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Abstract
Mathematics, despite being the foundation of computer science, is nowadays often considered a totally separate subject. The 
fact that many jobs in computer science do not explicitly require any specific mathematical knowledge posed questions about 
the importance of mathematics within computer science undergraduate curricula. In many educational systems, a prior high 
school knowledge of mathematics is often not a mandatory requirement to be enrolled into a degree of computer science. On 
the other hand, several studies report that mathematics is important to computer scientists since it provides essential analytical 
and critical skills and since many professional and research tasks in computer science require an in-depth understanding of 
mathematical concepts. From this assumption, this article proposes an analysis of the cohort of computer science’ students, 
with a specific reference to British Universities, and identifies some challenges that lecturers of mathematical subjects 
normally face. On the basis of this analysis this article proposes two teaching techniques to promote effective learning. The 
proposed techniques aim at addressing the diversity of cohorts in terms of mathematical background and skepticism from 
part of the cohort of students to consider mathematics as an essential element of their education. Numerical results indicate 
the validity and effectiveness of the proposed teaching techniques.

Keywords Education · Mathematics for computer science · British educational system · Research informed teaching

Introduction

In the 1830s, Charles Babbage developed the idea of an 
automatic calculator and in the 1840s Ada Lovelace con-
ceptualised computer programming. These scientific con-
tributions are allegedly the first visionary foundations of 
computer science [24]. However, the beginning of modern 
computer science is usually dated about one century later, 
when Alan Turing and Alonzo Church introduced the con-
cepts of algorithm and model of computation, see [12, 13, 
49]. An important stepping stone from theoretical model to 
hardware implementation is that the computer architecture 
formalised by John von Neumann in the 1940s [32].

These pioneers of computer science have something in 
common: they were all mathematicians. Hence, the research 
published at the time was presented and perceived as part of 
mathematics. Thus, we may observe that computer science 

originated as a branch of mathematics that over the second 
half of the twentieth century became a discipline separate 
and independent from it.

On the other hand, when we analyse computer science 
today, it appears like a broad and complex subject composed 
of heterogeneous parts and whose specialists possess diverse 
and heterogeneous skills. For example, among the plethora 
of its sub-fields, computer science (and its taught curricula) 
includes subjects very close to mathematics like theory of 
computation and algorithmics [46], programming subjects 
whose focus is in the computer implementation and hard-
ware exploitation [36], subjects that focus on the human 
user, their psychology and aesthetic preferences to build 
efficient front-end interfaces [9].

By analysing the job market in computer science, many 
of the jobs most in demand, like Applications developer, 
Game designer/developer, Information systems manager, IT 
consultant do not require any specific mathematical train-
ing. Hence, by echoing the (rhetorical) question posed by 
Anthony Ralston in [38]:

Do We Need ANY Mathematics in computer science Curricula?
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The answer to this question is not straightforward and is 
controversial, see [37, 39]. Ralston acknowledges the impor-
tance of mathematics in computer science degrees and points 
out that it is important “to insure that mathematics does play 
a proper role in CS/SE programs and, in particular, to do so 
by breaking the stranglehold of calculus on first and second 
year college mathematics”. By paraphrasing this statement, 
mathematics should harmonically sit within a computer sci-
ence degree taking into account the learners, the job market, 
and the nature of the subject.

The role of mathematics within computer science educa-
tion has been recently discussed by Lincoln Sedlacek in [45] 
where it is stated that mathematics is an essential subject of 
computer science education and the following four reasons 
are given

– Mathematics teaches understanding and communication 
through an abstract language. This general argument, 
also mentioned in [38], means that mathematics “rewires 
the brain” of the learner and enables a general broader 
understanding, see in the context of school education [3]. 
The abstract nature of programming and other areas of 
computer science would greatly benefit from this skill.

– Mathematics teaches how to work with algorithms. Algo-
rithms are a fundamental part of computer science and 
appear explicitly or implicitly in most computer related 
tasks. The skill of conceptualising algorithms as math-
ematical entity helps to better understand and solve these 
tasks, [3, 19, 26].

– Mathematics teaches computer scientists how to analyse 
their work. The analytical skills provided by the study 
and understanding of mathematics enable students to 
strengthen their critical skills. These skills are useful to 
programmers, designers, and developers to assess their 
own work and that made by others to identify mistakes 
and areas for improvement, see [15, 47].

