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A B S T R A C T   

Numerical modelling on the compressive response of self-healing polymer foams embedded with 
novel, bilayered alginate capsules was developed based on the coupled pore fluid diffusion and 
stress simulations. Micromechanical models were developed to link the damage variable to 
permeability as well as the saturation to the capillary pressure within damaged polymer foams. 
These micromechanical models were calibrated against experimental measurements and were 
implemented into the coupled simulations. To give physical insight into how the damage evo-
lution coupled with the mass conservation, an illustrative example was presented for one- 
dimensional (1D) compression problem. Two-dimensional (2D) detailed finite element simula-
tions were conducted to interpret the experimental findings. It was demonstrated that the nu-
merical study could capture the main features of the self-healing process. The predicted healing 
efficiency has good agreement with that measured by the experiments. Based on the numerical 
models, parameter study was conducted to understand the effects of the key design parameters of 
the healing system.   

1. Introduction 

Self-healing materials, which can repair themselves automatically, have been emerged to provide resilient solutions for critical 
engineering structures. For self-healing polymer composites, the self-healing solutions can be achieved through intrinsic and extrinsic 
self-healing mechanisms (Blaiszik et al., 2010; Wang et al., 2015). Intrinsic self-healing is activated by the parent polymers under 
external stimuli, including various thermo-mechanical/chemical stimuli (Yu et al. 2019). Extrinsic self-healing can be achieved 
through releasing the prefilled healing agents within either vascular (Trask et al., 2007; Hansen et al., 2011) or capsular (Hia et al., 
2016; Al-Mansoori et al., 2017; Sun et al., 2019) containers when damage occurs. Capsular self-healing systems are suitable for 
industrial-scale production with the advantages of easy fabrication, low cost, and versatility (Wang et al., 2015). The healing agents 
can be encapsulated through three approaches, i.e. dual-capsule system (Wang et al., 2017), capsules-catalysts system (Brown et al., 
2005), and mono-capsules system (Caruso et al., 2007; Al-Mansoori et al., 2017). Owing to mutually reactive nature, the two-part 

* Corresponding author at: Center for Structural Engineering and Informatics, Faculty of Engineering, University of Nottingham, University Park, 
Nottingham, NG7 2RD, United Kingdom. 

E-mail address: Tao.Liu@nottingham.ac.uk (T. Liu).  

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

https://doi.org/10.1016/j.jmps.2021.104314 
Received 30 April 2020; Received in revised form 10 January 2021; Accepted 10 January 2021   

mailto:Tao.Liu@nottingham.ac.uk
www.sciencedirect.com/science/journal/00225096
https://www.elsevier.com/locate/jmps
https://doi.org/10.1016/j.jmps.2021.104314
https://doi.org/10.1016/j.jmps.2021.104314
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2021.104314&domain=pdf
https://doi.org/10.1016/j.jmps.2021.104314
http://creativecommons.org/licenses/by/4.0/


Journal of the Mechanics and Physics of Solids 149 (2021) 104314

2

healing agents must be stored separately in the healing system. This may make the healing system less efficient as the released epoxy 
resin and hardener may not be able to be well-mixed to achieve good healing effects. To overcome the difficulty, Cao et al. (2020) have 
recently reported an environment-friendly, multi-stage encapsulating process that can encapsulate the mutually reactive healing 
agents within single calcium-alginate capsules. The resulted capsules have a bilayered microstructure with the outer layer containing 
hardener and the inner layer containing epoxy resin, see Fig 1 (a). The capsules have been used to create self-healing polymer foams, 
see Fig. 1. Experimental study has been conducted to evaluate the self-healing performance of the self-healing system, including (1) 
cyclic quasi-static compression tests for foam samples; (2) quasi-static three-point bending for foam core sandwich beams; and (3) 
high-speed soft impact for foam core sandwich beams. These experimental evaluations have demonstrated that the bilayered capsule 
systems can achieve better self-healing effect compared to the dual-capsule system. The multicore-like internal microstructures of the 
bilayered capsules enable multiple healing events owing to release of the residual healing agents stored in the undamaged pores inside 
damaged capsules. In comparison, the capsules with core-shell structure (Yuan et al., 2008) can only show single healing event due to 
the complete release of healing agents after breaking of capsules. 

For the purposes of interpretation of experimental findings and system optimisation, this paper aims to develop numerical 
modelling on the response of self-healing polymer foams containing bilayered capsules under cyclic compression. Although capsules 
based self-healing materials have been under intensive investigation for the last two decades, only limited work has been presented in 
the theoretical analyses and numerical modelling of self-healing systems (Balazs, 2007). Verberg et al. (2006) and Alexeev et al. (2007) 
modelled the motion of a fluid-driven microcapsules along the damaged adhesive substrate. The lattice Boltzmann model was used to 
simulate the releasing of nanoparticles from capsules, which had the capability of healing, and the lattice spring model was used to 
simulate the motion of elastic solids of capsules. The results suggested that the nanoparticles could heal the damage and enabled the 
motion of capsules along the substrate. Huh et al (2000) and Lee et al (2004) developed the three-dimensional computational model 
via Monte Carlo (MC) simulations to predict the healing effects of the polymer composite embedded with micro-particles. The model 
integrated the multilayer solids that combined crack, polymer matrix and micro-particles. The lattice spring model was employed to 
determine the mechanical properties of the polymeric system in the undamaged, damaged, and healed situation. The results showed 
that the particles in the polymer matrix potentially could enter into the localized damage regions and healed the damage. Mathe-
matical models have been developed to simulate transportation events of healing agents. Huang and Ye (2014) proposed a model to 
predict the healing effect of self-healing cement via embedding capsules that were filled with water. When microcracks passed through 
capsules, the water was released from the capsules and triggered the hydration to seal the cracks. The constitutive behaviour of water 
transportation was expressed by the mass balance, and the hydration process was simulated via the Fick’s second law of ion diffusion. 
Zemskov et al. (2012) developed a mathematical model for self-healing cracks in concrete. The healing agents were encapsulated 
within the spherical clay capsules and the healing effect was triggered when released healing agents encountered the bacteria that 
were pre-embedded in the concrete matrix. The diffusion of the released healing agent was solved by the Galerkin finite element 
method. 

In this paper, the self-healing events are simulated via coupling the system equilibrium equations and mass conservation for the 
healing agents flowing inside cracked media. This approach has been used to simulate the mechanical responses of saturated or semi- 
saturated porous media (Selvaduria and Suvorov, 2016). However, it has not been used to simulate the capsule based self-healing 
events. We consider that the closed-cell polymer foams are impermeable before damage. After onset of damage, the healing agents 
are released from the capsules and flow inside the cracked polymer foams to heal damage. To enable the simulations, micromechanical 
models were developed to link damage to permeability of the cracked polymer foams as well as the saturation to the capillary pressure 
within the damaged polymer foams. It was demonstrated, through the comparisons between the detailed two dimensional (2D) finite 
element simulations and experimental measurement, that the computational model could capture the main features of the self-healing 
process. The present model has the following advantages:  

1. It incorporates the key concepts in Continuum Damage Mechanics (CDM) into the detailed simulations of self-healing events, which 
enable detailed comparison with experimental measurements.  

2. The simulations can be easily implemented using the finite element solvers for the coupled pore fluid diffusion and stress analysis 
within the commercially available finite element package such as ABAQUS through user defined subroutines. 

The paper is organised as follow: In Section 2, the main outcome of the experimental study is summarised; In Section 3, the 

Fig. 1. (a) the internal structures of a bilayered capsule with inner resin layer and outer hardener layer; (b) the schematic of a polymer foam 
embedded with bilayered capsules; and (b) a polymer foam with the microstructure of closed cells. 
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framework of coupled pore fluid diffusion and stress simulations is described; In Section 4, the micromechanical models are developed 
to facilitate the coupled analysis; In Section 5, an illustrative example is given for one dimensional compression problem; and in 
Section 6, the results obtained by 2D finite element simulations are presented. 

2. Experimental characterisation 

2.1. Materials and manufacturing 

2.1.1. Bilayered alginate capsules 
The capsules were formed through the chemical reaction when sodium alginate1 solution encountered calcium chloride1 solution. 

The two-part healing agents, i.e. rapid repair epoxy resin2 and formulated amine hardener2, were encapsulated within single calcium- 
alginate capsules using the two-stage encapsulation method developed by Cao et al. (2020). Briefly, in the first stage, the well-mixed 
epoxy resin-alginate emulsion was dropped into the calcium chloride solution to form single layer alginate capsules containing the 
epoxy resin; in the second stage, the dried single layer epoxy resin capsules were mixed with alginate-hardener emulsion. The emulsion 
covered epoxy resin capsules were dropped into the calcium solution to form the outer alginate-calcium layer containing the hardener 
agent. After completion, the diameters of the bilayered alginate capsules ranged from 3.5 mm to 4 mm. The scanning electron mi-
croscope (SEM) image showing the Internal structure of the bilayered alginate capsule is presented in Fig. 1 (a), which suggests that the 
bilayered microcapsule has multicore-like internal structure with pore diameters in the outer (hardener) around 150μm, and pore 
diameters in the inner (resin) around 70μm. 

