
 
Statistical point cloud model to investigate measurement 
uncertainty in coordinate metrology 
 
N. Senin1,2*, S. Catalucci1, M. Moretti2 and R.K. Leach1 
 

1Manufacturing Metrology Team, Faculty of Engineering, University of Nottingham, UK 
2Department of Engineering, University of Perugia, Perugia, Italy 
*nicola.senin@nottingham.ac.uk 
 
 
Abstract 
 
In this work an approach to investigate measurement uncertainty in coordinate metrology is presented, 
based on fitting Gaussian random fields to high-density point clouds produced by measurement repeats. 
The fitted field delivers a depiction of the spatial distribution of random measurement error over a part 
geometry, and can incorporate local bias information through further measurement or with the use of an 
external model to obtain a complete, spatial uncertainty map. The statistical model also allows the 
application of Monte Carlo simulation to investigate how error propagates through the data processing 
pipeline ultimately affecting the determination of features of size and the verification of conformance to 
specifications. The proposed approach is validated through application to simulated test cases involving 
known measurement error, and then applied to a real part, measured with optical and contact 
technologies. The results indicate the usefulness of the approach to estimate measurement uncertainty 
and to investigate performance and behaviour of measurement solutions applied to the inspection and 
verification of industrial parts. The approach paves the way for the implementation of automated 
measurement systems capable of self-assessment of measurement performance.  
 

1. Introduction 
 
Despite optical coordinate measuring systems (CMSs) being commercially available for at least two 
decades, there is still not a complete framework for their calibration and verification. The optics 
manufacturing industries have well-established calibration infrastructures for optical measurements of 
surface form, albeit for very specific surface types [1]. However, these infrastructures are less developed 
for many precision manufacturing industries that rely on machining of complex surface geometries [2,3]. 
Highly complex freeform geometries, as found for example in the automotive, aerospace and medical 
parts industries, mean that many of the established calibration techniques for optical surface 
measurements may not be directly relevant. In addition, with the industrial uptake of additive 
manufacturing techniques, the complexity of the resulting geometries is leading to new measurement 
challenges [4,5].  

When manufacturing complex surfaces, industrial instrument users rely on well-established techniques 
to demonstrate that a process is under control and that the response of an instrument is not changing 
significantly with time. Examples found in common practice include statistical process control [6], gauge 
R&R studies [7] and measurement system analysis [8]. Whilst these approaches are mature and clearly 
allow manufacturing to continue and advance, they do not lead to a culture of uncertainty estimation in 
manufacturing and, hence, tolerancing of complex surfaces is difficult and geometrical product 
specification principles cannot always be applied.  

Looking from a different perspective, it is commonplace in many manufacturing industries to hear users 
expressing alarm about the incompatibility of optical instruments with contact methods for coordinate 
metrology, and these concerns are often borne out in comparisons (for example, [9–11]). In many cases, 
the difference between the results from optical and contact instruments can be explained after critical 
assessment of the measurement conditions and sample geometries [12]), but there is still an undercurrent 
of concern in some industries. 

It is a difficult task to estimate the uncertainty for a CMS measurement from first principles, even for 
measurement of a simple prismatic component, for example a smooth sphere. The large number of 
influence factors and complex nature of CMS probing strategies mean that, in many cases, an analytical 



expression for the measurement model cannot easily be found. For this reason, ISO Technical Committee 
213 working group 10 have developed a number of strategies for uncertainty estimation, at least for 
contact CMS [13]. Strategies for non-contact CMSs remain an open research area, although there has 
been some recent work highlighting the issues [5,14–17]. 

As with measurement uncertainty, traceability of measurements carried out by CMSs is difficult to 
demonstrate. It used to be the case that the only way to demonstrate traceability was to carry out ISO 
10360-type performance verification tests on the CMS. However, if a CMS is performance-verified, this 
does not automatically mean that measurements carried out with this CMS are calibrated and/or 
traceable. A performance verification only demonstrates that the machine meets its specification for 
measuring simple lengths, i.e. it is not task specific. ISO Technical Committee 213 Working Group 10 
is still developing a part that addresses the performance verification of optical CMS (ISO 10360 part 13 
(2020) [18]). Due to the current lack of a published ISO standards in this area, the German VDI/VDE 
2634 part 3 (2011) [19] guideline is often used in practice for performance verification of optical CMS.  

A better method to achieve at least a degree of traceability is described in ISO 15530 part 3 (2011) [20]. 
This specification standard makes use of calibrated artefacts to essentially use the CMS as a comparator. 
The uncertainty evaluation is based on a sequence of measurements on a calibrated object or objects, 
performed in the same way and under the same conditions as the actual measurements (this is known as 
the “substitution method”). The differences between the results obtained from the measurement of the 
objects and the known calibration values of these calibrated objects are used to estimate the uncertainty 
of the measurements. As an example, if an external dimension needs to be measured, a calibrated length 
bar of similar length can be mounted adjacent to the object being measured, and the measurement carried 
out as a comparison while assuming certain similarity conditions are applied (for example, similar 
materials, thermal expansion coefficients, surface conditions and measurement conditions). This ensures 
that many of the systematic influence factors are common to both measurements and, therefore, reduced 
combined uncertainty. Uncertainty estimations for CMSs using the substitution method are not usually 
performed on complex parts due the difficulty and expense of developing a calibrated artefact to compare 
with the workpiece. 

Alternative methods can be used to determine the task-specific uncertainty of coordinate measurements. 
One such method, that evaluates the uncertainty by Monte Carlo methods, is described in ISO/TS 15530 
part 4 (2008) [21]. To allow CMS users to easily create uncertainty statements, CMS suppliers and other 
third-party companies have developed uncertainty-evaluating software, also known as “virtual CMMs” 
[22,23], but such software is only available for contact probes. Determination of measurement 
uncertainty using a virtual CMS is carried out by performing repeated simulated measurements with 
varying inputs (influence quantities) on a simulated CMS and determining how those inputs affect the 
measurand. The software determines the variability that will occur with the physical CMS measurements 
with a modelling of the uncertainty contributions for each point measured by the CMS. Known 
systematic uncertainty contributions remain determined by their influencing factors, e.g. temperature, 
while unknown systematic and random contributions are varied in each simulated measurement 
throughout their ranges. This simulation is repeated a significant number of times until a statistical 
evaluation of these virtual measurements is made, and the expanded uncertainty is reported.  

It is relatively simple to understand and model the physical interaction of a contact probe tip with a 
surface, but it not so simple to model the equivalent optical interaction, and this is a significant part of 
the uncertainty problem [24]. There has been some recent activity on modelling optical systems with 
virtual instruments in mind [16,17,25], but there is still a lot to do and the issues are not yet under 
development in ISO Technical Committee 213 Working Group 10. 

Most current technologies for the inspection and verification of form are centred around the measurement 
and manipulation of point cloud surface data. Tactile CMSs sample surfaces at specific locations using 
contact probes, optical CMSs are typically capable of high-density point-based sampling of surfaces 
within line-of-sight [26]. X-ray computed tomography performs volumetric sampling of density, but 
surfaces can be extracted via thresholding and often sampled into point-based representations [27]. When 
dealing with measurement uncertainty, the central role of point cloud surface data is often overlooked. 
However, clearly each digital point is the result of a chain of events and physical phenomena that define 
the measurement process and which result in some form of associated positional uncertainty (i.e. 
uncertainty on where the point should be actually located in absence of measurement error). Analogously, 
any dimensional or geometric assessment deriving from point cloud analysis and manipulation should 
be associated to an uncertainty that comes from the propagation of point positional uncertainty and 
additional error sources introduced by the processing methods and algorithms. A proper reconstruction 
of the chain of events that lead to the propagation of point positional uncertainty into a final 



inspection/verification result, for example the assessment of a dimension, or a tolerance interval, would 
play a relevant role towards a better understanding of measurement error in industrial metrology.  

Point positional uncertainty has been addressed by multiple authors in different scientific contexts. For 
example, Pauly et al. [28] consider the problem of surface reconstruction from a point cloud, assuming 
the point cloud as a finite set of noisy samples that provide incomplete information about the underlying 
surface. To capture uncertainty about the surface, they introduce a statistical representation that 
quantifies for each point in space the likelihood that a surface fitting the data passes through that point. 
This likelihood map is constructed by aggregating local linear extrapolators computed from weighted 
least-squares fits. The quality of fit of these extrapolators is combined into a corresponding confidence 
map that quantifies the quality of local tangent estimates. The relationship between measurement 
uncertainty and fitting has been investigated also by Forbes et al. [29–31] as a means to determine the 
uncertainty in the characterisation of form error. The variability in point clouds has been investigated in 
relation to discrete, point-based skin models in the field of geometric tolerancing [32–34]. A skin model 
is a surface model capable of representing geometric variability across manufactured instances of the 
same part. Both deviations of point placement in three-dimensions have been investigated [32] and 
deviations defined in the direction of the local surface normal [33], combined with the use of Markov 
chains Monte Carlo, Gaussian random fields (GRFs) and other methods from statistical shape analysis 
[34]. 

Univariate random variables associated with local surface normals have also been explored [35], in this 
case specifically as a means to address measurement uncertainty in surface topography measurement, 
and not variability across surface instances. Random variables may be defined as independent between 
points. Alternatively, spatial dependency can be captured by modelling co-variance, as carried out for 
discrete skin models [32]. Statistical point cloud models dedicated to addressing measurement 
uncertainty can be built by aggregating repeat measurements, or by fitting an individual measurement 
(single point cloud), as long as specific assumptions are made. For example, Evans [36] has demonstrated 
how standard deviation maps computed from repeated height observations can be propagated into the 
assessment of peak-to-valley form error for a flat surface, using Monte Carlo simulation. Standard 
deviation maps obtained from measurement repeats are also useful for calibration and more general tasks 
related to uncertainty assessment [1,37]. A statistical model from measurement repeats has also been 
obtained from a focus variation measurement of surface topography, by fitting the measured point cloud 
to a Gaussian field using a shift-invariant model for covariance defined using a covariogram [38]. The 
use of spatial statistics based on Gaussian fields, in particular kriging, has been investigated [39], where 
a method to directly derive form error from the kriging model was presented, and the relationships with 
point-based sampling investigated. More recently, kriging models have been used to estimate uncertainty 
and calibrate non-contact CMSs [40].  

