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Lipid Traffic Analysis reveals the impact of high
paternal carbohydrate intake on offsprings’ lipid
metabolism
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In this paper we present an investigation of parental-diet-driven metabolic programming in

offspring using a novel computational network analysis tool. The impact of high paternal

carbohydrate intake on offsprings’ phospholipid and triglyceride metabolism in F1 and F2

generations is described. Detailed lipid profiles were acquired from F1 neonate (3 weeks), F1

adult (16 weeks) and F2 neonate offspring in serum, liver, brain, heart and abdominal adipose

tissues by MS and NMR. Using a purpose-built computational tool for analysing both

phospholipid and fat metabolism as a network, we characterised the number, type and

abundance of lipid variables in and between tissues (Lipid Traffic Analysis), finding a variety

of reprogrammings associated with paternal diet. These results are important because they

describe the long-term metabolic result of dietary intake by fathers. This analytical approach

is important because it offers unparalleled insight into possible mechanisms for alterations in

lipid metabolism throughout organisms.
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Beyond the serious risk to their metabolic health, obesity in
both men and women has long-term consequences for their
offspring through nutritional programming1–3. There is

increasing evidence showing that the nutritional programming of
offspring occurs through changes in lipid metabolism4 and leads
to increased risk of cardio-metabolic disease5–9. One contributor
to obesity is excess carbohydrate intake. Specifically, high car-
bohydrate diets have been associated with the emergence of
cardio-metabolic disease10,11 and lower carbohydrate intake with
improved recovery12–14. One possible explanation is that nutri-
tional programming represents an adaptation to an unbalanced
dietary intake in which there is an excess of non-essential
nutrients and a deficiency of essential nutrients. However, the
effects of a high carbohydrate diet on programming lipid meta-
bolism are not understood. This led us to the hypothesis that a
low-protein-high-carbohydrate (LP-HC) diet would alter the
programming of lipid metabolism in offspring.

This hypothesis was tested by feeding an isocaloric, non-
obesogenic LP-HC diet to the (grand)sires of the experimental
groups (mouse model2,3,15). This was designed to increase de
novo lipogenesis; a high-fat diet would be less useful for test-
ingthis hypothesisas it would alter lipid intake as well as bio-
synthesis. Although the programming effects on de novo
lipogenesis were expected to be focused on the offsprings’ liver,
the products of lipid biosynthesis are typically distributed
throughout the organism quickly, especially triglycerides (TG)16.
Testing this hypothesis, therefore, also required a tool for ana-
lysing lipid metabolism and distribution systemically.

However, most computational tools developed to study meta-
bolism are focused on one compartment and thus do not to
analyse networks or traffic17,18. Analysis of single tissues does not
provide a complete picture of systemic programming effects.
Furthermore, most of the current tools pivot on substrate-
enzyme-product relationships to allow for direct linkage to genes
and proteins, rather than the local function of metabolites,
making it impossible to characterise a whole system. Equally, lipid
metabolism is distinct from amino acid and nucleotide metabo-
lism; lipids are not polymers, vary greatly in structure and
comprise components from unconnected sources. We therefore
designed a network analysis tool to characterise the number, type

and abundance of lipids in and between tissues, referred to as
Lipid Traffic Analysis (LTA).

The novel lipid computational tool reported here was used to
analyse lipidomics data from liver, serum, brain, heart and adi-
pose tissues for the F1A group (Fig. 1b). Liver, serum, brain and
heart samples were used in neonate networks as adipose is too
small to be dissectible in these individuals. The connections
between the tissues represented the major lipid ‘highways’ in the
organism (Fig. 2a). Lipid Traffic Analysis identified altered lipid
metabolism through a switch analysis (which lipids were present
and where) and an abundance analysis (quantitative differences
between phenotypes). Importantly, these analyses represent the
state-of-the-art in the characterisation of lipid metabolism across
organs.

We wanted to test the hypothesis that a higher carbohydrate
intake in (grand)sires alters lipid metabolism in offspring as this
contributes to our understanding of dietary intake and metabolic
programming19,20 and the effects of metabolic disease across
generations4 in a model system. This gives us an insight into
possible interventions to improve human metabolic health in
familial circumstances.

Results
A combination of orthogonal techniques, direct infusion mass
spectrometry (DI-MS21,22) and phosphorus nuclear magnetic
resonance (31P NMR23) was used to profile the lipidome. This
approach, known as dual spectroscopy22, was used to identify and
verify the abundance of lipid classes between the two ionisation
modes respectively (NMR data for each compartment shown in
Supplementary Information) and identified up to 586 lipid vari-
ables in positive ionisation mode and up to 564 lipid variables in
negative ionisation mode in liver, brain, heart and adipose
homogenates and in serum.

Lipid Traffic Analysis: a novel computational tool for the
network analysis of lipid metabolism. The first stage in devel-
oping a computational tool to analyse lipid metabolism sys-
temically was to categorise lipid variables according to where
they were found. The relationship between adjacent lipid

Fig. 1 The mouse model and tissues used for lipid traffic analysis associated with de novo lipogenesis. a Schematic representation of the mouse model
showing the generation of programmed offspring across two generations. b The network that describes the lipid traffic associated with de novo lipogenesis
from the liver to termini (CNS, heart and adipose) via the serum. The termini represent traffic for structural purposes (CNS), fatty acid oxidation (heart)
and storage (adipose). This metabolic relationship between tissues was used as the structure of the network for all analyses in the present study. Adipose
was not available for neonates and thus networks for F1N and F2N do not include this tissue. Cerebellum and right hemispheres of the brains of the F1A and
F2N groups, enabling separate analysis of cortices and the cerebellum in these groups. NP-NC refers to a diet of normal protein-normal carbohydrate
where LP-HC refers to a low protein-high carbohydrate diet. The NP-NC and LP-HC are the same as NN and LL groups used in earlier studies2,15.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01686-1

