
Vol.:(0123456789)

SN Computer Science (2021) 2:75
https://doi.org/10.1007/s42979-021-00461-7

SN Computer Science

REVIEW ARTICLE

Teaching Mathematics to Computer Scientists: Reflections and a Case
Study

Ferrante Neri1

Received: 30 September 2020 / Accepted: 8 January 2021
© The Author(s) 2021

Abstract
Mathematics, despite being the foundation of computer science, is nowadays often considered a totally separate subject. The
fact that many jobs in computer science do not explicitly require any specific mathematical knowledge posed questions about
the importance of mathematics within computer science undergraduate curricula. In many educational systems, a prior high
school knowledge of mathematics is often not a mandatory requirement to be enrolled into a degree of computer science. On
the other hand, several studies report that mathematics is important to computer scientists since it provides essential analytical
and critical skills and since many professional and research tasks in computer science require an in-depth understanding of
mathematical concepts. From this assumption, this article proposes an analysis of the cohort of computer science’ students,
with a specific reference to British Universities, and identifies some challenges that lecturers of mathematical subjects
normally face. On the basis of this analysis this article proposes two teaching techniques to promote effective learning. The
proposed techniques aim at addressing the diversity of cohorts in terms of mathematical background and skepticism from
part of the cohort of students to consider mathematics as an essential element of their education. Numerical results indicate
the validity and effectiveness of the proposed teaching techniques.

Keywords Education · Mathematics for computer science · British educational system · Research informed teaching

Introduction

In the 1830s, Charles Babbage developed the idea of an
automatic calculator and in the 1840s Ada Lovelace con-
ceptualised computer programming. These scientific con-
tributions are allegedly the first visionary foundations of
computer science [24]. However, the beginning of modern
computer science is usually dated about one century later,
when Alan Turing and Alonzo Church introduced the con-
cepts of algorithm and model of computation, see [12, 13,
49]. An important stepping stone from theoretical model to
hardware implementation is that the computer architecture
formalised by John von Neumann in the 1940s [32].

These pioneers of computer science have something in
common: they were all mathematicians. Hence, the research
published at the time was presented and perceived as part of
mathematics. Thus, we may observe that computer science

originated as a branch of mathematics that over the second
half of the twentieth century became a discipline separate
and independent from it.

On the other hand, when we analyse computer science
today, it appears like a broad and complex subject composed
of heterogeneous parts and whose specialists possess diverse
and heterogeneous skills. For example, among the plethora
of its sub-fields, computer science (and its taught curricula)
includes subjects very close to mathematics like theory of
computation and algorithmics [46], programming subjects
whose focus is in the computer implementation and hard-
ware exploitation [36], subjects that focus on the human
user, their psychology and aesthetic preferences to build
efficient front-end interfaces [9].

By analysing the job market in computer science, many
of the jobs most in demand, like Applications developer,
Game designer/developer, Information systems manager, IT
consultant do not require any specific mathematical train-
ing. Hence, by echoing the (rhetorical) question posed by
Anthony Ralston in [38]:

Do We Need ANY Mathematics in computer science Curricula?

 * Ferrante Neri
 ferrante.neri@nottingham.ac.uk

1 COL Laboratory, School of Computer Science, University
of Nottingham, Nottingham NG8 1BB, UK

http://orcid.org/0000-0002-6100-6532
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00461-7&domain=pdf

 SN Computer Science (2021) 2:75 75 Page 2 of 12

SN Computer Science

The answer to this question is not straightforward and is
controversial, see [37, 39]. Ralston acknowledges the impor-
tance of mathematics in computer science degrees and points
out that it is important “to insure that mathematics does play
a proper role in CS/SE programs and, in particular, to do so
by breaking the stranglehold of calculus on first and second
year college mathematics”. By paraphrasing this statement,
mathematics should harmonically sit within a computer sci-
ence degree taking into account the learners, the job market,
and the nature of the subject.

The role of mathematics within computer science educa-
tion has been recently discussed by Lincoln Sedlacek in [45]
where it is stated that mathematics is an essential subject of
computer science education and the following four reasons
are given

– Mathematics teaches understanding and communication
through an abstract language. This general argument,
also mentioned in [38], means that mathematics “rewires
the brain” of the learner and enables a general broader
understanding, see in the context of school education [3].
The abstract nature of programming and other areas of
computer science would greatly benefit from this skill.

– Mathematics teaches how to work with algorithms. Algo-
rithms are a fundamental part of computer science and
appear explicitly or implicitly in most computer related
tasks. The skill of conceptualising algorithms as math-
ematical entity helps to better understand and solve these
tasks, [3, 19, 26].

– Mathematics teaches computer scientists how to analyse
their work. The analytical skills provided by the study
and understanding of mathematics enable students to
strengthen their critical skills. These skills are useful to
programmers, designers, and developers to assess their
own work and that made by others to identify mistakes
and areas for improvement, see [15, 47].

– A lot of computer science still involves mathemat-
ics. Many computer-related tasks require knowledge
and understanding of mathematics. For example, the
programming of 3D graphics and animation in games
requires the implementation of mathematical equa-
tions [17, 27]. There is a degree of presence of math-
ematics in various computer science tasks such as cyber-
security [5, 40], artificial intelligence [18, 43] and data
science [11].

While assuming, on the basis of considerations above, that
some degree of mathematics provision is crucially impor-
tant in computer science education, the present paper offers
reflections about how mathematics can be effectively and
efficiently taught to computer science undergraduates. In
other words, this paper addresses the following research
question:

This research question makes an implicit assumption: there
is a specific way to efficiently teach mathematics in a com-
puter science degree (which would differ from the way math-
ematics is taught to mathematics students). More generally,
this article puts the learners at the centre of the attention of
the lecturer who adapts their teaching on the basis of the
inclinations (what they easily understand) needs (what can
be useful in their professional life) of the cohort. This is in
line with the study reported in [10] where some tangible
tools are proposed to enhance the understanding of math-
ematics among engineering students.