2.1.2. Polymer foams 
The polymer foams were created by mixing PB250 epoxy resin3and DM03 hardener3, as detailed by Cao et al. (2020). The cured 

polymer foams had the closed-cell microstructure with the density ρe = 0.33g /cm3, as the SEM image shown in Fig. 1 (c). The porosity 
of the foams, defined as the ratio of the volume of voids to the volume occupied by a bulk foam, was 0.67. To fabricate foams embedded 
with capsules (Fig. 1 (b)), the bilayered calcium-alginate capsules were added to the mixture at the beginning of the foaming process, 
which can be uniformly distributed within the foams. 

2.2. Experimental protocol 

Cyclic quasi-static compressive tests of polymer foams were conducted using a screw-driven Instron Universal Testing Machine at 
the room temperature following the procedure defined by ASTM 1621 - 04a, as described by Cao et al. (2020). The tests were con-
ducted on cubic specimens of original edge length lf = 50 mm at a crosshead speed of 5 mm/min and with three repetitions for each 
type of foams, i.e. neat polymer foams and polymer foams embedded with bilayered capsules. The measured compressive force Pf and 
the vertical displacement Δl of the crosshead were recorded by a 50KN load cell and Linear Variable Differential Transformer (LVDT), 
respectively. The engineering compressive stress σc and strain εc of foams can be calculated as σc = Pf/Af and εc = |la − lf | /|lf |, 
respectively, where la is the height after compression, and Af = (lf )2 the original area of the cross section of the samples. Fig. 2 (a) 
shows the definition of a compressive loading cycle which includes a loading phase, an unloading phase and a healing phase. It is worth 
noting that the strain recovery during a healing phase is not attributed to the presence of the capsule based healing system as the strain 
recovery has been observed in the neat foam samples. After damage occurred, the healing agents were released from the capsules and 

Fig. 2. The definitions of a compressive loading cycle (a) and a healing cycle (b).  

1 Sigma-Aldrich, UK.  
2 Easy Composites Ltd. UK.  
3 Matrix Composite Materials Company Ltd, UK. 
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flowed into damaged areas to repair microcracks (Fig. 1 (b)). To allow stable healing recovery, the interval time between two adjacent 
compression cycles was 24 hours. To achieve adequate incremental damage, the applied strain was controlled based on the relation εn 
= ε∗n− 1 + 0.075 for nth compressive loading cycle, where ε∗n− 1 is the residual strain measured after the unloading phase in the (n-1)th 
compression cycle, and ε∗0 = 0. The damage evolution of a specimen is quantified by a scalar parameter of damage variable D, 

D = 1 − Eda /Evi (2.1)  

where Eda denotes the elastic modulus of a damaged specimen measured at the unloading phases, and Evi the initial elastic modulus. To 
evaluate the self-healing effect, we define a healing cycle as the period from the unloading phase in the (n-1)th compression cycle to the 
loading phase in the nth compression cycle, highlighted by the solid curve in Fig. 2 (b). Hence, the healing efficiency ψ is defined as 

ψ = (Ehe − Eda)/(Evi − Eda) (2.2)  

where Ehe is the elastic modulus after healing measured at the loading phase of nth compression cycle. 

2.3. The key experimental results 

The measured cyclic quasi-static compressive responses of the foam embedded with 10% volume fraction (VF) bilayered capsules 
and the neat foam are shown in Fig. 3 (a) and (b), respectively. The compressive strength and elastic modulus of the foam embedded 
with capsules measured at the first compression cycle are higher than those of the neat foam, which indicates that the capsules can 
provide reinforcing effect to the foam matrix. Fig. 3 (c) and (d) show the SEM micrographs of a microcrack completely healed by the 
released healing agents during the first healing cycle, which suggests that the current healing approach is effective in healing 
microcracks. To evaluate the healing effect, the self-healing efficiency ψ is calculated based on the experimental measurements. The 
values of healing efficiency ψ measured at selected healing cycles are shown in Fig. 3 (e) and (f) for the two types of foam samples, 
respectively. For the neat foam sample, the healing efficiency ψ is non-zero. The absorption of air during the unloading phase could be 
the reason (Michal Petrů and Ondřej Novák, 2017). Therefore, the healing effects can be evaluated based on the threshold value ψs =

0.234 that is equivalent to the maximum value of the healing efficiency of the neat foam sample, i.e. there is healing effect if ψ > ψ s, 
otherwise, no healing effect. For the foam sample embedded with bilayered capsules, the healing efficiency ψ at both the 1st and the 2nd 

healing cycles is higher than ψs, which indicates the presence of the multiple healing effect. The multiple healing effect diminishes in 

Fig. 3. The engineering stress-strain curves of (a) the foam embedded with bilayered capsules, and (b) the neat foam under cyclic quasi-static 
compression. (c) and (d) Scanning electron microscope (SEM) images of a healed microcrack on the surface of the foam after the first compres-
sion cycle. The relations between healing efficiency and healing cycle of (e) neat foams, and (f) foams embedded with bilayered capsules. (g) The 
damage variables D as a function of plastic strain εp for two types of foams. 

S. Cao and T. Liu                                                                                                                                                                                                      



Journal of the Mechanics and Physics of Solids 149 (2021) 104314

5

the third healing cycle as the values of ψ are lower than ψs. 
For the neat foam sample, the response measured by the cyclic compression test (Fig. 3(b)) suggests that the cyclic compression 

causes degradation of elastic modulus, albeit there is negligible degradation to the plateau stress σc. To understand the damage 
evolution during the cyclic compression, the relationships between the damage variable D and the plastic strain εp of the tested 
specimens are shown in Fig. 3(g). Owing to the presence of the self-healing mechenism, the damage variables for the foam embedded 
with bilayered capsules are smaller than those of the neat foam sample. The numerial modelling of the self-healing polymer foams 
under compression will be discribed next. 

3. Coupled pore fluid diffusion and stress simulations 

As schematically shown in Fig. 4, a foam was initially modelled as an isotropic material without damage. After onset of damage, the 
healing agent flowed from capsules to the damaged areas, which was dictated by mass conservation. The foam was treated as the 
porous medium containing incompressible fluid phase (the healing agents), and the interaction between the solid phase and fluid 
phase of the porous medium was dictated by the Darcy’s law. The system equilibrium equations and mass conservation for the healing 
agents flowing inside cracked media were coupled to solve the structural responses. 

3.1. Equilibrium equations 

Consider a closed cell foam containing bilayered micro-capsules as the healing agent carriers, as schematically shown in Fig. 4 at 
the reference and deformed configurations without and with damage. As the closed cell foam without damage is nearly impermeable, 
the healing agent is not able to flow inside the foam sample. Hence, the effect of healing agents to structural response of the foam is 
negligible, see Fig. 4 (b). Let Ω(t) represents the volume occupied by a bulk foam material at the current configuration with the 
boundary SΩ(t) at time t under Cartesian coordinates x1 − x2 − x3; σ the effective stress tensor (Cauchy stress), i.e. σ = 1

Ω
∫

Ωs
σsdΩ, where 

Ωs denotes the volume occupied by the skeletons of the foams; σs the micromechanical variation of the stress field within Ωs; and f the 
body force. The equilibrium equation of the system without damage reads 

σ • ∇ + f = 0 (3.1)  

where ∇ = ∂/∂x with x representing the spatial coordinates at the current configuration. Throughout the paper, the inertial effect to the 
equilibrium equation is ignored as the whole process is quasi-static. For the foam with damage (Fig. 4 (c)), microcracks at damaged 

Fig. 4. A foam containing capsules as the healing agent carriers at the reference (a) and deformed configurations without (b) or with (c) damage.  
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locations provide the micro-channels that allow healing agents to flow through. Let Ωc represents the total volume of microcracks at 
the current configuration, Ωv the total volume of voids within the foam before onset of damage, and Ωw the volume of the healing 
agents that flows through the microcracks (Ωw ≤ Ωv). The concentration of microcracks ξ is defined as ξ = Ωc /Ω, with ξ ≤ 0.03 as 
measured by the current research. The porosity np of the foam can be calculated as np = Ωv /Ω + ξ with ξ = 0 for an undamaged foam. 
For the foam with original porosity of 0.67 as considered in the current research, the effect of ξ to np is negligible. Hence, throughout 
the numerical study, it is reasonable to assume np ≈ Ωv /Ω. Let saturation s denotes the ratio of the volume saturated with healing 
agents to the total volume of voids, i.e.s = Ωw /Ωv,s ∈ [0,1]. With presence of the healing agents, the equilibrium equation of the system 
reads 

σ • ∇ + f + ρwsnpg = 0 (3.2)  

where ρw is the density of the healing agents; g the gravity acceleration; and σ the total stress (Cauchy stress) at a material point 
(Skempton, 1960; Lade and De Boer, 1997), which can be defined as 

σ = σ − [χpw +(1 − χ)pa]I (3.3)  

where pw is the pressure of healing agents; pa the air pressure trapped within the closed cells; I the unit tensor; and χ the Bishop 
parameter that is a function of saturation s(Bishop, 1959). To simplify the problem, we ignore the effect of the air trapped in the closed 
cells within the foam (Hou et al., 2015). Hence, Eq. (3.3) can be rewritten as 

σ = σ − χpwI (3.4) 

Gray and Schrefler (2001) suggested that the Bishop parameter χ could be replaced by the saturation s. Therefore, Eq. (3.4) can be 
further rewritten as 

σ = σ − spwI (3.5)  

3.2. Mass conservation for the healing agents flowing in cracked media 

The mass conservation dictates that the rate of mass of the healing agents flowing into a volume equates the rate of mass increase of 
the healing agents stored at the volume. Consider a volume Ωf (t) at the current configuration at time t with surface Sf (t).Mass con-
servation can be described mathematically as 

∫

Ωf

1
J

d
(
Jρwnps

)

dt
dΩf = −

∫

Sf

(
ρwnps

)
n • vwdSf (3.6)  

where vw and ρw are the velocity and density of the healing agents, respectively; J the determinant of deformation gradient F,J = detF; 
and n the outward normal to surface Sf . Using the divergence theorem, Eq. (3.6) can be rewritten as 

1
J

d
(
Jnps

)

dt
+ ∇ •

(
npsvw

)
= 0 (3.7) 

The volume rate of healing agents flowing through a surface with area As,Q(mm3/s), is assumed to be governed by the Darcy’s law 
(Bear, 1972), i.e. 

