− 1
]
=
π j

2k2
0

∇
2VB (r) . (26)

Up to this point, we have shown that the expressions for the
scattering amplitudes under the Born and Kirchhoff approx-
imations, as given by Eqs. (9) and (23), have the same linear
form—a Fourier transform of a scattering potential. The Born
scattering potential, given by Eq. (2), is a linear function of the
medium perturbation, i.e., the volumetric distribution of the
refractive index contrast. As the Laplacian is a linear operator,
from Eqs. (24) and (25), we know that the Kirchhoff scattering
potential VK (r) is linear in the effective reflection coefficient,
which is in general a nonlinear function of the refractive index
contrast. As shown by Eq. (26), an exception is the case of a weak
scattering object, where VK (r) is linear in the Born scattering
potential VB (r) and, therefore, is also the refractive index con-
trast. This result is consistent with that in the context of acoustic
imaging [49].

From Eqs. (9) and (23), we understand that the object func-
tions can be partially reconstructed by an inverse Fourier trans-
form of the scattering amplitude, as

V ′B/K (r)∼
1

(2π)3

∫
K=Ke

f B/K (K) e jK·rd3 K . (27)

In Section 4, we will show how image formation in interfer-
ence microscopy depends on the scattering amplitude. First,
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however, we consider how the scattered and recorded plane-
wave components are explained using the graphical methods of
Ewald and McCutchen.

3. EWALD SPHERE AND MCCUTCHEN SPHERE

The Ewald sphere construction [16], which originated from
the study of x-ray scattering from crystalline structures, can
be used to provide an elegant visualization of the scattering
process under the Born and the Kirchhoff approximations.
McCutchen’s generalized 3D pupil of an imaging system, also
known as the McCutchen sphere, is closely related to the Ewald
sphere [37]. These geometrical constructions significantly sim-
plify the understanding of the mechanism of scattering and 3D
imaging.

A. Ewald Sphere Construction

From Eq. (9), we know that under the Born approximation,
for incidence with a wave vector ki, all possible wave vec-
tors of the scattered fields (ks) are determined by the Ewald
vector Ke = ks − ki. For elastic scattering, |ks| = |ki| = k0.
Consequently, all possible scattered wave vectors due to a plane-
wave incidence are associated with Ewald sphere ε1 (Fig. 5),
which is a spherical shell in K-space. The Ewald sphere has a
radius of k0, is centred at−ki and passes through the origin A.
For all possible incident wave vectors, as characterized by the
spherical shell ε0, all Ewald spheres are bounded within the
so-called Ewald limiting sphere E L with a radius of 2k0 (Fig. 5).

The Ewald sphere can be expressed by a 1D Dirac delta func-
tion as

G̃ E
(
K, ki

)
= δ

(∣∣K+ ki

∣∣
k0

− 1

)
. (28)

Then, Eq. (9) can be written as a filtering operation applied to
the Fourier transform of the scattering potential,

f B (K)= ṼB (K) · G̃ E
(
K, ki

)
. (29)

Similarly, under the Kirchhoff approximation, Eq. (13) can be
written as

fK (K)=
K2

2K z
F̃K (K) · G̃ E

(
K, ki

)
, (30)

Fig. 5. Ewald sphere construction.

Fig. 6. Geometrical illustration of the effects of wavelength and
angles of illumination and observation on far-field scattering (for
the case where the scattered waves are only observed in the plane of
incidence). In the linear regime, scattering may only occur in the high-
lighted region of K-space. (a) Polychromatic illumination, λ1 >λ2;
(b) range of angles of incidence while the scattered field is observed
in all angles; (c) both angles of illumination (monochromatic) and
observation are limited within±90◦ and (d)±45◦, respectively.

Using the Ewald sphere construction, the effects of wave-
length and the angles of illumination and observation on
far-field scattering can be intuitively understood (Fig. 6). For
simplicity, the effects are illustrated for the case where the
scattered waves are only observed in the plane of incidence, cor-
responding to an optical system with a slit pupil. If the incident
wave has a shorter wavelength, the Ewald sphere will have a
larger radius. Illuminating the object with multiple wavelengths
will broaden the shell ε1 [Fig. 6(a)]. Allowing multiple angles of
incidence [Fig. 6(b)] generates more Ewald spheres and allows
more scattered wave vectors. Letting the angles of illumination
and observation (from the same side of the object) lie within the
range of±90◦ [as in Fig. 6(c)] or±45◦ [Fig. 6(d)], the scattering
amplitudes that can be physically measured are specified by the
spatial frequency vectors only within the highlighted region of
the Ewald limiting sphere in Figs. 6(c) and 6(d). In principle,
more information to characterize the object can be gained by
allowing more wavelengths and/or more angles of illumination
and observation.