– A lot of computer science still involves mathemat-
ics. Many computer-related tasks require knowledge 
and understanding of mathematics. For example, the 
programming of 3D graphics and animation in games 
requires the implementation of mathematical equa-
tions [17, 27]. There is a degree of presence of math-
ematics in various computer science tasks such as cyber-
security [5, 40], artificial intelligence [18, 43] and data 
science [11].

While assuming, on the basis of considerations above, that 
some degree of mathematics provision is crucially impor-
tant in computer science education, the present paper offers 
reflections about how mathematics can be effectively and 
efficiently taught to computer science undergraduates. In 
other words, this paper addresses the following research 
question:

This research question makes an implicit assumption: there 
is a specific way to efficiently teach mathematics in a com-
puter science degree (which would differ from the way math-
ematics is taught to mathematics students). More generally, 
this article puts the learners at the centre of the attention of 
the lecturer who adapts their teaching on the basis of the 
inclinations (what they easily understand) needs (what can 
be useful in their professional life) of the cohort. This is in 
line with the study reported in [10] where some tangible 
tools are proposed to enhance the understanding of math-
ematics among engineering students.

To address this question, this paper proposes an analysis 
of the features of a computer science undergraduate cohort 
and two teaching techniques that, on the basis of the experi-
ence of the author, promote a large-scale engagement, under-
standing of mathematics, and improved exam results.

To further clarify the main purpose and significance of 
this study, mathematics, albeit very impactful on the careers 
of computer scientists, is often overlooked in computer sci-
ence’ curricula and its importance in teaching practice often 
not enough recognised.

In the literature, numerous studies are devoted to the 
teaching of mathematics with several journals focussed 
solely on mathematics’ education. The link between math-
ematics and computer science/engineering has also been 
intensively studied. However, the most popular approaches 
revolve around the use of computer technologies to enhance 
the learning of mathematics, see, e.g. [21, 34, 44]. Further-
more, several books of mathematics refer to a computer 
science audience, e.g. [22, 50], thus implicitly proposing 
examples of teaching practice. The present paper proposes 
the first study, to the knowledge of the author, that concep-
tualises some educational techniques specific to the teaching 
of mathematics to computer science’ cohorts.

The remainder of this paper is organised in the follow-
ing way. The next section provides some observations about 
cohorts of undergraduate students of computer science and 
their attitude towards modules of mathematics. The subse-
quent section outlines the developed teaching techniques.

Computer Science Cohorts

As a premise of this work, the observations reported in this 
section are the result of a decade of teaching experience 
of mathematics in Schools of Computer Science across 
two British institutions, De Montfort University and the 
university of Nottingham. During this time, the author 
published a textbook entitled “Linear Algebra for Com-
putational Sciences and Engineering” [28] which then has 

How to successfully teach mathematics to computer
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been substantially re-written in a second edition by taking 
into account the feedback of multiple cohorts of students, 
see [29].

With respect to the learning of mathematics, the follow-
ing challenges associated with the (often large) cohorts of 
students have been noted:

– Since in many universities there are no specific mathe-
matical pre-requisites, the cohorts can be very diverse 
in terms of mathematics’ background. Some students 
may have encountered advanced mathematical studies 
in high school (A levels in further maths), some others 
may have studied basic mathematics in high school and 
others may have not studied mathematics at school in the 
two years immediately preceding university education. 
Furthermore, international students may have a strong 
mathematical background and have not necessarily met 
the same content as local students in their high schools, 
see [7, 25].

  Thus, the preparation of a lecture of mathematics that 
is suitable for the entire cohort is a challenging task. The 
lecture is likely to be either excessively demanding for 
some students or not stimulating enough for others. The 
search for the correct balance can easily lead to ineffec-
tive learning since it would not target large portions of 
the cohorts.

– In continuity with the Ralston’s observations [38], part of 
the cohort is likely to not fully appreciate the importance 
of mathematics within their curriculum. To the experi-
ence of the author, many computer science students, 
especially in the early undergraduate years, do not 
see the benefits of mathematics to their future career. 
Mathematics is sometimes perceived as an abstract sub-
ject that has no relation at all with the work of a profes-
sional computer scientist.

  Another challenge for the lecturer is to motivate the 
entire cohort and overcome the initial resistance of many 
students to learn mathematics. This attitude may also link 
to individual psychological issues such as maths anxiety, 
see, e.g. [23, 48] in case of students who have not studied 
any mathematics in the two years preceding the univer-
sity studies.

