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We study scalar fields in a black hole background and show that, when the scalar is suitably
coupled to curvature, rapid rotation can induce a tachyonic instability. This instability, which
is the hallmark of spontaneous scalarization in the linearized regime, is expected to be quenched
by nonlinearities and endow the black hole with scalar hair. Hence, our results demonstrate the
existence of a broad class of theories that share the same stationary black hole solutions with general
relativity at low spins, but which exhibit black hole hair at sufficiently high spins (a/M & 0.5).
This result has clear implications for tests of general relativity and the nature of black holes with
gravitational and electromagnetic observations.

Introduction: Direct and indirect detections leave lit-
tle doubt that black holes (BH) exist in nature [1–8].
In general relativity (GR) the mass and the spin of an
astrophysical BH fully determine its properties. An elec-
tric charge is also technically allowed, but is expected to
be paltry for astrophysical BHs, see e.g. [9]. Any other
quantity, hair in jargon, is not necessary according to no-
hair theorems [10–12]. Future gravitational wave detec-
tors will finally allow us to confront theorems and obser-
vations with unprecedented precision [13–15], improving
upon current observations, which are perfectly compati-
ble with hairless BHs [16, 17].

It is tempting to interpret an absence of BH hair as
a vindication of GR minimally coupled to the Standard
Model. However, new fundamental fields can be more
elusive. It is illustrative to consider scalar fields: no-hair
theorems exist for stationary BHs in scalar-tensor theo-
ries [18, 19], and static, spherically symmetric and slowly
rotating BHs in shift-symmetric generalized (Horndeski)
scalar-tensor theories [20, 21].1 In fact, it turns out that
there is a single coupling term in the Horndeski class that
gives rise to hair: a linear coupling between the scalar and
the Gauss-Bonnet (GB) invariant [21, 26], given by

G = RµνρσRµνρσ − 4 RµνRµν +R2. (1)

Considering that the Horndeski class contains all actions
for a massless scalar nonminimally coupled to gravity
that yield second order equations upon variation, absence
of hair actually seems to be the norm rather than the
exception for scalar fields. Indeed, known hairy BH so-
lutions circumvent theorems by evading one or more of
their assumptions, see e.g. [21, 27–32].

1 No-hair theorems also exist for stars in shift-symmetric scalar
tensor theories [22–25].

A further complication in attempting to detect new
fields through BH hair is the possibility that, even within
the context of the same theory, only certain BHs might
actually exhibit it. This was realized only recently, as
the first models of BH scalarization appeared in the lit-
erature [33, 34]. For concreteness, consider the action

S =
1

2

∫
d4x
√
−g
(
R− 1

2
∇µφ∇µφ+ f(φ)G

)
, (2)

where f is some function of φ, and where we have also
set (as in the rest of this paper) 8πG = c = 1. Varying
the action with respect to φ yields

�φ = −f ′(φ)G, (3)

where f ′(φ) ≡ df/dφ. Assume that f ′(φ0) = 0, for some
constant φ0. Then solutions with φ = φ0 are admissible
and they are also solutions of GR. A no-hair theorem [33]
ensures that they are unique if they are stationary, pro-
vided that f ′′(φ)G < 0.

The fact that GR BHs are stationary solutions to this
theory is not sufficient to conclude that there are no ob-
servable deviations from GR, as the perturbations over
these solutions do not generally obey the GR field equa-
tions [35]. These perturbations may even grow unsta-
ble, thus rendering the GR solutions irrelevant. Indeed,
one can think of −f ′′G as the (square of the) mass of
the scalar perturbation on a fixed background. Hence,
the condition above ensures that this effective (squared)
mass is positive. If the condition is violated and the ef-
fective (squared) mass becomes sufficiently negative, the
GR solutions suffer a tachyonic instability and the scalar
develops a nontrivial profile.