Several other approaches have been presented in the literature revolving around representing point 
location error as a 3D ellipsoid. For example, Ozendi et al. [41] propose a model to determine the error 
ellipsoid of single points in terrestrial laser triangulation as a means to assess measurement precision. 
Terrestrial laser triangulation is also addressed by Chen et al. [42], where point positioning error is again 
represented as a 3D ellipsoid, assuming a Gaussian distribution and using covariance to capture 
dependencies amongst points. Overlapping ellipsoids belonging to neighbouring points could be merged 
into a single volume representing the random error of the entire cloud (i.e. precision). Single point error 
ellipsoids are also used by Du et al. [43,44] to model measurement uncertainty in laser radar measurement 
systems. Once the ellipsoid has been estimated for each point, error propagation through datum fitting 
processes can be investigated. 

This work is organised as follows:   

- in the materials and methods section, first we present a method to aggregate measurement repeats 
(point clouds) in order to build a statistical model representing the random component of positional 
uncertainty of the measured points. The statistical model is comprised of a Gaussian random field 
(GRF) and a vector field that maps the GRF to any three-dimensional geometry; 

- we show that the statistical model can be used to obtain spatial maps of random error associated with 
the points of any point cloud, and can also be used to estimate the random error component associated 
with linear dimensions computed, starting from the point cloud;  

- we illustrate how a separately sourced spatial map of bias can be combined with the statistical model, 
in order to achieve a more comprehensive map of positional uncertainty associated with a point cloud. 
Two possible ways to obtain a bias map are discussed: through a separate set of more accurate 
measurements of the same part, or through the use of a mathematical model capable of predicting 
local bias, assuming such a model is available;  



- we introduce a validation method that is exclusively dedicated to assessing accuracy and precision of 
the proposed method in the estimation of the random component associated to linear dimensions. The 
validation method fully relies on simulation so that estimates can be compared against known 
references and performance can be assessed in a quantitative way. This validation method does not 
address bias; 

- in the results section, first we illustrate results of the validation method applied to two simulated test 
cases. We replicate a scenario where a few measurement repeats are available from a test part, and 
we compare the random error component on linear dimensions as assessed by using solely the repeats, 
against using the statistical model fitted to the same repeats. We show that the use of the statistical 
model leads to improved accuracy and precision in the estimation of the random error compoment 
associated with linear dimensions. As stated earlier, this validation does not address bias; 

- through the use of a real test case (optical and contact measurement of a real part) we demonstrate 
the use of the statistical model in a scenario where a separate estimate for bias can be constructed 
from a set of more accurate measurement repeats, and aggregated to the random error component 
estimated by our statistical model. The use of such an approach is discussed in research laboratory 
scenarios where the goal is to investigate performance and behaviour of coordinate measuring 
systems.  

The main challenges and open issues in relation to the proposed approach are illustrated in the discussion, 
and a summary of our findings is reported in the conclusions, in particular addressing what role the 
proposed method can have in the broader problem of investigating measurement uncertainty. 

2. Materials and methods 
 
In this work, we consider high-density point clouds existing in a 3D Cartesian space and obtained by 
measurement. We address the mathematical representation of positional uncertainty of each point in the 
point cloud, where positional uncertainty is referred to a lack of knowledge of where each point of the 
cloud is located in space, with respect to where it should be assuming an ideal measurement (i.e. with an 
absence of measurement error). In the following, lack of knowledge of point position is assumed as solely 
caused by the measurement error. However, our model could be adapted to handle uncertainty in where 
the measured surface is located, which would be due to manufacturing error.  
 
2.1. One-dimensional model of point positional uncertainty 
 
Whilst positional uncertainty may be defined in 3D around each point [41,43,44] (Figure 1.a), in our 
approach, we consider the positional uncertainty of each point as a scalar quantity measured along a 
specific directional vector, normal to the local orientation of the surface from which the point has been 
measured (Figure 1.b), similar to that reported elsewhere [33,35].  

 
Figure	 1.	 Models	 of	 positional	 uncertainty	 for	 points	 belonging	 to	 a	 measured	 point	 cloud.	 A)	 3D	 model	
(uncertainty	on	the	position	of	a	point	is	defined	in	vector	form,	with	components	along	all	three	Cartesian	axes;	
b)	one-dimensional	model:	uncertainty	modelled	as	a	scalar	value,	directed	along	the	surface	local	normal.		

The choice of modelling positional uncertainty as a scalar value directed along the local normal is driven 
by the observation that in planar datum fitting, point displacements orthogonal to the plane influence the 
fitting result more than displacements on the plane. This consideration specifically applies to high-
density sampling. On the contrary, if the point cloud was low-density, for example as measured by a 
conventional contact CMS, then fewer points would be used to fit each geometric entity, and the position 
of individual points, as measured in all directions, would typically be more relevant for dimensional and 
geometric inspection and verification. 
 
In this work, under the assumption that the relevant positional deviation of each point is the one measured 
orthogonally to the local surface fitted through that point, positional uncertainty can be expressed as a 

a) b)



unidimensional interval, and the distance of each real point with respect to its ideal counterpart (i.e. that 
obtained with no measurement error) can be expressed by a scalar value.  
 
2.2. Using a discrete, Gaussian random field (GRF) to represent positional uncertainty 
 
The distance of each measured point to its ideal positional counterpart (a scalar value) can be modelled 
by a unidimensional random variable. Given a point cloud comprised of N points, N random variables 
are needed, forming a finite and countable set. As these random variables are associated to points in 
space with finite spacing from each other, they can be modelled as a (discrete) random field. In our 
formulation (Figure 2), each random variable 𝑍" in the random field (where i is the index of the point in 
the cloud) is associated with an origin point 𝒐"  and to a directional vector (represented by the local 
surface normal 𝒏") that defines a local coordinate system (𝑧&'(). The purpose of 𝒐" and 𝒏" is to map the 
scalar value of the random variable into a one-dimensional interval aligned to the direction along which 
the positional uncertainty of each point is supposed to be captured.  
 
The origin point 𝒐" acts as the location of the random variable in the 3D Cartesian space, and is also 
needed to set a reference zero (𝑧&'( = 0) in the local coordinate system. Note that the position of the 
origin point 𝒐"  along the local normal is not necessarily meant to represent the result of an ideal 
measurement (i.e. a measurement with no error), a concept which will be discussed later in this section.  

 
Figure	2.	The	ith	variable	𝑍"	of	the	random	field	is	associated	to	the	point	𝒑"	of	the	cloud.	The	random	scalar	value	
is	mapped	to	the	three-dimensional	point	cloud	space	through	an	origin	point	𝒐"	(location)	and	an	orientation	
vector	defined	by	the	local	normal	𝒏" .	

 
The discrete random field considered in this work is assumed Gaussian. In a GRF, each random variable 
is defined by a normal distribution (and hence is fully defined by its first and second order moments – 
mean and variance), and each subset of M random variables extracted from the field of N variables is 
also defined by a normal, multivariate (i.e. M-dimensional) joint probability distribution.  
 
A Gaussian discrete random field of N variables {𝑍-, 𝑍/,⋯ , 𝑍1} is fully defined by a vector of mean 
values 𝛍 (i.e. first order moments) and a matrix 𝐊 of covariance values (i.e. second order moments) 
covering all the pairwise associations between variables belonging to the field, that is: 
 

𝛍 = {𝜇-, 𝜇/,⋯ , 𝜇1},  𝐊 = 6
	𝑘-,- ⋯ 	𝑘-,1
⋮ ⋱ ⋮

	𝑘1,- ⋯ 	𝑘1,1
; (1) 

 
where 𝜇- is the mean of 𝑍", 	𝑘",< is the covariance of the pair 𝑍", 𝑍< and	𝑘"," is the variance of 𝑍". The 
random field 𝒁(𝛍, 𝐊) can be associated to a point cloud of N points: {𝒑-, 𝒑/,⋯ , 𝒑1} and local normals 
{𝒏-, 𝒏/,⋯ , 𝒏1} through a series of origin points {𝒐-, 𝒐/,⋯ , 𝒐1} to set the zeros of the random variables.  
 
Using the above formal representation, local positional uncertainty is described as a scalar quantity, but 
mapped to a vector field that defines its position and orientation in space. In other words, the local 
normals {𝒏-, 𝒏/,⋯ , 𝒏1} and the origin points {𝒐-, 𝒐/,⋯ , 𝒐1} establish a spatial mapping between the 
scalar random field, representing local height (𝑍) as random variables over a flat space, and a full 3D 
surface defined by a series of points and their local normals. Notably, the set {𝒐", 𝒏"}	∀𝑖	 ∈ {1,⋯ ,𝑁}	is, 
therefore, the vector field which allows mapping of a GRF of scalar quantities into the fully three-
dimensional space of the part.  
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Local orientation in space does not influence the definition of the random field, so long as the first and 
second order moments for the random variables are fully defined. It is important to point out that the 
same formulation can be adopted for very different geometric datasets, ranging from height/elevation 
maps (all heights defined along a single direction - Figure 3.a) to full 3D point clouds or vertex meshes 
(Figure 3.b) where local heights are arbitrarily oriented in space.  
 

 
 

Figure	 3.	 The	 proposed	 formulation	 of	 discrete	 random	 field	 and	 its	 spatial	 mapping	 to	 three-dimensional	
Cartesian	space	allows	for	adopting	the	same	formulation	for	a)	height	maps	and	b)	 fully	three-dimensional	
point	clouds.		