2 COMMUNICATIONS BIOLOGY |           (2021) 4:163 | https://doi.org/10.1038/s42003-021-01686-1 | www.nature.com/commsbio

www.nature.com/commsbio


compartments is key in the biological network (Fig. 1). Some lipid
variables were found in all compartments, others in two adjacent
compartments and others in one compartment only (Fig. 2a).
These we refer to as A, B and U type lipids (or categories),
respectively. Novel code written in R for identifying such lipids is
described in ‘Methods’ and can be found in the Supplementary
Information. The basis of these categories was that they repre-
sented the intersections between lipid compartments, i.e. stations
in the network. Distinct patterns of the presence of lipid species
that appear in adjacent compartments or ubiquitously can
represent systemic responses. Different axes between compart-
ments (e.g. liver-serum, serum-heart) can be considered and

physiological metabolic functions compared. This relationship
was characterised in the present study using unlabelled species as
an average over longer periods, e.g. stage of development.
These categorisations of the lipids were then used to construct
a Lipid Traffic Analysis from two different perspectives,
namely a quantitative abundance analysis and a binary switch
analysis (Fig. 2b). Both of these represent novel analyses
presented in this work.

Switch Analysis. The Switch Analysis developed in the present
study identified the lipids that are above or below the limit of
detection in a given compartment (U), between adjacent

Fig. 2 Structure of traffic analysis for quantifying changes in lipid metabolism. a Categorisation of lipids according to where they are found; b flow chart
of traffic analysis showing the gross structure of the analysis. A, B and U are categories representing variables that appear in all compartments, in pairs of
adjacent compartments and in only one compartment, respectively. Subscripts to these categories are pairs of one-letter codes indicating the direction of
the traffic (reading left to right). Red connections show B-type lipid connections. Black connections show A-type lipid connections. The two strands of the
flow chart represent separate analyses that use the same R code (see SI). Equations for the quantitative analysis are shown in Eqs (1) and (2).
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compartments (B type lipids, e.g. liver-serum axis) or ubiqui-
tously (A type lipids). This, therefore, represented lipids that were
switched on or off with respect to a measurement threshold. The
Switch Analysis requires only straightforward lipidomics data
rendered as zero or non-zero values, e.g. relative abundance. The
Switch Analysis of TGs in the F1N group is shown in Fig. 3a. Pie
chart segments show the number of TG variables in each phe-
notype. Jaccard-Tanimoto coefficients (JTC, with accompanying
p values) were used to characterise the similarity between the
compared groups. The JTC indicated the proportion of variables
that appeared in the two groups24,25 whereas the p value indicated
what differentiated them; a p < 0.5 indicated there were variables

unique to both groups, whereas p > 0.5 meant that only one group
could have any unique variables. Thus, a JTC of 0.67 with a p of 1
indicated that two thirds of variables appear in both groups, with
the other third of the variables only appearing in one group.

We first tested the hypothesis that a high carbohydrate diet
shaped lipid metabolism in offspring by investigating TGs, as
several of these are well-established markers of de novo
lipogenesis (DNL) and thus are affected by changes in
lipogenesis (Fig. 3a. Major TGs on the liver-serum axis were
also found on the serum-brain and serum-heart axes in F1N NP-
NC (control) mice. This led us to ask whether any of those
variables were routed differently according to phenotype.

Fig. 3 Switch analyses of triglyceride variables in the neonatal F1 offspring (F1N) of fathers fed a normal (NP-NC) or a low-protein, high carbohydrate
(LP-HC) diet, measured by mass spectrometry. a Traffic analysis of triglyceride variables; b, routing diagram of the switch analysis of triglyceride
(measured in positive ionisation mode) and phosphatidylcholine (measured in negative ionisation mode) variables in F1 neonatal mice re-routed from the
serum-heart in the control group to the serum-brain in the experimental group. TG and PC variables on the serum-heart axis in the control (NP-NC, blue)
group of F1Ns that are found on the serum-brain axis of the experimental (LP-HC, orange) group of F1Ns but not their serum-heart axis. The pie charts in
the insert show the number of ubiquitous lipid variables for that network, for each phenotype. Larger pie charts represent lipids found in two adjacent
compartments (B-type lipids). Smaller pie charts represent lipids found in isolated in compartments (U-type lipids). J represents the Jaccard-Tanimoto
coefficient for the comparison, with accompanying p value, as a measure of the similarity between the variables identified in the two phenotypes for each
comparison. The p value shown represents the probability that the difference between the lists of variables for the two phenotypes occurred by random
chance. Orange is used for the LP-HC group, whereas blue is used for the NP-NC group. Cer, ceramide; Chol, cholesterol; DG, diglyceride (water-loss
product from fragmentation in source); LPC, lyso-phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; LPG lyso-phosphatidylglycerol; PA, phosphatidic
acid; PC, phosphatidylcholine; PC-O, phosphatidylcholine plasmalogen; PE, phosphatidylethanolamine; PE-O, phosphatidylethanolamine plasmalogen; PG,
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TG, triglyceride.
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Specifically, it was observed that the number of TG variables
that appeared on the serum-brain axis in F1N of the LP-HC
group was both more and different to than the NP-NC group
(48:65, J 0.59, p 0.19, Fig. 3a). We therefore tested the hypothesis
that variables found in the control group serum-heart axis were
also found in the serum-brain axis of the high carbohydrate but
not control group. We plotted the presence of the appropriate
variables in the Switch Analysis as a network connections
diagram similar to those used in wiring diagrams or on the
London Underground map (Fig. 3b). This type of plot shows the
routing of the variables and is thus referred to here as a routing
diagram. This analysis showed that six variables were found to be
on the serum-heart axis of the control group but not on the
serum-brain axis of the experimental group (LP-HC). These
results implying that those variables were re-routed in this
phenotype (Fig. 3b).