A similar scalarization effect was shown to occur for
neutron stars in a different class of scalar-tensor theories
more that 25 years ago [36], and is triggered when the star
compactness reaches a critical threshold. Related “dy-
namical” scalarization effects [37–40] are present in the
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same theories for neutron star binaries, whenever their
separation is sufficiently small (or the binary’s “compact-
ness” sufficiently large). However, in the class of theories
considered in [36–40], scalarization is not present without
matter, and BHs are vacuum solutions.2

Black hole scalarization is fairly well understood. It
starts as a linear tachyonic instability and, as such, its
onset is controlled only by terms that contribute to lin-
ear perturbations around GR solutions. In this sense, ac-
tion (2) with f(φ) = ηφ2/2 is sufficient to study the onset
of scalarization [33, 41]. As the instability develops and
the scalar grows, nonlinear terms become increasingly
important and eventually quench the instability. Hence,
the endpoint and properties of the scalarized solutions
are actually controlled by the nonlinear interactions of
the scalar [42, 43]. A characteristic example is that in
models with different nonlinear interactions, scalarized
solutions have different stability properties [42, 44].

Here we will focus exclusively on the onset of scalar-
ization, so we will restrict our attention to quadratic
scalar GB (qsGB) gravity, i.e. f(φ) = ηφ2/2 (without
loss of generality [41]). The effective (squared) mass of
the scalar on a fixed background is then

µ2
eff = −ηG. (4)

For the Schwarzschild solution, one has G = 48M2/r6,
which is always positive and decreasing with r, and which
yields the horizon value G(r = 2M) = 3/(4M4). Hence, a
tachyonic instability only occurs for η > 0, and the insta-
bility is expected to be more violent for smaller masses.3

This is why the focus in the literature so far has been on
η > 0 (or the equivalent condition in more complicated
models). However, for a Kerr BH of mass M and spin
parameter a in Boyer-Lindquist (t, r, θ, ϕ) one has

GKerr =
48M2

(r2 + χ2)6
(
r6 − 15r4χ2 + 15r2χ4 − χ6

)
(5)

where, for brevity, χ ≡ a cos θ. Clearly, GKerr is not mono-
tonic, and can even become negative close to the horizon.
This explains the results of [45, 46], where it was shown
that rotation suppresses scalarization for η > 0.

In this Letter we focus on η < 0, which yields a real
effective mass µeff for low BH spins, but which can yield
an imaginary µeff for high spins. We investigate the be-
havior of linear scalar perturbations to the GR solution
by evolving Eq. (3) on a Kerr background, with the goal
of assessing for what BH spins and couplings η the per-
turbations become unstable. Indeed, at least two pos-
sible instability mechanisms may be at play in Eq. (3).

2 Black holes can scalarize if they have matter in their vicinity [28,
29], but the densities necessary to obtain a measurable effect are
probably astrophysically unrealistic.

3 Note that in curved spacetimes µ2
eff can be somewhat negative

without necessarily developing a tachyonic instability.

The first is the tachyonic instability associated to sponta-
neous scalarization, mentioned above. The second could
be a superradiant instability, which is known to exist at
high spins for constant real masses [47–50], and poten-
tially also for non-constant effective masses [51] such as
the one of Eq. (4). Superradiance occurs when bosonic
waves with non-vanishing angular momentum are ampli-
fied when scattered by a spinning BH, at the expense of
the rotational energy of the BH, which as a result spins
down. For massive bosons, superradiant scattering can
develop into an instability because the field is confined
near the BH by its own mass.

It should be stressed that, in principle, both insta-
bilites could be present. However, they have distinct fea-
tures (timescales, the angular momenta involved, depen-
dence on the BH spin). We show below that the tachy-
onic instability is by far the dominant effect for η < 0.
More broadly, our results strongly suggest that there ex-
ist theories in which scalarization occurs only for rapidly
rotating BHs.
Methodology: For f(φ) = 0 and over a Kerr back-
ground, Eq. (3) separates into ordinary differential equa-
tions when φ is decomposed onto a basis of spheroidal
harmonics. However, the choice f(φ) = ηφ2/2 yields an
intrinsically non-separable equation. We therefore resort
to a time-domain numerical integration of this equation,
by using techniques akin to those presented in [51, 52],
to which we refer for more details.