 
2.3. Challenges of fitting the random field 
 
For a fully defined GRF containing N random variables, N first order moments (mean values, i.e. the 
vector 𝛍) and N × N  second order moments (covariance values, i.e. the matrix 𝐊) must be known 
(however, consider that 𝐊 is symmetric, so 𝑘",< = 𝑘<,"). If only one point cloud is available, we only have 
one observation (point) for each random variable. Since such observational data is insufficient to fully 
determine the mean vector 𝛍 and covariance matrix 𝐊, some assumptions must be made on the nature of 
mean and covariance to simplify the problem. Typical assumptions, in particular from the literature on 
Gaussian processes [45,46], resort to the concept of shift-invariance, i.e. the mean and variance are 
considered independent of position in space, and covariance is considered only dependent on the relative 
distance between the random variables [45]. Shift-invariance implies constant mean and variance, and 
covariance defined using kernel functions that are only dependent on the relative distance between each 
pair of variables, for example the squared exponential or a Matérn kernel [47]. The assumption of shift-
invariance reduces the unknowns in the fitting problem, which can be solved, for example, via maximum 
likelihood estimation [45]. However, shift-invariance typically implies that the local properties of the 
field are the same everywhere (in particular, all the random variables have the same mean and same 
variance); this is clearly contrasting with previous experimental observations obtained by performing 
repeat measurements of the same surface [35,48] that, for example, showed that the local scatter of height 
values (related to local variance) depends on local geometric properties of the measured surface, i.e. they 
are not shift-invariant.  
 
Another option adopted for fitting the random field is to consider all the random variables of the field as 
independent, which removes the need to solve the full covariance matrix, and reduces the fitting problem 
to a determination of the mean vector 𝛍 and the variance terms 𝑘","  in the principal diagonal of the 
covariance matrix 𝐊 (other covariance terms being zero). This means that each random variable can be 
estimated separately, starting from its first and second order moments, by simply using the observations 
available at each location as, for example, in previous work [35].  
 
2.4. Proposed approach for fitting the GRF 
 
In this work, as opposed to assuming shift-invariance, we rely on having repeat measurements as a source 
of additional information to solve the fitting problem. The overarching idea is that multiple point clouds 
obtained from the same surface result in multiple observations for any given location (Figure 3.a), i.e. 
more observations to attempt a direct estimation of the vector of means from the available samples, and 
of the covariance matrix from sample covariance.  
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For practical purposes, despite the high density of points, neither the existence of multiple points in 
correspondence to the same normal nor the alignment of local normals from different clouds can be 
expected (Figure 3.b). Hence, to achieve a result similar to that shown in Figure 3.a, we propose the 
following procedure: 
 
• we rely on the availability of a CAD model (for example, a triangle mesh) to drive the alignment of 

the point clouds;  
 
• we use one of the point clouds as the reference to define the resampling locations (i.e. the locations 

at which the GRF is defined) and the local normal;  
 
• we resample the other clouds at the intersections with the local normal to the reference point cloud, 

using linear interpolation on the other clouds (Figure 3.c); and 
 

• the intersection of the local normal with the CAD surface defines the origin point to which the local 
𝑧 values of each random variable are referred. 

 
Using this procedure, as many observations as the number of available measurement repeats are obtained 
for each random variable (Figure 3.d).  
 
 

 
	

Figure	4.	How	the	measurement	repeats	are	used	to	create	observations	 for	each	random	variable	𝑍"	(in	the	
example,	 portions	 of	 three	 point	 clouds	 are	 shown,	 the	 points	 of	 each	 cloud	 rendered	 as	 connected	 by	 an	
imaginary,	dotted	line);	a)	ideal	scenario:	at	any	given	location,	observations	from	multiple	clouds	are	natively	
available	and	all	share	the	same	local	normal;	b)	real	scenario:	points	from	different	repeats	will	not	be	aligned	
at	shared	locations,	and	each	point	may	have	a	potentially	different	normal	if	computed	using	neighbours	in	the	
same	cloud;	c)	proposed	solution:	the	points	of	one	cloud	act	as	reference	locations	(e.g.	𝒑");	the	local	normal	
computed	for	𝒑"	(e.g.	𝒏")	is	used	as	reference	direction;	the	other	point	clouds	are	resampled	by	interpolation	at	
the	intersections	with	the	local	normal;	the	intersection	of	the	local	normal	with	the	CAD	surface	is	assumed	as	
the	origin	point	𝒐";	d)	the	computation	produces	multiple	observations	for	the	𝑍"	random	variable	in	its	local	
coordinate	system	𝑧&'(	(the	entire	process	is	repeated	for	each	point	of	the	reference	point	cloud).	

 
Clearly, in the proposed procedure, a) the choice of one of the clouds as localisation and orientation 
reference introduces an element of arbitrariness, as any other cloud could be used, including any other 
reference set, for example, sampled directly from the CAD surfaces; b) using points from the CAD 
surface as origin points does indeed convert all the other points into distances from the nominal surface, 
but one should be careful not to mistake such distances as measurement error, as there is no information 
on how much the local, real surface deviates from the nominal one (more on this later in this section).  
 
Regardless of the above considerations, after resampling is performed on R measurement repeats (point 
clouds), R observations 𝑧",E,			∀𝑟	𝜖	{1,⋯ , 𝑅}  are available for each random variable 𝑍" . These 
observations are referred to a local origin point 𝒐i (𝑧&'( = 0) on the CAD surface, and act as a random 
sample to describe 𝑍", and there are as many samples as the number N of random variables in the GRF.  
 
In this situation, each sample mean: 
 

𝑧"̅ =
∑ 𝑧",EL
EM-

𝑅  (2) 
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can be used as an estimator of the corresponding population mean 𝜇" in the vector 𝛍. However, let us 
consider the covariance matrix 𝐒 of the sample, defined by the terms 𝑠",< for the pair of random variables 
𝑍", 𝑍<, i.e.  
 

𝑠",< =
∑ PQR,STQ̅RUV
SWX ∙PQZ,STQ̅ZU

L
. (3) 

 
Unfortunately, the covariance matrix 𝐒 of the sample is not a good estimator for the covariance matrix 
𝐊 of the GRF (i.e. each sample covariance term 	𝑠",< is not a good estimator of the population covariance 
term 	𝑘",<) because the number of dimensions in the random variables (i.e. the number of points N in the 
field) is much larger than the number of observations R available for each point (i.e. the number of 
repeats). Several different approaches can be adopted to estimate 𝐊. In this work, we use the oracle 
shrinkage approximating estimator of the covariance, as detailed elsewhere [49].  
 
 
2.5. Using the statistical model to investigate the spatial distribution of random 

measurement error in relation to a specific test part 
 
The first use of the statistical model is to investigate how random measurement error is spatially 
distributed on the different surfaces of a part. A simplified representation of the type of information that 
can be obtained is illustrated in Figure 5. 
 

  

a) b) 
 
Figure	5.	 Schema	of	 the	 type	of	 information	which	 can	be	obtained	 from	 the	use	 of	 the	proposed	 statistical	
modelling	approach	(simplified	in	two-dimensions);	a)	original	measurement	repeats	(point	clouds,	each	repeat	
is	shown	in	a	different	colour)	in	relation	to	the	associated	CAD	model	of	the	part	(gray);	b)	spatial	map	of	the	
mean	(red	line)	and	variance	(yellow	band)	of	the	statistical	model	fitted	on	the	point	clouds.	The	yellow	band	is	
an	interpolation	of	 local	±3𝜎	values	computed	on	the	marginal	probability	distributions	of	the	local	random	
variables	of	the	GRF.	

As shown in Figure 5, spatial maps can be obtained, representing the mean function and the variance as 
estimated by the statistical model. Variance describes local scatter of the measurement orthogonal to the 
underlying surface lay; the estimation takes into account any spatial dependency which may exist 
between neighbouring measured points because of how the GRF is defined. The mean function indicates 
central tendency of the measurement, i.e. the most frequent localisation of the point cloud with respect 
to any specific surface region on the underlying CAD model. The interpretation of central tendency is 
particularly critical, because any non-zero displacement of the mean function with respect to the 
underlying CAD surface may be due to either measurement bias, or the real part being different from the 
nominal model (manufacturing error) or, most commonly, due to both aspects. Further discrimination is 
not possible because the statistical model is based on measurement repeats and, therefore, it cannot 
capture any error component that is invariant across repeats.  
 
An analysis such as that illustrated in Figure 5 may be useful in the routine inspection of manufactured 
parts in a production scenario, as long as the execution of measurement repeats is viable, and as long as 
the interest is to characterise random error components visible across repeats. We believe that such an 
analysis would probably be more useful in research laboratory scenarios where the goal is to perform a 
more detailed investigation of the metrological performance and behaviour of coordinate measuring 
systems/measurement technologies applied to specific types of geometries, materials, aspect ratios, etc.  
 
 



2.6. Generating new point clouds from realisations of the random field 
 
Another use of the proposed statistical modelling approach is to generate new “virtual” point clouds. 
Once the GRF has been fitted, a new realisation of the random field, also referred to as a new observation, 
is a new set of values for all the random variables in the field, i.e. {z-, z/, … , z1}. These scalar values can 
be mapped back into 3D space to generate a new point cloud. The new realisations of the random field 
can be obtained by applying the Cholesky decomposition on the covariance matrix 𝐊. The Cholesky 
decomposition of 𝐊 (assumed Hermitian, positive-definite) leads to a lower triangular matrix 𝐋 so that:  
 
𝐊 = 𝐋𝐋∗ (4) 

 
where 𝐋∗ is the conjugate transpose of 𝐋. Assuming 𝐊 is symmetric (which is the case for the variance-
covariance matrix), then 𝐋∗ is simply 𝐋𝐓, and because 𝐊 is real-valued, 𝐋 is also real. Then, each scalar 
value 𝑧",cde representing a component of the new realisation of the field, can be obtained as: 
 
𝑧",cde = 	𝜇" + 𝑁(0,1)𝐋 (5) 

 
where 𝜇" is the ith entry in the vector of means 𝛍 and 𝑁(0,1) is a new observation drawn from a standard 
normal (zero mean and unit variance).  
 