B. 3D Pupil and McCutchen Sphere

McCutchen introduced the generalized 3D pupil [20]. In
similarity to the 2D case, the 3D CTF of an imaging system
is a scaled version of the 3D pupil. In k-space (i.e., the space
of wave vectors), an ideal 3D pupil is a full spherical shell hav-
ing its center at the origin A’ and a radius of k0 [see Fig. 7(a)].
Under diffraction-limited conditions, this spherical shell can
be expressed as the imaginary part of the Fourier transform of a
free-space spherical wave [37],
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Fig. 7. Concept of the McCutchen sphere. (a) Full and
(b) truncated spherical shell corresponding to Eqs. (31) and (32),
respectively.

G̃
(
k
)
= Im


+∞∫
−∞

e± j k0r

r
e− jk·rd3r

=±2π2

k0
δ
(
|k| − k0

)
.

(31)
As we are only interested in far-field scattering and imaging, we
consider only the on-shell components, which implies the Bragg
diffraction condition. The real part of the Fourier transform in
Eq. (31) represents the off-shell case and is related to evanescent
waves [37]. The positive and negative signs correspond to outgo-
ing and ingoing waves, respectively.

Here, we refer to G̃(k) as the McCutchen sphere, which is
similar to the concept of the Ewald sphere, but the latter inter-
sects the origin of the reciprocal space of the object, i.e., K-space
(point A in Figs. 5 and 7). There is a translational shift by the
illumination wave vector ki between the coordinate systems of
k- and K-spaces, i.e., k=K+ ki [see Fig. 7(a)].

For an interference microscope subject to a finite NA, the 3D
pupil function is a truncated McCutchen sphere [see Fig. 7(b)].
The 3D pupil determines the maximum angles for illumination
and observation. For the observation we have

G̃NA
(
k
)
=

2π2

k0
δ
(
|k| − k0

)
· Hstep

(
k · ẑ− k0

√
1− A2

N

)
,

(32)
where ẑ is parallel to the optical axis. For illumination we have

G̃ (i)
NA

(
ki
)
=−G̃NA

(
−ki

)
. (33)

In general, the NA values can be different for illumination
and observation. The illumination NA can be limited by the
condenser aperture or the objective aperture, whichever is
smaller (see Fig. 1). The observation NA is solely determined by
the objective aperture. Moreover, additional phase terms can be
added to account for lens aberrations and defocus [50].

The 3D pupil given by Eqs. (31) or (32) has a uniform angu-
lar apodization, corresponding to the Herschel condition [51]
(see Fig. 8). A weighting term

√
k · ẑ/k0 can be introduced to

the 3D pupil function for a perfect aplanatic case. Alternatively,
multiplying with a weighting term k · ẑ/k0 will result in a 3D
pupil function that has a uniformly distributed projection in
the pupil plane (i.e., the back focal plane of the objective lens),
corresponding to a (commonly assumed) top-hat 2D pupil
function and 2D CTF. The projection can be calculated by
integrating the 3D pupil along the optical axis [20].

Fig. 8. Projected 3D pupil function with different apodizations
(wavelength 0.6 µm and NA 0.5). (a) Herschel condition as given by
Eq. (32); (b) perfect aplanatic case with

√
k · ẑ/k0 weighting; (c) with

k · ẑ/k0 weighting; (d) comparison of the central profiles.

4. LINK BETWEEN 3D INTERFEROMETRIC
IMAGING AND SCATTERING

A. Coherent Demodulation of the Scattered Field

Interferometric techniques can be used to measure the phase
information within the scattered field. The measurement
process can be considered as a coherent demodulation through
superposition of the scattered wave Us (r) with a reference wave
Ur (r) that originates from the same source. The intensity mea-
sured by a square-law detector for a single incident plane wave is
expressed as

Id (r)= |Us (r)+Ur (r)|2

= |Us (r)|2 + |Ur (r)|2 +Us (r)Ur (r)∗ +Us (r)∗Ur (r) .
(34)

where the asterisk (*) denotes the complex conjugation. The
first two terms in Eq. (34) represent the intensity of the light
scattered from the surface and the reference mirror, respectively.
In an interference microscope, the term |Us (r)|2 represents
the image that can be obtained with a conventional wide-field
microscope.

The reference wave is first reflected by the beam splitter and
then by the reference mirror (Fig. 9). For plane-wave incidence,
we let the incident wave Ui (r)= e jki·r. As kr is effectively
equal to ki, we can replace the reference wave Ur (r) by Ui (r) in
Eq. (34). The interferogram is associated with the real part of the
interference term,

I (r)= Re {O (r)} , (35)

where

O (r)=Us (r)Ui (r)∗. (36)

The modulation of the interferogram is proportional to the
amplitude of the scattered wave, and the phase of the fringe is
determined by the phase difference between the scattered and
reference waves. Note that the first two terms in Eq. (34) are not
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Fig. 9. Incident and reference wave vectors in (a) Michelson and
(b) Mirau interferometric objective lens.

of interest in this analysis and can be separated from the interfer-
ence term in the spatial frequency domain in most practical cases
(see Fig. 2 in Ref. [2]).