In brief, the idea is to project Eq. (3) onto a basis of
spherical4 harmonics Ylm, which yields 1+1 evolutions
equations (in t and r) for the components of the scalar
field,

ψlm(t, r) ≡
∫

Y∗lm(rφ)dΩ (6)

These equations are coupled and given explicitly by[
(r2 + a2)2 − a2∆(1− cmll )

]
ψ̈l + a2∆(cml,l+2ψ̈l+2+

+ cml,l−2ψ̈l−2) + 4iamMrψ̇l

− (r2 + a2)2ψ′′l −
(

2iam(r2 + a2)− 2a2
∆

r

)
ψ′l

+ ∆

[
l(l + 1) +

2M

r
− 2a2

r2
+

2iam

r

]
ψl

+ ∆
∑
j

〈lm|µ2
eff(r

2 + χ2)|jm〉ψj = 0 , (7)

∆ ≡ r2 − 2Mr + a2 , (8)

cmjl ≡ 〈lm| cos2θ|jm〉

=
δlj
3

+
2

3

√
2j + 1

2l + 1
〈j, 2,m, 0|l,m〉 · 〈j, 2, 0, 0|l, 0〉 , (9)

4 There is no advantage in using spheroidal harmonics, for which
analytic expressions are unavailable, as they do not lead to a
separable equation anyway.
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where 〈j1, j2,m1,m2|j3,m3〉 are the Clebsch-Gordan co-
efficients [53]. Note that the evolution of modes of dif-
ferent m decouples because of the axisymmetry of the
problem. Moreover, because of reflection symmetry with
respect to the origin, even-l and odd-l modes also decou-
ple: the evolution of a mode (l,m) is coupled to that of
all the modes (l + 2k,m), with k = 1, 2, 3, . . ..

To numerically evolve the system (7), we discretize the
spatial grid and use a method of lines. By integrat-
ing in time using a fourth order explicit Runge-Kutta
time-step inside the computational grid (as done e.g
in [51]), it becomes apparent that the equations are stiff
for large η, and that the numerical integration becomes
unstable. To overcome this problem, we have used an
Implicit-Explicit (IMEX) Runge-Kutta solver with adap-
tive time step, namely the IMEX-SSP3(3,3,2) and IMEX-
SSP(4,3,3) schemes of [54]. Note that implicit meth-
ods [55], while effective at dealing with stiff problems,
are typically less accurate and more computationally ex-
pensive. However, implicit-explicit algorithms, by em-
ploying explicit steps for the non-stiff terms and implicit
steps only for the stiff ones, can tackle stiff problems with
limited computational overhead. We successfully com-
pared our code to results from both frequency-domain
techniques [56] and similar time-domain codes [52]. Our
implementation was also tested by analysing the conver-
gence of the results (and their overall robustness) vs time-
step and spatial-grid resolution.

Results: To investigate the possible presence of an insta-
bility, we evolve the scalar field by integrating the system
given by Eq. (7), with l ranging from 0 to lmax = 30 and
|m| ≤ l, and with Gaussian initial conditions for each
mode ψlm. The results are robust against the choice of
the cutoff lmax – as long as that is sufficiently large –
and initial conditions, which only affect the early tran-
sient evolution of the scalar and not the unstable growth
phase, if present. We consider BH spins a/M ∼ 0.5 –
0.999 and qsGB coupling |η|/M2 ∼ 0.1 – 105.