To address this question, this paper proposes an analysis
of the features of a computer science undergraduate cohort
and two teaching techniques that, on the basis of the experi-
ence of the author, promote a large-scale engagement, under-
standing of mathematics, and improved exam results.

To further clarify the main purpose and significance of
this study, mathematics, albeit very impactful on the careers
of computer scientists, is often overlooked in computer sci-
ence’ curricula and its importance in teaching practice often
not enough recognised.

In the literature, numerous studies are devoted to the
teaching of mathematics with several journals focussed
solely on mathematics’ education. The link between math-
ematics and computer science/engineering has also been
intensively studied. However, the most popular approaches
revolve around the use of computer technologies to enhance
the learning of mathematics, see, e.g. [21, 34, 44]. Further-
more, several books of mathematics refer to a computer
science audience, e.g. [22, 50], thus implicitly proposing
examples of teaching practice. The present paper proposes
the first study, to the knowledge of the author, that concep-
tualises some educational techniques specific to the teaching
of mathematics to computer science’ cohorts.

The remainder of this paper is organised in the follow-
ing way. The next section provides some observations about
cohorts of undergraduate students of computer science and
their attitude towards modules of mathematics. The subse-
quent section outlines the developed teaching techniques.

Computer Science Cohorts

As a premise of this work, the observations reported in this
section are the result of a decade of teaching experience
of mathematics in Schools of Computer Science across
two British institutions, De Montfort University and the
university of Nottingham. During this time, the author
published a textbook entitled “Linear Algebra for Com-
putational Sciences and Engineering” [28] which then has

How to successfully teach mathematics to computer

science undergraduates?

SN Computer Science (2021) 2:75 Page 3 of 12 75

SN Computer Science

been substantially re-written in a second edition by taking
into account the feedback of multiple cohorts of students,
see [29].

With respect to the learning of mathematics, the follow-
ing challenges associated with the (often large) cohorts of
students have been noted:

– Since in many universities there are no specific mathe-
matical pre-requisites, the cohorts can be very diverse
in terms of mathematics’ background. Some students
may have encountered advanced mathematical studies
in high school (A levels in further maths), some others
may have studied basic mathematics in high school and
others may have not studied mathematics at school in the
two years immediately preceding university education.
Furthermore, international students may have a strong
mathematical background and have not necessarily met
the same content as local students in their high schools,
see [7, 25].

 Thus, the preparation of a lecture of mathematics that
is suitable for the entire cohort is a challenging task. The
lecture is likely to be either excessively demanding for
some students or not stimulating enough for others. The
search for the correct balance can easily lead to ineffec-
tive learning since it would not target large portions of
the cohorts.

– In continuity with the Ralston’s observations [38], part of
the cohort is likely to not fully appreciate the importance
of mathematics within their curriculum. To the experi-
ence of the author, many computer science students,
especially in the early undergraduate years, do not
see the benefits of mathematics to their future career.
Mathematics is sometimes perceived as an abstract sub-
ject that has no relation at all with the work of a profes-
sional computer scientist.

 Another challenge for the lecturer is to motivate the
entire cohort and overcome the initial resistance of many
students to learn mathematics. This attitude may also link
to individual psychological issues such as maths anxiety,
see, e.g. [23, 48] in case of students who have not studied
any mathematics in the two years preceding the univer-
sity studies.

On the other hand, these challenges can be mitigated by an
important feature of the cohort: since there are normally pre-
requisites in computer science discipline, the entire cohort is
guaranteed to have a minimum understanding of program-
ming, Information Technology, and computing disciplines.
In the opinion of the author, this feature can be exploited
by the lecturer of mathematics designing a module that is
interesting and engaging for all the students and contains
new learning material and approaches for the entire cohort
of students.

Teaching Mathematics to Computer
Scientist: Two Proposed Techniques

This section describes at the conceptual level and by means
of a concrete example two proposed teaching techniques
used to address the two challenges outlined in Sect. “Com-
puter Science Cohorts”.

Addressing the Diversity in Mathematical
Background

The research question above is broken into two question to
address the challenges outlined in Sect. “Computer Science
Cohorts”. With reference to the first challenge and with the
purpose of proposing a technique addressing it, let us for-
mulate the first research sub-question.

How to design a lecture (entire module) that is inter-
esting for a cohort with a diverse mathematical back-
ground and promote the learning for all the students
regardless of their starting point?

The first underpinning principle embraced by the author in
his teaching and in his textbook [29] (as explicitly declared
on the back cover), is that no compromises should be made
on the content nor on the mathematical rigour of the lec-
tures. To enable that computer science students benefit in
their career from modules of mathematics, it is fundamental
that the four points outlined by Lincoln Sedlacek [45] are
covered. This means that a number of mathematical topics
relevant to computer science are presented and assessed.
Furthermore, rigorous mathematical reasoning must be used
throughout the mathematical modules and be part of the
assessment. This is done to allow students to develop ana-
lytical and critical skills that will then be transferred to their
professional life.

On the other hand, in the opinion of the author, the way
mathematics is taught to students of computer science
should take into great consideration the composition and
features of the audience/cohort. To address the diversity in
mathematical background, the author proposes to introduce
and explain each mathematical topic in three different ways
and from different perspectives. More specifically, each topic
is presented

– By formal mathematics. This presentation immediately
targets that part of the cohort with prior mathematical
studies and is available to the other students after they
achieved an intuitive understanding of the concept.