On the other hand, these challenges can be mitigated by an 
important feature of the cohort: since there are normally pre-
requisites in computer science discipline, the entire cohort is 
guaranteed to have a minimum understanding of program-
ming, Information Technology, and computing disciplines. 
In the opinion of the author, this feature can be exploited 
by the lecturer of mathematics designing a module that is 
interesting and engaging for all the students and contains 
new learning material and approaches for the entire cohort 
of students.

Teaching Mathematics to Computer 
Scientist: Two Proposed Techniques

This section describes at the conceptual level and by means 
of a concrete example two proposed teaching techniques 
used to address the two challenges outlined in Sect. “Com-
puter Science Cohorts”.

Addressing the Diversity in Mathematical 
Background

The research question above is broken into two question to 
address the challenges outlined in Sect. “Computer Science 
Cohorts”. With reference to the first challenge and with the 
purpose of proposing a technique addressing it, let us for-
mulate the first research sub-question.

How to design a lecture (entire module) that is inter-
esting for a cohort with a diverse mathematical back-
ground and promote the learning for all the students 
regardless of their starting point?

The first underpinning principle embraced by the author in 
his teaching and in his textbook [29] (as explicitly declared 
on the back cover), is that no compromises should be made 
on the content nor on the mathematical rigour of the lec-
tures. To enable that computer science students benefit in 
their career from modules of mathematics, it is fundamental 
that the four points outlined by Lincoln Sedlacek [45] are 
covered. This means that a number of mathematical topics 
relevant to computer science are presented and assessed. 
Furthermore, rigorous mathematical reasoning must be used 
throughout the mathematical modules and be part of the 
assessment. This is done to allow students to develop ana-
lytical and critical skills that will then be transferred to their 
professional life.

On the other hand, in the opinion of the author, the way 
mathematics is taught to students of computer science 
should take into great consideration the composition and 
features of the audience/cohort. To address the diversity in 
mathematical background, the author proposes to introduce 
and explain each mathematical topic in three different ways 
and from different perspectives. More specifically, each topic 
is presented

– By formal mathematics. This presentation immediately 
targets that part of the cohort with prior mathematical 
studies and is available to the other students after they 
achieved an intuitive understanding of the concept.

– By abstraction of an example. This presentation allows an 
initial understanding to the students without solid prior 
mathematical bases. These students have an opportunity 
to quickly achieve some degree of understanding of the 
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explained mathematical concept and remain engaged 
throughout the lecture. Then, following an initial under-
standing of the subject, these students can revise the for-
mal presentation of the concept and understand it more 
in depth and at a more general level. In the meantime, 
students with a solid mathematical background have the 
opportunity to check and consolidate their understanding 
of the formal presentation by seeing this second presenta-
tion as its numerical example.

– By “algorithmification” of formal mathematics. Math-
ematical concepts and proofs can be interpreted and pre-
sented as procedures/algorithms that achieve a numerical 
result or a logical goal. Since the entire cohort is already 
familiar with programming, and procedural description 
of instructions, the author exploits the common back-
ground of the cohort to offer an alternative (and original) 
view of the subject that is easily accessible to everybody. 
It must be remarked, that this algorithmification, albeit 
a powerful teaching tool, always allows a procedural 
understanding of mathematics, i.e. what needs to be 
done to achieve a goal, but not always allows an in-depth 
understanding of the concept for which a revision of the 
formal presentation may be necessary. On the other hand, 
the algorithmification of mathematics enables the devel-
opment of a common language, understandable by all 
students and offers a further support to better learn and 
understand rigorous mathematics.

Figure 1 displays in a schematic way the proposed teach-
ing technique and displays the three ways the mathematical 
concept is explained, categorising the learners on the basis 
of their mathematical background. Two learning phases are 
included, a first approach where the students are introduced 
to the topic and revision where the students study the topic 
again after having familiarised with the multiple explana-
tions. As shown, in the first phase, students with a mathe-
matical background are expected to prefer a formal approach 
whereas students without a mathematical background are 
likely to prefer an intuitive explanation. During the revision, 
the background becomes less relevant since the students had 
the opportunity to study the concept and reflect about it. In 
revision phase, students are expected to choose the approach 
they prefer on the basis of their personal inclinations and 
are expected to refer to both formal and intuitive approach 
to study the concept from complementary perspectives. The 
explanation by algorithmification is expected to be easily 
accessible for the entire cohort and be a further form of sup-
port to enable another level of understanding of the subject. 
The proposed approach is in agreement with the inclusive 
education theories [2] and in particular with the cognitiv-
ism-based inclusive education practices and constructivism-
based inclusive education practices. The former focuses on 
the mental information processing of the learners, see [1] 
while the latter makes use of real-life experiences as learn-
ing tools, see [14].