Once all of the 𝑧",cde  values have been obtained, the new point cloud, constructed from points 	
g𝒑-,cde, 𝒑/,cde,⋯ , 𝒑1,cdeh, can be obtained by mapping each 𝑧",cde value back into the 3D space of the 
point cloud, i.e: 
 
𝒑",cde = 	𝒐" + 𝑧",cde ∙ 𝒏" (6) 

 
where 𝒐" is the ith local origin point and 𝒏" is the local normal, as previously defined in Section 2.2.  
 
2.7. Assessing the uncertainty associated with results of a point cloud processing 

pipeline using Monte Carlo simulation 
 
Once the GRF is fitted, an arbitrary number of new observations can be generated from it, to study error 
propagation in point cloud processing using Monte Carlo methods. The procedure is summarised in 
Figure 6. A typical point cloud processing pipeline for inspection and verification in coordinate 
metrology consists primarily of segmentation of the point cloud and fitting of different segments (subsets 
of neighbouring points) to datum surfaces. Geometric datums are then used to infer geometric properties 
related to distance, length, parallelism, concentricity, etc. [13]. In a Monte Carlo simulation, the same 
data processing pipeline can be applied to the new observations (point clouds) generated by the GRF 
(Figure 6), and any intermediate or final scalar result from the pipeline can be sampled from repeats into 
a probability distribution, which can later be assessed for central tendency and dispersion. The same 
approach may be identically applied to a final result of the characterisation (for example, an Euclidean 
distance between two surfaces), or to any intermediate result (for example, the direction cosines of a 
datum plane fitted to a specific segment of a point cloud).  



 
Figure	6.	Overview	of	the	process	for	error	estimation	of	an	example	attribute	of	size,	via	Monte	Carlo	simulation	
and	GRF	(the	GRF	is	used	to	generate	the	measurement	repeats	-	point	clouds).		

When the goal is the characterisation of surface texture, the same approach can be applied, as there will 
be a dedicated pipeline consisting of form removal, band-pass filtering and computation of texture 
parameters. Again any scalar quantity that can be extracted from the pipeline could be subjected to 
statistical characterisation by running Monte Carlo simulations using new realisations generated by a 
fitted GRF. 
 
Clearly, simple statistics of the selected characterisation results could also be obtained by applying the 
point cloud processing pipeline only to the available measurement repeats. However, the results would 
evidently suffer from the small sample sizes. Measurement is costly and resource intensive compared to 
obtaining point clouds by simulation; the purpose of the developed statistical model is to allow for the 
generation of new virtual point clouds that are more faithful to the original observations, in that they 
replicate their statistical properties.  
 
2.8. Incorporating bias 
 
A GRF fitted on a series of measurement repeats will provide information about local point scatter in the 
direction defined by the local reference normals. Central tendency, defined by the vector 𝛍 =
{𝜇-, 𝜇/,⋯ , 𝜇1}, is expressed with reference to the vector of origin points 𝐨 = {𝑜-, 𝑜/,⋯ , 𝑜1}, typically 
computed from intersections with the CAD surface. Whilst the GRF captures dispersion of the points 
across measurement repeats, bias with respect to an ideal measurement (i.e. a measurement with no error) 
cannot be estimated because central tendency as captured by 𝛍 is referred to the nominal model, and may 
not necessarily be representative of the real part that has been measured (for example, if the real part is 
warped with respect to the nominal geometry). To incorporate bias, the solution illustrated in this work 
proposes two alternative routes. The first route is that a mathematical model is assumed available, 
capable of producing a bias value and associated uncertainty interval, mapped to each location of the part 
surface. Such a model may be produced using one of the approaches proposed in the literature, as 
reviewed in Section 1. 
 
The second route assumes that another set of measurement repeats can be taken using a measurement 
solution recognised as more accurate and with an associated measurement uncertainty. A typical scenario 
would consist of taking a second set of measurements with a traceable tactile CMS. Once the second set 
of repeats is available, a second GRF can be constructed using the same methods given in Section 2.4. 
Because the two GRFs have been built using the same CAD model as reference, spatial co-localisation 
can be achieved ensuring that all the point clouds from the repeats of both instruments have been 
registered to the same reference mesh. Once both the GRFs are available, to assess bias, the Euclidean 
distance between the mean vectors of the two models can be used. However, because in general the two 
GRFs will not have been sampled in the same positions (although being aligned), interpolation of one of 
the two mean functions is necessary to obtain bias (Figure 7). The same interpolation procedure 
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previously illustrated in Section 2.4 can be applied. Such an approach works better if the point clouds 
have similar densities, to reduce additional error potentially introduced by relying on interpolation. 

 
Figure	7.	Procedure	to	assess	bias	between	two	GRFs.	In	the	figure,	the	original	GRF	is	represented	in	blue,	the	
second	GRF	(more	accurate	reference)	is	in	red.	The	distances	have	been	amplified	for	clarity.	Local	bias	is	
computed	starting	from	the	mean	function	defined	from	first	GRF,	using	the	locations	of	the	random	variables	
in	the	first	GRF	and	the	related	normals.	The	intersections	with	the	mean	function	of	the	second	GRF	are	found	
and	used	to	determine	bias	(bias	for	the	ith	point	is	shown	in	the	figure).	If	the	second	GRF	has	an	associated	
uncertainty	±𝑈,	said	uncertainty	can	be	incorporated	in	the	bias	(𝑏" ± 𝑈).	

 
2.9. Validation and performance assessment 
 
A validation method is proposed based on simulation, so that the performance of the proposed approach 
can be compared with known target results. The validation only covers the accuracy in the estimation of 
the random error component associated with a linear measurement, when the proposed statistical 
modelling approach is adopted to represent random variability in the point cloud across measurement 
repeats. The validation does not cover the accuracy of the method at estimating bias, thus the test data 
used in this validation does not contain any bias component. The validation method consists of the 
following steps, also summarised in Figure 8.  

 
Figure	8.	Validation	procedure	based	on	simulated	measurements.	The	top	row	shows	the	process	to	obtain	the	
reference	result.	The	bottom	row	illustrates	the	estimation	procedure	implemented	using	statistical	point	cloud	
modelling.	

 
Simulated measurements (Figure 8 – top left) are performed on digital, test geometries by combining ray 
casting (i.e. projecting a grid or rays onto a triangle mesh) and a GRF of known parameters to produce 
point clouds incorporating known random measurement error. An arbitrarily high number of point clouds 
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can be produced, representative of an ideal, but unrealistic scenario where one could perform a very large 
number (hundreds) of measurement repeats on the same test part. The point clouds are then processed 
(Figure 8 – top row) through a computational pipeline for shape/size inspection specifically devised for 
the test geometries and dedicated to computing selected shape or size attributes. As the same pipeline is 
applied to all the virtually generated point clouds, probability distributions for each targeted attribute can 
be obtained (Figure 8 – top right). As a large number of point clouds is used to obtain these probability 
distributions, they are selected as representative of the “ground truth” about measurement error (random 
error across repeats) for the selected test case. The results of this simulation represent the ideal 
characterisation result that our method aims to achieve.  
 
A much smaller subset of point clouds is randomly extracted from the overall set of simulated 
measurement repeats, and used as the starting point for the application of the proposed method (Figure 
8 – bottom left). Essentially, we are simulating a more realistic scenario where the user can only perform 
a limited number of measurement repeats, and has no additional knowledge of measurement error. The 
availability of three repeats (three point clouds) it typical, but we have also considered scenarios with 
five and ten repeats, although these are increasingly unrealistic possibilities in real inspection scenarios. 
Following the proposed method (Section 2.4 and Section 2.5), a new GRF is estimated from the available, 
small number of point clouds. Then new point clouds can be generated from the GRF (bottom centre of 
Figure 8). The GRF estimated from a small number of point clouds can only be an approximation of the 
unknown “ground truth”. Still, the same reference pipeline for dimensional inspection is now applied to 
all the new point clouds generated by the approximated GRF, leading (again by Monte Carlo simulation) 
to estimated probability distributions for the selected size or shape attributes (Figure 8 – bottom right). 
Such probability distributions are compared with the ideal result (Figure 8 – middle right) to assess how 
closely the results of the proposed method match the ideal result (by comparison of the shape and 
statistics of the probability distributions).  
 
The estimation process (Figure 8 – bottom row) is repeated multiple times, by randomly extracting a 
different subset of point clouds from the global set. The differences between the probability distributions 
of the estimated and reference results are assessed both via comparison of sample means and standard 
deviations, and via a nonparametric two-sample Kolmogorov-Smirnov (K-S) test [50]. The null 
hypothesis of the K-S test is that the two samples (in our case, the estimate and reference) belong to the 
same distribution. Hence, if the K-S test rejects the null hypothesis we can conclude that the estimation 
did not perform well (i.e. the estimated sample belongs to a distribution which is different from the “true” 
one). Finally, an investigation is carried out on how the choice of the number of point clouds used to 
estimate the GRF (Figure 8 – bottom left) affects the accuracy of the prediction (closeness between the 
results produced by the proposed approach and the reference results).  
 