– By abstraction of an example. This presentation allows an
initial understanding to the students without solid prior
mathematical bases. These students have an opportunity
to quickly achieve some degree of understanding of the

 SN Computer Science (2021) 2:75 75 Page 4 of 12

SN Computer Science

explained mathematical concept and remain engaged
throughout the lecture. Then, following an initial under-
standing of the subject, these students can revise the for-
mal presentation of the concept and understand it more
in depth and at a more general level. In the meantime,
students with a solid mathematical background have the
opportunity to check and consolidate their understanding
of the formal presentation by seeing this second presenta-
tion as its numerical example.

– By “algorithmification” of formal mathematics. Math-
ematical concepts and proofs can be interpreted and pre-
sented as procedures/algorithms that achieve a numerical
result or a logical goal. Since the entire cohort is already
familiar with programming, and procedural description
of instructions, the author exploits the common back-
ground of the cohort to offer an alternative (and original)
view of the subject that is easily accessible to everybody.
It must be remarked, that this algorithmification, albeit
a powerful teaching tool, always allows a procedural
understanding of mathematics, i.e. what needs to be
done to achieve a goal, but not always allows an in-depth
understanding of the concept for which a revision of the
formal presentation may be necessary. On the other hand,
the algorithmification of mathematics enables the devel-
opment of a common language, understandable by all
students and offers a further support to better learn and
understand rigorous mathematics.

Figure 1 displays in a schematic way the proposed teach-
ing technique and displays the three ways the mathematical
concept is explained, categorising the learners on the basis
of their mathematical background. Two learning phases are
included, a first approach where the students are introduced
to the topic and revision where the students study the topic
again after having familiarised with the multiple explana-
tions. As shown, in the first phase, students with a mathe-
matical background are expected to prefer a formal approach
whereas students without a mathematical background are
likely to prefer an intuitive explanation. During the revision,
the background becomes less relevant since the students had
the opportunity to study the concept and reflect about it. In
revision phase, students are expected to choose the approach
they prefer on the basis of their personal inclinations and
are expected to refer to both formal and intuitive approach
to study the concept from complementary perspectives. The
explanation by algorithmification is expected to be easily
accessible for the entire cohort and be a further form of sup-
port to enable another level of understanding of the subject.
The proposed approach is in agreement with the inclusive
education theories [2] and in particular with the cognitiv-
ism-based inclusive education practices and constructivism-
based inclusive education practices. The former focuses on
the mental information processing of the learners, see [1]
while the latter makes use of real-life experiences as learn-
ing tools, see [14].

Fig. 1 Scheme of the teach-
ing technique to address the
diversity in mathematical
background

SN Computer Science (2021) 2:75 Page 5 of 12 75

SN Computer Science

To better demonstrate the proposed teaching technique, in
the following example a mathematical concept is explained
in the three different ways outlined above.

Example: �� Factorisation Explained to a Computer
Science Cohort

Let us consider a popular topic in mathematics which is
fundamental in the career of a computer scientist, that is the
solution a large system of linear questions. Let us assume
that the problem has been presented as

that is a matrix equation of the type �� = � . In the follow-
ing, the solution of this problem by a direct method called
�� factorisation is presented, see [29]. At first, a general
premise is made and then the concept is explained by means
of the three different ways explained above.

Premise. The LU factorization is a direct method that
transforms a matrix � into a matrix product �� where �
is a lower triangular matrix having the diagonal elements
all equal to 1 and � is an upper triangular matrix. Thus, if
we aim at solving a system of linear equations �� = � , we
obtain

If we pose �� = � , we solve at first the triangular sys-
tem �� = � and then extract � from the triangular system
�� = � . Thus, instead of solving a computationally complex
system of linear equations �� factorisation transforms �
into the product �� and then poses two extremely straight-
forward systems (triangular systems are immediate to solve
by substitution).

Explanation by formal mathematics.

Theorem 1 Let � ∈ ℝn,n be a non-singular matrix. Let us
indicate with �� the submatrix having order k composed
of the first k rows and k columns of � . If det�� ≠ 0 for
k = 1, 2,… , n then ∃! lower triangular matrix � having all
the diagonal elements equal to 1 and ∃! upper triangular
matrix � such that � = ��.

Let us now derive the general transformation formulas.
Let � be

⎧⎪⎨⎪⎩

a1,1x1 + a1,2x2 +…+ a1,nxn = b1
a2,1x1 + a2,2x2 +…+ a2,nxn = b2
…

an,1x1 + an,2x2 +…+ an,nxn = bn

�� = � ⇒

⇒ ��� = �.

while � and � are, respectively,

If we impose � = �� , we obtain

for i, j = 1, 2,… , n.
In the case i ≤ j , i.e. in the case of the triangular upper

part of the matrix, we have

This equation is equivalent to

that is the formula to determine the elements of �.
Let us consider the case j < i , i.e. the lower triangular

part of the matrix

This equation is equivalent to

that is the formula to determine the elements of �.
Explanation by abstraction of an example. If we con-

sider the following system of linear equations

� =

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠

� =

⎛⎜⎜⎜⎝

1 0 … 0

l2,1 1 … 0

… … … …

ln,1 ln,2 … 1

⎞⎟⎟⎟⎠

� =

⎛
⎜⎜⎜⎝

u1,1 u1,2 … u1,n
0 u2,2 … u2,n
… … … …

0 0 … un,n

⎞
⎟⎟⎟⎠
.

ai,j =

n∑
k=1

li,kuk,j =

min (i,j)∑
k=1

li,kuk,j

ai,j =

i∑
k=1

li,kuk,j =

i−1∑
k=1

li,kuk,j + li,iui,j =

i−1∑
k=1

li,kuk,j + ui,j.

ui,j = ai,j −

i−1∑
k=1

li,kuk,j

ai,j =

j∑
k=1

li,kuk,j =

j−1∑
k=1

li,kuk,j + li,juj,j.

li,j =
1

uj,j

(
ai,j −

j−1∑
k=1

li,kuk,j

)

 SN Computer Science (2021) 2:75 75 Page 6 of 12

SN Computer Science

and the corresponding incomplete matrix �

we can impose the factorization � = �� . This means

If we perform the multiplication of the two matrices we
obtain the following system of 9 equations in 12 variables.