Fig. 1  Scheme of the teach-
ing technique to address the 
diversity in mathematical 
background
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To better demonstrate the proposed teaching technique, in 
the following example a mathematical concept is explained 
in the three different ways outlined above.

Example: �� Factorisation Explained to a Computer 
Science Cohort

Let us consider a popular topic in mathematics which is 
fundamental in the career of a computer scientist, that is the 
solution a large system of linear questions. Let us assume 
that the problem has been presented as

that is a matrix equation of the type �� = � . In the follow-
ing, the solution of this problem by a direct method called 
�� factorisation is presented, see [29]. At first, a general 
premise is made and then the concept is explained by means 
of the three different ways explained above.

Premise. The LU factorization is a direct method that 
transforms a matrix � into a matrix product �� where � 
is a lower triangular matrix having the diagonal elements 
all equal to 1 and � is an upper triangular matrix. Thus, if 
we aim at solving a system of linear equations �� = � , we 
obtain

If we pose �� = � , we solve at first the triangular sys-
tem �� = � and then extract � from the triangular system 
�� = � . Thus, instead of solving a computationally complex 
system of linear equations �� factorisation transforms � 
into the product �� and then poses two extremely straight-
forward systems (triangular systems are immediate to solve 
by substitution).

Explanation by formal mathematics.

Theorem 1 Let � ∈ ℝn,n be a non-singular matrix. Let us 
indicate with �� the submatrix having order k composed 
of the first k rows and k columns of � . If det�� ≠ 0 for 
k = 1, 2,… , n then ∃! lower triangular matrix � having all 
the diagonal elements equal to 1 and ∃! upper triangular 
matrix � such that � = ��.

Let us now derive the general transformation formulas. 
Let � be

⎧⎪⎨⎪⎩

a1,1x1 + a1,2x2 +…+ a1,nxn = b1
a2,1x1 + a2,2x2 +…+ a2,nxn = b2
…

an,1x1 + an,2x2 +…+ an,nxn = bn

�� = � ⇒

⇒ ��� = �.

while � and � are, respectively,

If we impose � = �� , we obtain

for i, j = 1, 2,… , n.
In the case i ≤ j , i.e. in the case of the triangular upper 

part of the matrix, we have

This equation is equivalent to

that is the formula to determine the elements of �.
Let us consider the case j < i , i.e. the lower triangular 

part of the matrix

This equation is equivalent to

that is the formula to determine the elements of �.
Explanation by abstraction of an example. If we con-

sider the following system of linear equations

� =

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠

� =

⎛⎜⎜⎜⎝

1 0 … 0

l2,1 1 … 0

… … … …

ln,1 ln,2 … 1

⎞⎟⎟⎟⎠

� =

⎛
⎜⎜⎜⎝

u1,1 u1,2 … u1,n
0 u2,2 … u2,n
… … … …

0 0 … un,n

⎞
⎟⎟⎟⎠
.

ai,j =

n∑
k=1

li,kuk,j =

min (i,j)∑
k=1

li,kuk,j

ai,j =

i∑
k=1

li,kuk,j =

i−1∑
k=1

li,kuk,j + li,iui,j =

i−1∑
k=1

li,kuk,j + ui,j.

ui,j = ai,j −

i−1∑
k=1

li,kuk,j

ai,j =

j∑
k=1

li,kuk,j =

j−1∑
k=1

li,kuk,j + li,juj,j.

li,j =
1

uj,j

(
ai,j −

j−1∑
k=1

li,kuk,j

)
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and the corresponding incomplete matrix �

we can impose the factorization � = �� . This means

If we perform the multiplication of the two matrices we 
obtain the following system of 9 equations in 12 variables.