B. Partially Coherent Imaging

With an extended source and a finite illumination pupil (larger
than zero), the field on the surface would always be partially
coherent. The final interferogram can be considered as a super-
position of the interferograms resulted from a set of incident
plane waves k(m=1,2,3...)

i on the square-law detector, as

I (r)= I (1) (r)+ I (2) (r)+ · · · + I (m) (r) . (37)

Considering Eq. (35), the Fourier transform of the
interferogram is

F
{

I (m) (r)
}
=F

{
O(m) (r)

}
+F

{
O(m)(r)∗

}
= Õ(m) (ξ)+ Õ(m)(−ξ)∗, (38)

where ξ represents the spatial frequencies of the 3D interfero-
gram and the two terms on the right-hand side are symmetrical
about the origin in the spatial frequency domain. Taking the
Fourier transform of the final interferogram and substituting
Eq. (38) into Eq. (37), we obtain

Ĩ (ξ)=
∑

m

Õ(m) (ξ)+
∑

m

Õ(m)(−ξ)∗. (39)

The summation of the complex-valued terms implies a coherent
superposition of the signal in the 3D pupil. The result is also
valid for the case of a polychromatic source.

C. Image Formation in Terms of Scattering

Considering a monochromatic plane wave Ui (r)= e jki·r

incident on the object, in the far field we obtain the 3D angu-
lar spectrum of the (propagating) scattered field through the
Fourier transform of Eq. (6), as

Ũs
(
ks
)
= f

(
ks, ki

)
· Im


+∞∫
−∞

e j k0r

r
e− jks·rd3r


= f

(
ks, ki

)
· G̃

(
ks
)

. (40)

All possible scattering wave vectors are constrained by G̃(ks) in
a theoretically ideal situation, or by G̃NA(ks) in a practical inter-
ference microscope. In the following analysis, we will only con-
sider the practical case.

As discussed in the preceding section, in the linear regime
of scattering, e.g., under the Born approximation, f (ks, ki)

can be replaced by f B (ks − ki), and can be calculated as the
filtered spectrum of the Born scattering potential [see Eq. (29)].
Therefore, considering that ks =Ke + ki, we can rewrite
Eq. (40) as

Ũs
(
K+ ki

)
= ṼB (K) · G̃NA

(
K+ ki

)
. (41)

Let us recall Eq. (36) and take the Fourier transform of the
interference term O(r). We obtain

Õ (ξ)=

+∞∫
−∞

Us (r)Ui (r)∗e− jξ ·rd3r

=

+∞∫
−∞

Us (r) e− j(ξ+ki)·rd3r ≡ Ũs
(
ξ + ki

)
. (42)

Letting ξ =K, combining Eqs. (41) and (42), and considering
the case of an illumination with a set of plane waves as described
by Eq. (39), the spectrum of O(r) can be expressed as

ÕB (K)= ṼB (K)
∑

ki

G̃NA
(
K+ ki

)
. (43)

It is clear from Eq. (43) that the 3D interferogram records the
filtered scattering potential under the Born approximation.
The summation implies a coherent superposition of the Fourier
spectrum of the scattering potential.

In fact, the scattering amplitude in Eq. (40) can be calculated
based on any appropriate scattering model. For example, under
the Kirchhoff approximation for surface scattering, we can
replace f (ks, ki) in Eq. (40) by fK (ks − ki) in Eq. (30) and
obtain

ÕK (K)=
K2

2K z
F̃K (K)

∑
ki

G̃NA
(
K+ ki

)
. (44)

This result is identical to Eq. (30) in Ref, [30], which was derived
in a different manner.

In the nonlinear regime where multiple scattering is preva-
lent, the spectrum of the scattered field is not simply a filtered
Fourier spectrum of the object function. Instead, for a specific
incident plane wave, the scattering amplitude f (ks , ki) can
be obtained by using numerical techniques to solve Maxwell’s
equations exactly, such as by rigorous coupled wave analy-
sis [52], finite-element methods [53], and boundary-source
methods [54]. With such scattering models, considering an
illumination with a set of plane waves, the spectrum of the
interference term can be calculated as

Õ (ξ)=
∑

ki

f
(
ξ + ki, ki

)
G̃NA

(
ξ + ki

)
, (45)

where ξ = ks − ki and no longer represents the spatial
frequency of the object function, i.e., ξ 6=K. A rigorous
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interference microscopy model based on Eq. (45) has been
demonstrated elsewhere [55].