In the F1 Adults, whose network included adipose tissue, we
found that all of the TG variables that appeared on the liver-serum
axis in F1A NP-NC also appeared on one or more of the serum-
cerebellum, serum-right brain, serum-heart or serum-adipose axes
for the NP-NC group (Supplementary Table S1). This suggests
that there may be control over how lipid distribution is gated
through the system. The larger number of variables found on the
serum-adipose axis in F1A adult NP-NC mice compared to LP-
HC, and the larger number of TG variables found on the serum-
cerebellum and serum-right brain axes suggested to us that TGs
were re-routed from the adipose to the CNS in F1 adults due to
the low protein, high carbohydrate paternal diet (29:36, J 0.8,
p 0.36, Fig. 4a). This was true for at least two variables, DG(33:1)
and TG(52:5) (Table S2, columns 3–5). However, this left several
variables unaccounted for. Furthermore, there was a difference in
the number of variables in the NP-NC and LP-HC groups on the
liver-serum axis (Fig. 4a). We therefore tested the hypothesis that
these seven variables were associated with different routing in the
two phenotypes. The seven variables that distinguished NP-NC
from LP-HC on the liver-serum axis of F1A (shown in pale green
cells in Table S2) were all either found in the serum-cerebellum/
right brain or serum-heart axes of the LP-HC phenotype, but not
the NP-NC phenotype. This showed that an infrastructure and set
of controls that govern the routing of lipids between tissues
(gating) exists in these systems.

Trafficking of TGs was also investigated in F2N individuals
(Fig. 4b). This analysis showed that there were a considerable
number of variables unique to the cerebellum in the NP-NC group
and not present in the LP-HC group. The network analysis used in
this study revealed that these variables were not found elsewhere
in the system. This result is remarkable because the cerebellum
does not typically use FAs for energy, raising questions about why
TGs are in the cerebellum and why they are only present in one
phenotype. 14 of the 20 TGs identified comprise FAs with an odd
number of carbons in the chain (Table S3). This result forms part
of a wider characterisation of the relationship between fats and the
CNS, with evidence for re-routing of TGs to the CNS from the
heart in the LP-HC phenotype (Figs. 3 and 4). A close or
complicated relationship of the CNS with energy supply by TGs is
counter-intuitive because the principal carbon source of the CNS
is glucose and not fat, and even under starvation conditions, only a
small proportion of the ATP used in the CNS is made from energy
released from primary metabolism of fats.

As the traffic of TGs differed between phenotypes, the
hypothesis that the traffic of lipids associated with cell structure,
such as phosphatidylcholine (PC), was associated with a LP-HC
diet in (grand)sires across F1N, F1A and F2N groups was
also tested. The results of Lipid Traffic Analysis in F1N indicated
the possibility of a re-routing of PC variables according to
phenotype (Supplementary Fig. S1A). Specifically, more PC

variables were found on the serum-brain axis in the LP-HC
group, where the opposite was the case for the serum-heart axis.
There were at least four variables that distinguished the NP-NC
serum-heart axis and the LP-HC axis, all of which also
distinguished the serum-brain axis in the LP-HC group from
the NP-NC (Fig. 3b).

In the F1A network, eight PCs were found on the serum-heart
axis in the NP-NC group that were not found on the same axis of
the LP-HC group (Fig. 5a, 56:51, J 0.83, p 0.41). A routing
diagram showed that two of these were re-routed to the CNS in
the LP-HC (e.g. PC(43:2), Fig. 5b). This analysis suggests that
several effects differentiate the two groups through the system,
including biosynthesis and transport. It also showed that the
sections of the CNS tested did not show the same shifts in
distribution according to phenotype. This showed that distribu-
tion within the CNS is also altered as well as in the periphery. For
example, we found that PC(33:4) was only found in the LP-HC
phenotype, whereas PC(42:4) was found throughout the NP-NC
phenotype but only in the LP-HC liver. This, with changes to PE
that are similar (e.g. PE(41:1), Fig. 5b), suggested that several
modulations to PC and PE metabolism associated with this
phenotype. It is also consistent with long-standing evidence that
PC and PE are used as a means for storing/transporting
polyunsaturated FAs such as arachidonic acid26.

PC traffic in the F2N network (Supplementary Fig. S1B)
was characterised by more PC variables being produced in the
control (NP-NC) group (Table S4). Seven additional variables
were found on the Liver-Serum axis of the F2N NP-NC group.
Several of these, PC(39:3, 40:4, 40:6, 41:4), were also found on the
serum-cerebellum and serum-right brain axes (Supplementary
Table S4), suggesting that the grandsires’ dietary balance
influenced the biosynthesis and distribution of phosphatidylcho-
line in F2 offspring. Full Switch analysis is shown in
Supplementary Data 1.

Abundance Analysis. Perhaps the most striking result from the
Switch analysis (vide supra) is the association of the grandsire’s
diet to the biosynthesis and gating of lipid variables from the
serum-heart axis to the serum-CNS axes. This was observed
particularly clearly with phosphatidylcholines (Figs. 3 and 5) for
F1N and F1A, with a distinct difference in the number of PC
variables trafficked to both the heart and CNS in F2N mice
(Supplementary Fig. S1). This led us to the hypothesis that there
would be a change in the abundance of the ubiquitous PCs
associated with the phenotype, i.e. the PCs found in all tissues
would have a difference in abundance between phenotypes. We
designed an Abundance Analysis to be able to test this.

Two numerical dimensions were used in the abundance
analysis. One of these describes the margin of the difference in
abundance between the two phenotypes (Eq. 1) and the other the
magnitude of the difference (error normalised fold change, Eq. 2).
In these equations �xC is the mean of values for that variable in
the control group (NP-NC), �xE is the mean of values for the
experimental group (LP-HC), ‘a’ is the standard deviation of the
values of the abundance of the given variable in the NP-NC group
and ‘b’ is the standard deviation of the values of the same variable
for the LP-HC group.