Q =
− kAs

η ⋅
∂pw

∂x
(3.8)  

where k(mm2) is the permeability of the damaged foam which will be determined in Section 4.1;η(Pa • s) the dynamic viscosity; and 
∂pw/∂x the pressure gradient (Pa /mm).The negative sign in Eq. (3.8) indicates that the fluid flows from the region of high pressure to 
the region of low pressure. The averaged velocity of the healing agents flowing through the effective unit area can be defined as (Bear, 
1972) 

vw =
− k

snpη ⋅
∂pw

∂x
(3.9) 

Hence, Eq. (3.7) can be rewritten as 

1
J

d
(
Jnps

)

dt
− ∇ •

(
k
η ⋅

∂pw

∂x

)

= 0 (3.10) 

The coupled pore fluid diffusion and stress analysis can be conducted via simultaneously solving Eqs. (3.2) and (3.10). To complete 
the formulation, the functional relationships between the damage variable of a damaged foam D and the concentration of microcracks 
ξ; the damage variable D and the permeability k; and the saturation s and the capillary pressure of the healing agents pw are described in 
Section 4. 
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4. Constitutive relations 

4.1. Permeability of a cracked foam 

The bulk permeability k of a cracked foam needs to be determined to enable the simulations of healing agents flowing inside a 
cracked foam (Eq. (3.10)). Fig. 5 shows a SEM image of a microcrack within a damaged foam sample, which contains fractured hollow 
cells. The microcrack provided a micro-channel that allowed the flowing of the released healing agents within the damaged area. This 
observation motivated the following micromechanical model that could estimate the value of bulk permeability k. To simplify the 
problem, we assume that all microcracks are of cylindrical geometry. It is a reasonable assumption as observed through SEM images, 
such as Fig. 5. The effect of the shape of the microcracks will be explored in the future study. Consider an isolated crack of cylindrical 
geometry and constant cross section embedded in a cubic volume as shown in Fig. 5. Let r and l represent the radius and length of a 
microcrack, respectively; r ∈ [0,R] with R representing the possible maximum crack radius; and l ∈ [0, L], with L representing the 
possible maximum crack length. In the Cartesian coordinate system x1 − x2 − x3 at the current configuration, the projection of the 
crack in x1 − x2 plane has an angle to axis-x2, φ(0 ≤ φ ≤ 2π); and the crack has an angle to axis-x3, θ( − π /2 ≤ θ ≤ π /2). Experimental 
measurement suggests that it is reasonable to assume that both angles follow uninform distributions, i.e. θ ∼ U[− π /2, π /2] and φ ∼

U[0,2π].This assumption dictates that the bulk permeability k of a cracked foam containing a random ensemble of cracks is isotropic. In 
the following analysis, to simplify the problem, we consider the scenario that the bulk flow through the foam is only in the x3-direction. 

For an incompressible and Newtonian fluid in the laminar flow flowing through a cylindrical crack of a constant cross section, the 
volume flow rate Qs can be related to the pressure drop Δpw through the Hagen-Poiseuille law, i.e. 

Qs = −
Δpw

l
πr4

8η n0 ≈ −
dpw

dl
πr4

8η n0 (4.1)  

where n0 is a unit vector along the axis of the crack; and Δpw the pressure difference between the two ends of the crack. As the fluid 
flows from the high pressure ph to low pressure pl, the negative sign comes from the definition of Δpw = pl − ph < 0. As the length of the 
majority of microcracks is smaller than 10 mm, it is reasonable to assume Δp

l ≈
dpw
dl . In the Cartesian coordinate system, Eq. (4.1) can be 

rewritten as 

Qs =

(
∂pw

∂x1

∂x1

∂l
+

∂pw

∂x2

∂x2

∂l
+

∂pw

∂x3

∂x3

∂l

)
− πr4

8η n0 (4.2) 

As the bulk flow through the foam is assumed to be only in the x3-direction, we have ∂pw /∂x1 = 0 and ∂pw /∂x2 = 0. Eq. (4.2) can be 
simplified as 

Qs =
− πr4

8η
∂pw

∂x3

∂x3

∂l
n0 =

− πr4

8η
∂pw

∂x3
cosθn0 (4.3) 

The average flow velocity is 

vw =
− r2

8η
∂pw

∂x3
cosθn0 (4.4) 

Fig. 5. An isolated cylindrical crack embedded in a cubic volume. The SEM micrograph details the morphology of a microcrack embedded in a 
foam sample. 
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with 

vw = vw1 e1 + vw2 e2 + vw3 e3,

⎡

⎣
vw1

vw2

vw3

⎤

⎦ =

⎡

⎣
|vw|sinθsinφ
|vw|sinθcosφ
|vw|cosθ

⎤

⎦ (4.5)  

where ei (i = 1,2,3) is the unit vector in xi-direction, and |vw| the length of the vector vw. For a random ensemble of cracks saturated 
with healing agents, the average flow velocities can be calculated as 

〈vw1 〉 =
1

2π2

∫ R

0

∫ 2π

0

∫ π
2

− π
2

− r2

8η
∂pw

∂x3
sinφsinθcosθf1(r)drdφdθ = 0

〈vw2 〉 =
1

2π2

∫ R

0

∫ 2π

0

∫ π
2

− π
2

− r2

8η
∂pw

∂x3
cosφsinθcosθf1(r)drdφdθ = 0

〈
vw3

〉
=

1
π

∫ R

0

∫ π
2

− π
2

− r2

8η
∂pw

∂x3
(cosθ)2f1(r)dθdr = −

1
8πη

∂pw

∂x3

∫ R

0
r2f1(r)dr

∫ π
2

− π
2

(cosθ)2dθ

(4.6)  

where f1(r) denotes the probability density function of the radii of cracks, and 〈•〉 the mean value of a random variable. Eq. (4.6) 
suggests that the average flow velocity 〈vw3 〉 for the ensemble of saturated microcracks is not related to the length of the cracks l and the 
angles φ.The mean value μr and variance σ2

r of the radii of the cracks can be calculated as 

μr =

∫ R

0
rf1(r)dr (4.7)  

and 

σ2
r =

∫ R

0
(r − μr)

2f1(r)dr =
∫ R

0
r2f1(r)dr − 2μr

∫ R

0
rf1(r)dr + μ2

r

∫ R

0
f1(r)dr (4.8) 

Substituting Eq. (4.7) through Eq. (4.8), we have 
∫ R

0
r2f1(r)dr = μ2

r + σ2
r (4.9) 

Substituting Eq. (4.9) through the third equation of Eq. (4.6), we have 

〈
vw3

〉
= −

μ2
r + σ2

r

16πη
∂pw

∂x3
(4.10) 

Recall the Darcy’s law given in Eq. (3.9) and the bulk flow through the volume is only in the x3- direction, i.e.〈vw3 〉e3 ≡ vw . For the 
ensemble of fully saturated microcracks,snp ≡ ξ. Hence, we have 

k = ksξ

(
μ2

r + σ2
r

16π

)

(4.11)  

where ks denotes a coefficient that is introduced to take into account the effect of saturation with ks = 1 for fully saturated media. 
Nguyen and Durso (1983) suggested ks = s3. To calculate the permeability of a cracked foam via the Eq. (4.11) at the nth compressive 
loading cycle,μrn

, σrn and ξn can be estimated based on histograms of radii and lengths of the microcracks measured from the tested 
samples using the following formula 

μrn
≈

1
Nn

∑Nn

i=1
ri (4.12)  

σ2
rn
≈

1
Nn − 1

∑Nn

i=1
(ri − μr)

2 (4.13)  

ξn =
Ωc

Ω
=

1
Ω
∑Nn

i=1
πr2

i li ≈
1
Ω

πNnμ2
r μl (4.14)  

where Nn is the total number of microcracks in the foam sample at the nth loading cycle. 
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4.2. Capillary pressure and saturation of cracked foams 

For porous media such as the polymer foams considered in the paper, capillary pressure plays an important role owing to the high 
porosity of the porous media. In the following analysis, the functional relation between saturation s and capillary pressure pw in the 
porous media will be established. Consider the isolated microcrack of cylindrical geometry and the constant cross section embedded in 
a cubic volume, as described in Section 4.1 and shown in Fig. 5. The capillary pressure in the microcrack can be calculated as (Fanchi, 
2002) 

pw = −
2τscosω

r
(4.15)  

where τs is the surface tension, and ω the liquid-solid contact angle on the walls of a micro-channel. For the epoxy system, τs 

= 0.00003475N /mm and ω = 43055′′ (Cheng and Lin, 2008). Let r∗n, (r∗n = rn /Rn; 0 ≤ r∗n ≤ 1), denote the normalised radius, and l∗n,
(l∗n = ln /Ln; 0 ≤ l∗n ≤ 1), the normalised length of a microcrack at the nth loading cycle, where Rn and Ln are the maximum radius and 
length among all cracks within a foam sample at the nth loading cycle. In the following analysis, we assume r∗n and l∗n follow the Beta 
Distribution, i.e. 

f1
(
r∗n;αr∗

n , βr∗
n

)
=

(
αr∗

n + βr∗
n + 1

)
!