D. 3D Transfer Function

The imaging capability of an interference microscope can
be comprehensively characterized by its 3D transfer func-
tion [29,30,56]. It is important to understand that a transfer
function applied to a specific representation of an object is an
effective transfer function, and it differs slightly from the CTF
or OTF, which transfers optical amplitude or intensity. Here,
we will show the 3D volume transfer function that applies to the
Born scattering potential and the 3D surface transfer function
(STF) that applies to the foil model of a surface. From the 3D
image (i.e., 3D interferogram) the surface topography can be
calculated from an appropriate reconstruction algorithm [1].

Assuming an extended monochromatic source, e.g., a red
light-emitting diode (LED), is used in a wide-field interference
microscope, the image of the source can be projected onto the
back focal plane of the objective lens through the Köhler illumi-
nation configuration [1]. Ideally, the objective aperture should
be fully filled, such that the illumination pupil is maximized
and equal to the observation pupil that is dependent on the
objective NA. In the opposite case, if there is a point source in
the objective aperture, the illumination would be coherent. For
everything between these two extremes, the objective aperture is
partially filled. If the condenser NA is smaller than the objective
NA, then for a Michelson or Mirau objective, the illumination
pupil is determined by the condenser NA; and for a Linnik sys-
tem, the illumination pupil for the reference path is the product
of the condenser pupil and the pupil of the objective for the
reference path. The illumination pupil can also be apodized and
characterized by a suitable distribution function. For example,
in case of a Mirau objective, the central obscuration due to
the reference mirror will influence the apodization of both the
illumination and observation pupils. For an instrument using
an incandescent lamp, the apodization is dependent on the
filament.

With the extended source, each point in the illumination
pupil can be considered as an independent point source generat-
ing a single plane wave specified by ki. Using the sifting property
of the Dirac delta function, the summation term in Eq. (43) can
be written as a convolution integral,∑

ki

G̃NA
(
K+ ki

)
=

∑
ki

G̃NA (K)⊗ δ3 (K+ ki
)

=

∫
G̃NA

(
K−K′

)
·

∑
ki

δ3 (K′ + ki
)

d3 K ′

=
1

8π3k0

∫
G̃NA

(
K−K′

)
· G̃ ′NA

(
K′
)

d3 K ′, (46)

where G̃ ′NA(K)has the same expression as G̃NA(K)but is depen-
dent on the condenser NA if it is smaller than the objective NA.
For a fully filled illumination pupil, G̃ ′NA(K)= G̃NA(K).

Fig. 10. 3D STF of a (diffraction-limited) polychromatic inter-
ference microscope operating at a central wavelength λc = 0.6 µm, a
full width at half-maximum (FWHM) of 80 nm (Gaussian spectrum)
and an NA of 0.7 (for both illumination and observation). (a) Cross-
sectional view of |H̃K (K)| in the K x -K z plane at K y = 0; (b) central
profile of the normalized in-pupil-plane 2D STF. The cases for two
additional NAs are shown for comparison. (c) Unnormalized on-axis
transfer functions along K z (the light source spectrum is plotted for
reference). (d) Mesh plot of (a); (e) mesh plot of the 2D STF.

If a broadband source is used, such as a white-light LED,
which is characterized by a normalized power spectrum density
S(k0) (has a dimension of inverse wavenumber), then we have∑

ki

G̃NA

(
K+ ki

)

=
1

8π 3

∫∫
G̃NA

(
K−K′, k0

)
· G̃ ′NA

(
K′, k0

)
d3 K ′

S (k0)

k0
dk0.

(47)

The 3D volume transfer function with respect to the Born scat-
tering potential is defined as

H̃B (K)=
∑

ki

G̃NA
(
K+ ki

)
. (48)

The 3D STF with respect to the foil model of a surface under the
Kirchhoff approximation is defined as

H̃K (K)=
K2

2K z

∑
ki

G̃NA
(
K+ ki

)
. (49)

The 3D transfer function is in general complex-valued.
Its magnitude weights the Fourier components of the object
function, the bandwidth characterizes the measurement reso-
lutions [50], and its phase is related to optical aberrations of the
instrument [56]. An example of the 3D STF is shown in Fig. 10.
The difference between H̃K (K) and H̃B (K) is expected to be
small because the Kirchhoff weighting term in Eq. (49) changes
slowly within the passband. The 2D STF (corresponding to
the 2D pupil at the back focal plane of the objective lens) is
the in-pupil-plane projection of the 3D STF [Figs. 10(b) and
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Fig. 11. Simulated and experimentally measured 3D STFs for
an interference microscope operating at λc ≈ 0.6 µm, an FWHM
of approximately 80 nm, and an NA of 0.55 (for both illumination
and observation). (a) The central cross-sectional slice (in the K x -K z

plane) and (b) the 2D projection (in the K x -K y plane) of the simulated
|H̃K (K)| for a diffraction-limited system, which has a zero phase term.
(c) and (d) The measured |H̃K (K)| of a real CSI system and (e) and
(f ) the corresponding phase term of H̃K (K).