Since this system has infinite solutions we can impose some 
extra equations. Let us impose that l1,1 = l2,2 = l3,3 = 1 . By 
substitution, we find that

The � = �� factorization is then

⎧
⎪⎨⎪⎩

x + 3y + 6z = 17

2x + 8y + 16z = 42

5x + 21y + 45z = 91

� =

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
,

� =

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

l1,1 0 0

l2,1 l2,2 0

l3,1 l3,2 l3,3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1,1 u1,2 u1,3
0 u2,2 u2,3
0 0 u3,3

⎞
⎟⎟⎠
.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l1,1u1,1 = 1

l1,1u1,2 = 3

l1,1u1,3 = 6

l2,1u1,1 = 2

l2,1u1,2 + l2,2u2,2 = 8

l2,1u1,3 + l2,2u2,3 = 16

l3,1u1,1 = 5

l3,1u1,2 + l3,2u2,2 = 21

l3,1u1,3 + l3,2u2,3 + l3,3u3,3 = 45.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1,1 = 1

u1,2 = 3

u1,3 = 6

l2,1 = 2

u2,2 = 2

u2,3 = 4

l3,1 = 5

l3,2 = 3

u3,3 = 3.

Explanation by “algorithmification” of formal math-
ematics. The �� factorisation can be expressed by the 
equation

where ∀i, j , ai,j are known while li,j and ui,j must be found. 
We may consider the matrices � and � as data structures 
that can be viewed as vectors of row vectors �� and column 
vector �� , respectively

Let us indicate with ���� the scalar product of the vector �� 
by �� that is ai,j:

If the equations are performed in a certain order, from each 
scalar product an element li,j or ui,j can be calculated. Then 
we may think about an empty data structure � that will store 
the representation of the result of the �� factorisation. The 
algorithm initialises the first row of the matrix � as the first 
row of � . The following rows of the matrix � are filled by 
solving the equations ai,j = ���

� with the data previously 
calculated and allocated in � . More specifically, each of 
these equations is a simple linear equation with only one 
unknown. The value of this unknown is allocated in bi,j . At 
the end of this procedure the matrix � contains the data of 
the factorisation:

Algorithm 1 displays the pseudocode of the �� factorisation. 

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

1 0 0

2 1 0

5 3 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 3 6

0 2 4

0 0 3

⎞
⎟⎟⎠
.

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

1 0 … 0

l2,1 1 … 0

… … … …

ln,1 ln,2 … 1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

u1,1 u1,2 … u1,n
0 u2,2 … u2,n
… … … …

0 0 … un,n

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

��
��
…

��

⎞⎟⎟⎟⎠

�
��, ��,… , ��

�
.

ai,j = ���
� = li,1u1,j + l2,1u2,j +…+ ln,1un,j.

� =

⎛⎜⎜⎜⎝

u1,1 u1,2 … u1,n
l2,1 u2,2 … u2,n
… … … …

ln,1 ln,2 … ln,n

.

⎞⎟⎟⎟⎠
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Algorithm 1 Algorithms of the LU factorisation
INPUT matrix A
Copy the first row of A into B, i.e. b1 = a1
for i = 2 : n do

for j = 1 : n do
if j < i then

from ai,j = liuj substitute the available values from B and calculates bi,j i.e. li,j
else

from ai,j = liuj substitute the available values from B and calculates bi,j i.e. ui,j

end if
end for

end for
OUTPUT matrix B

tion of research concept during the teaching, the second 
refers to the research methodologies, the third refers to 
critical discussions about research. Furthermore, even 
when the students do not share the same scientific inter-
est of the lecturer, they may appreciate and participate 
the passion for the subject that naturally the lecturer 
would share when talking about their research experi-
ence and achievements, see [35, 41]. One of the purposes 
of sharing the personal professional experience is to be 
inspirational and promote, among students, reflections 
about their own skills, passions, and ambitions, see [42].

The proposed approach is in line with the relevance aspect 
of the Attention Relevance Confidence Satisfaction (ARCS) 
instructional design model designed by Keller, see [20]. In 
this model Relevance refers to the usefulness of the infor-
mation to motivate the learners. Following this principle, 
the author suggests that the integration of examples related 
to the prospective careers to the students supports the stu-
dent to remain motivated and catalyses effective learning 
sessions.

The following example shows how one of the most 
abstract and difficult concept of undergraduate mathemat-
ics, eigenvalues and eigenvectors, can be linked to computer 
science profession and research.