αr
n
∗!βr

n
∗!

(
r∗n
)αr∗

n
(
1 − r∗n

)βr
n
∗

f2
(
l∗n; αl∗

n , βl∗
n

)
=

(
αl∗

n + βl∗
n + 1

)
!

αl∗
n !β

l∗
n !

(
l∗n
)αl

n
∗ (

1 − l∗n
)βl∗

n

(4.16)  

where (αr∗
n , β

r∗
n ) and (αl∗

n , βl∗
n ) are the shape factors for f1(r∗n;αr∗

n , β
r∗
n ) and f2(l∗n; αl∗

n , βl∗
n ) respectively. The change of saturation dsn at the nth 

compressive loading cycle induced by the healing agents flowing into all microcracks of radius r∗n can be calculated as 

dsn =
dΩw

Ωv
≈

1
(
np
)
Ω

NnπR2
n

(
r∗n
)2Lnμl∗n f1

(
r∗n ;αr∗

n , β
r∗
n

)
dr∗n (4.17)  

where μl∗n 
is the mean normalised length of microcracks. Eq. (4.17) can be further written as 

dsn =
1

(
np
)
Ω

NnπR2
nμr∗2

n
Lnμl∗n

(
r∗n
)2f1
(
r∗n; αr∗

n , βr∗
n

)
dr∗n

μr∗2
n

(4.18)  

where μr∗n 
is the mean normalised radius of microcracks. The total volume of microcracks Ωc can be calculated as 

Ωc = NnπR2
nμr∗2

n
μl∗n Ln (4.19) 

Substituting Eq. (4.18) through Eq. (4.19) 

dsn =
ξn

np

(
r∗n
)2f1
(
r∗n; αr∗

n , β
r∗
n

)
dr∗n

μr∗2
n

(4.20)  

where μr∗2
n 

is the second moment normalised radius 

μr∗2
n
=

(
αr∗

n + 1
)(

αr∗
n + 2

)

(
αr∗

n + βr∗
n + 2

)(
αr∗

n + βr∗
n + 3

) (4.21) 

Substituting Eq. (4.21) through Eq. (4.20) and from (4.16), we have 

dsn =
ξn

np

(
αr∗

n + βr∗
n + 3

)
!

(
αr∗

n + 2
)
!βr∗

n !

(
r∗n
)αr∗

n +2( 1 − r∗n
)βr∗

n dr∗n (4.22) 

Let p∗
n represent the normalised capillary pressure in the nth loading cycle,p∗

n = pw(rn) /pw(Rn). From Eq. (4.15), we have 

r∗n =
rn

Rn
=

pn(Rn)

pn(rn)
=

1
p∗

n
(4.23) 

Substituting Eq. (4.23) through Eq. (4.22) 

dsn =
ξn

np

(
αr∗

n + βr∗
n + 3

)
!

(
αr∗

n + 2
)
!βr∗

n !

(
1
p∗

n

)αr∗
n +2(

1 −
1
p∗

n

)βr∗
n

d
1
p∗

n
(4.24) 

Integrating Eq. (4.24), we can establish the functional relation between capillary pressure and saturation for the nth loading cycle. 
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sn =
ξn

np

∫ 1
p∗n

0

(
αr∗

n + βr∗
n + 3

)
!

(
αr

n + 2
)
!βr

n!

(
1
p∗

n

)αr∗
n +2(

1 −
1
p∗

n

)βr∗
n

d
1
p∗

n
(4.25)  

4.3. The model for damage recovery after healing 

The recovery of damage after healing at a material point can be related to the saturation of the healing agents at the point during 
healing. Here, we assume the recovery of damage as a linear function of the saturation, i.e. 

Dre =
(
1 − s

/
sn

re

)
D (4.26)  

where Dre denotes the residual damage variable post healing; and sn
re the saturation which enables the complete recovery of damage at 

the nth compression cycle. sn
re was obtained through calibration against experimental measurement, See Appendix C. 

4.4. Data fitting and model calibration 

The foam samples were examined by an optical microscope after each compressive loading cycle to measure the distribution and 
geometry of the microcracks. The measurements were used for data fitting and model calibration for establishment of the functional 
relationships between (1) the damage variable D and the concentration of microcracks ξ; (2) the damage variable D and the perme-
ability k; and (3) the saturation s and the capillary pressure of the healing agents pw. In addition, the evolution of damage variable D 
against the plastic strain εp was also obtained through the curve fitting against experimental measurement. 

4.4.1. The damage variable D and plastic strain εp 
As shown in Fig. 3 (g), the damage vairable D envolves as a function of plastic strain εp. The functional relation can be discribed as a 

power law fuction through data fitting to the experimental data measured for the neat foam 

D = C1
(
εp
)C2 (4.27)  

where C1andC2 are constants obtained from curve fitting as listed in Table 1. 

Fig. 6. (a) The functional relation between the damage variable D and the crack concentration ξ. (b) The functional relation between the damage 
variable D and the permeability k. 

Table 1 
The parameters from curve fitting.  

The Parameters Values 

C1  1.117 
C2  0.3373 
C3  0.0001506 
C4  10.07 
C5  2.874 × 10− 7 mm2  

C6  1.316 
C7  6011 /MPa  
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4.4.2. The damage variable D and the crack concentration ξ 
The experimental measurements suggest that the functional relation of cracks concentration ξ and damage variable D follows an 

exponential equation as given below 

ξ = C3e(C4D) (4.28)  

where C3andC4 are constants obtained from curve fitting as listed in Table 1. The curve fitting of Eq. (4.28) is plotted in Fig. 6 (a) in 
comparison with experimental measurements. Feng and Yu (2010) employed an analytical model and FE analysis to investigate the 
relation between the damage evolution and the cracks growth of quasi-brittle isotropic materials. The results indicated that the damage 
showed an exponential growth with the increase of microcrack density. Farrokhabadi et al. (2013) investigated the damage evolution 
of laminated composites under fracture tests experimentally and numerically. The damage variable and crack density again exhibited 
an exponentially functional relationship. The trend of the functional relation in Eq. (4.28) is consistent with the findings from these 
existing research. 

4.4.3. The damage variable D and the permeability k 
For the ensemble of fully saturated microcracks (ks = 1), based on the Eq. (4.11), the permeability k can be estimated via measuring 

the lengths and radii of the microcracks from the 2D micrographs and cracks concentration ξ at each loading cycle. Eq. (4.11) also 
suggests that permeability k is nearly proportional to microcracks concentration ξ as the mean value μr and variance σ2

r of the radii of 
the microcracks have small variations at different loading cycles. As the damage variable D follows the exponential relation with 
respect to the concentration of microcracks ξ(Eq. (4.28)), the functional relation between the damage variable D and the permeability k 
can also be described as an exponential equation, i.e. 

k = C5e(C4D) (4.29)  

where C5 is a constant obtained from curve fitting as listed in Table 1. The fitted relationship of Eq. (4.29) is plotted in Fig. 6 (b). 

4.4.4. The saturation s and the capillary pressure of the healing agents pw 
The constitutive relation between saturation s and capillary pressure pw can be described via the Beta distribution function of the 

normalised radii of the microcracks within the foam samples (Eq. (4.16)). The histograms and the Beta distribution fitting of the 

Fig. 7. The histograms and Beta distribution fitting of the normalised radii of the microcracks measured at the (a) first compression cycle, (b) the 
second compression cycle, (c) the third compression cycle, and (d) the fourth compression cycle. 
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normalised radii of the microcracks after each loading cycle,Beta(αr∗
n ,βr∗

n ), are presented in Fig. 7. 
Based on Eq. (4.25) and measured values of αr∗

n , βr∗
n , ξn and np, the functional relations between s and the capillary pressure pw for 

each loading cycle are plotted in Fig. 8. As the difference of these functional relations among each loading cycles is small, we use a 
single exponential relationship to represent the functional relation between saturation s and capillary pressure pw, i.e. 

s = C6eC7pw (4.30)  

where C6 and C7 are the constants from curve fitting as listed in Table 1. 