10(e)] and is calculated by integrating H̃K (K) with respect
to K z [20]. In Fig. 10(c), the unnormalized on-axis transfer
function shows that the high NA broadens the bandwidth in the
axial direction and shifts the peak toward lower spatial frequen-
cies. Consequently, the coherence envelope of the fringe along
the z-direction will be narrowed, which improves the optical
sectioning capability, and the fringe spacing will be broadened.

If we know the geometry of the object surface accurately, it is
possible to retrieve the 3D STF of an interference microscope
(Fig. 11) by dividing the spectrum of the interferogram by that
of the foil model,

H̃K (K)=
ÕK (K)

F̃K (K)
. (50)

The most convenient way to measure the 3D STF is to measure
a precision microsphere [57,58]. Through inversion of the phase
of the measured 3D STF, it is possible to “repair” the 3D inter-
ferogram and reduce the systematic error when measuring com-
plex surfaces, featuring varying slopes and spatial frequencies, to
the order of 10 nm [56].

5. REFERENCE DEFOCUS AND SCANNING IN
INTERFERENCE MICROSCOPY

The ability to model imaging processes in 3D provides further
insight into the effects of defocus and scanning in methods used
in interference microscopy. The term “microscopic focus” used
here refers to the focus of the objective lens. Features of an object
located exactly at the microscopic focus will be imaged with
the optimal intensity contrast that is characterized by the term

|Us (r)|2 in Eq. (34). On the other hand, the term “interfero-
metric focus” refers to the plane of focus of the reference mirror.
Ideally, the reference mirror should be placed in the plane con-
jugate to the focal plane of the objective lens (see Fig. 9). In this
case, the system works at the best focus condition, and the 3D
transfer function is dependent on the expression in Eq. (46).
However, if the reference mirror is shifted (along the axial direc-
tion) by a distance 1z away from the conjugate focal plane of
the objective lens, an offset is introduced to the argument of the
free-space Green’s function in Eq. (31), such that it represents
a source irradiating the reference wave from the new position
[50]. Rewriting Eq. (31), we obtain the defocused 3D pupil
function for the reference path as

G̃ (def)(k)= Im


+∞∫
−∞

e j k0|r+21zẑ|∣∣r+ 21zẑ
∣∣ e− jk·rd3r


≈ Im


+∞∫
−∞

e j k0r

r
e j21zk·z e− jk·rd3r


=

2π2

k0
δ
(∣∣k∣∣− k0

)
e j21zk·ẑ, (51)

where the far-field Green’s function is applied [see Eq. (5)]. The
defocused 3D pupil function subject to NA is given by

G̃ (def)
NA

(
k
)
= G̃ (def)

(
k
)
· Hstep

(
k · ẑ− k0

√
1− A2

N

)
. (52)

In the defocused case, Eq. (46) is rewritten as∑
ki

G̃NA
(
K+ ki

)

=
1

8π3k0

∫
G̃NA

(
K−K′

)
· G̃ (def)

NA

(
K′
)

d3 K ′. (53)

An interference microscope working at the1z 6= 0 condition
will have a transfer function dependent on Eq. (53). Defocus
causes a reduction of the passband and fringes in the phase of the
3D transfer function, and consequently, a broadening and axial
shift of the 3D PSF (Fig. 12). In such a case, even if the object is
located at the best microscopic focus position, the interferogram
will not be generated with the best contrast, and measurement
accuracy will decline. More discussion on this topic and the
experimental proof can be found in Ref. [50]; however, we note
here that the negative impact of interferometric defocus is dra-
matic and stronger in an interference microscope using a high
NA than that with a low NA (Fig. 12).

Here, we consider defocus effects that are apparent in the
scanning methods of certain interference microscopes. In prac-
tice, object scan and reference scan [59] are the two common
ways to acquire a 3D image in an interference microscope [8].
Object scan refers to scanning the object through the focal
plane by either moving the object or the objective lens such
that the microscopic and interferometric focuses are coincident
throughout the scan. In a reference scan, only the interferomet-
ric focus is changed due to the motion of the reference mirror.
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Fig. 12. Effects of defocus on the 3D STF and PSF of an interference microscope operating at λc = 0.6 µm with an FWHM of 80 nm (Gaussian
spectrum). (a), (b) NA 0.55 and (c), (d) NA 0.15. Columns (1, 2) show the central cross-sectional slices and the 2D projections of |H̃K (K)|, respec-
tively. Columns (3, 4): the central cross-sectional slices of the phase of H̃K (K) and the 3D PSFs. Note the change in the color bar ranges for PSFs.