Margin change ¼ �xE � �xC ð1Þ

Error normalised fold change ¼
log10

�xE
�xC

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2ð Þ

2

q� � ð2Þ

The margin change is interpreted with a p value calculated
using a Student’s t-test (see ‘Methods’), whereas the fold change
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Fig. 4 Switch Analyses of triglyceride variables in the adult F1 (F1A) and neonatal F2 (F2N) offspring of fathers fed a normal (NP-NC) or a low-protein,
high carbohydrate (LP-HC) diet, measured by mass spectrometry in positive ionisation mode. a F1 Adults (F1A); b F2 Neonates (F2N). The pie charts in
the insert show the number of ubiquitous lipid variables for that network, for each phenotype. Larger pie charts represent triglyceride variables found in two
adjacent compartments (B-type lipids). Smaller pie charts represent triglyceride variables found in isolated in compartments (U-type lipids). J represents
the Jaccard-Tanimoto coefficient for the comparison, with accompanying p value, as a measure of the similarity between the variables identified in the two
phenotypes for each comparison. The p value shown represents the probability that the difference between the lists of variables for the two phenotypes
occurred by random chance. Orange is used for the LP-HC group whereas blue is used for the NP-NC group. Cer, ceramide; Chol, cholesterol; DG,
diglyceride (water-loss product from fragmentation in source); LPC, lyso-phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; LPG lyso-
phosphatidylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PC-O, phosphatidylcholine plasmalogen; PE, phosphatidylethanolamine; PE-O,
phosphatidylethanolamine plasmalogen; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TG, triglyceride.
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has a built-in confidence interval through a calculation of the
propagated error. The margin changes and accompanying
probabilities were used to identify the variables that describe
the difference in lipid metabolism between phenotypes. The error
normalised fold change (ENFC) was used to quantify this.

The Abundance Analysis found that PE(40:2) and (40:3) were
more abundant in the livers of the LP-HC group of F1N mice
(p= 0.0005 and 0.001, respectively). This was reflected in the

abundance pattern in F2Ns, but not F1As (ENFC, plotted in
Fig. 6a). PE(34:1) was less abundant in the livers of LP-HC F2Ns
(p= 0.0021) and PE(36:3) less abundant in the serum of LP-HC
F2Ns (p= 0.0006), however, they were in general more abundant
in the CNS of LP-HC F2Ns (ENFC plotted in Fig. 6b). Two
commonplace PC isoforms (38:1 and 38:4) were both less
abundant in the CNS of LP-HC F2Ns (p= 0.0009 (Cerebellum)
and 0.0015 (right brain) respectively), with mixed effects noted

Fig. 5 Switch Analyses of phospholipid variables in the adult F1 (F1A) offspring of sires fed a normal (NP-NC) or a low-protein, high carbohydrate (LP-
HC) diet, measured by mass spectrometry in negative ionisation mode. a All phosphatidylcholines; b network diagram showing the distribution of PE
(41:4) (dotted line), PC(42:4) (dashed line), PC(43:2) (solid line). The pie charts in the insert show the number of ubiquitous lipid variables for, for each
phenotype. Larger pie charts represent PC variables found in two adjacent compartments. Smaller pie charts represent PC variables found in isolated in
compartments. J represents the Jaccard-Tanimoto coefficient for the comparison, with accompanying p value, as a measure of the similarity between the
variables identified in the two phenotypes for each comparison. The p value shown represents the probability that the difference between the lists of
variables for the two phenotypes occurred by random chance. Orange is used for the LP-HC group whereas blue is used for the NP-NC group. LPC, lyso-
phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine; PC-O, phosphatidylcholine plasmalogen; PE,
phosphatidylethanolamine; PE-O, phosphatidylethanolamine plasmalogen; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM,
sphingomyelin; TG, triglyceride.
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for PC(30:0 and 32:2) in the same tissues (p= 0.001 and 0.002
respectively, ENFC plotted in Fig. 6b). Importantly, 38:1 and 38:4
are commonplace and typical isoforms of PC found in the CNS,
as are the PEs. When taken with the Switch Analysis results
(Figs. 3 and 5), this suggests that commonplace isoforms of PC
are rerouted away from the CNS and replaced by more recondite
ones, e.g. PC(39:2, 43:2), and PE (e.g. 36:3), in the grand-offspring
of fathers fed a high carbohydrate diet. The higher abundance of
PE(34:1) in the circulation of F2N (ENFC= 27.2, Fig. 6b) and PE
(40:2, 40:3) in the liver of F2N (ENFC= 3.1, 15.8) without a
consummate increase in the CNS suggests that despite the
difference between phenotypes, PEs(34:1, 40:2, 40:3) are handled
differently to PE(36:3) in LP-HC offspring.

It is also clear from the Switch Analysis that TGs are trafficked
differently in these two systems (Figs. 3 and 4), including
evidence for TG variables being rerouted (Fig. 3). This led us to
test the hypothesis that a higher carbohydrate diet consumed by
fathers altered de novo lipogenesis (DNL) in offspring. We
elected to use a targeted approach for testing this, using known
markers of DNL16 and reference variables not associated with

DNL. The abundance of all DNL TGs was typically much higher
in CNS tissue in the LP-HC group (Fig. S2A–C). This was
especially clear in F1A individuals (Fig. S2B), where all of the
DNL variables were much more abundant in the Right Brain of
LP-HC mice. The abundance of a dietary TG and a species made
endogenously (TG(54:4) and cholesterol, respectively) were also
higher in F1A the CNS. However, reference species not associated
with DNL, such as phospholipids were not more abundant in the
LP-HC phenotype (Fig. S2B), suggesting that the change in lipid
traffic is not restricted to DNL species only. These data are
consistent with the Switch Analysis (Figs. 3 and 4).