Since this system has infinite solutions we can impose some
extra equations. Let us impose that l1,1 = l2,2 = l3,3 = 1 . By
substitution, we find that

The � = �� factorization is then

⎧
⎪⎨⎪⎩

x + 3y + 6z = 17

2x + 8y + 16z = 42

5x + 21y + 45z = 91

� =

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
,

� =

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

l1,1 0 0

l2,1 l2,2 0

l3,1 l3,2 l3,3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u1,1 u1,2 u1,3
0 u2,2 u2,3
0 0 u3,3

⎞
⎟⎟⎠
.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l1,1u1,1 = 1

l1,1u1,2 = 3

l1,1u1,3 = 6

l2,1u1,1 = 2

l2,1u1,2 + l2,2u2,2 = 8

l2,1u1,3 + l2,2u2,3 = 16

l3,1u1,1 = 5

l3,1u1,2 + l3,2u2,2 = 21

l3,1u1,3 + l3,2u2,3 + l3,3u3,3 = 45.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1,1 = 1

u1,2 = 3

u1,3 = 6

l2,1 = 2

u2,2 = 2

u2,3 = 4

l3,1 = 5

l3,2 = 3

u3,3 = 3.

Explanation by “algorithmification” of formal math-
ematics. The �� factorisation can be expressed by the
equation

where ∀i, j , ai,j are known while li,j and ui,j must be found.
We may consider the matrices � and � as data structures
that can be viewed as vectors of row vectors �� and column
vector �� , respectively

Let us indicate with ���� the scalar product of the vector ��
by �� that is ai,j:

If the equations are performed in a certain order, from each
scalar product an element li,j or ui,j can be calculated. Then
we may think about an empty data structure � that will store
the representation of the result of the �� factorisation. The
algorithm initialises the first row of the matrix � as the first
row of � . The following rows of the matrix � are filled by
solving the equations ai,j = ���

� with the data previously
calculated and allocated in � . More specifically, each of
these equations is a simple linear equation with only one
unknown. The value of this unknown is allocated in bi,j . At
the end of this procedure the matrix � contains the data of
the factorisation:

Algorithm 1 displays the pseudocode of the �� factorisation.

⎛
⎜⎜⎝

1 3 6

2 8 16

5 21 45

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

1 0 0

2 1 0

5 3 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 3 6

0 2 4

0 0 3

⎞
⎟⎟⎠
.

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

1 0 … 0

l2,1 1 … 0

… … … …

ln,1 ln,2 … 1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

u1,1 u1,2 … u1,n
0 u2,2 … u2,n
… … … …

0 0 … un,n

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

a1,1 a1,2 … a1,n
a2,1 a2,2 … a2,n
… … … …

an,1 an,2 … an,n

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

��
��
…

��

⎞⎟⎟⎟⎠

�
��, ��,… , ��

�
.

ai,j = ���
� = li,1u1,j + l2,1u2,j +…+ ln,1un,j.

� =

⎛⎜⎜⎜⎝

u1,1 u1,2 … u1,n
l2,1 u2,2 … u2,n
… … … …

ln,1 ln,2 … ln,n

.

⎞⎟⎟⎟⎠

SN Computer Science (2021) 2:75 Page 7 of 12 75

SN Computer Science

Algorithm 1 Algorithms of the LU factorisation
INPUT matrix A
Copy the first row of A into B, i.e. b1 = a1
for i = 2 : n do

for j = 1 : n do
if j < i then

from ai,j = liuj substitute the available values from B and calculates bi,j i.e. li,j
else

from ai,j = liuj substitute the available values from B and calculates bi,j i.e. ui,j

end if
end for

end for
OUTPUT matrix B

tion of research concept during the teaching, the second
refers to the research methodologies, the third refers to
critical discussions about research. Furthermore, even
when the students do not share the same scientific inter-
est of the lecturer, they may appreciate and participate
the passion for the subject that naturally the lecturer
would share when talking about their research experi-
ence and achievements, see [35, 41]. One of the purposes
of sharing the personal professional experience is to be
inspirational and promote, among students, reflections
about their own skills, passions, and ambitions, see [42].

The proposed approach is in line with the relevance aspect
of the Attention Relevance Confidence Satisfaction (ARCS)
instructional design model designed by Keller, see [20]. In
this model Relevance refers to the usefulness of the infor-
mation to motivate the learners. Following this principle,
the author suggests that the integration of examples related
to the prospective careers to the students supports the stu-
dent to remain motivated and catalyses effective learning
sessions.

The following example shows how one of the most
abstract and difficult concept of undergraduate mathemat-
ics, eigenvalues and eigenvectors, can be linked to computer
science profession and research.

Example: The Importance of Eigenvectors
in Computer Science Profession

Before entering into the details, let us informally introduce
the context of the topic. When a multivariate linear mapping
is considered, its eigenvector is a special direction along
which the function behaves like a multiplier of a scalar by
a vector [29]. A function of n variables has n eigenvectors.
These eigenvectors can be seen a new reference system, a
new set of variables that can replace the original one. In this
new reference system, the original function (and thus the
mathematical model approximating the reality), is very easy

Addressing the Resisting Attitude to Mathematics

With reference to the second challenge, let us formulate the
corresponding research sub-question.