Example: The Importance of Eigenvectors 
in Computer Science Profession

Before entering into the details, let us informally introduce 
the context of the topic. When a multivariate linear mapping 
is considered, its eigenvector is a special direction along 
which the function behaves like a multiplier of a scalar by 
a vector [29]. A function of n variables has n eigenvectors. 
These eigenvectors can be seen a new reference system, a 
new set of variables that can replace the original one. In this 
new reference system, the original function (and thus the 
mathematical model approximating the reality), is very easy 

Addressing the Resisting Attitude to Mathematics

With reference to the second challenge, let us formulate the 
corresponding research sub-question.

How to keep the full computer science cohort engaged 
and interested in learning mathematics?

On the basis of trials and errors and observations of the 
behaviour in the classroom as well as the results at the exam, 
the author argues that a good strategy is to explicitly high-
light the impact of mathematics on the career of a computer 
scientist. When a mathematical topic is introduced, some 
context about the practical use of mathematics in computer 
science should be provided. Two types of contextualisation 
have been identified.

– Report the links between mathematics and computer 
science professions. As mentioned above, computer sci-
ence jobs can be of various type. Students are likely to 
have heard of some types of profession and may even 
have the ambition of undertaking one of them (or one 
among some of them). The author observed that ref-
erences to the links between mathematical theory and 
computer science professions greatly help to keep the 
audience engaged and willing to learn.

– Share personal experience of mathematics in 
research/profession. As a computer scientist who 
actively (and enthusiastically) uses mathematics in his 
research and profession, the author can share his personal 
experience. This approach may genuinely interest and 
enthuse part of the student cohort who may decide to 
continue their studies in a final year project (thesis) and 
can be considered part of Research Informed Teaching 
(RIT). With reference to the theory reported in [6] that 
classifies different types of RIT, the proposed approach 
is a combination of research-led, research-oriented and 
research-tutored learning. The first refers to the illustra-
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to handle since its variables are independent on each other. 
This transformation is called diagonalisation.

Link between eigenvectors and a computer science 
profession. One popular profession in computer science is 
the data scientist. When a large number of data are handled, 
it is fundamental to extract the most useful piece of infor-
mation so that the data set can be interpreted correctly. Data 
can be viewed as multivariate distributions (distributions 
of vectors) characterised by a mean vector and a covari-
ance matrix. A covariance matrix can be interpreted as a 
linear mapping and its diagonalisation allows the detection 
of the direction that best fits the data. This method, com-
monly known as Principal Component Analysis (PCA) [16], 
enables the detection of the most represented variables in the 
dataset that are the most important ones.

Link between eigenvectors and personal experi-
ence. Eigenvectors can play a very important role also in 
the specific research field of the author that is optimisation. 
When the optimum of a multivariate function is searched, a 
set of candidate solutions can be interpreted as a multivariate 
distribution, see [4, 8]. If only a distribution of points whose 
objective function value is below a threshold (in a minimi-
sation problem) are saved in the data set, then this distribu-
tion describes the geometry of the optimisation problem, 
see [31]. Like for the case of the PCA, the diagonalisation 
of the associated covariance matrix, that is the detection of 
its eigenvectors provides the optimisation algorithm with a 
set of preferential search directions to perform the search 
for the the optimum, see [30]. However, unlike the case of 
the PCA, the most important direction (variable) is the least 
represented one as it would correspond to the direction with 
maximum directional gradient.

To provide a graphical representation of the research idea, 
let us consider a problem in two variables and let us assume 
we generated a set of points whose objective function value 
is below a certain threshold. Figure 2 shows this distribution 
as blue points with a simple geometry, that is a line. The 
dashed lines indicate the directions of the eigenvectors. Then 
Fig.  2 displays the trajectory of a classical algorithm named 
Pattern Search (PS) using the standard set of variables (line 
with yellow markers) and the eigenvectors of the covari-
ance matrix of the distribution. The latter algorithm, namely 
Covariance Pattern Search (CPS, line with red markers) is 
identical to PS except it used a different set of variables (it 
works in a different reference system). We may observe that 
the version that exploits the mathematics of eigenvectors 
achieves a result that is seventeen orders of magnitude better 
than its vanilla version.