5. An illustrative example - one-dimensional (1D) compression problem 

To give the physical insight into how the damage evolution coupled with the mass conservation, an illustrative example is given for 
one dimensional compression problem. Consider a foam containing two bilayered capsules under uniaxial cyclic compression, as 
schematically in Fig. 9 (a), the healing agents is flowing inside the damaged areas from the embedded bilayered capsules. Under the 
Cartesian coordinates x1 − x3 at the current configuration, we take a small region of thickness hs within the foam for analysis, as 
schematically shown in Fig. 9 (b). For ease of calculations, the following assumptions are made, i.e.  

(1) During the calculations, the following pore pressure boundary conditions are assumed 

pw(t, x3 = hs) = p0 for ∀t ≥ 0 (5.1)  

pw(t, x3 = 0) = pi for ∀t ≥ 0 (5.2)  

pw(t= 0, x3) = pi for x3 ∈ [0, hs) (5.3) 

Fig. 9. The schematics of (a) a constrained foam under 1D cyclic compression and (b) the selected region at centre of foam domain; (c) the FE model 
of the 1D problem. 

Fig. 8. The functional relations between saturation s and capillary pressure pw for each compression cycle.  
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where p0 denotes the pore pressure imposed by the healing agents released from the capsules, and pi the initial capillary pore pressure. 
It is reasonable to assume the pi = 0.00065 MPa for the dried porous media (Jung et al., 2016). The assumptions implicate that we only 
consider the situation before the healing agents reach the bottom surface.  

(2) The foam follows Hooke’s law in the elastic region with initial elastic modulus Evi, and linear hardening in the plastic region 
with hardening modulus H when the compressive stress exceeds the compressive strength σc. The evolution of the damage 
variable D of the foam only affects the value of elastic modulus, i.e. Eda = (1 − D)Evi (Eq. (2.1)), and has negligible effect on the 
values of the compressive strength σc and hardening modulus H. This assumption is consistent with experimental measurement 
of foam samples under uniaxial compression (Fig. 3), i.e. the damage of foam has negligible effect on the plateau stress.  

(3) The thickness of selected region hs is much smaller than the thickness of foam domain hf , i.e. hs ≪ hf . Therefore, the strain rate 
of the selected region during the deformation could be assumed to be a constant value ±C. Hence, a compressive loading cycle 
starting from time instant to includes the following temporal phases (Fig. 2 (a)), i.e.  
• The loading phase, including 

t ∈ [to, to +Te] for elastic loading, where Te = − εe
C, and 

t ∈ (to +Te, to +Te +Tp] for plastic loading, where Tp = −
εp
C  

• The unloading phase 

t ∈
(
to +Te + Tp, to + 2Te +Tp

)

• The healing phase 

t = to + 2Te + Tp   

where εe is the elastic strain.  

(4) Owing to small thickness hs, the effect of saturation s to permeability k is ignored, i.e. ks = 1. 

5.1. 1D Constitutive behaviours 

The response in elastic loading phase t ∈ [to, to +Te] is governed by the Hook’s Law, i.e. 

σ̇ =

[

1 −
(

1 −
so

sre

)

D
(

εo
p

)]

Eviε̇e (5.4)  

where so and εo
p are the saturation of healing agents and plastic strain at t = to. In the plastic loading phase t ∈ (to + Te,to + Te + Tp], the 

response follows linear hardening relation, i.e. 

σ̇ = (1 − D)Evi

(

ε̇ − ε̇p

)

σ̇ = (1 − D)Evi

(

1 −
(1 − D)Evi

(1 − D)Evi + H

)

ε̇
(5.5)  

where σ̇ is the stress rate, ε̇ the strain rate, and ε̇p the plastic strain rate. Combining the two equations in Eqs. (5.5) and (4.27), we have 

ε̇p =

( (
1 − C1

(
εp
)C2
)
Evi

(
1 − C1

(
εp
)C2
)
Evi + H

)

ε̇ (5.6) 

Eq. (5.6) can be solved using the fifth-order Runge-Kutta method based ordinary differential equation solver ode45 in MATLAB 
with the initial condition εp(t= to +Te) = εo

p and ε̇ = − C. The calculated plastic strain εp can be fitted by a polynomial function of time 
t, i.e. 

εp = f
(

ε̇p, ε̇, t
)

= C8t2 + C9t (5.7)  

where C8 and C9 are two constants obtained from curve fitting. In the unloading phase t ∈ (to + Te + Tp, to + 2Te + Tp), there is no 
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further development of plastic strain εp. Hence, we have 

σ̇ =
(

1 − D
(

εL
p

))
Eviε̇e (5.8)  

where εL
p is the plastic strain at t = to + Te + Tp. The damage recovery model (Eq. (4.26)) is applied for healing phase, i.e. t = to + 2Te +

Tp, to enable recovery of elastic modulus, i.e. 

σ̇ =

[

1 −
(

1 −
sL

sre

)

D
(

εL
p

)]

Eviε̇e (5.9)  

where sL is the saturation of the healing agents at t = to + 2Te + Tp . 

5.2. Mass conservation for the healing agents 

When damage occurs, the foam matrix becomes permeable. Under 1D cyclic compression as shown in Fig. 9 with X3-axis as the 
loading direction, a material point located at the coordinates (X1,X2,X3) under the initial configuration will deformed to the position 
(x1, x2, x3) under the current configuration. The expansion of the mass conservation (Eq. (3.10)) for the healing agents flowing in a 
cracked media can be written as 

1
J

(
dJ
dt

nps+ Js
dnp

dt
+ Jnp

ds
dt

)

=
∂

∂x3

(
k
η ⋅

∂pw

∂x3

)

(5.10) 

As porosity of the foam np is a constant value as described in Section 2.1, Eq. (5.10) reduces to 

1
J

dJ
dt

nps + np
ds
dt

=
∂

∂x3

(
k
η ⋅

∂pw

∂x3

)

(5.11) 

The deformation gradient is given by 

F =

⎛

⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0
∂x3

∂X3

⎞

⎟
⎟
⎟
⎠

(5.12)  

, and the determinant of F is 

J =
∂x3

∂X3
= 1 + ε (5.13) 

In Eq. (5.11), the material time derivative operator can be written in the form 

d
dt

=
∂
∂t
+ vf

∂
∂x3

(5.14)  

where vf is the velocity field in the either solid phase (∂x3 /∂t) or fluid phase (vw). Here, we use the s = C6eC7pw (Eq. (4.30)) to describe 
the relation between saturation and capillary pressure at the selected region. Combining Eqs. (4.30), (5.11), (5.13) and (5.14), we have 

1
(1 + ε)

(
∂ε
∂t

+
∂ε
∂x3

∂x3

∂t

)

npC6eC7pw + npC6C7eC7pw

(
∂pw

∂t
+

∂pw

∂x3
vw

)

=
∂

∂x3

(
k
η ⋅

∂pw

∂x3

)

(5.15) 

As the strain rate of foam is a constant C throughout the selected region, we have ∂ε /∂x3 = 0, ∂ε /∂t = − C in loading phase, and 
∂ε /∂t = C in the unloading phase. Combining with the Darcy’s law in Eqs. (3.9), (5.15) can reduce to 

±C
(1 + ε)npC6eC7pw + npC6C7eC7pw

(
∂pw

∂t
−

k
snpη

(
∂pw

∂x3

)2)

=
∂

∂x3

(
k
η ⋅

∂pw

∂x3

)

(5.16) 

Substituting Eqs. (4.29) and (5.16) can be rewritten as 

±C
(1 + ε)npC6eC7pw + npC6C7eC7pw

(
∂pw

∂t
−

C5eC4D

snpη

(
∂pw

∂x3

)2)

=
C5eC4D

η ⋅
∂2pw

∂x2
3
+

C4C5eC4D

η
∂D
∂x3

∂pw

∂x3
(5.17) 

As damage variable D is related to plastic strain εp through Eq. (4.27), which is independent to the spatial coordinates (Eq. (5.7)). 
Therefore, Eq. (5.17) is reduced to 

±C
(1 + ε)npC6eC7pw + npC6C7eC7pw

(
∂pw

∂t
−

C5eC4D

snpη

(
∂pw

∂x3

)2)

=
C5eC4D

η ⋅
∂2pw

∂x2
3

(5.18) 

S. Cao and T. Liu                                                                                                                                                                                                      



Journal of the Mechanics and Physics of Solids 149 (2021) 104314

15

Eq. (5.18) can be used to solve the responses at different temporal phrases. In elastic loading phase t ∈ [to,to + Te], Eq. (5.18) leads 
to 

∂pw

∂t
=

C5eC4 Do
re

η ⋅ ∂2pw
∂x2

3
+ C

(1+ε)npC6eC7pw

npC6C7eC7pw
+

C5eC4Do
re

C6eC7pw npη

(
∂pw

∂x3

)2

(5.19)  

with 

Do
re =

(

1 −
so

sre

)

D
(

εo
p

)
(5.20)  

where Do
re is the damage variable at t = to. In the plastic loading phase t ∈ (to + Te,to + Te + Tp], substituting Eqs. (4.27) to (5.18), we 

have 

∂pw

∂t
=

C5eC4 C1(εp)
C2

η ⋅ ∂2pw
∂x2

3
+ C

(1+ε)npC6eC7pw

npC6C7eC7pw
+

C5eC4C1(εp)
C2

C6eC7pw npη

(
∂pw

∂x3

)2

(5.21) 

In the unloading phase t ∈ (to + Te + Tp, to + 2Te + Tp), the value of permeability remain unchanged. Eq. (5.18) can be written as 

∂pw

∂t
=

C5e
C4 C1(εL

p)
C2

η ⋅ ∂2pw
∂x2

3
− C

(1+ε)npC6eC7pw

npC6C7eC7pw
+

C5eC4C1(εL
p)

C2

C6eC7pw npη

(
∂pw

∂x3

)2

(5.22) 

At the healing phase t = to + 2Te + Tp, combining with Eqs. (4.26) and (5.18) can be written as 

∂pw

∂t
=

C5eC4 DL
re

η ⋅ ∂2pw
∂x2

3
− C

(1− ε)npC6eC7pw

npC6C7eC7pw
+

C5eC4DL
re

C6eC7pw npη

(
∂pw

∂x3

)2

(5.23)  

with 

DL
re =

(

1 −
sL

sre

)

D
(

εL
p

)
(5.24)  

where DL
re denotes the damage variable at t = to + 2Te + Tp. 