How to keep the full computer science cohort engaged
and interested in learning mathematics?

On the basis of trials and errors and observations of the
behaviour in the classroom as well as the results at the exam,
the author argues that a good strategy is to explicitly high-
light the impact of mathematics on the career of a computer
scientist. When a mathematical topic is introduced, some
context about the practical use of mathematics in computer
science should be provided. Two types of contextualisation
have been identified.

– Report the links between mathematics and computer
science professions. As mentioned above, computer sci-
ence jobs can be of various type. Students are likely to
have heard of some types of profession and may even
have the ambition of undertaking one of them (or one
among some of them). The author observed that ref-
erences to the links between mathematical theory and
computer science professions greatly help to keep the
audience engaged and willing to learn.

– Share personal experience of mathematics in
research/profession. As a computer scientist who
actively (and enthusiastically) uses mathematics in his
research and profession, the author can share his personal
experience. This approach may genuinely interest and
enthuse part of the student cohort who may decide to
continue their studies in a final year project (thesis) and
can be considered part of Research Informed Teaching
(RIT). With reference to the theory reported in [6] that
classifies different types of RIT, the proposed approach
is a combination of research-led, research-oriented and
research-tutored learning. The first refers to the illustra-

 SN Computer Science (2021) 2:75 75 Page 8 of 12

SN Computer Science

to handle since its variables are independent on each other.
This transformation is called diagonalisation.

Link between eigenvectors and a computer science
profession. One popular profession in computer science is
the data scientist. When a large number of data are handled,
it is fundamental to extract the most useful piece of infor-
mation so that the data set can be interpreted correctly. Data
can be viewed as multivariate distributions (distributions
of vectors) characterised by a mean vector and a covari-
ance matrix. A covariance matrix can be interpreted as a
linear mapping and its diagonalisation allows the detection
of the direction that best fits the data. This method, com-
monly known as Principal Component Analysis (PCA) [16],
enables the detection of the most represented variables in the
dataset that are the most important ones.

Link between eigenvectors and personal experi-
ence. Eigenvectors can play a very important role also in
the specific research field of the author that is optimisation.
When the optimum of a multivariate function is searched, a
set of candidate solutions can be interpreted as a multivariate
distribution, see [4, 8]. If only a distribution of points whose
objective function value is below a threshold (in a minimi-
sation problem) are saved in the data set, then this distribu-
tion describes the geometry of the optimisation problem,
see [31]. Like for the case of the PCA, the diagonalisation
of the associated covariance matrix, that is the detection of
its eigenvectors provides the optimisation algorithm with a
set of preferential search directions to perform the search
for the the optimum, see [30]. However, unlike the case of
the PCA, the most important direction (variable) is the least
represented one as it would correspond to the direction with
maximum directional gradient.

To provide a graphical representation of the research idea,
let us consider a problem in two variables and let us assume
we generated a set of points whose objective function value
is below a certain threshold. Figure 2 shows this distribution
as blue points with a simple geometry, that is a line. The
dashed lines indicate the directions of the eigenvectors. Then
Fig. 2 displays the trajectory of a classical algorithm named
Pattern Search (PS) using the standard set of variables (line
with yellow markers) and the eigenvectors of the covari-
ance matrix of the distribution. The latter algorithm, namely
Covariance Pattern Search (CPS, line with red markers) is
identical to PS except it used a different set of variables (it
works in a different reference system). We may observe that
the version that exploits the mathematics of eigenvectors
achieves a result that is seventeen orders of magnitude better
than its vanilla version.

Case Study

The outlined teaching techniques have been tested in the
classrooms over the years 2014–2019 in the School of Com-
puter Science and Informatics at De Montfort University.
More specifically the author designed and taught two mod-
ules of 30 Credits each (one fourth of the year credits) to
undergraduate students in Years 1 and 2, respectively. Data
have been collected for four cohorts of students correspond-
ing to

– Year 1 - Academic Years from 2014/2015 to 2017/2018
– Year 2 - Academic Years from 2015/2016 to 2018/2019

The assessment of each module, in each year, was com-
posed of two classroom tests and one exam. Each piece of
assessment had the same structure: 50% of the marks we
assigned to numerical exercises while 50% were theoretical
questions (which imposed the use of formal mathematics).

Fig. 2 Functioning and performance of standard Pattern Search (PS)
and its enhanced version that exploits the mathematical knowledge
about eigenvectors (CPS)

Table 1 Student performance of four cohorts of students over a
5-year span

Exam board 2015 2016 2017 2018 2019

Year 1 module
 Group size 22 36 38 21 –
 Pass rate (%) 56 82 87 100 –
 First rate (%) 16 39 42 43 –
 Average mark ±� 42±28 58±24 62±21 70±18 –

Year 2 module
 Group size – 16 29 30 21
 Pass rate (%) – 82 76 83 86
 First rate (%) – 31 28 36 38
 Average mark ±� – 59±16 56±21 65±18 66±19

SN Computer Science (2021) 2:75 Page 9 of 12 75

SN Computer Science

The minimum average mark to pass each module is 40/100.
While the structure of the assessment remained unaltered
throughout the 2014–2019 period, the student feedback com-
ing from explicit comments and through their performance
affected the way the modules were delivered by progres-
sively adopting the teaching techniques above. This iterative
process affected the classroom teaching as well as the study
material, see [29], which eventually presented, for almost
each topic, an explanation in multiple ways as in Fig. 1 and
its applicability in the context of the computer science job
market.