However, moving the reference mirror changes 1z and causes
defocus as discussed, and its effect will change throughout the
scan. We can expect errors due to reference scanning to be sig-
nificant when imaging a surface with height variations larger
than the depth of field.

Many systems are designed with a reference scan mode. In an
interference microscope that uses a small system NA to measure
objects with height variations smaller than the depth of field, a
reference scan may be used without too much loss of image qual-
ity and is widely used in OCT. It is common in Fourier-domain
OCT or wavelength-scanning interferometry [3] to further
introduce defocus to avoid overlapping of the dc component
and the interferogram. In this case, there may be a benefit to
using the full 3D model to take into account focus effects.

Finally, we note that the effects of defocus are inherent in tra-
ditional PSI, which effectively employs reference scanning over a
limited range. In PSI, field-dependent focus effects are known to
be a significant issue for surface departures approaching or larger
than the depth of field. For this reason, PSI is most prevalent in
laser Fizeau systems with a small system NA, while in interfer-
ence microscopes, PSI is often limited to shallow surfaces, given
the limited depth of field at high NA. Here again, a 3D model
has the potential for broadening the range of acceptable surface
height variations.

6. IMAGING UNDER THE SMALL HEIGHT
APPROXIMATION

As mentioned in Section 1.A, a simple and widely used scatter-
ing model for a thin object or a near planar surface is based on
the small height approximation, where the actual 3D surface
topography is represented as a 2D, complex-valued phase object
[10,15]. This approximation is implicit in most basic treatments
of full-field interferometric measurements (see Section 7).

In the traditional 2D treatment [10,15], far-field surface
scattering is calculated through the propagation of the 2D angu-
lar spectrum of the field at the mean level plane, expressed as
e jϕ(rx ,r y ;ki), where

ϕ
(
rx , r y ; ki

)
= 2ki · ẑZs

(
rx , r y

)
, (54)

and Zs (rx , r y ) is the surface height function equivalent to that
in Eq. (14), and the factor of 2 results from the doubled path
length due to reflection. 2D image formation is then obtained
through an inverse Fourier transform of the filtered 2D angular
spectrum of the surface field. For coherent illumination, the fil-
tering operation is characterized by a 2D CTF (usually assumed
to be uniformly apodized) [15].

In fact, the small height approximation can be considered as a
special case of the Kirchhoff approximation, in which a surface
is considered to be made up of locally flat segments. Here, we
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show that 2D interferometric imaging under the small height
approximation (i.e., the EFO model) can be derived based on
the foil model of the surface under the generalized theoretical
framework.

Considering a perfectly conducting surface with a small
height variation, the surface can be represented by the foil model
of a flat plane with an additional phase term, as

F (ϕ)

K

(
r, ki

)
= δ (rz − Z0) e jϕ(rx ,r y ;ki), (55)

where the constant Z0 is the offset between the datum plane and
the mean plane of the surface. The datum plane is usually cho-
sen to be the plane of the microscopic focus. The spectrum of the
complex-valued foil model is obtained as

F̃ (ϕ)

K

(
K, ki

)
=

+∞∫
−∞

F (ϕ)

K

(
r, ki

)
e− jK·rd3r

= e− j K z Z0

∫∫
e jϕ(rx ,r y ;ki)e− j(K x rx+K y r y )drx dr y ,

(56)

where Z0 = 0 corresponds to the case where the surface is
located at the microscopic focus. Evaluation of the integral in
Eq. (56) gives the 2D angular spectrum of the approximated
field at the mean plane.

Replacing F̃K (K) in Eq. (44) by F̃ (ϕ)

K (K, ki), we obtain the
spectrum of the 3D interferogram term under the small height
approximation,

ÕP (K)=
K2

2K z

∑
ki

F̃ (ϕ)

K

(
K, ki

)
· G̃NA

(
K+ ki

)
. (57)

The summation in Eq. (57) needs to be calculated for each
incident wave vector due to the dependency of the complex-
valued foil model on ki. However, the Fourier spectrum of the
real-valued foil model F̃K (K) can be taken outside of the sum-
mation, such that the calculation of Eq. (44) is more convenient
compared to that of Eq. (57).

However, if only the 2D interferogram of the object surface
at the datum plane (Z0 = 0) is of interest, which is reasonable
under the small height approximation, the 2D spectrum of the
interferogram can be obtained by integrating Eq. (57) with
respect to K z, as

Õ(2D)
P

(
K x , K y

)
=

∑
ki

F̃ (ϕ)

K

(
K x , K y ; ki

)
·

+∞∫
−∞

K2

2K z
G̃NA

(
K+ ki

)
dK z

 .