Case Study

The outlined teaching techniques have been tested in the 
classrooms over the years 2014–2019 in the School of Com-
puter Science and Informatics at De Montfort University. 
More specifically the author designed and taught two mod-
ules of 30 Credits each (one fourth of the year credits) to 
undergraduate students in Years 1 and 2, respectively. Data 
have been collected for four cohorts of students correspond-
ing to

– Year 1 - Academic Years from 2014/2015 to 2017/2018
– Year 2 - Academic Years from 2015/2016 to 2018/2019

The assessment of each module, in each year, was com-
posed of two classroom tests and one exam. Each piece of 
assessment had the same structure: 50% of the marks we 
assigned to numerical exercises while 50% were theoretical 
questions (which imposed the use of formal mathematics). 

Fig. 2  Functioning and performance of standard Pattern Search (PS) 
and its enhanced version that exploits the mathematical knowledge 
about eigenvectors (CPS)

Table 1  Student performance of four cohorts of students over a 
5-year span

Exam board 2015 2016 2017 2018 2019

Year 1 module
 Group size 22 36 38 21 –
 Pass rate ( %) 56 82 87 100 –
 First rate ( %) 16 39 42 43 –
 Average mark ±� 42±28 58±24 62±21 70±18 –

Year 2 module
 Group size – 16 29 30 21
 Pass rate ( %) – 82 76 83 86
 First rate ( %) – 31 28 36 38
 Average mark ±� – 59±16 56±21 65±18 66±19
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The minimum average mark to pass each module is 40/100. 
While the structure of the assessment remained unaltered 
throughout the 2014–2019 period, the student feedback com-
ing from explicit comments and through their performance 
affected the way the modules were delivered by progres-
sively adopting the teaching techniques above. This iterative 
process affected the classroom teaching as well as the study 
material, see [29], which eventually presented, for almost 
each topic, an explanation in multiple ways as in Fig. 1 and 
its applicability in the context of the computer science job 
market.

For each cohort, the performance of a group of students 
has been monitored. Each group has been selected to rep-
resent the diversity in terms of mathematical prior compe-
tence, since some of the students had a limited mathematical 
background (in the British education systems no A levels 
in Mathematics or less than C in A levels), some students 
had a moderate mathematical background (passed A lev-
els in Mathematics with at least C), some students had an 
advanced mathematical background (passed A levels in Fur-
ther Mathematics with at least C). For each group and each 
module (1) pass rate (percentage of students achieving at 
least 40/100); (2) first rate (percentage of students achieving 
at least 70/100); (3) average mark of the group ± standard 
deviation � have been recorded at each June exam board. 
Table 1 displays these data.

Figure 3 displays the trend over the years of the student 
average with the respective error bars.

The results on the cohorts show that year after year the 
students achieve better results. Although many factor may 
have contributed to this outcome, the consistent updates in 
the material and teaching style indicate the effectiveness of 
the proposed teaching techniques.

To provide further (qualitative) evidence of the effec-
tiveness of the proposed teaching techniques, some of the 
comments given by the students in the questionnaire of the 
module are given in the following. In these comments, the 
students refer to the approach of explaining topics from dif-
ferent perspectives and to the book [29] as a study manual.

“Theory part always was clearly shown in practice part 
of module, we had support of book to complete our knowl-
edge, and answer any queries.” (Year 1 student 2018)

Fig. 3  Trend of the average mark of the students over the years Fig. 4  Scatter plot of the marks against the prior mathematical back-
ground for the group of 2016 and Year 1 Module. Although students 
with prior mathematical knowledge appear to achieve better marks, 
also students with a limited prior knowledge in mathematics may 
achieve high marks

Fig. 5  Scatter plot of the marks against the prior mathematical back-
ground for the group of 2018 and Year 2 Module. Most of the stu-
dents appear to perform well regardless of their prior background
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“Really enjoyed this module and the teaching of the mod-
ule is clear and well explained and examples are good to 
help with the learning of the theory” (Year 2 student 2018)

The results of the Year 1 Module are especially inter-
esting since students performed way better from 2016 
onward. From the academic year 2015/2016, many topics 
have been re-written and the algorithmified explanation has 
been added to the formal mathematical description and the 
abstraction by example. Furthermore, from the academic 
year 2015/2016, a lot of attention had been paid to link the 
topics of the module to realistic scenarios of the job market. 
It must be remarked that the composition of mathematical 
background of each group was broadly constant. While in 
the Academic Year 2014/2015, various students without 
a high-school mathematical background failed the mod-
ule (at the first sit), in the following years the lack of prior 
mathematical knowledge no longer appeared to be a clear 
disadvantage when the proposed teaching techniques were 
applied. Figure 4 shows that prior mathematical knowledge 
may be an advantage to achieve a better performance. How-
ever, this is not always true: students with no prior math-
ematics successfully passed the module and students with 
a modest mathematical background achieved marks greater 
than 70. This tendency mitigates over the academic years. In 
the group of 2018, the performance of students in the Year 
1 Module did not appear to be related to their high-school 
education in mathematics. This fact seems to demonstrate 
the effectiveness of the proposed teaching.