For each cohort, the performance of a group of students
has been monitored. Each group has been selected to rep-
resent the diversity in terms of mathematical prior compe-
tence, since some of the students had a limited mathematical
background (in the British education systems no A levels
in Mathematics or less than C in A levels), some students
had a moderate mathematical background (passed A lev-
els in Mathematics with at least C), some students had an
advanced mathematical background (passed A levels in Fur-
ther Mathematics with at least C). For each group and each
module (1) pass rate (percentage of students achieving at
least 40/100); (2) first rate (percentage of students achieving
at least 70/100); (3) average mark of the group ± standard
deviation � have been recorded at each June exam board.
Table 1 displays these data.

Figure 3 displays the trend over the years of the student
average with the respective error bars.

The results on the cohorts show that year after year the
students achieve better results. Although many factor may
have contributed to this outcome, the consistent updates in
the material and teaching style indicate the effectiveness of
the proposed teaching techniques.

To provide further (qualitative) evidence of the effec-
tiveness of the proposed teaching techniques, some of the
comments given by the students in the questionnaire of the
module are given in the following. In these comments, the
students refer to the approach of explaining topics from dif-
ferent perspectives and to the book [29] as a study manual.

“Theory part always was clearly shown in practice part
of module, we had support of book to complete our knowl-
edge, and answer any queries.” (Year 1 student 2018)

Fig. 3 Trend of the average mark of the students over the years Fig. 4 Scatter plot of the marks against the prior mathematical back-
ground for the group of 2016 and Year 1 Module. Although students
with prior mathematical knowledge appear to achieve better marks,
also students with a limited prior knowledge in mathematics may
achieve high marks

Fig. 5 Scatter plot of the marks against the prior mathematical back-
ground for the group of 2018 and Year 2 Module. Most of the stu-
dents appear to perform well regardless of their prior background

 SN Computer Science (2021) 2:75 75 Page 10 of 12

SN Computer Science

“Really enjoyed this module and the teaching of the mod-
ule is clear and well explained and examples are good to
help with the learning of the theory” (Year 2 student 2018)

The results of the Year 1 Module are especially inter-
esting since students performed way better from 2016
onward. From the academic year 2015/2016, many topics
have been re-written and the algorithmified explanation has
been added to the formal mathematical description and the
abstraction by example. Furthermore, from the academic
year 2015/2016, a lot of attention had been paid to link the
topics of the module to realistic scenarios of the job market.
It must be remarked that the composition of mathematical
background of each group was broadly constant. While in
the Academic Year 2014/2015, various students without
a high-school mathematical background failed the mod-
ule (at the first sit), in the following years the lack of prior
mathematical knowledge no longer appeared to be a clear
disadvantage when the proposed teaching techniques were
applied. Figure 4 shows that prior mathematical knowledge
may be an advantage to achieve a better performance. How-
ever, this is not always true: students with no prior math-
ematics successfully passed the module and students with
a modest mathematical background achieved marks greater
than 70. This tendency mitigates over the academic years. In
the group of 2018, the performance of students in the Year
1 Module did not appear to be related to their high-school
education in mathematics. This fact seems to demonstrate
the effectiveness of the proposed teaching.

The results of the Year 2 Module also show an overall
improvement of pass rate and average mark, thus indicating
that the suggested teaching techniques may have a success-
ful impact on the cohorts. However, since these students
previously progressed to from Year 1 to Year 2, the depend-
ency between their pre-university education and results in
the module do not appear to be correlated. To exemplify
this fact, Fig. 5 shows the scatter plot of the marks of the
Year 2 Module in year 2018 against the prior mathematical
background. It can be observed that very high marks have
been achieved by students in Year 2 regardless of their math-
ematical knowledge achieved in high school.

To study the correlation between marks in the module and
prior mathematical knowledge, a score has been assigned to
quantify the mathematical background of each student: 0 has
been assigned in case of no A levels, 20, 40, 60, 80, 100 have
been assigned students achieving E, D, C, B, A in A levels

in Mathematics and Further mathematics. The the score has
been normalised to the highest value and expressed within
the range [0, 100].

The correlation displayed in Figs. 4 and 5 has been quan-
titatively studied by calculating the Pearson’s coefficient r
[33]. Table 2 lists the Pearson’s coefficients for the cohorts
studied in this paper. We may observe that Pearson’s coef-
ficients are thirty to forty times higher for the Year 1 data
than the coefficients for Year 2 data. Thus, the quantitative
analysis confirms that whilst there is a correlation between
prior mathematical knowledge and performance in Year 1,
the correlation is negligible in Year 2 (r is close to zero).

Conclusion

This paper investigates the teaching of mathematics in
schools of computer science with specific reference to Brit-
ish Universities. After embracing the assumption that teach-
ing mathematics is beneficial to computer science students
and to the professional career of computer scientists, this
article provides some suggestions to engage the students and
teach effectively.

Two specific challenges have been identified and dis-
cussed: (1) computer science students typically have a
diverse mathematical background; (2) often mathematics is
not perceived as a subject that relates directly to computer
science jobs. Two teaching techniques are proposed on the
basis of the experience of teaching and writing a textbook
in these specific circumstances. The first technique, in line
with the literature proposes the explanation of each math-
ematical topic in different ways including the explanation of
mathematics as an algorithm (algorithmification of math-
ematics). The second technique blends research informed
teaching with a provision of references how mathematics
impacts the every day job of a computer scientists. Specific
classroom tested examples are provided to enrich and clarify
the proposed techniques. In any case, it is advocated that
no compromises are made on the taught content or on the
mathematical rigour of the teaching.