(58)

Evaluation of the integral in Eq. (58) gives the 2D STF for a
specific ki. This result is the same as that from the EFO model
with pupil-plane integration [15], with the exception of the
Kirchhoff weighting factor resulting from the foil representation
of the surface, and we note that this factor disappears if the
object is represented by the Born/Kirchhoff scattering potential,
as discussed in Section 2.D.

As image formation under the small height approximation
can be derived from the Beckmann–Kirchhoff solution, the
validity conditions for the Kirchhoff approximation should
also apply (discussed in Section 2.C). In addition, the Rayleigh
criterion (phase variation less thanπ/2, corresponding to a total
height variation of λ/8 for normal incidence) suggests when it
is reasonable to represent the 3D surface topography by a 2D
complex-valued foil model in Eq. (55).

The fundamental differences between the 3D imaging (under
the Kirchhoff approximation) and the 2D imaging (under
the small height approximation) are evident from Fig. 13,
by comparison of the Fourier spectra of the interferograms
resulting from four prismatic sinusoidal gratings with different
amplitudes.

If a surface satisfies the validity conditions for the Kirchhoff
approximation and the Rayleigh criterion, such as those grat-
ings with peak-to-valley (PV) amplitudes of λ/32 [Fig. 13(a)]
and λ/8 [Fig. 13(d)], then we expect that ÕP (K)≈ ÕK (K).
Consequently, |ÕK (K)|must only contain continuous vertical
lines within the passband of the instrument (as |F̃ (ϕ)

K (K, ki)|

is always constant along K z by definition). The “continuous
spectrum” is observed in both 3D spectra in Figs. 13(b) and
13(e). The spectra |Õ(2D)

P (K x )|, calculated using Eq. (58),
closely agree with the K z-integrated projections of ÕK (K)
[see Figs. 13(c) and 13(f )]. We conclude that the small height
approximation is valid to predict the interferogram for both
surfaces. The spectrum of the λ/32 grating has a strong zero-
order component plus peaks at the fundamental frequency
[Fig. 13(c)]. The spectrum of the λ/8 grating has noticeable but
small second-harmonic components [Fig. 13(f )].

As the amplitude of the surface increases, the amplitude of
the harmonics grows rapidly, as shown in Figs. 13(g)–13(i).
As the PV is beyond the Rayleigh criterion, we begin to see
discontinuities in the 3D spectrum [Fig. 13(h)] and discrepan-
cies between the 2D spectra in Fig. 13(i). The accuracy of the
interferogram predicted by the small height approximation is,
therefore, reduced.

If the grating amplitude is increased further to 2λ [Fig. 13(j)],
then the effect of the NA and the true 3D nature of the imaging
process become apparent. In Fig. 13(k), a “splintering” of the
diffracted orders in the K z direction is observed. Consequently,
significant discrepancy between 2D spectra is observed in
Fig. 13(l). In this case, the small height approximation should be
used with caution (e.g., in a piecewise fashion) when modeling
the interferogram generation in interference microscopy.

For normal incidence with a single plane wave, corresponding
to spatially coherent illumination, the expression of the 2D
interferogram term becomes much simpler, as

Õ(2D)
P

(
K x , K y

)
=F

{
e j2k0 Zs (rx ,r y )

}
·

+∞∫
−∞

K2

2K z
G̃NA

(
K− k0 · ẑ

)
dK z.

(59)

For partially coherent illumination, with an extended source
and with a spread of wavelengths, Eq. (58) can be simplified by
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Fig. 13. Spectra of the interferogram ÕK (K) of four perfectly conducting sinusoidal gratings. The simulated interference microscope uses
a monochromatic source (λ= 0.6 µm) and a slit pupil with an NA of 0.7. The gratings have a period of 5 µm, and the PV amplitudes are
(a) λ/32, (d) λ/8, (g) λ/2, and (j) 2λ, respectively. The K x -K z cross sections of the spectra and the K z-integrated projections are shown below
the corresponding surface profiles. |Õ(2D)

P (K x )| calculated using Eq. (58) for each surface is plotted in red circles for comparison.

using an equivalent wavenumber ke to consider the effect of the
NA [15], such that

ϕ
(
rx , r y ; ke

)
= 2ke Zs

(
rx , r y

)
, (60)

where 2ke can be obtained from the K z coordinate of the center
of gravity of |H̃K (K)| [see Fig. 10(a)]. By using the equivalent
wavenumber, we have

Õ(2D)
P (K x , K )=F

{
e j2ke Zs (rx ,r y )

}
·

+∞∫
−∞

H̃K (K) dK z.