Discussion
This study was motivated by the hypothesis that a higher car-
bohydrate, lower protein intake in the paternal grandsire diet
influences the lipid metabolism of their offspring. Programmed
changes to DNL were expected. Detailed molecular lipid surveys
of several tissues associated with these two phenotypes (NP-NC,
control; LP-HC, experimental) were analysed using a novel

Fig. 6 Radar plots of the Error Normalised Fold Change in abundance of phosphatidylcholine and phosphatidylethanolamine lipid variables associated
with a high carbohydrate dietary intake of (grand)sires. a PE(40:2, 40:3) were identified as more abundant in F1N livers using statistical approaches, this
was followed through all generational groups; b PC and PE variables whose abundance in the CNS changes in a manner associated with the dietary
phenotype. The white areas represent the 0 point and one division above and below this. The red areas represent values more negative, and the green
areas values more positive than this. ADI, adipose; BRA, brain; CEB, cerebellum; HEA, heart; LIV, liver; RiB, right brain; SER, serum. PC, phosphatidylcholine;
PE, phosphatidylethanolamine. *Sample treated with petroleum spirit to concentrate phospholipid fraction (see ‘Methods’).
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computational/bioinformatics tool for analysing lipid metabolism
as a network (Lipid Traffic Analysis). This showed that the
number, type and abundance of lipid variables in and between
tissues differed between phenotypes and generations. The diets
were designed to test how DNL and thus metabolic activity in the
liver could be programmed. A focused characterisation of the
lipid metabolism across two succeeding generations from sires fed
in this way revealed that both triglyceride (TG) and phosphati-
dylcholine (PC) metabolism were altered throughout the network
by this nutritional programming, and over two generations.
However, the changes to lipid traffic and biosynthesis do not
appear to be restricted to species associated with DNL, suggesting
the effects are wider than those in the hypothesis.

In particular, the evidence for both TG and phospholipid
variables being re-routed to the CNS from the heart and adipose
is striking. This was observed in both F1N individuals (Fig. 3b)
and F1As (Fig. 4a). This showed that both the structural mole-
cules and molecules that supply of energy (TGs) are associated
with LP-HC programming.

The change in traffic of TGs offers evidence for changes to
metabolic control as a result of TGs crossing the blood-brain
barrier. The phenomenon of metabolic effects associated with
TGs in the CNS has been observed through central leptin and
insulin receptor resistance27, however, the variety of TGs has not
previously been described. The present study shows that TGs
associated with dietary intake are routed to the CNS in F1Ns
whose fathers ate a high carbohydrate diet (LP-HC), whereas they
are routed to the heart in a normal diet (TG(52:2, 56:4, 56:5),
Fig. 3b). This result is insightful because it shows that it is not
simply dietary intake that shapes how metabolism is organised.
These data suggest that intake shapes how lipid distribution is
organised. This in turn hints at changes in infrastructure that
offer a mechanism for possible changes in fuel uptake at the two
termini (brain, heart) between phenotypes.

The same analysis in the F2N group showed that there were 14
odd-chain-containing TGs in the CNS of the NP-NC but not LP-
HC group (Fig. 4b, Table S3), showing that changes to lipid
distribution are evident at least two generations hence. This is
strong evidence that the apparent controls over lipid distribution
are associated with parental and even grand-parental diet with
local effects some way away from the liver.

Specifically, this evidence suggests that a high carbohydrate diet
in fathers may programme their infants for insulin and leptin
resistance. Evidence to link changes to lipid processing in the
brain with metabolic disease (review28) suggests that there may be
several possible specific effects. Thus, the present study shows
that the nutritional programming associated with a non-obese
phenotype tends towards metabolic disease. Furthermore, this is
generally consistent with recent work showing that adipose
volume and morphology in non-obese individuals is associated
with metabolic disease outside of obesity29,30 (reviews31,32). This
suggests that unbalanced paternal nutrition as well as excess
nutrition can result in altered metabolism over two generations.
This is revealing because it offers a possible mechanism for
metabolic disorders in individuals with a healthy body
mass index.

As well as changes to energy storage and distribution, there is
evidence for structural change in these systems too. There are
several changes in the traffic of phospholipids that differ from
those of triglyceride variables. We have found evidence for
changes to the traffic of both PC and PE (Fig. 5). Changes to PC
traffic centre on the CNS and heart, with some striking differ-
ences in the gating of some phospholipid variables between
phenotypes. The examples shown in Fig. 5b show that the gating
of polyunsaturated and odd-chain-containing phospholipids is
altered between phenotypes. We suggest that this evidence shows

that several factors differ between phenotypes, many of which are
worthy of further investigation. First, biosynthesis in the liver is
affected. This changes the availability of these lipids for trafficking
to other parts of the system. Second, some lipids are produced in
the liver but do not appear elsewhere, suggesting that transport of
lipids from the liver into the circulation is altered between phe-
notypes. Third, the termini in which they are found (heart/CNS)
differs between feeding groups. This suggests uptake in tissues
differs between the two groups. Between them, these changes
show that a number of aspects of lipid metabolism and dis-
tribution were altered as a result of paternal dietary intake.
Further studies in this area could include an analysis of
gene expression of proteins involved in these processes, such
as transporters in the blood-brain barrier that are known to
transport polyunsaturated-fatty-acid-containing PCs into the
CNS33,34. This could also be used gain insight into the expression
of lipases that shuffle fatty acids between phospholipids35,36 and
into proteins that remove single carbons from fatty acids to give
odd-chain-containing species, such as PC(43:2), e.g. Hacl137–39.