A case study based on multiple years teaching indicates
that the proposed techniques can be effective to enhance
the performance of the students. Furthermore, some obser-
vations based on the correlation between prior mathemati-
cal knowledge and performance show that in Year 1 prior

Table 2 Pearson’s correlation
coefficients r to analyse the
correlation between students’
performance and prior
background

Exam board 2015 2016 2017 2018 2019

Year 1 module
 Pearson’s correlation coefficient r 0.4082 0.3849 0.3951 0.3879 –

Year 2 module
 Pearson’s correlation coefficient r – 0.0837 0.0684 -0.0599 0.0589

SN Computer Science (2021) 2:75 Page 11 of 12 75

SN Computer Science

mathematical education may have a bias on the student per-
formance which appears to be mitigated by the proposed
techniques (students without prior mathematics can perform
equally well as their colleagues with prior advanced math-
ematical studies). The performance of students in Year 2
does not appear to be correlated anymore with their high
school history.

This study implicates that teaching of mathematics should
be targeted to the specific cohorts/degrees where the teach-
ing occurs. Since mathematics plays a fundamental role in
various programmes of applied sciences and engineering,
the proposed study indicates that an adaptation of context-
related teaching techniques can enhance the engagement
of the students and the efficacy of the learning experience.
Hence, the proposed teaching techniques can be interpreted
as a template expandable to a broader context such as phys-
ics and engineering degrees.

Funding This study was funded by the institutions indicated in the
list of affiliations.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Al-Shammari Z. Using evidence-based cognitive teaching strate-
gies with effect size in inclusion classrooms in kuwait. Saudi J
Spec Educ. 2019;10

 2. Al-Shammari Z, Faulkner PE, Forlin C. Theories-based inclusive
education practices. Educ Q Rev. 2019;2:408–14.

 3. Benton L, Hoyles C, Kalas I, Noss R. Bridging primary program-
ming and mathematics: some findings of design research in eng-
land. Digit Exp Math Educ. 2017;3:115–38.

 4. Blum C, Chiong R, Clerc M, Jong KD, Michalewicz Z, Neri F,
Weise T. Evolutionary optimization. In: R. Chiong, T. Weise,
Z. Michalewicz (eds.) Variants of Evolutionary Algorithms for
Real-World Applications. Berlin, Heidelberg

 5. Boavida F, Praitano A, Lioudakis GV. Topical issue on pri-
vacy, data protection, and digital identity. SN Comput. Sci.
2020;1(5):250.

 6. Burgum S, Stoakes G. What does research informed teaching look
like? HEA booklet 2016; URL https ://www.heaca demy.ac.uk/
blog/what-does-resea rch-infor med-teach ing-look

 7. Byram M. Internationalisation in higher education—an interna-
tionalist perspective. On the Horizon. 2018;26(2):148–56.

 8. Caraffini F, Neri F, Cheng J, Zhang G, Picinali L, Iacca G,
Mininno E. Super-fit multicriteria adaptive differential evolution.
In: 2013 IEEE congress on evolutionary computation, 2013;
1678–1685

 9. Card SK, Newell A, Moran TP. The Psychology of Human-Com-
puter Interaction. USA: L. Erlbaum Associates Inc.; 1983.

 10. Ceragioli F, Spreafico M. Tangible tools in mathematics for engi-
neering students: experimental activity at politecnico di torino.
Digit Exp Math Educ. 2020;6:244–56.

 11. Ceri S, Pinoli P. Data science for genomic data management: chal-
lenges, resources, experiences. SN Comput Sci. 2020;1(1):5:1–7.

 12. Church A. On carnap’s analysis of statements of assertion and
belief. Analysis. 1950;10(5):97–9.

 13. Church A. Introduction to Mathematical Logic. Annals of Math-
ematics Studies. Princeton University Press 1996; URL https ://
books .googl e.co.uk/books ?id=JDLQO MKbdS cC

 14. Ertmer PA, Newby TJ. Behaviorism, cognitivism, constructivism:
comparing critical features from an instructional design perspec-
tive. Performance Improvement Quarterly. 2013;26:43–71.

 15. Firdaus F, Kailani I, Bakar M, Bakry B. Developing critical think-
ing skills of students in mathematics learning. J Educ Learn (Edu-
Learn). 2015;9:226.

 16. F.R.S., K.P.: Liii. on lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science 2(11), 559–572 (1901)

 17. Ghorashi A, Ghorashi M. Theoretical and computational analysis
of the falling ladder problem. SN Comput Sci. 2020;1(1):20:1–11.

 18. Islam MM, Haque MR, Iqbal H, Hasan MM, Hasan M, Kabir
MN. Breast cancer prediction: A comparative study using machine
learning techniques. SN Comput Sci. 2020;1(5):290.

 19. Jonsson B, Norqvist M, Liljekvist Y, Lithner J. Learning mathe-
matics through algorithmic and creative reasoning. J Math Behav.
2014;36:20–32.

 20. Keller JM. Motivational design of instruction. In: C.M. Reigeluth
(ed.) Instructional-design theories and models: an overview of
their current status, pp. 386–434. Lawrence Erlbaum Associates
1983.

 21. Kumar A, Kumaresan S. Use of mathematical software for teach-
ing and learning mathematics. In: Proceedings of the 11th inter-
national congress on mathematical education, 2008;373–388

 22. Lehman E, Thomson Leighton F, Meyer AR. Mathematics for
Computer Science Hardcover. Cambridge: MIT Press; 2017.

 23. Luttenberger S, Wimmer S, Paechter M. Spotlight on math anxi-
ety. Psychol Res Behav Manag. 2018;11:311–22.

 24. Menabrea L, Babbage C, Lovelace, A., L, A. Sketch of the Ana-
lytical Engine invented by Charles Babbage with notes by the
translator. Extracted from the ’Scientific Memoirs. R. & J. E.
Taylor 1843;

 25. Mittelmeier J, Rienties B, Tempelaar D, Whitelock D. Overcom-
ing cross-cultural group work tensions: mixed student perspectives
on the role of social relationships. High Educ. 2018;75:149–66.