3. RESULTS 
 
3.1. Generation of the simulated measurement repeats 
 
Simulated measurement repeats were generated using test geometries for use in the validation method 
described in Section 2.9, thus with the sole objective of assessing accuracy in the estimation of random 
error components associated with linear dimensions (i.e. no bias).  
A prismatic part (cuboid) and a cylindrical part were selected as virtual geometries. Measurement was 
simulated by first performing high-density ray casting from viewpoints at infinite distance (parallel rays), 
along multiple directions and by merging the resulting point clouds. The result of ray casting, a 
deterministic cloud, was then disturbed by adding a random scalar contribution to each point along its 
local normal. The random scalars were generated using a GRF with the following mean vector 𝛍 and 
covariance matrix 𝐊 functions: 
 
𝜇(𝒑") = 0,                  ∀(	𝒑") (7) 

 

𝑘P𝒑", 𝒑<U = 𝜎/𝑒𝑥𝑝p−
r"stP𝒑R,𝒑ZU

u

/&u
v, ∀P𝒑", 𝒑<U (8) 

     
where the mean function 𝜇(𝒑") is an all-zero function for each point 𝒑"  and the covariance function 
𝑘P𝒑", 𝒑<U  between any pair of points 𝒑", 𝒑<  is defined using a squared-exponential kernel. In the 



covariance function,  𝜎 represents a constant variance term affecting all the points, 𝑑𝑖𝑠𝑡 indicates the 
computation of the Euclidean distance between 𝒑"  and 𝒑< , and 𝑙 is referred to as 𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑐𝑎𝑙𝑒, i.e. a 
reference distance to modulate the spatial extents of dependency between points. The choice of a zero 
mean function implies that no local bias was added to the measurement error (i.e. only random 
components). The squared exponential formulation for covariance was chosen to model spatial 
correlation as it is dependent on the relative distance between points, but not on their absolute location 
in the cloud (i.e. it is shift-invariant). 
 
For the cuboid, the following parameters were adopted:  
 

- size of the test part: (40 × 60 × 20) mm; 
- size of the point cloud: ~5530 points (after stitching of two datasets taken from tilted, 

symmetrical viewpoints); 
- standard deviation 𝜎 in the squared exponential kernel: 20 µm; and 
- lengthscale 𝑙 in the squared exponential kernel: 30 µm. 

 
For the cylinder: 
 

- size of the test part: 80 mm (diameter) × 100 mm (length); 
- size of the point cloud: ~7570 points (after stitching of two datasets taken from tilted, 

symmetrical viewpoints); 
- standard deviation 𝜎 in the squared exponential kernel: 20 µm; and 
- lengthscale 𝑙 in the squared exponential kernel: 30 µm. 

 
The standard deviation (in the model, representative of local noise orthogonal to the surface) was chosen 
based on previous experimentation with multiple optical measurement technologies on additively 
manufactured parts (to be consistent with the real test case). The lengthscale was chosen based on the 
idea to consider spatial dependency the same order of magnitude of local noise. In Figure 9, an instance 
of simulated measurement is shown for the prismatic part and for the cylindrical part. A total of 200 
instances (simulated point clouds) were generated for the cuboid, and another 200 for the cylinder.  
 

  
a) b) 
Figure	9.	Example	point	clouds	obtained	on	the	test	parts	via	simulated	measurement;	a)	cuboid;	b)	cylinder.	

 
3.2. The point cloud processing pipeline 
 
Selected size attributes for the cuboid consisted of its three main features of size, aligned to the axes (x,y 
and z) of the Cartesian reference system and referred to as: dx, dy and dz in the following. For the cylinder, 
height (dz) and diameter (diam) were selected. A fully automated algorithmic pipeline was developed to 
compute the selected size attributes from each point cloud. The pipeline is similar for the cuboid and for 
the cylinder. First, the point cloud is partitioned into regions using the direction of the local normal 



computed by principal component analysis (PCA) in combination with k-means clustering on the local 
normal (more information on the use of k-means clustering combined with local normal can be found in 
previous work [51]). For both the cuboid and the cylinder, k-means was performed with k = 6, in order 
to isolate “faces” oriented according to the main six directions (examples are shown in Figure 10). For 
the cylinder, this resulted in the lateral (cylindrical) surface being split into four regions.  

 

 
a) b) 
Figure	10.	Example	segmentation	of	the	test	point	clouds;	k-means	on	local	normal;	k	=	6;	a)	cuboid,	b)	
cylinder.		

In the automated pipeline, to compute distances between pairs of nominally parallel faces (i.e. faces 
related to the computation of dx, dy, dz for the cuboid and dz for the cylinder), the surfaces of each pair 
were individually fitted to planar datum features using RANSAC and total least-squares. Then, one 
datum per pair was selected as primary, and the Euclidean distance between the datum centroid and the 
intersection with the other datum, computed along the direction of the local normal to the primary datum, 
was computed. The entire procedure is summarised in Figure 11.  
 

   
a) b) c) 
Figure	11.	Procedure	to	automatically	determine	a	linear	dimension	as	the	distance	between	two	datum	planes	
(in	the	example:	linear	dimension	𝑑𝑦	for	the	cuboid);	a)	the	two	point	subsets	resulting	from	segmentation	of	the	
original	cloud	(identified	by	the	direction	of	the	local	normal)	are	isolated;	b)	the	two	subsets	are	independently	
fitted	to	datum	planes;	c)	datum	1	is	elected	as	primary,	the	datum	centroid	point	(ctr)	is	obtained	by	projecting	
all	 the	 fitted	points	on	 their	associated	datum	and	computing	 the	 resulting	 two-dimensional	 centroid.	A	 ray	
orthogonal	to	Datum	1	is	drawn	from	the	centroid	to	the	intersection	with	the	second	datum	(point	𝑝"ct).	The	
Euclidan	distance	between	ctr	and	𝑝"ct	is	elected	as	the	final	result	for	the	linear	dimension.	

A different method was devised to compute the diameter (diam) for the cylinder. In this case, a cylindrical 
datum feature was fitted (RANSAC and total least-squares) to the four lateral (curved) regions obtained 
by segmentation (see Figure 10.b), and the diameter of the datum was extracted as the result. 
 
3.3. Results for the test parts 
 
The procedure illustrated in Section 2.9 and Figure 8 was applied to the cuboid and cylinder point clouds 
in combination with the point cloud processing pipeline described in Section 3.2. First, a total of 200 



observations for each targeted dimension (dx, dy, dz for the cuboid, dz and diam for the cylinder) were 
obtained (using the pipeline described in the top portion of Figure 8, thus by generating 200 reference 
point clouds), leading to the construction of a probability distribution for each. These distributions were 
considered as the reference results, i.e. representative of the “ground truth” targeted by the estimation 
proposed in this work. Statistical point cloud models were then generated following the approach 
described in Section 2.4 and Section 2.6 using random selections of three, five and ten point clouds 
extracted from the previously generated population set of 200 point clouds per type of geometry (cuboid, 
cylinder). New virtual clouds were then obtained from the fitted statistical models to reach to a final 
equivalent count of 200 new virtual clouds per geometry type (bottom portion of Figure 8). The same 
point cloud processing pipelines were applied to the virtual clouds in order to obtain new probability 
distributions, this time representing the estimation of the error associated with each targeted linear 
dimension. An example result is shown in Figure 12, representing the dx dimension of the test cuboid. 
The example result was obtained by building a statistical point cloud model starting from a random 
sample of three point clouds extracted from the pool of 200 (as illustrated by the data processing pipeline 
shown in Figure 8 bottom left). 

  
a) b) 
Figure	12.	Results	for	one	simulation	run	for	the	dx	parameter	of	the	test	cuboid;	a)	comparison	between	the	
histograms	of	the	estimated	distribution	(yellow)	and	reference	distribution	(grey);	b)	evolution	of	the	
estimated	distribution	(yellow)	in	comparison	to	the	reference	one	(grey)	as	an	increasing	number	of	point	
clouds	generated	by	the	statistical	model	is	considered	in	the	estimation.	The	yellow	and	grey	bands	refer	to	
𝜇 ± 3𝜎.	

In Figure 12.a, the histogram of the final estimation result (yellow) for the cuboid dx (i.e. the result of 
the data processing pipeline shown in Figure 8 – bottom right) is overlaid on the histogram of the 
reference dx value (grey), i.e. the result of the data processing pipeline shown in Figure 8 – top right. 
The probability distribution of the final estimation was obtained by using 200 new observations sampled 
from the fitted statistical model (Figure 8 – bottom row), i.e. the same number of observations used to 
obtain the reference result. In the distribution shown in Figure 12.a, the signed difference between the 
estimated and reference means was -0.7 µm (-0.0017% of the reference value), and the signed difference 
between the estimated and reference standard deviations was 0.3 µm (1.07% of the reference standard 
deviation for dx).  
 
For comparison, it is useful to look at the estimation result when no statistical point cloud model was 
used and no new observations were generated from it by Monte Carlo simulation. In this case, the mean 
and standard deviation of the diameter can be obtained directly from the three measurement repeats 
originally intended for fitting the statistical model. This corresponds to a scenario where dimensional 
properties are estimated directly from the few, real measurement repeats available. For the example 
shown in Figure 12, the signed difference between the estimated and reference means for dx was -8.6 
µm, i.e. -0.02% of the reference mean (one order of magnitude larger than the result using the proposed 
approach), and the signed difference between the estimated and reference standard deviations for dx was 



13.3 µm, i.e. 48.6% of the reference standard deviation (again one order of magnitude larger than the 
result using the proposed approach). The K-S test on the results shown in Figure 12 failed to reject the 
null hypothesis at 95% confidence level, indicating that there was not enough evidence to declare the 
two probability distributions (reference and estimated) as different.  
 
In Figure 12.b a visual representation is provided to show how the estimated probability distribution 
evolves when an increasing number of new observations is drawn from the fitted statistical point cloud 
model (from two to 200). The yellow band indicates the mean ±3𝜎 of the estimated prediction, evolving 
towards the right of the plot as the number of observations increases. On the contrary, the grey band in 
Figure 12.a refers to the reference result (Figure 8 – top right), which is constant as it is always computed 
from 200 observations obtained by simulation. The upper and lower limits of the grey band correspond 
to µ ± 3𝜎. The central lines of the grey and yellow bands indicate the respective means.  
 