The evidence of shifts in lipid metabolism in the abundance
analysis (Fig. 6) from the present study suggest that the chow diet
fed to F1 offspring softens some of the effects of the low protein,
high carbohydrate diet for the F2 generation. This suggests that
there is scope for a type of reprogramming. Specifically, the
pronounced increase in the abundance of PE(40:2, 40:3) in the
livers of F1N LP-HC mice is lower in the F2N LP-HC group.
Similar patterns are observed for the ENFC of SM(36:1) and TG
(48:0) between F1N and F2Ns (Fig. S2). It is not clear from the
present study precisely what causes this, however, with appro-
priate experimental design, hypotheses for programming and re-
programming could be tested. Anabolic hormones such as insulin
regulate the release and reuptake of lipids from one organ to
another4,40,41, making Traffic Analysis a powerful tool in char-
acterising the change in lipid metabolism and accumulation.
Currently, these analyses are limited to comparisons of blood
plasma or serum samples. The new method described here is
therefore capable of uncovering new biological meaning in lipid
metabolism, and relating lipids in different compartments in a
way not possible for simple comparisons.

In conclusion, this study has shown that the hypothesis that
lipid metabolism is altered in offspring as a result of unbalanced
dietary intake by grandsires is correct, however in a wider manner
than expected. The biosynthesis of both TGs and PCs is altered in
the liver, with a particular increase in TG traffic reaching the
CNS. Furthermore, it is associated with all TGs and not exclu-
sively those associated with DNL. This work shows that a non-
obesogenic high carbohydrate, low-protein diet consumed by
fathers influences lipid metabolism in offspring over at least two
generations. Specifically, the distribution of both triglycerides and
phosphatidylcholines is altered in F1 and F2 generations.

The change in supply of phospholipids is consistent with
changes in the physical behaviour in membranes of the cardio-
vascular system that are associated with cardio-metabolic disease.
A change in the supply of TGs may also be consistent with
pronounced molecular changes in the shift from fatty acid oxi-
dation to glucose metabolism associated with cardiac hyper-
trophy. These results are, therefore, important because they
suggest a molecular mechanism for the emergence of
cardio-metabolic disease.

The network approach to the analysis of lipid metabolism
reported here was essential for identifying changes in lipid
metabolism that occur across pathways (TG/PL) and with com-
ponents from different sources (endogenous/dietary), however,
further work using transcriptomics techniques is required to
understand changes to the infrastructure associated with lipid
metabolism. These and other techniques can be used to show how
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the damaging changes to lipid metabolism that have been iden-
tified can be reversed.

Methods
Materials, animals, consumables and chemicals. Purified lipids were purchased
from Avanti Polar lipids Inc. (Alabaster, Alabama, US). Solvents and fine chemicals
were purchased from SigmaAldrich (Gillingham, Dorset, UK) and not purified
further. Mice were purchased from Harlan Laboratories Ltd (Alconbury, Cam-
bridgeshire, UK). Hormones were purchased from Intervet (Milton Keynes, UK).

Animal model. All procedures were conducted in accordance with the UK Home
Office Animal (Scientific Procedures) Act 1986 and local ethics committees at
Aston University. Animals were maintained at Aston University’s biomedical
research facility as described previously2 and is shown in Fig. 1a in the context of
the present study. Briefly, entire and vasectomised 8-week old C57BL/6 males were
fed either control normal protein, normal carbohydrate diet (NP-NC; 18% casein,
21% sucrose, 42% corn starch, 10% corn oil; n= 16 entire and 8 vasectomised
males) or isocaloric low protein, high carbohydrate diet (LP-HC; 9% casein, 24%
sucrose, 49% corn starch, 10% corn oil; n= 16 entire and 8 vasectomised males) for
a period of 8–12 weeks. Diets were manufactured commercially (Special Dietary
Services Ltd; UK) and their composition described previously2.

F1 offspring generation. Virgin 8-week-old female C57BL/6 mice (n= 8 litters per
treatment) were super-ovulated by intraperitoneal injections of pregnant mare
serum gonadotrophin (1 IU) and human chorionic gonadotrophin (1 IU) 46–48 h
later. Intact NP-NC and LP-HC fed males were culled by cervical dislocation after a
minimum of 8 weeks on respective diets. Sperm were isolated from caudal epidi-
dymi of NP-NC and LP-HC sires as described2,15 and allowed to capacitate in vitro
(37 °C, 135 mM NaCl, 5 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 30 mM HEPES;
supplemented immediately before use with 10 mM lactic acid, 1 mM sodium
pyruvate, 20 mg/mL BSA, 25 mM NaHCO3). Females were artificially inseminated
12 h post human chorionic gonadotrophin injection with ~107 sperm and subse-
quently housed overnight with a vasectomized C57BL/6 male fed either NP-NC or
LP-HC diet. Females were weighed regularly (every 4–5 days) for the detection of
weight gain associated with a developing pregnancy. Four groups of offspring were
generated, termed NN (NP-NC sperm and NP-NC seminal plasma), LL (LP-HC
sperm and LP-HC seminal plasma), NL (NP-NC sperm and LP-HC seminal
plasma) and LN (LP-HC sperm and NP-NC seminal plasma). The number of
females inseminated, pregnancy rates, gestation lengths and litter parameters have
been reported2. In the current study, we focused on tissues collected from F1 and
F2 NN (NL-NC) and LL (LP-HC) groups as these provide a model for normal- and
high carbohydrate intake in humans, and in order to reduce complicating factors.

F2 offspring generation. Sixteen-week-old F1 males (n= 6 males per treatment
group; each from a different litter) were mated naturally to virgin, 8-week-old
female C57BL/6 mice acquired separately for mating with F1 males. Females were
allowed to develop to term and all dams and F2 offspring received standard chow
and water ad libitum.

Tissue collection. F1 offspring were culled by cervical dislocation at either 3
(juvenile) or 16 (adult) weeks of age, whereas all F2 offspring were culled by
cervical dislocation at 3 weeks of age. Blood samples were taken via heart puncture,
centrifuged at 8k × g (4 °C, 10 min) and the serum aliquoted and stored at −80 °C.
Liver, brain, heart and adipose were dissected, weighed, snap frozen and stored at
−80 °C.