The Eqs. (5.19), (5.21)–(5.23) were solved using forward Euler finite difference (FD) method as described below 

∂pw

∂t
(t, x3) =

pw(t + Δt, x3) − pw(t, x3)

Δt

∂pw

∂x3
(t, x3) =

pw(t, x3 + Δx3) − pw(t, x3 − Δx3)

2Δx3

∂2pw

∂x2
3
(t, x3) =

pw(t, x3 + Δx3) − 2pw(t, x3) + pw(t, x3 − Δx3)

(Δx3)
2

(5.25)  

where Δt was a very small time incremental that enabled convergence of solutions. From Eq. (5.25), the Eqs. (5.19), (5.21)–(5.23) can 
be rewritten as the 

∂pw

∂t
= A1

∂2pw

∂x2
3
+ A2

(
∂pw

∂x3

)2

+ A3 (5.26)  

where A1 = C5eC4D /ηnpC6C7eC7pw for the loading phase, A1 = C5eC4D(εL
p) /ηnpC6C7eC7pw for the unloading phase, and A1 

= C5eC4DL
re /ηnpC6C7eC7pw for the healing phase;A2 = C5eC4D /C6eC7pw npη for the loading phase, A2 = C5eC4D(εL

p) /C6eC7pw npη for the 
unloading phase, and A2 = C5eC4DL

re /C6eC7pw npη for the healing phase; and A3 = C
C7(1− ε) in the loading, and A3 = − C

C7(1− ε) in the unloading 
phase and healing phases. Substituting Eq. (5.25) into Eq. (5.26), we have 

pw(t + Δt, x3) = pw(t, x3)+Δt

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A1

[
pw(t, x3 + Δx3) − 2pw(t, x3) + pw(t, x3 − Δx3)

(Δx3)
2

]

+A2

[
pw(t, x3 + Δx3) − pw(t, x3 − Δx3)

2Δx3

]2

+ A3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.27) 

In the forward Euler FD calculations, we assumed the small region had height hs = 10 mm; the foam had porosity np = 0.67, the 
initial elastic modulus Evi = 300 MPa, hardening modulus H = 10 MPa, and compressive strength σc = 6.12 MPa; the released healing 
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agents had the dynamic viscosity η = 0.000001 MPa•s; and strain rate C = 0.001/s . From curve fitting, we have C8 = − 4.0 ×10− 7 /s2 

and C9 = 1.1× 10− 3/s. For comparison purpose, the 1D problem was also solved by finite element (FE) simulations using the 
commercially available FE package ABAQUS Standard. The FE discretization was conducted using 252 four-node plane strain ele-
ments, i.e. CPE4P in ABAQUS notation, which were based on the FE formulation of coupled stress analysis and fluid diffusion within a 
porous media as described in Section 6. The FE model employed in the simulation is shown in Fig. 9 (c). 

5.3. Results and discussion 

The numerical simulations were conducted to simulate the response of the foam sample under the cyclic compression with the 
temporal phrases defined in Table 2. Fig. 10 shows the time histories of total strain, plastic strain, capillary pressure, damage variable, 
and permeability at the selected locations, i.e. X3 = hs

2 and 3hs
4 , obtained via the FE and FD calculations, respectively. For the FD cal-

culations, numerical experiment suggested that the converged results could be achieve when Δt ≤ 0.000833s. As the strain rate is a 
constant, the time histories of overall strain, plastic strain, damage variable, and permeability are identical at the two selected lo-
cations. However, temporal responses of the capillary pressure are distinct. The numerical results obtained by the FD calculations have 
good agreements with those obtained by the FE calculations. The discussions on the numerical results are presented as follow. 

The closed-cell polymer foam is impermeable during the elastic loading phase in the 1st compression cycle (t = 0 ∼ 15s). The 
healing agents are not able to flow inside the foam. The damage variable, capillary pressure, and permeability remain unchanged. 
During the plastic loading phase (t = 15 ∼ 40s), the damage occurs and the damage variable D increases based on Eq. (4.27). The 

Fig. 10. The FD and FE predictions of the time histories of (a) total strain and plastic strain, (b) damage variable, (c) permeability, and (d) capillary 
pressure . 

Table 2 
The temporal phrases of the cyclic compression   

Elastic Loading phase Plastic loading phase Unloading phase Healing phase 

1st loading cycle 0 ∼ 15s  15 ∼ 40s  40 ∼ 55s  55s 
2nd loading cycle 55 ∼ 70s  70 ∼ 95s  95 ∼ 110s  110s 
3rd loading cycle 110 ∼ 125s  125 ∼ 150s  150 ∼ 165s    
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permeability k increases accordingly with damage variable based on Eq. (4.29), which increases the ability of healing agents flowing 
inside the foam. Once the damage occurs, the values of the capillary pressure pw at the two locations increase dramatically. According 
the Eqs. (5.19), (5.21)–(5.23), the temporal variation of the capillary pressure pw relates to compressive deformation and spatial 
variation of the capillary pressure. During the unloading phase (t = 40 ∼ 55s), the elastic strain is recovered. The plastic strain, 
damage variable and permeability remain constant values. The capillary pressure pw keeps increasing, which may indicate the healing 
agents can still flow into the damaged areas owing to spatial variation of the capillary pressure. At the healing phase (t = 55s), both the 
damage variable and permeability decrease owing to the healing effect. However, as the damage is only partially healed, the healing 
agents can still flow into the damaged areas with increased capillary pressure. 

During the elastic loading phases in the following compressive loading cycles (t = 55 ∼ 70s,t = 110 ∼ 125s), the plastic strain, 
damage variable, and permeability remain constant as no further damage develops. The capillary pressure increases owing to the 
flowing of healing agents into the unhealed areas. At the beginning of the plastic loading phases (75 s or 110 s), the damage variable 
and permeability recover to the values before healing in the previous compressive loading cycle. This is consistent to experimental 
observation: the healing system can only have healing effect on elastic response, and the healed microcracks reopen under the plastic 
deformation. 

6. Finite element simulations of two-dimensional (2D) problems 

6.1. The finite element formulation for the coupled pore fluid diffusion and stress analysis 

6.1.1. Weak form of the equilibrium equations 
For foams without damage, the structural response (Eq. (3.1)) can be analysed using finite element formulation through the 

principle of virtual work for the volume Ω at the current configuration at time t (updated Lagrangian formulation) 
∫

Ω
σ : δDdΩ =

∫

SΩ

t ⋅ δvdSΩ +

∫

Ω
f ⋅ δvdΩ (6.1)  

where t is the traction force on the boundary SΩ (Fig. 4); f the body force;v the spatial velocity; D the effective rate of deformation, i.e. D 
= 1 /Ω

∫

Ωs
DsdΩ, where Ds the micromechanical variation of the strain field within the volume occupied by the skeletons of the foams 

Ωs. 
For the foams with damage, microcracks at damaged locations may provide the microchannels that allow healing agents flow. Eq. 

(6.1) can be rewritten as 
∫

Ω
σ : δDdΩ =

∫

SΩ

t ⋅ δvdSΩ +

∫

Ω
f ⋅ δvdΩ +

∫

Ω
snpρwg ⋅ δvdΩ (6.2)  

where D denotes the total effective rate of deformation at a material point, which can be calculated as 

D = D −
1
3

(
ds
dt

pw +
dpw

dt
s
)

I
Kb

(6.3)  

where Kb denotes bulk modulus of the foams. 