From the simulations showing an exponential scalar
growth, we extract the instability timescale τ of the re-

constructed field |φ| =
(∑

lm |ψlm|2
)1/2 ∝ exp(t/τ) by

fitting the time evolution of the scalar’s amplitude af-
ter the initial transient. The contours in Fig. 1 show
τ−1 as a function of a/M and |η|/M2. The instability
becomes stronger as either the spin or the coupling in-
creases. Moreover, there is a minimum spin amin below
which the instability disappears. For |η| → ∞, it ap-
pears that amin/M → 0.5 (up to percent level numerical
errors). The solid green line denotes the combinations
of parameters for which the instability disappears (i.e.
τ → ∞). With the blue dotted line we show the same
marginal instability curve for the reconstructed field, but
excluding the m = 0 modes. As can be seen, when the
latter are excluded the parameter space region yielding
an instability shrinks, i.e. the main contribution to the

Fig. 1 – Instability timescale τ (color code) for the re-
constructed field as a function of spin and GB coupling.
The instability threshold for the total reconstructed field is
shown by the solid green line, while the threshold when the
m = 0 modes are excluded is shown by a blue dotted line.
The red dashed line corresponds the instability threshold for
the m = 0 odd modes, while the dot-dashed cyan line marks
the instability threshold for the spherical mode l = m = 0
(see text for details). Note that all shown values of η are
unconstrained by different observables (c.f. discussion in the
conclusions).

instability comes from the m = 0 modes. As a further
test of this conclusion, we also computed the marginal
instability curve for the m = 0 modes alone, and that
does indeed match the solid green line in Fig. 1.

Even and odd parity modes (i.e. modes with even
and odd l) automatically decouple in Eq. (7). In the
m = 0 sector, which dominates the instability shown in
Fig. 1, the odd and even modes give roughly comparable
contributions. We have verified this by considering the
marginal instability curves for the odd and even m = 0
modes separately, which are both very close to the solid
green line of Fig. 1. As an example, the red dashed line
in Fig. 1 represents the marginal instability curve for the
m = 0 odd modes.

Indeed, odd modes seem to have only marginally
shorter instability times (by ∼ 1 − 2%) than even ones
for high spins and large couplings. Conversely, in the
region |η| < 1, a/M > 0.9 the even modes are slightly
more unstable, as can be seen from the somewhat in-
creased distance between the red dashed and solid green
line curves.

Next we consider if some individual angular mode
l,m gives the dominant contribution to the instability.
To answer this question, we have to override the non-
separability of the problem. To this end, we have force-
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fully decoupled each l-mode in Eq. (7) , suppressing
“by hand” all the couplings between angular modes (i.e.
〈lm|µ2

eff(r
2 + χ2)|jm〉 with l 6= j) generated by the GB

invariant; we have only kept active the contributions to
the effective mass of the single l-mode. We have then
let the system evolve, selecting Gaussian initial data for
the chosen mode only. By this technique, we have iso-
lated, for instance, the instability parameter space for
the spherical mode l = m = 0, whose marginal insta-
bility curve is shown in Fig. 1 by a cyan dot-dashed
line. However, we could not find any single l,m mode
for which the marginal instability curve obtained in this
way matched, even roughly, the solid green line for the
whole reconstructed field. We therefore conclude that
the gravitational coupling between angular modes plays
a fundamental role in the onset of the observed instabil-
ity.

We now proceed to examine whether the instability
is dominantly tachyonic or powered by superradiance.
The growth times, as shown in Fig. 1, can be as small
as ∼ 0.01M . This seems to favor a tachyonic origin, as
superradiance acts on longer timescales (see e.g. [50, 51]).
Moreover, the fact that the instability is mostly due to
the m = 0 modes, and that even the spherical mode
l = m = 0 can be unstable (see cyan long-dashed critical
line in Fig. 1) bodes ill for superradiance, as these modes
can never satisfy the superradiance condition ω < mΩ
(with ω and Ω respectively the wave and horizon angular
frequencies).

One may naively expect the spherical mode l = m = 0
not to suffer from a tachyonic instability either, since
µ2

eff = −ηG is positive everywhere in a Schwarzschild
spacetime when η < 0 (as considered here). However,
the (squared) effective mass for the l = m = 0 mode is
actually −η〈00|GKerr|00〉, which only matches the naive
estimate −ηGSchwarzschild at leading order in spin, cor-
recting it by terms O(a2). This explains, in particular,
why the spherical mode is stable at low spins.