For dx of the cuboid, the plots in Figure 12.b indicated that with very low numbers of observations, the 
estimate differs more significantly from the reference, but as the number of observations increases, it 
stabilises around the reference value. Interestingly, the K-S test failed to reject the null-hypothesis at the 
95% confidence level in all cases, including when considering estimates produced from very few 
observations, indicating that there is no statistical evidence to say that the two probability distributions 
are different, even when visually the two distributions do indeed appear to differ (for low counts of 
observations). This latter result may hint at a low statistical power of the K-S test in its current 
configuration (but see Section 4).  
 
The plots shown in Figure 12 refer to a single random sample of three point clouds drawn from the set 
of 200 and used to fit the statistical point cloud model. Similar outcomes were also obtained when fitting 
a statistical point cloud model using samples of five or ten point clouds (Figure 13). Ultimately, using 
three, five or ten observations to fit the GRF did not seem to make a significant difference in terms of 
the accuracy of the final estimates of mean and standard deviation. This is a likely a consequence of the 
sample size being, in all cases, very small compared to problem complexity (~5500 random variables in 
the GRF for the cuboid). 
 

  
a) b) 
Figure	13.	mean	(a)	and	standard	deviation	(b)	of	the	cuboid	dx	dimension,	evolving	as	an	increasing	number	
of	observations	are	drawn	from	the	statistical	model	(from	two	to	200).	The	plots	compare	the	effects	on	
estimation	performance	when	choosing	three,	five	or	ten	point	clouds	to	fit	the	statistical	model.	In	both	plots,	
the	straight	horizontal	line	is	the	reference	value.		

The experiments with three, five and ten point clouds (bottom part of Figure 8) were repeated five times, 
each time drawing a new random subset of point clouds from the same pool of 200 to build the statistical 
model. Similar trends were observed. The entire set of results obtained for the two test geometries and 
all the selected features of size is summarised in Table 1 (cuboid) and Table 2 (cylinder). All the 
individual values reported in the table are arithmetic means of the five consecutive experiments. All 
estimates are computed on 200 new point clouds drawn from the statistical models. 
 
Table	1.	Results	for	dimensions	of	the	cuboid	test	geometry:	“reference”	is	the	reference	value	for	the	related	
statistics	 (mean	 or	 standard	 deviation);	 “n.sel”	 is	 the	 number	 of	 point	 clouds	 selected	 to	 fit	 the	 GRF	
(representative	of	a	 scenario	where	one	may	have	 that	number	of	point	clouds	 from	measurement	repeats);	
“estimate	 from	sel”	 refers	 to	 computing	 the	 statistics	on	 the	 linear	dimension	using	 solely	 the	 selected	point	



clouds	(i.e.	no	statistical	model);	“error”	and	“error	%”	are	the	signed	differences	between	the	statistics	estimated	
directly	from	the	selected	point	clouds	and	the	reference	value	(the	percentage	is	with	respect	to	the	reference	
value);	“estimate	from	the	stat	model”	refers	to	the	estimation	performed	on	200	new	point	clouds	generated	by	
the	fitted	statistical	model;	“error”	and	“error	%”	again	refer	to	the	signed	differences	between	the	estimation	
and	the	reference.	The	last	column	“reduction	of	estimation	error	(stat	model	vs.	sel)”	has	a	positive	value	(in	
µm)	each	time	the	estimation	using	the	statistical	model	performed	better	than	the	estimation	based	solely	on	
the	point	clouds	selected	from	the	common	pool.	

 
	

Table	2	Results	for	the	features	of	size	of	the	cylinder	test	geometry.	For	a	reading	guide,	see	Table	1.	

 
 
As shown in Table 1 and Table 2, the estimates obtained by using the proposed approach (Monte Carlo 
simulation using the statistical point cloud model) are almost always more accurate than simply 
estimating the statistics using only the available observation repeats. It is interesting to look at the 
confidence intervals associated with the estimations, i.e. the confidence intervals associated with the 
columns “estimate from sel” and “estimate from stat model”. 

cuboid
reference 
/mm n.sel

estimate 
from sel 
/mm error /µm  error /%

estimate 
from stat 
model /mm error /µm  error /%

reduction of 
estimation error 
(stat model vs 
sel) / µm

dx mean 40.000 3 40.005 4.915 0.01% 39.999 -0.413 0.00% 4.502
 5 40.007 6.924 0.02% 40.000 0.157 0.00% 6.767
 10 39.998 -2.160 -0.01% 40.001 1.245 0.00% 0.915
dx std 0.027 3 0.029 1.208 4.41% 0.027 -0.454 -1.66% 0.754
 5 0.029 1.139 4.16% 0.027 -0.273 -1.00% 0.866
 10 0.027 -0.148 -0.54% 0.027 -0.591 -2.16% -0.443
dy mean 59.997 3 60.004 6.855 0.01% 60.000 2.593 0.00% 4.262
 5 59.999 1.533 0.00% 60.000 2.523 0.00% -0.990
 10 60.005 7.295 0.01% 59.998 0.924 0.00% 6.371
dy std 0.027 3 0.019 -7.919 -29.22% 0.027 -0.084 -0.31% 7.835
 5 0.023 -3.877 -14.30% 0.027 0.301 1.11% 3.576
 10 0.027 -0.391 -1.44% 0.027 -0.185 -0.68% 0.206
dz mean 20.000 3 20.004 3.712 0.02% 19.999 -1.221 -0.01% 2.491
 5 20.001 1.331 0.01% 20.000 -0.181 0.00% 1.151
 10 20.003 3.033 0.02% 19.999 -1.229 -0.01% 1.804
dz std 0.029 3 0.028 -1.160 -3.98% 0.031 1.553 5.33% -0.393
 5 0.027 -2.387 -8.19% 0.033 3.502 12.01% -1.114
 10 0.025 -3.660 -12.56% 0.031 2.052 7.04% 1.609

cylinder
reference 
/mm n.sel

estimate 
from sel 
/mm error /µm  error /%

estimate 
from stat 
model /mm error /µm  error /%

reduction of 
estimation error 
(stat model vs sel) 
/ µm

diam mean 80.046 3 79.876 -170.586 -0.21% 79.999 -47.447 -0.06% 123.138
 5 79.971 -75.248 -0.09% 80.010 -36.049 -0.05% 39.199
 10 79.986 -60.695 -0.08% 80.007 -38.839 -0.05% 21.856
diam std 0.397 3 0.241 -156.360 -39.37% 0.376 -21.606 -5.44% 134.754
 5 0.491 93.974 23.66% 0.367 -29.938 -7.54% 64.036
 10 0.399 1.395 0.35% 0.336 -61.568 -15.50% -60.173
dz mean 100.000 3 99.995 -5.572 -0.01% 100.002 1.237 0.00% 4.335
 5 100.008 7.085 0.01% 100.000 -0.521 0.00% 6.564
 10 100.006 5.740 0.01% 100.001 0.753 0.00% 4.987
dz std 0.027 3 0.014 -13.125 -48.54% 0.027 -0.340 -1.26% 12.785
 5 0.017 -10.496 -38.81% 0.027 -0.195 -0.72% 10.301
 10 0.023 -3.805 -14.07% 0.027 -0.244 -0.90% 3.561



 
Figure	14.	Analysis	of	the	confidence	intervals	(Cis)	associated	to	the	estimates	for	the	cuboid	test	case.	All	values	
are	in	mm,	CIs	are	computed	at	95%	confidence	on	means	of	five	simulation	repeats.	In	each	panel,	the	gray	
dashed,	horizontal	line	represent	the	reference	mean	statistics	(i.e.	the	“truth”).	The	CIs	with	labels	‘sel3’,’sel5’	
and	 ‘sel10’	 refer	 to	 estimates	 performed	 directly	 on	 the	 sets	 of	 3,	 5	 or	 10	 selected	 point	 clouds.	 The	 labels	
‘stat3’,’stat5’	and	‘stat10’	refer	to	estimates	performed	on	200	point	clouds	generated	from	the	statistical	models	
fitted	over	3,	5	or	10	point	clouds.	All	the	panels	in	the	left	column	report	estimates	of	the	mean	statistics	of	the	
selected	linear	dimension	(i.e.	the	confidence	interval	on	the	mean	of	the	means).	The	panels	in	the	right	column	
report	the	confidence	intervals	on	the	mean	of	the	standard	deviations.		

	

Figure	15.	Analysis	of	the	confidence	intervals	of	the	estimations	for	the	cylinder	test	case.	For	a	reading	guide,	
refer	to	Figure	14.	

 
From Figure 14 and Figure 15, clearly the CIs computed directly on the selected point clouds are much 
wider, given the very small sample sizes (3, 5 and 10 respectively). On the contrary, all the CIs associated 
with estimates from point clouds generated by the statistical models are much narrower, having been 



obtained from 200 point clouds each. The middle point of each CI is the mean of the estimate, i.e. the 
same value reported in Table 1 and Table 2 under the columns “estimate from sel” and “estimate from 
stat model”.  The results reported in Figure 14 and Figure 15 confirm the advantage of using the statistical 
model to obtain an estimate of the statistics of the linear dimension (mean and standard deviation) 
generally both more accurate (closeness of the mean to the reference “truth”) and more precise (narrow 
confidence interval) compared to simply relying on the available measurement repeats. The size of the 
sample (number of point clouds) used to build the statistical model does not seem to have a clear 
influence on the results, with no visible trends going from three to ten. As stated earlier, this is a likely 
indication that sample size is very small regardless, given the number of random variables involved in 
the model (~5500 for the cuboid, ~7500 for the cylinder). The choice of selecting 3, 5 or 10 point clouds 
is consistent with industrial applicability of the proposed approach, if the sample is assumed as available 
from measurement repeats.  
 