(61)
For a thin sinusoidal surface, the strength of the nth order in

the Fourier transform in Eq. (61) is given by a Bessel function
of the first kind Jn [10]. Calculation of the image formation
using Eqs. (59) and (61) can be more computationally efficient
in comparison to the 3D model, but at the cost of additional loss
in accuracy due to the required approximations. In Section 7,
we will discuss the surface reconstruction process that is closely
related to the small height approximation and the linear regime
for surface measurement.

7. FROM INTERFEROGRAM TO SURFACE
TOPOGRAPHY

From the 3D interferogram (which is a stack of sequentially
acquired 2D interferograms), the surface topography can be
reconstructed. Most reconstruction algorithms assume that
the surface height is linearly proportional to the phase of the
fringes (along the axial direction) [15,60]. This is, of course,
the basic assumption of the small height approximation or the
complex-valued foil model discussed in Section 6. In real-world
applications, surface topographies, such as those of freeform
optics, are often characterized by their power spectral den-
sity functions. It is convenient to use the instrument transfer
function (ITF), defined as the ratio of Fourier components for
the measured and true topographies [56], to characterize the
measurement when it is treated as a linear filtering process, and
to provide a method to quantify the metrological characteristic
“topography fidelity” [61].

The ITF can only be used within the linear regime of surface
measurements. However, inferring the surface topography from
the interferogram may introduce nonlinearities. As discussed in
Section 6, in the cases of the λ/32 and λ/8 gratings (neglecting
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the weak second-harmonic term of the latter), we can expect the
phase of the interferogram to reflect the mean height within the
resolution cell, which is characterized by the (interferometric)
PSF. This is the regime when the surface measurement can be
considered a linear process. For the λ/2 grating, as the ampli-
tudes of the higher harmonics are considerably reduced due to
the modulation of the transfer function, harmonic distortion
will inevitably occur; the phase of the interferogram is no longer
directly proportional to the surface height, and the surface
measurement process becomes nonlinear (example surface
measurements with nonlinearity effects can be found elsewhere
[58]). Amplification of the high-frequency response within
the passband (i.e., by flattening the transfer function) may
effectively reduce the nonlinearity, but at the cost of increasing
noise [58]. For the 2λ grating, the higher harmonics begin to fall
outside of the instrument passband, causing more significant
harmonic distortion and increasing nonlinearity in the surface
measurement.

In summary, although the interferogram generation can be
characterized by a linear filtering process, inferring the surface
topography from the interferogram will introduce nonlinearity.
We note that the filtering process can be applied either by using
the 3D theory or in a piecewise fashion, using the 2D (EFO)
model over regions that deviate from a plane by less than the
depth of field and coherence length of the source. We consider
that the linearity of surface measurement is assured if the more
stringent Rayleigh criterion is observed (PV<λ/8) over surface
regions of interest. In this case, giving sufficient sampling of the
image by the camera, the ITF can be approximated by the mag-
nitude of the K z-integrated, 2D projection of the 3D STF (see
Fig. 10). More discussions on the ITF can be found elsewhere
[15,60].

8. SUMMARY

In this paper, we provide a unified theoretical framework for
3D image (interferogram) formation in surface topography
measuring interference microscopy (interference microscopy).
The links between the Born and the Kirchhoff approximations,
between Ewald and McCutchen spheres, and between the spa-
tial frequencies of the wave, the object, and the interferogram
have been discussed.

We have shown that surface scattering, characterized by the
scattering amplitude, plays a pivotal role in the 3D image forma-
tion in interference microscopy. Once the scattering amplitude
corresponding to a specific incident plane wave is known, the
3D image can be synthesized. Under the Born and the Kirchhoff
approximations, scattering can be considered as a linear filtering
operation applied to a specific model of the object, and imaging
is a holographic recording of the scattered field. Therefore, the
imaging process is also linearly related to the object model and
can be characterized by an effective transfer function. In the
nonlinear regime, where multiple scattering is not negligible or
the Kirchhoff approximation is no longer valid, the scattering
amplitude can be calculated by using numerical techniques to
solve Maxwell’s equations exactly. In this case, the 3D image
must be calculated iteratively for each incident plane wave. In
addition, the effects of defocus on the transfer function and PSF
are discussed. The fundamental difference between the different

scanning implementations in interference microscopy has been
explained with the theory of defocus.

We have also derived the 2D image formation in interference
microscopy, within the generalized framework, by treating the
small height approximation as a special case of the Kirchhoff
approximation. Finally, the linear regime for surface measure-
ment and the relationship between the ITF and the 3D STF
have been discussed.

This theoretical framework is not limited to surface topog-
raphy measuring interference microscopy but can be applied to
other interferometric/holographic imaging techniques, such
as digital holographic microscopy and OCT, for analysis of
industrial and biomedical specimens.
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