Stock solutions.

1. GCTU. Guanidine (6 M guanidinium chloride) and thiourea (1.5 M) were
dissolved in deionised H2O together and stored at room temperature out of
direct sunlight.

2. DMT. Dichloromethane (3 parts), methanol (1 part) and triethylammonium
chloride (0.002 parts, i.e. 500 mg/L) were mixed and stored at room
temperature out of direct sunlight.

3. MS-mix. Propan-2-ol (2 parts) was mixed with methanol (1 part) and used
to produce a solution of CH3COO.NH4 (7.5 mM).

Tissue sample preparation and extraction of the lipid fraction. Whole tissue/
organ samples were prepared and extracted as described recently22. Solutions of
homogenized organ preparations were injected into a well (96 well plate, Esslab
Plate+™, 2.4 mL/well, glass-coated) followed by methanol spiked with internal
standards (150 µL, internal standards shown in Table S5), water (500 µL) and DMT
(500 µL) using a 96 channel pipette. The mixture was agitated (96 channel pipette)
before being centrifuged (3.2k × g, 2 min). A portion of the organic solution (20 µL)
was transferred to a high throughput plate (384 well, glass-coated, Esslab Plate+™)
before being dried (N2(g)). When 4 × 96 well plates had been placed in the 384 well
and the instrument was available, the dried films were re-dissolved (tert-

butylmethyl ether, 20 µL/well, and MS-mix, 80 µL/well) and the plate was heat-
sealed and queued immediately, with the first injection within 10 min.

Samples with a high concentration of triglycerides (TGs; e.g. adipose tissue)
were also treated to concentrate the phospholipid fraction so it too could be
profiled22. A second portion of the organic phase from the extraction (100 µL) of
was transferred to a shallow plate (96 well, glass-coated) before being dried (N2 (g)),
washed (hexane, 3 × 100 µL/well) and re-dissolved (DMT, 30 µL). The samples
were transferred immediately to the high throughput analytical plate as above and
dried (N2(g)).

Direct infusion mass spectrometry (DI-MS). All samples were infused into an
Exactive Orbitrap (Thermo, Hemel Hampstead, UK), using a TriVersa NanoMate
(Advion, Ithaca US), for direct infusion mass spectrometry (DI-MS21). Samples
(15 μL ea.) were sprayed at 1.2 kV in the positive ion mode. The Exactive started
acquiring data 20 s after sample aspiration began. The Exactive acquired data with
a scan rate of 1 Hz (resulting in a mass resolution of 100,000 full width at half-
maximum [fwhm] at 400m/z). The Automatic Gain Control was set to 3,000,000
and the maximum ion injection time to 50 ms. After 72 s of acquisition in positive
mode the NanoMate and the Exactive switched over to negative ionization mode,
decreasing the voltage to −1.5 kV and the maximum ion injection time to 50 ms.
The spray was maintained for another 66 s, after which the NanoMate and Exactive
switched over to negative mode with collision-induced dissociation (CID, 70 eV)
for a further 66 s. After this time, the spray was stopped and the tip discarded,
before the analysis of the next sample began. The sample plate was kept at 15 °C
throughout the acquisition. Samples were run in row order. The instrument was
operated in full scan mode from m/z 150–1200 Da.

DI-MS Data processing. The lipid signals obtained were relative abundance
(‘semi-quantitative’), with the signal intensity of each lipid expressed relative to the
total lipid signal intensity, for each individual, per mille (‰). Raw high-resolution
mass-spectrometry data were processed using XCMS (www.bioconductor.org) and
Peakpicker v 2.0 (an in-house R script21). Lists of known species (by m/z) were
used for both positive ion and negative ionisation mode (~8k species). Signals that
deviated by more than 9 ppm were discarded, as were those with a signal/noise
ratio of <3 and those pertaining to fewer than 50% of samples. The correlation of
signal intensity to concentration of the variable in QC samples (plasma, liver
homogenate, brain homogenate, milk-formula mixture42; 0.25, 0.5, 1.0×) was used
to identify which lipid signals were proportional to abundance in the sample type
and volume used (threshold for acceptance was a correlation of >0.75). Signals were
then signal corrected (divided by the sum of signals for that sample not including
internal standards), in order to be able to compare samples in a manner uncon-
founded by total lipid mass. All statistical calculations were done on these finalised
values. Annotations of the m/z signals identified are listed in Supplementary
Data 5. ‘(PW)’ refers to adipose that was washed with petroleum spirit; the data
from petrol-washed samples were used for negative ionisation mode (in which
phospholipids are measured) where untreated samples were used for positive
ionisation mode (in which triglycerides and their in-source fragmentation pro-
ducts, principally diglycerides, were measured). Lipid identification: 586 lipid
variables in positive ionisation mode and up to 564 lipid variables in negative
ionisation mode in liver, brain, heart and adipose homogenates and in serum were
putatively identified according to the Metabolomics Standards Initiative at level 2.

Lipid extraction and sample preparations for 31P NMR. The extraction of larger
sample volumes for NMR was based on a method described previously22,23. Tissue
homogenates were combined to give 5–10 mg of phospholipid per NMR sample.
The samples of serum and prepared brain tissues from all groups were pooled and
GCTU (250 µL) added to serum mixtures. Pooled solutions (5–8 mL) were diluted
(DMT, 15 mL; Falcon tube) and made uniphasic (methanol, 15 mL). The mixture
was agitated and diluted and made biphasic (dichloromethane, 10 mL) before
centrifugation (3.2k × g, 2 min). The aqueous portion and any mesophasic solid
was removed and discarded, and the organic solution dried under a flow of
nitrogen. Samples were stored at −80 °C. Samples were dissolved in a modified22

form of the ‘CUBO’ solvent system43–46 (the amount of dueteriated dimethylfor-
mamide d7-DMF was minimised). Stock solutions of the solvent consisted of
dimethylformamide (3.5 mL), d7-DMF (1.5 mL), triethylamine (1.5 mL) and
guanidinium chloride (500 mg). Wilmad® 507PP tubes were used. Sample
concentration was 5–10 mg lipids per sample (600 µL).