To further confirm the tachyonic nature of the instabil-
ities, we have conducted the following test. We re-ran our
simulations with the (squared) effective mass replaced by
its absolute value, µ2

eff → |µ2
eff|. This is enough to sup-

press the instabilities, and further shows that the latter
were due to the change of sign of the GB invariant close
to the horizon. One can also look at the scalar fluxes
through the event horizon after the initial transient. In
Fig. 2, we compare the scalar field’s energy flux through
the horizon for η = −10M2 (blue) vs the same fluxes
for minimally coupled scalar fields with imaginary (or-
ange) and real (magenta) constant masses. Clearly, the
flux for a scalar coupled to the GB invariant resembles
more closely the tachyonic (i.e. imaginary mass) scalar
field evolution, both in timescale and sign. Note that
the constant, real mass case, whose evolution is unstable
due to superradiance, shows a slower growth and nega-
tive energy fluxes. The latter are indeed the hallmark

Fig. 2 – Energy flux FE through the BH horizon vs time,
for a = 0.99M . The blue, orange and magenta lines cor-
respond respectively to η = −10M2, to a tachyonic mass
µM = i, and to a constant, real mass µM = 0.42. The inset
zooms on the constant, real mass flux (of which we show a
moving average to decrease the oscillations caused by the
dynamics). That flux is negative, signaling energy extrac-
tion from the BH, as expected for superradiant instabilities.

of a superradiant instability, which removes rotational
energy and angular momentum from the BH.

The most plausible explanation for why Kerr BHs in
qsGB do not suffer from superradiant instabilities seems
to be the rapid falloff of the GB invariant (thus of the
effective mass) at large distances, G(r → ∞) ∼ 1/r6.
Scalar perturbations with a position-dependent mass
were studied in [51], which showed that a steep decay
of the mass with distance quenches the superradiant in-
stability. This happens because the effective potential
for scalar perturbations does not develop wells, and thus
quasi-bound states, unless the mass remains relatively
constant till at least r ∼ 2− 3M [51].
Conclusions: We have shown that a coupling, with a
suitable sign, between a scalar and the GB invariant can
lead to an instability triggered by rapid rotation. We
have also demonstrated that this instability is not re-
lated to superradiance, but is instead tachyonic in nature.
Nonlinear effects, which our approach does not capture,
are expected to quench that instability and lead to a BH
with scalar hair. The process is analogous to the more
conventional spontaneous scalarization, but the thresh-
old is controlled by the black hole rotation instead of its
curvature.

The action that we use is sufficient for studying the
onset of the instability that we have found for BHs.
However, the endpoint of this instability, and hence the
amount of hair a BH would carry, will strongly depend
on nonlinear (self)interactions.5 There is no obvious rea-
son to believe that this instability is restricted to BHs,

5 Stationary scalarized black hole solutions that constitute the end-
point of the instabilty will be presented elsewhere [57, 58].
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and it could well affect rapidly rotating stars as well.
Hence, our results demonstrate that there is a broad class
of theories where rotation might control deviations from
GR. Our findings also have clear implications for searches
of new physics in the strong-field regime. Black hole
scalar hair induces vacuum dipole gravitational emission,
which is potentially observable in the low frequency in-
spiral of binary system by gravitational wave interfer-
ometers [14, 15], deviations from GR in the spectrum of
the gravitational wave ringdown [13] or in the electro-
magnetic spectrum of accretion disks [59], and it may
also impact the black hole shadow observed by the Event
Horizon Telescope [8].

We stress that we are not aware of any observational
upper bounds on η, which we therefore allow here to
reach very high values, for illustrative purposes and in
order to excite higher modes. Note that slowly rotating
black holes in qsGB would be identical to their GR coun-
terpart. Compact stars can scalarize for η < 0 [33] and
hence yield constraints. However, this effect could eas-
ily be quenched by adding a coupling between the scalar
field and the Ricci scalar [41, 60]. The latter might be
necessary to get a sensible cosmology [61], and would
have no effect for black holes, thus leaving our analysis
unaffected.
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