Finally, it is useful to report information about computational requirements of the procedure applied to 
the simulated test cases. A full validation run (one repeat), covering two test geometries, GRFs fitted on 
3, 5 or 10 point clouds, with 200 new point clouds generated as reference for each case, and another 200 
point clouds generated to assess the estimation performance of the GRF took approximately 16 hours on 
a mid-speed personal computer (4 core 2.8 GHz Intel Core i7, with 16 Gb RAM), resulting in 
approximately 15 Gb of data. In the intended usage scenario, i.e. where one would select a number of 
observations from one geometry, fit the statistical model on such point clouds and then generate 200 new 
point clouds to perform estimations via Monte Carlo simulation, the current implementation would 
require a litte more than one hour of computing time, generating approximately 1.5 Gb of data, the 
biggest culprit being the estimation and storage of the covariance matrix. As the current implementation 
is in prototype form and designed to act solely as proof-of-concept, performance can be improved, for 
example by using parallelisation. 
 
 
3.4. Application to a real test case 
 
While the purpose of the simulated test case was to determine how closely the estimated distribution of 
a target dimension would match the reference (as a measure of accuracy of the method in a test case with 
known “truth”), the purpose of the real test case is to show how results from the method can be used to 
gain insight into the metrological performance of a real measurement.  
 
A measurement test artefact was developed [52], based on a previous design by the National Institute of 
Standards and Technology (NIST) [53]. The test artefact is sized (50 × 50 × 28) mm (size of the enclosing 
envelope) and was fabricated in Ti-6Al-4V using laser powder bed fusion (Figure 16.b).  
 
 
 

  
a) b) 
Figure	16.	Selected	test	part	(pyramid	artefact);	a)	CAD	model,	indicating	also	the	features	of	size	selected	for	
the	characterisation	(see	Section	3.5);	b)	Ti-6Al-4V	sample	fabricated	by	laser	powder	bed	fusion.		

The test artefact was measured using a commercial fringe projection system (GOM ATOS Core 300 
[54]). Three measurement repeats were performed, resulting in raw point clouds of approximately	
100,000 points. A second high-density measurement was taken using a contact CMS (Mitutoyo Crysta 
Apex S7106 with a ST25 probe [55]) to act as a nominally more accurate reference. For tactile 
measurement, scanning mode was used with 10 µm spacing between consecutive points in a scan line, 

x

dx

dz

y

z



and 200 µm spacing between parallel scanlines. The contact-CMS measurement was repeated three 
times.  
 
The optical and contact point clouds were processed in CloudCompare [56]. The point clouds were first 
registered to the available CAD model (triangle mesh in STL format) using a coarse alignment method 
based on manual point determination to establish correspondences, followed by fine alignment by 
iterative closest points (ICP) [57]. The point clouds were then reduced in size (pre-processing) to contain 
the computational complexity in the estimation of the covariance matrix. Size reduction was performed 
by resampling to achieve a target spacing between points, using the grid average method [58]. The point 
spacing was set at 0.5 mm as a compromise between cloud density and the need for preserving the 
integrity of the part edges. The resampled point clouds from optical measurement contained 
approximately 12,000 points each (see example in Figure 17.a), while the resampled clouds from contact 
CMS measurement contained approximately 85,000 points each (Figure 17.b). Point normals were 
computed by locally fitting quadric surfaces to the point cloud [59]; normal orientations were fixed (so 
that they would point outwards) by using the minimum spanning tree method [60].  
 

  
a) b) 
Figure	17.	Example	point	clouds	obtained	from	measurement	of	the	pyramid	artefact	(after	resampling);	a)	
optical;	b)	contact	CMS	(visible	gaps	are	non-measured	regions	to	avoid	collisions	with	the	probe).	

 
3.5. The point cloud processing pipeline  
 
Two dimensions (dx and dz, aligned to the x and z axes respectively) were selected as the target attributes 
(see Figure 16.a). The dimension dx refers to the distance between parallel walls measured at the first 
“step” of the pyramid, aligned to the x axis. The dimension dz refers to the vertical (i.e. along the z axis) 
distance between the top surface of the pyramid and the surface of the first step. The same point cloud 
processing pipeline was applied to all the optical and contact-CMS clouds. The pipeline consisted of the 
following steps: the point cloud was first partitioned using the signed direction of the local normal 
computed by PCA in combination with k-means clustering (see Figure 18.a and Figure 18.b). Clustering 
was performed with k = 5 in order to compensate for the lack of points on the bottom surface (negative 
z orientation). Then each region was recursively split into subregions by running another k-means 
clustering operation based on point placement along the axis identified by the direction associated to the 
cluster. So, for example, the region associated to the x+ direction was split into five sub-clusters to 
accommodate for the presence of five surfaces along the x+ axis. To compute the dimensions dx, dy and 
dz, regions were fitted to planes and paired, then the distance between the centroid of a fitted plane and 
the other fitted plane was computed as the target attribute. 
  



  
a) b) 
Figure	18.	Results	of	the	first	segmentation	step	on	the	point	clouds		(k-means	on	local	normals);	a)	optical;	b)	
contact	CMS.	

 
3.6. Results for the real test case 
 
Results for the targeted features of size dx and dz are shown in Figure 19 and Figure 20.  In both figures:  
 
• the black line represents the value of the targeted dimension, as the mean of three values obtained 

from the three contact CMS repeats. In the right panels of Figure 19 and Figure 20 the line appears 
as particularly bold because it is representing a band interval for uncertainty on the contact CMS 
value (see later in this section and Figure 21); 

• the red line represents the value of the same dimension, obtained by the statistical model, via Monte 
Carlo simulation over the optical repeats (final value after 200 repeats in the left part of the figures, 
evolution using from two to 200 repeats in the right part).  

 
The distance between the red and black line is the signed bias of the optical instrument with respect to 
the contact CMS (for the selected dimension). Bias can be mathematically expressed both as a signed 
distance and as a signed distance percentage, for example, for the target dimension dx: 
 
𝑏𝑖𝑎𝑠P𝑑𝑥'�t, 𝑑𝑥(�sU = 𝑑𝑥����'�t − 𝑑𝑥����(�s,          𝑏𝑖𝑎𝑠%P𝑑𝑥'�t, 𝑑𝑥(�sU =

r��������Tr��������

r��������
∙ 100      (9) 

 
where the bar indicates the arithmetic mean and the subscript indicates optical or tactile CMS 
measurement, and where the results of the optical pipeline refer to the 200 observations extracted from 
the statistical model. Optionally, it is possible to add the uncertainty of the CMS to the above result: in 
absence of a comprehensive metrological characterisation of the CMS, it is possible to rely on the 
maximum permissible error (MPE) [61]) specified by the manufacturer to compute the standard 
uncertainty 𝑢��� = 𝑀𝑃𝐸 √3⁄  MPE for the tactile CMS, thus:  
 
𝑏𝑖𝑎𝑠P𝑑𝑥'�t, 𝑑𝑥(�sU = P𝑑𝑥����'�t − 𝑑𝑥����(�s ± 𝑀𝑃𝐸 √3⁄ U (10) 

 
The uncertainty is overestimated as it refers to a single CMS measurement, whilst the reference result 
(𝑑𝑥����(�s in the example) is the mean of three repeats. Any bias falling within the uncertainty band of the 
CMS would not be appreciable when using the CMS measurement as a reference. Stated otherwise, the 
CMS would not be a sound reference to assess the bias of the optical measurement when bias is smaller 
than the known uncertainty of the CMS.  
 
For the test pyramid, using the maximum permissible scanning probing error [62] as reported by the 
manufacturer of the CMS (MPETHP = 2.2 µm), the results were: 
 
𝑏𝑖𝑎𝑠P𝑑𝑥'�t, 𝑑𝑥(�sU = (−48.53	 ± 1.27)µm	(−0.12 ± 0.03)% (11) 
𝑏𝑖𝑎𝑠P𝑑𝑧'�t, 𝑑𝑧(�sU = (30.79	 ± 1.27)	µm	(0.13 ± 0.04)% (12) 

 



i.e. the biases where approximately one order of magnitude larger than the CMS uncertainty. In Figure 
21, a zoomed-in version of Figure 19.a is shown, highlighting the uncertainty band built around the CMS 
value using ±𝑀𝑃𝐸 √3⁄ . 
 
The yellow bands surrounding the optical measurements, visible in Figure 19 and Figure 20, are an 
indication of the estimated precision in the computation of the dimension using optical measurement (i.e. 
random error in repeatability/reproducibility conditions) and are plotted in the interval  𝑑𝑥����'�t ± 3𝑠r�,'�t 
where 𝑠r�,'�t is the standard deviation estimated for the dimension (dx in the example) using the optical 
observations (200 datasets obtained from the statistical model). The other plotted band (grey) represents 
the precision of the CMS assessed using three repeats, i.e. 𝑑𝑥����(�s ± 3𝑠r�,(�s. For the pyramid test case, 
the results indicate higher precision for the CMS with respect to the optical system, as expected.  
 
In quantitative form, the discrepancy between the standard deviations can be expressed as a signed 
difference: 𝑠r�,'�t − 𝑠r�,(�s, or as a signed difference percentage: (𝑠r�,'�t − 𝑠r�,(�s) 𝑠r�,(�s⁄ , leading 
to 51.3 µm (214%), i.e. slightly more than double the scatter in the optical result, compared to the CMS. 
 

 
 

a) b) 
 
Figure	19.	Results	for	the	pyramid	dimension:	dx;	a)	histogram	of	the	estimated	distribution	(yellow)	with	
mean	value	(red	line)	compared	to	reference	CMS	result	(black	line);	b)	evolution	of	the	estimated	distribution	
(yellow)	in	comparison	to	the	reference	one	(grey)	as	an	increasing	number	of	point	clouds	generated	by	the	
statistical	model	is	considered	in	the	estimation.	The	reference	CMS	result	appear	bolder	because	it	is	actually	
an	interval	(±𝑀𝑃𝐸 √3⁄ )	compressed	as	an	effect	of	low	magnification.	



  
a) b) 
Figure	20.	Results	for	the	pyramid	dimension	dz;	a)	histogram	of	the	estimated	distribution	(yellow)	with	mean	
value	(red	line)	compared	to	reference	CMS	result	(black	line);	b)	evolution	of	the	estimated	distribution	
(yellow)	in	comparison	to	the	reference	one	(grey)	as	an	increasing	number	of	point	clouds	generated	by	the	
statistical	model	is	considered	in	the	estimation.	Other	details	as	in	Figure	19.	