NMR spectrometer and probe. Lipid samples were run on a Bruker Avance Neo
800MHz spectrometer, equipped with a QCI cryoprobe probe. 1D Phosphorous
experiments were acquired using inverse gated proton decoupling. Spectra were
averaged over 1312 transients with 3882 complex points with a spectral width of
14.98 ppm. An overall recovery delay of 8.4 s was used. Data were processed using
an exponential line broadening window function of 1.5 Hz prior to zero filling to
32,768 points and Fourier transform. Data were processed and deconvoluted using
TopSpin 4.0.7. Subsequent integrations above a noise threshold of 0.01% of the
total 31P were used to establish the relative molar quantity of a given phosphorus
environment. A survey of 31P traces is in Supplementary Data 2.
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Interpretation of profiling data and preparation of final lipidomics sheets.
Dual spectroscopy22 was used to interpret lipidomics data. Specifically: 31P NMR
data of hearts and livers from all generations and both phenotypes were collected
and assigned (according to refs. 22,23,43–46) and compared and found to be much
more similar to one another than other sample types (tissues/compartments). Only
a small number of representative, pooled samples from the CNS and serum were
therefore run. One liver sample (F2N, NP-NC) was run twice, 48 h apart, to assess
degradation within the sample. It was found that a small change in the abundance
of lyso-PC was just measurable in this time, suggesting that sample preparation and
running (<72 h) was sound. One large scale petrol-wash22 was done on an adipose
sample (F1A, LP-HC). These spectra were used to check for sample degradation in
handling (e.g. appearance of PA) and inform assignments of signals measured
using DI-MS. For example, 31P NMR shows that serum has at least 50× PC more
than PE, with very little or no PS, indicating that the balance of probabilities for
assignments falls on the PC rather than the isobaric PE (positive ionisation mode)
or PS (negative ionisation mode) isoform. These spectra were also used to interpret
the difference in ionisation efficiency between species. These data show that the
ionisation efficiency of lyso-PC and lyso-PE are both very high in negative ioni-
sation mode, where that of sphingomyelin is under-represented in both
ionisation modes.

Statistics and reproducibility. Univariate and bivariate statistical calculations
were made using Microsoft Excel 2016, as were calculations of Eqs. 1 and 2. Graphs
were prepared in OriginLab 2018 or Excel 2016 from mean (including Eq. 1) and
standard deviation or error-normalised fold change (Eq. 2) as appropriate. Equa-
tions 1 and 2 were generated de novo in the present study. Jaccard-Tanimoto
Coefficients (JTCs) were used as a non-parametric measure of the distinctions
between lipid variables associated with phenotype(s)24,25. The associated p values
were calculated following Rahman et al.47. The p value associated with each J
represents the probability that the difference between the lists of variables for the
two phenotypes occurred by random chance and should not be confused with
p values from the Student’s t-test. The p values that are associated with the Stu-
dent’s t-tests (Abundance Analyses) were interpreted using a corrected p value of
0.0021 based on 586 dependent variables40 as only variables in positive ionisation
mode were used. Only lipid variables with a p value below this and that were
relevant to the hypothesis were used.

Lipid traffic analysis. The tissues used were mapped to the known biological/
metabolic network (Fig. 1b). Lipid variables in each compartment (lipid station)
were categorised according to whether they are unique to it (U type lipids), shared
with one adjacent to it (B type lipids, uni- and bidirectional) or found in all
compartments (A type lipids), as shown in Fig. 2a. The full switch analysis is shown
in Supplementary Data 1 and code in S3. Dimensions for the abundance analysis
were calculated using Eqs. 1 and 2 (vide supra). Variables were regarded as present
if they had a signal strength >0 in ≥50% of samples of either phenotype group. The
full abundance analysis is shown in Supplementary Data 4.

Novel code for the binary traffic analysis (for the switch analysis) and multinary
traffic analysis (abundance analysis) was written in R (v3.6.x) and processed in
RStudio (v1.2.5x). The full code (Lipid Traffic Analysis v1.0) can be found in the
Supplementary Information. Briefly, MS signals data in Excel-readable *.csv format
was uploaded with removal of the metadata (organ, extraction, plate location,
enumeration of mass/charge ratios [m/z]), giving n (rows of observations) versus p
(columns of lipids) of signal data. Layered functions were used to identify which
variables were present in all (A), adjacent (B) or single (U) compartments.

For each observation, the detection of the signal data commenced initially with
FALSE representing no lipid signal (NA) and TRUE representing abundance of a
lipid (above a signal threshold). For a particular compartment (tissue/pool/station),
all observations were sampled into a single binary vector of presence and absences.
The detection was performed using non-redundant lipid names. The function
Reduce(intersect, list (…)) represented the common lipids for a given axis.
Matched lipids were obtained across each pool to identify the common
intersection, SetA(All). Positive and negative ionisation mode mass spectrometry
data were run in blocks in series. The lists of lipids for the NP-NC and LP-HC
groups were processed for the common intersection giving SetA (A, ubiquitous
lipid variables), SetB (B, lipid variables found in two adjacent compartments) and
SetU (U, unique, for lipid variables found in one compartment but not its
neighbours).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full switch analysis of all generation groups used in this study is show in
Supplementary Data 1. The NMR data acquired in the study is included in
Supplementary Data 2. The full abundance analysis is shown in Supplementary Data 4.
The MS dataset generated in the present study is available from the corresponding author
on reasonable request, with annotations of signals shown in Supplementary Data 5.

Code availability
The novel R code developed in the present study is in Supplementary Data 3 and is
available publicly available through Zenodo48 and BioRxiv49.
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