The results of the Year 2 Module also show an overall 
improvement of pass rate and average mark, thus indicating 
that the suggested teaching techniques may have a success-
ful impact on the cohorts. However, since these students 
previously progressed to from Year 1 to Year 2, the depend-
ency between their pre-university education and results in 
the module do not appear to be correlated. To exemplify 
this fact, Fig. 5 shows the scatter plot of the marks of the 
Year 2 Module in year 2018 against the prior mathematical 
background. It can be observed that very high marks have 
been achieved by students in Year 2 regardless of their math-
ematical knowledge achieved in high school.

To study the correlation between marks in the module and 
prior mathematical knowledge, a score has been assigned to 
quantify the mathematical background of each student: 0 has 
been assigned in case of no A levels, 20, 40, 60, 80, 100 have 
been assigned students achieving E, D, C, B, A in A levels 

in Mathematics and Further mathematics. The the score has 
been normalised to the highest value and expressed within 
the range [0, 100].

The correlation displayed in Figs. 4 and 5 has been quan-
titatively studied by calculating the Pearson’s coefficient r 
[33]. Table 2 lists the Pearson’s coefficients for the cohorts 
studied in this paper. We may observe that Pearson’s coef-
ficients are thirty to forty times higher for the Year 1 data 
than the coefficients for Year 2 data. Thus, the quantitative 
analysis confirms that whilst there is a correlation between 
prior mathematical knowledge and performance in Year 1, 
the correlation is negligible in Year 2 (r is close to zero).

Conclusion

This paper investigates the teaching of mathematics in 
schools of computer science with specific reference to Brit-
ish Universities. After embracing the assumption that teach-
ing mathematics is beneficial to computer science students 
and to the professional career of computer scientists, this 
article provides some suggestions to engage the students and 
teach effectively.

Two specific challenges have been identified and dis-
cussed: (1) computer science students typically have a 
diverse mathematical background; (2) often mathematics is 
not perceived as a subject that relates directly to computer 
science jobs. Two teaching techniques are proposed on the 
basis of the experience of teaching and writing a textbook 
in these specific circumstances. The first technique, in line 
with the literature proposes the explanation of each math-
ematical topic in different ways including the explanation of 
mathematics as an algorithm (algorithmification of math-
ematics). The second technique blends research informed 
teaching with a provision of references how mathematics 
impacts the every day job of a computer scientists. Specific 
classroom tested examples are provided to enrich and clarify 
the proposed techniques. In any case, it is advocated that 
no compromises are made on the taught content or on the 
mathematical rigour of the teaching.

A case study based on multiple years teaching indicates 
that the proposed techniques can be effective to enhance 
the performance of the students. Furthermore, some obser-
vations based on the correlation between prior mathemati-
cal knowledge and performance show that in Year 1 prior 

Table 2  Pearson’s correlation 
coefficients r to analyse the 
correlation between students’ 
performance and prior 
background

Exam board 2015 2016 2017 2018 2019

Year 1 module
 Pearson’s correlation coefficient r 0.4082 0.3849 0.3951 0.3879 –

Year 2 module
 Pearson’s correlation coefficient r – 0.0837 0.0684 -0.0599 0.0589
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mathematical education may have a bias on the student per-
formance which appears to be mitigated by the proposed 
techniques (students without prior mathematics can perform 
equally well as their colleagues with prior advanced math-
ematical studies). The performance of students in Year 2 
does not appear to be correlated anymore with their high 
school history.

This study implicates that teaching of mathematics should 
be targeted to the specific cohorts/degrees where the teach-
ing occurs. Since mathematics plays a fundamental role in 
various programmes of applied sciences and engineering, 
the proposed study indicates that an adaptation of context-
related teaching techniques can enhance the engagement 
of the students and the efficacy of the learning experience. 
Hence, the proposed teaching techniques can be interpreted 
as a template expandable to a broader context such as phys-
ics and engineering degrees.
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