 26. Morley A. Teaching and learning algorithms. Learning Math.
1981;2(2):50–1.

 27. Musse SR, Thalmann D. Hierarchical model for real time simu-
lation of virtual human crowds. IEEE Trans Vis Comput Graph.
2001;7(2):152–64.

 28. Neri F. Linear algebra computational sciences and engineering.
Berlin: Springer; 2016.

 29. Neri F. Linear algebra for computational sciences and engineering.
2nd ed. Berlin: Springer; 2019.

http://creativecommons.org/licenses/by/4.0/
https://www.heacademy.ac.uk/blog/what-does-research-informed-teaching-look
https://www.heacademy.ac.uk/blog/what-does-research-informed-teaching-look
https://books.google.co.uk/books?id=JDLQOMKbdScC
https://books.google.co.uk/books?id=JDLQOMKbdScC

 SN Computer Science (2021) 2:75 75 Page 12 of 12

SN Computer Science

 30. Neri F, Rostami S. A local search for numerical optimisation
based on covariance matrix diagonalisation. In: P.A. Castillo,
J.L.J. Laredo, F.F. de Vega (eds.) Applications of evolutionary
computation—23rd European conference, EvoApplications 2020,
Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020,
Proceedings, Lecture Notes in Computer Science, vol. 12104, pp.
3–19. Springer 2020.

 31. Neri F, Zhou Y. Covariance local search for memetic frameworks:
A fitness landscape analysis approach. In: 2020 IEEE congress on
evolutionary computation (CEC), 2020;1–8

 32. von Neumann J. First draft of a report on the edvac. Tech. rep.
1945.

 33. NIST/SEMATECH: e-Handbook of Statistical Methods 2003;
http://www.itl.nist.gov/div89 8/handb ook/

 34. Ochkov VF, Bogomolova EP. Teaching mathematics with math-
ematical software. J Humanistic Math. 2015;5:265–85.

 35. Palmer BL. Teacher passion as a teaching tool. In: Electronic The-
ses and Dissertations, 2017;3269

 36. Press W, Teukolsky S, Vetterling W, Flannery B. Numerical reci-
pes in C. 2nd ed. Cambridge: Cambridge University Press; 1992.

 37. Ralston A. The first course in computer science needs a mathemat-
ics corequisite. Commun ACM. 1984;27(10):1002–5.

 38. Ralston A. Do we need ANY mathematics in computer science
curricula? ACM SIGCSE Bull. 2005;37(2):6–9.

 39. Ralston A, Shaw M. Curriculum ’78—is computer science really
that unmathematical? Commun. ACM. 1980;23(2):67–70.

 40. Reddy NCS, Madhuravani B, Sneha DP. An approach for efficient
and secure data encryption scheme for spatial data. SN Compu
Sci. 2020;1(3):117.

 41. Revell A, Wainwright E. What makes lectures ‘unmissable’?
insights into teaching excellence and active learning. J Geography
Higher Educ. 2009;33(2):209–23.

 42. Robinson K, Aronica L. Finding Your Element: How to Discover
Your Talents and Passions and Transform Your Life. penguin
books 2014.

 43. Rostami S, Neri F, Epitropakis MG. Progressive preference articu-
lation for decision making in multi-objective optimisation prob-
lems. Integr Comput Aided Eng. 2017;24(4):315–35.

 44. Rønning F. Influence of computer-aided assessment on
ways of working with mathematics. Teaching Math Appl.
2017;36(2):94–107.

 45. Sedlacek L. Math education: The roots of computer science. https
://www.eduto pia.org/blog/math-educa tion-roots -compu ter-scien
ce-linco ln-sedla cek 2016.

 46. Sipser M. Introduction to the Theory of Computation. 1st ed. :
International Thomson Publishing; 1996.

 47. Su H, Ricci FA, Mnatsakanian M. Mathematical teaching strate-
gies: pathways to critical thinking and metacognition. J Res Educ
Sci (IJRES). 2016;1:190–200.

 48. Tobias S, Weissbrod C. Anxiety and mathematics: an update. Har-
vard Educ Rev. 1980;50(1):63–70.

 49. Turing A. On computable numbers, with an application to the
entscheidungsproblem. Proc Lond Math Soc. 1936;42(1):230–65.
https ://doi.org/10.2307/22688 10.

 50. Vince J. Foundation mathematics for computer science: a visual
approach. Berlin: Springer; 2015.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.itl.nist.gov/div898/handbook/
https://www.edutopia.org/blog/math-education-roots-computer-science-lincoln-sedlacek
https://www.edutopia.org/blog/math-education-roots-computer-science-lincoln-sedlacek
https://www.edutopia.org/blog/math-education-roots-computer-science-lincoln-sedlacek
https://doi.org/10.2307/2268810

	Teaching Mathematics to Computer Scientists: Reflections and a Case Study
	Abstract
	Introduction
	Computer Science Cohorts
	Teaching Mathematics to Computer Scientist: Two Proposed Techniques
	Addressing the Diversity in Mathematical Background
	Example: Factorisation Explained to a Computer Science Cohort
	Addressing the Resisting Attitude to Mathematics
	Example: The Importance of Eigenvectors in Computer Science Profession

	Case Study
	Conclusion
	References