6.1.2. Weak form of mass conservation for the healing agents flowing in a cracked media 
The equivalent weak form of Eq. (3.7) can be written as 
∫

Ωf

δpw
1
J

d
(
Jnps

)

dt
dΩf +

∫

Ωf

δpw∇ •
(
npsvw

)
dΩf = 0 (6.4)  

where δpw is an arbitrary, continuous and variational variable, which can be interpreted as virtual pore pressure in the liquid phase. In 
the reference configuration, we have 

∫

Ωf 0

δpw
d
(
Jnps

)

dt
dΩf 0 +

∫

Ωf 0

δpwJ∇ •
(
npsvw

)
dΩf 0 = 0 (6.5)  

where Ωf0 is the volume in the reference configuration. Using backward Euler integration, Eq. (6.5) can be rewritten as 
∫

Ωf 0

δpw
[(

Jnps
)

t+Δt −
(
Jnps

)

t

]
dΩf 0 + Δt

∫

Ωf 0

δpw
[
J∇ •

(
npsvw

)]

t+ΔtdΩf 0 = 0 (6.6)  

which, over the current volume Ωf , is 
∫

Ωf

δpw

[
(
nps
)

t+Δt −
1

Jt+Δt

(
Jnps

)

t

]

dΩf + Δt
∫

Ωf

δpw
[
∇ •

(
npsvw

)]

t+ΔtdΩf = 0 (6.7) 
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Using the divergence theorem Eq. (6.7) can be rewritten 
∫

Ωf

δpw

[
(
nps
)

t+Δt −
1

Jt+Δt

(
Jnps

)

t − Δt
(

∂δpw

∂x
npsvw

)

t+Δt

]

dΩf + Δt
∫

Sf

δpw
(
npsn • vw

)

t+ΔtdSf = 0 (6.8) 

The coupled pore fluid diffusion and stress finite element analysis is achieved by solving Eqs. (6.2) and (6.8) simultaneously. Under 
the finite element formulation, the nodal variables are {v, pw}, which can be achieved by adding an additional degree of freedom 
representing the pressure in the liquid phase pw to displacement based finite element formulation. In this paper, the FE solver for the 
coupled pore fluid diffusion and stress analysis within the commercially available finite element package ABAQUS Standard was 
employed to conduct the FE analysis, as detailed below. 

6.2. The finite element model 

To create the 2D FE models of foams embedded with bilayered alginate capsules, the capsules were assumed to have circular 
geometry of an identical radius, which were inserted into the foam matrix using the approach developed by Cao et al. (2019). Briefly, 
the location of a circular capsule within a foam matrix satisfies two conditions.  

• the coordinates (x, y) of the centre of a capsule obey the following relation 

(x, y) ∈
{
(x, y)

⃒
⃒rc ≤ x ≤ lf − rc, rc ≤ y ≤ lf − rc

}
(6.9)   

where rc denotes the radius of the capsule, lf the edge length of the FE model lf = 50mm.  

• Capsule i does not overlap with an adjacent capsule j, i.e. 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
+
(
yi − yj

)2
√

≥ 2rc,∀i, j ∈ nc, i ∕= j (6.10)   

where nc is the total number of capsules. 
The four-node plane strain elements (CPE4P in ABAQUS notation) were employed in the FE simulations. Each node of the element 

had two translational degrees of freedom and one degree of freedom representing pore pressure of the healing agents. Numerical study 
suggested that the convergence of the numerical simulation could be achieved when the ratio between the maximum elemental edge 
length and the edge length of the cubic foam sample is less than 1/50. A total of 1391 elements were employed to discretise the solution 
domain containing both circular alginate capsules and foam matrix. 

The isotropic constitutive foam model (Deshpande and Fleck, 2000) in conjunction with a damage model was employed to simulate 
the mechanical behaviour of the polymer foam, as described in Appendix A. A user defined field routine (USDFLD in ABAQUS notation) 
was developed to implement the damage evolution model (Eq. (A.5)). The experimental data obtained from uniaxial compression test 
on neat foam samples (without capsules) were used to calibrate the constitutive model. Fig. 3 (b) shows the comparison between the FE 
prediction and experimental measurement of a neat foam under cyclic compression. The FE prediction can capture the plastic 
behaviour and damage evolution, however, it could not capture the strain recovery of the real foam sample after completely unloaded, 
which might be caused by the recovery of the trapped air within the closed-cells during the unloading phase. To predict the self-healing 
behaviour, the USDFLD was used the exchange the damage variable (the field variable) with the main program of the ABAQUS to 
implement the functional relation of the damage variable D and the permeability k (Eq. (4.29)); the damage recovery model (Eq. 
(4.26)) was implemented into the USDFLD to update the damage variable for healing phase modelling. 

As the current research focused on modelling the self-healing behaviour of the polymer foams, to simplify the problem, the 
constitutive behaviour of the bilayered alginate capsules was modelling as elasto-J2-plastic solids with isotropic hardening. The 
mechanical parameters of the material were determined through the single capsule compression test, see Appendix B. In the numerical 
simulations, the bilayered capsule was treated as a fully saturated solid with porosity np = 0.7 measured via Thermogravimetric 
Analysis (TGA) (Cao et al., 2020). The permeability of the bilayered alginate capsules is subject to further experimental investigation. 
In the simulations, the bilayered alginate capsules were assumed to have a large permeability, i.e. k= 0.20mm2 . 

To simulate the compressive test, the 2D FE model of the sample was sandwiched between two rigid plates: one of the rigid plates 
was stationary, and another rigid plate was movable along the x3-axis direction. The movable rigid plate imposed pressure on the 
sample at a constant velocity (5mm/min for crosshead movement). A penalty contact approach was employed to simulate the 
interaction between all surfaces with a friction coefficient 0.2, and numerical trial tests suggested that the simulation results were not 
sensitive to the value of the friction coefficient employed in the calculations. The other parameters employed in the numerical sim-
ulations are same to those employed for the 1D simulation presented in Section 5. The outcomes of the 2D numerical simulations are 
presented next. 
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6.3. Numerical results and parameter study 

Fig. 11 shows the predicted response of the foam sample embedded with 10% VF bilayered capsules under cyclic compression. 
Under the 2D coordinates x1 − x3, the cyclic compressive load was imposed in x3-axis direction. The numerical results for the first two 
healing cycles are presented as the self-healing effect is more pronounced than the later stage. The experimental measurement is 
included for comparison purpose. It should be noted that the current numerical simulations were based on the 2D plane strain finite 
element formulation, which may introduce certain discrepancy in comparison with the measured 3D behaviours of the test samples. As 

Fig. 11. The comparisons of (a) engineering stress-strain curves, and (b) self-healing efficiency against healing cycle between experimental mea-
surements and numerical predictions for foams embedded with 10% VF bilayered capsules. (c) An X-ray microcomputed tomography (μCT) image of 
the cross-section of a foam sample embedded with bilayered capsules after damage. (d) The contour of saturation obtained by FE calculation 
showing the movement of healing agents. 

Fig. 12. The contours of (a) the damage variable and (b) the saturation obtained by the FE simulations at Points A, B, C, D, and E (Fig. 11)  
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Fig. 14. The contours of the damage variable and saturation obtained by the FE simulations for foams embedded with 5% VF bilayered capsules ((a) 
and (b)) and 15% VF bilayered capsules ((c) and (d)) at selected strains (Points A, B, C, D, and E (Fig. 11)) 

Fig. 13. The comparisons of the self-healing efficiency between experiments and simulations for (a) foams embedded with 5% VF capsules, and (b) 
foams embedded with 15% VF capsules. 
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highlighted in Fig. 11 (a) for the stress-strain curves, the segments A-B, B-C, C-D(D’), and D-E represent the first plastic loading phase, 
first unloading phase, first healing phase, and second loading phase, respectively. Healing (damage recovery) takes place numerically 
at point D. The FE predictions again could not capture the strain recovery measured during phase C-D’. For the comparison purpose, 
the healing efficiency obtained via numerical predictions was also evaluated by the threshold value ψ s = 0.234, as shown in Fig. 11 
(b). The healing efficiencies obtained by the FE predictions agree well with those obtained by the experimental measurements. Fig. 11 
(c) presents an X-ray microcomputed tomography (μCT) image of a foam specimen embedded with bilayered capsules at the end of first 
compression cycle (Point D). The capsules, healed microcracks and unhealed microcracks are visible in the image as the white par-
ticles, white lines, and black lines, respectively. The white lines linking the two adjacent capsules indicated the flowing of the released 
healing agents through the microcracks. In comparison, Fig. 11 (d) shows the contour of saturation s obtained from numerical pre-
dictions at Point D, which shows the similar level of healing agent movement. As saturation s can be related to both healing agent 
movement (Eq. (4.30)) and recovery of damage (Eq. (4.26)) and damage variable D represents the level of damage within the material, 
the contours of damage variable D and saturation s at selected strains are presented in Fig. 12 (a) and (b), respectively. These strains 
correspond to Point A to Point E in Fig. 11 (a). During the elastic region in the first loading phase (before Point A), healing agents could 
not flow inside the foam matrix without damage. Damage occurred at the first plastic loading phase (A-B): the areas around the 
capsules had higher damage level owing to stress concentration. The adjacent capsules were linked by the microcacks that provided the 
microchannel for flowing of healing agents. The majority of the released healing agents concentrated surrounding capsules at the Point 
B. During the first unloading phase (B-C), the released healing agents flowed inside the damaged areas owing to the capillary pressure, 
while the contour of damage variable remained unchanged. After the unloading phase (Point C), the healing phase took place (C-D). 
The damage variable was partially recovered in the entire damaged areas while the contour of saturation remained unchanged. The 
second loading phase (D-E) resulted in further damage and more released healing agents. 

6.4. Parameter study on the key design parameters of the healing system 

The numerical study was conducted to evaluate the effects of the key design parameters of the healing system, i.e. the volume 
fraction (VF) of the capsules embedded in a foam sample Vf ; the normalised elastic modulus of the capsules E∗, defined as E∗ = Ec /Ef 
where Ec is the elastic modulus of capsules, and Ef the elastic modulus of foam matrix; the normalised averaged diameter of the 
capsules d∗ = dc/lf where dc is the averaged diameter of capsules, and lf the edge length of foam samples. 