 
Figure	21.	Zoomed	in	view	of	Figure	19.b	to	show	the	uncertainty	band	around	the	CMS	value	for	dx	(in	red)	

3.7. Spatial maps of bias and variance 
 
In addition to estimating the probability distribution of features of size, the main advantage of having a 
statistical model of the point cloud itself is that more detailed information can be obtained about the 
nature of random error in correspondence to specific regions of the measured geometry. Spatial maps of 
bias can also be obtained, as long as either a reference measurement of stated uncertainty is available or 
a mathematical model is available to compute local bias, as discussed in Section 2.8. For the pyramid 
test case, where optical and CMS measurements are available, starting from the two GRFs generated 
from the measurements, spatial maps of local bias and local variance can be produced (Figure 22).  
 



  
a) b) 
Figure	22.	Spatial	maps	of	local	bias	and	variance	for	the	optical	measurement	of	the	test	pyramid;	a)	mean	
point	cloud	from	the	optical	GRF	coloured	according	to	local	bias	(using	the	CMS	GRF	as	reference).	The	map	is	
produced	only	for	those	regions	where	the	CMS	data	is	available;	b)	mean	point	cloud	from	the	optical	GRF	
coloured	according	to	local	variance	(using	optical	GRF	only).	Bias	and	variance	values	(both	reported	in	mm)	
have	been	truncated	to	allow	for	better	visualisation	of	smaller	differences.	

 
Spatial maps, such as those shown in Figure 22, can be useful to investigate instrument behaviour and 
performance in correspondence to specific form features on the measured part. For example, the 
observation of the spatial distribution of bias (Figure 22.a) indicates that the optical measurement is 
positively biased at the bottom-most step of the pyramid, as well as in some of the tilted areas near the 
top of the pyramid. In the middle regions, bias appears to be consistently negative. The observation of 
Figure 22.b (map of local variances for the optical GRF) shows higher variance in the measurement, 
again in correspondence to the base region of the pyramid. Because the specimen (Figure 16) shows a 
clear warping at the base level (a consequence of known shape bending often observed in Ti6Al4V parts 
fabricated by laser-powder bed fusion [63]), one may consider whether such a deformation may be 
responsible for both the observed bias and variance-related phenomena, a consideration worth further 
investigation.  
 

4. DISCUSSION 
 
A number of observations can be made about the results. Let us start from the simulated test case, which 
essentially illustrates the performance of the proposed approach for estimating the distribution of the 
targeted dimensions as a random variable. The first consideration is that choosing to not use the model, 
and instead attempting to directly estimate the dispersion of a dimension through the analysis of a few 
measurement repeats, is normally not a sound idea and can result in large estimation error. This finding 
is reasonable from a statistical point of view, when one considers that we are attempting to estimate the 
result of a non-linear transform (i.e. a dimension) starting from only a few observations (three, five, ten) 
of a multivariate random variable with 10,000 to 85,000 dimensions (size of the point cloud). On the 
other hand, generating a large number of observations via physical measurement repeats is clearly 
resource-prohibitive, which is why we normally rely on only a few physical repeats. On the contrary, the 
proposed approach, based on the estimation of a statistical model of the point cloud, provides an 
appealing solution to overcoming the costs of the repeats, by generating a large number of new, virtual 
observations without the need for further measurement. 
  
Once the decision as to whether to generate a statistical model for the point cloud is taken, fitting the 
model on three, five or ten observations does not seem to make a large difference. This is presumably 
due to the same reasons mentioned above, i.e. three, five or ten  are small numbers regardless, considering 
the size of the point cloud. It is, therefore, likely that performance of the statistical model may improve 
when the model is fit on 100+ or 1000+ observations. However, following such a route is not appealing, 
considering that there is little to no likelihood that such a high number of measurement repeats might 
ever be possible in a realistic environment, not to mention the added challenges due to likely presence of 
drift effects. 
 



Another consideration arising in particular from the results of the simulated test case, is that the 
Kolmogorov-Smirnov non-parametric test cannot be reliably used to explain the differences between the 
estimated probability distribution of the dimension and the reference. This is presumably due to the low 
statistical power of the test (i.e. high probability of type II statistical error), which is again reasonable 
when considering that the null hypothesis (the two samples are drawn from the same distribution) may 
be difficult to reject when the distributions appear very similar (though we know from validation that 
they are ultimately different). Conversely, comparison based on moments of the distributions provides a 
better indication of differences and, for the simulated test case, was consistently able to provide a reliable 
quantification of differences. In addition to computing mean and standard deviation, higher order 
moments, such as skewness and kurtosis, could have been computed in order to refine the comparison. 
However, the computation of higher order moments was not deemed necessary as the priority was to 
assess differences in central tendency (mean) and dispersion (variance), though future studies may focus 
on targeting more comprehensive comparisons of shape.  
 
The observation of the results obtained for the real test cases highlights the central role of bias, as a 
fundamental component of measurement error. In a real measurement scenario, when a single GRF is 
fitted to a series of repeats from the same instrument, our solution can only be used to estimate the 
dispersion associated to a dimension, but cannot provide an indication of bias. However, it was shown 
that when it is possible to rely on a more accurate additional set of measurements, bias can be estimated 
and ultimately combined to the predicted dispersion, thus providing an overall more complete depiction 
of measurement error. Alternatively, a separate mathematical model capable of producing bias 
information mapped to each location of part geometry may be combined with the proposed approach. 
This second route is evidently more appealing in particular for all those circumstances where an 
additional measurement may not be viable, but requires further research as the generation of a bias-
estimation model is far from straightforward, as demonstrated by current literature on the subject, as 
previously illustrated in Section 1. 
 
Ultimately, by using the proposed statistical modelling approach, it is possible to obtain a detailed 
depiction of random measurement error (in repeatability or reproducibility conditions, depending on how 
the repeats are taken), and optionally bias if a second set of more accurate measurements, or a separate 
prediction model,  is provided. Information on measurement error may be obtained for a targeted 
dimension, via Monte Carlo simulation, or for the entire point cloud, because information on how 
dispersion and bias vary locally over the surfaces of the measured part is provided.  
 
Is this result useable as an uncertainty? In our opinion, not directly. The whole idea of uncertainty is to 
provide numbers that one can associate with a single result for a dimension, or to a single point cloud. 
The goal of uncertainty is also to provide numbers that are as much as possible valid in any measurement 
scenario, and thus also part-independent. On the contrary, the need for having measurement repeats, the 
need for having also a second set for bias, and the fact that ultimately the results are valid only for the 
specific test case and only for the conditions the repeats have been obtained in, somewhat contradicts the 
purpose of uncertainty.  
 
Nevertheless, we do believe that the proposed approach has merit, in particular in relation to two main 
aspects. Firstly, the approach provides a new means to investigate how measurement error is spatially 
mapped to all the regions of any given part: spatial detail on bias and precision can help shed light on the 
behaviour of a measurement solution in correspondence to specific types of surface features (flat, curved, 
step-like, high aspect-ratio, smooth, irregular, etc.) paving the way for the discovery of globally valid 
correlations that allow a valid uncertainty budget to be established. Secondly, the proposed procedure is 
well versed to be fully automated.  
 
Our method paves the way for the development of “smart” measurement systems capable of performing 
self-assessment of measurement quality while in operation, and subsequently capable of autonomously 
performing corrective actions in order to improve the final quality of the measurement result. The idea 
is that a smart measurement system should be able to autonomously build the statistical model from a set 
of repeated measurements (which is already possible, as the model building step is fully automated) and 
use such model to a) construct a map of local bias and variance to serve as guidance to assess where 
measurement performed better and where it performed worse, in order to plan further measurement 
actions; b) estimate error associated to linear dimensions, and thus assess reliability of each in a part 
inspection scenario. The development of smart measurement systems relying on the statistical model 
presented in this work is currently explored as part of ongoing research work [64].  



More complex is the idea of possibly merging point clouds belonging to measurements on different parts 
coming from the same production line. Clearly, in such a case the fitted statistical model would also 
include manufacturing variability between instances, and the discrimination of measurement-related 
error would be more challenging, with a larger number of currently unsolved issues. The possibility of 
adapting our method to operate on measurements of multiple part instances is currently evaluated as 
tentative candidate for future work.  

5. CONCLUSIONS 
 
In this work, an approach was presented to fit high-density point clouds obtained from measurement 
repeats into statistical point cloud models based on Gaussian random fields. The use of fitted fields and 
Monte Carlo simulation to estimate the probability distributions for features of size was demonstrated, 
as well as the possibility to generate spatial mappings of point dispersion and the combination with a 
second random field obtained from a nominally more accurate instrument (or accurate instrument model) 
as a means to estimate local bias. The use of fitted fields to create spatial maps describing local properties 
of the measurement (for example, local variance and local bias) was also illustrated. Future work on 
random fields involves further investigation into different methods to estimate mean and covariance in 
the random field, and the analysis of the consequences of choosing different interpolation and normal 
projection strategies when aggregating observations (individual point clouds), as well as an investigation 
on the effects of geometric registration. Future work will also undertake a more thorough investigation 
of the incorporation of mathematical models to predict local bias to remove the need for additional 
measurements with supposedly more accurate instruments. Finally, future work on the estimation of 
uncertainty will address the possibility to use the methods presented here as a starting point to infer more 
general behaviour of measurement solutions when confronted with specific surface features.    
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