6.4.1. Effect of the volume fraction of capsules Vf 
To evaluate the effect of Vf to self-healing efficiency ψ , the FE simulations were conducted for the foam samples embedded with 5%, 

10%, and 15% VF capsules. The self-healing efficiencies of the foams embedded with different VF capsules have been measured by Cao 
et al (2020). The numerical results and the experimental measurements are compared in Fig. 13 (a), Fig. 11 (b), and Fig. 13 (b) for 5%, 
10%, and 15% VF capsules, respectively, which show good agreements between the two methods. In the first healing cycle, the healing 
efficiencies ψ of the foams embedded with 10% and 15% VF capsules were similar and higher than that of the foam embedded with 5% 
VF capsules. In the second healing cycle, the healing efficiency of the foam embedded 10% VF capsules was smaller than that of the 
foam embedded with 15% VF of capsules; the healing efficiency of the foam embedded with 5% VF capsules fell to the threshold 
demonstrating that there was small healing effect for the second healing cycle. These results suggest that higher volume fraction of 
capsules could bring better multiple self-healing performance. The numerically predicted damage and saturation of the foams 
embedded with 5% VF bilayered capsules, 10% VF bilayered capsules, and 15% VF bilayered capsules are shown at selected strains in 
Fig. 14(a) and (b), Fig. 12 (a) and (b), and Fig. 14 (c) and (d), respectively. The presence of the lower volume fraction capsules, such as 
5% VF bilayered capsules, led to more localised damage pattern owing to stress concentration. Higher volume fraction capsules were 
more efficient in delivery of the healing agents as the damage pattern was more spreaded, which provided more microchannels for 
transport of healing agents. 

Fig. 15. The numerical predictions of the self-healing efficiency at the first two healing cycles for foam samples with selected values of E∗(a) and 
d∗ (b). 
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6.4.2. The normalised elastic modulus of the capsules E∗

To evaluate the effects of relative elastic modulus E∗ to self-healing efficiency, the FE calculations were conducted for the foam 
samples with E∗ = 0.5, E∗ = 0.119 and E∗ = 0.073. During the calculations, we kept the elastic modulus of capsules at a fixed value 
and the volume fraction of the capsules was fixed at 10%. Hence, the higher value of E∗ is related to the softer foam matrix. The self- 
healing efficiencies obtained by FE simulations in the first and second healing cycles are shown in Fig. 15 (a), which suggests lower E∗

could provide better self-healing effect. To understand the mechanism, the numerically predicted damage and saturation of the foams 
with E∗ = 0.5, E∗ = 0.119, and E∗ = 0.073 are presented in Fig. 16 (a) and (b), Fig. 12 (a) and (b), and Fig. 16 (c) and (d), respectively. 
Higher value of E∗, say E∗ = 0.5, led to more spreaded but lower level damage within the matrix foam owing to stress concentration 
around capsules. On the contrary, lower value of E∗, say E∗ = 0.073, led to higher level damage that concentrated around the capsules. 
The healing system was more efficient to foams with lower value of E∗ owing to the facts that (1) capsules subjected to greater 
deformation which enabled more heal agents to be released from the capsules; and (2) the saturation level of healing agents in the 
concentrated damage areas was higher than that of the foam sample with higher value of E∗ in the spread areas of damage. 

6.4.3. The normalised averaged diameter of the capsules d∗

To evaluate the effects of the normalised averaged diameter of the capsules d∗, the FE calculations were conducted for the foam 
samples with d∗ = 0.04, d∗ = 0.07, and d∗ = 0.16. In these calculations, the edge length of the foam samples was fixed at lf = 50 mm 
and the volume fraction of the capsules was fixed at 10%. The self-healing efficiencies obtained by FE simulations in the first and 
second healing cycles are shown in Fig. 15 (b), which suggests smaller capsules may have better self-healing efficiency at either the first 

Fig. 16. The contours of the damage variable and saturation obtained by the FE simulations for foams with E∗ = 0.073 ((a) and (b)) and E∗ = 0.5 
((c) and (d)) at selected strains (Points A, B, C, D, and E (Fig. 11)) 
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healing cycle (d∗ = 0.07) or the second healing cycle (d∗ = 0.04). To understand the mechanism, the numerically predicted damage 
and saturation of the foams with d∗ = 0.16, d∗ = 0.07, and d∗ = 0.04 are presented in Fig. 17 (a) and (b), Fig. 12 (a) and (b), and 
Fig. 17 (c) and (d), respectively. The bigger capsules, say d∗ = 0.16, led to higher level localised damage within the samples. On the 
contrary, smaller capsules, say d∗ = 0.04, led to lower level, spreaded damage. The smaller capsules made the healing system more 
efficient as it was easier for the healing agents to flow to the smaller damaged areas around capsules to heal the damage. 

7. Concluding remarks 

This study provides the framework in modelling capsule based self-healing polymer foams under cyclic compression. In conjunction 
with micromechanical models that link the damage variable D to permeability k as well as the saturation s to the capillary pressure of 
the healing agents pw, the coupled pore fluid diffusion and stress simulations can capture the main features included in the self-healing 
system. Parametric studies based on 2D plane strain finite element simulation were conducted to understand the effects of the key 
design parameters of the healing system, which suggested the healing efficiency of the system could be improved if  

• the system had higher volume fraction of embedded capsules;  
• the ratio of the elastic modulus of capsules to the elastic modulus of foam matrix decreased;  
• smaller capsules were chosen. 

Fig. 17. The contours of the damage variable and saturation obtained by the FE simulations for foams with d∗ = 0.16 ((a) and (b)) and d∗ = 0.04 
((c) and (d)) at selected strains (Points A, B, C, D, and E (Fig. 11)) 
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Further research will employ three–dimensional FE simulations to improve the accuracy of the numerical simulations. 
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Appendix 

A. The constitutive model of the polymer foams 

The isotropic crushable foam model proposed by Deshpande and Fleck (2000) was used to model the mechanical behaviour of the 
polymer foam matrix. The yield function is expressed as 

Φ = σeq − σc = 0 (A.1)  

where σc is the uniaxial compressive yield strength that is a function of equivalent plastic strain σc = σc(εp), and σeq denotes the 
equivalent stress which is a function of von Mises stress σv and mean stress σm, given as 

σ2
eq =

σv
2 + θ2

s σ2
m

1 + θ2
s

/
9

(A.2)  

where θs is the shape factor of the yield surface and can be calculated from the plastic Poisson’s ratio vp 

θs
2 =

9
(
1 − 2vp

)

2
(
1 + vp

) (A.3) 

The equivalent plastic strain rate ε̇p is introduced 

ε̇p
=

σ : ε⋅ pl

σc
(A.4)  

where σ is the stress tensor and ε⋅ pl the plastic strain rate. 
Follow Eq. (4.27), the evolution of damage variable D can be defined as 

D = C1

(∫ t

0
(ε̇p

)dt
)C2

(A.5)  

B. Finite element modelling of the bilayered capsules 

The bilayered capsules were modelled as elasto-J2-plastic solids. To obtain the mechanical properties, quasi-static single capsule 
compressive tests were conducted. The effective elastic modulus Ee of the capsules can be estimated based on the elastic Hertzian 
contact between the bilayered capsule and stainless plates during compression, i.e. 

Fc =
4
3
Ee

̅̅̅̅̅
dc

2

√

δc
3/2 (B.1)  

where Fc and δc are compressive force and displacement measured from the Instron Universal Testing Machine and a linear variable 
differential transformer (LVDT), respectively; dc the diameter of a capsules. The elastic modulus Ec of the capsules can be calculated as 

Ee =
Ec(

1 − μ2
c

) (B.2) 
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where μc is the Poisson’s ratio of the capsules, μc = 0.1(Nguyen et al, 2009) 
The finite element simulations on the single circular capsule compression test were conducted in order to calibrate the material 

parameters. Four-node plane strain elements (CPE4P in ABAQUS notation) were employed in the simulations. The capsule domain 
consisted of 20 elements, which could achieve converged results. Curve fitting via finite element simulation on the single capsule 
compression test indicated that the compressive strength and elastic modulus were 2.09 MPa and 45.04 MPa, respectively. The 
comparison between experimental measurements and numerical simulations is plotted in Fig. S1. 

C. Calibration of the parameter of sre in the damage recovery model 

sn
re represents the saturation which enables the complete recovery of damage at the nth compression cycle. To calibrate the values of 

sn
re, 2D Finite element calculations on a foam sample containing 10% volume fraction capsules were conducted in comparison with 

experimental measurement. The details of the FE model are described in Section 6.2. Figure S2 shows the normalised elastic modulus 
En,En = Ehe /Evi, at beginning of each compression cycle obtained by numerical simulations at selected values of sn

re . The experimental 
measurement is included for comparison. The comparison suggests that s1

re=0.175 and s2
re=0.375 give the best fits for the first 

compression cycle and the second compression cycle, respectively. 
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Fig. S2. Calibration of sn
re based on FE simulations and experimental measurement.  

Fig. S1. The predicted and measured responses of a single capsule under compression.  
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