
Adaptive Covariance Pattern Search

Ferrante Neri[0000−0002−6100−6532]

Computational Optimisation and Learning (COL) Lab,
School of Computer Science, University of Nottingham, United Kingdom

ferrante.neri@nottingham.ac.uk

Abstract. Pattern search is a family of single solution deterministic
optimisation algorithms for numerical optimisation. Pattern search al-
gorithms generate a new candidate solution by means of an archive of
potential moves, named pattern. This pattern is generated by a basis of
vectors that span the domain where the function to optimise is defined.
The present article proposes an adaptive implementation of pattern search
that performs, at run-time, a fitness landscape analysis of the problem to
determine the pattern and adapt it to the geometry of the problem. The
proposed algorithm, called Adaptive Covariance Pattern Search (ACPS)
uses at the beginning the fundamental orthonormal basis (directions of
the variables) to build the pattern. Subsequently, ACPS saves the suc-
cessful visited solutions, calculates the covariance matrix associated with
these samples, and then uses the eigenvectors of this covariance matrix
to build the pattern. ACPS is a restarting algorithm that at each restart
recalculates the pattern that progressively adapts to the problem to op-
timise. Numerical results show that the proposed ACPS appears to be a
promising approach on various problems and dimensions.

Keywords: Numerical Optimisation · Adaptive Algorithms · Pattern
Search · Local Search · Covariance Matrix.

1 Introduction

Over the past decades, researchers in heuristic optimisation have striven to de-
sign algorithms that display a high performance on a wide set of problems. The
No Free Lunch Theorems [24] indicate that high performance and versatility are
conflicting features of algorithms and hence a trade-off should be found.

Researchers attempted to achieve this aim by exploiting the information
available about the optimisation problem within the design of algorithm. Since
generally the information about the problem is not available a priori, modern
algorithms include mechanisms to make the algorithm suitable to the specific
features of the problem. We identify here two algorithmic philosophies that,
albeit ideologically different, may overlap in their practical implementations.

– fitness landscape analysis: the optimisation problem is analysed by a
method, e.g. an Artificial Intelligence tool, and the results of the analysis
are used to design the algorithm, see [8, 11, 12, 17, 16]

2 F. Neri

– adaptive algorithms: a feedback on the algorithmic behaviour on the spe-
cific problem is collected and used to adjust the algorithm, see [18, 21]

These two categories have a different focus but are not mutually exclusive:
adaptive algorithms may analyse the fitness landscape. Fitness landscape anal-
ysis approaches focus on how the design is performed, that is on the basis of the
analysis. On the other hand, adaptive approaches focus on when the design is
performed/adjusted that is at run-time.

Furthermore, these two approaches, albeit overlapping, do not coincide. There
exists a multitude of adaptive approaches that are not based on a fitness land-
scape analysis. For example, the self-adaptive Differential Evolution in [1] em-
beds the parameters into the solutions and propagates them to other candidate
solutions by exploiting their evolution. Another example is in various hyper-
heuristic schemes [2, 3] where the adaptation is based on the success of the
parameters and the performance associated with them.

Conversely, at the intersection between fitness landscape analysis and adap-
tive approaches lies, for example, the Covariance Matrix Adaptive Evolution
Strategy (CMAES) [6, 7]. This popular algorithm progressively adapts a multi-
variate Gaussian distribution from which candidate solutions are sampled. This
adaptation is performed to increase the likelihood of previously successful candi-
date solutions. While evolving the CMAES distribution adapts to the geometry
of the problem/local optimum.

By following a similar idea but fully embracing the fitness landscape analysis
philosophy, paper [14] proposes a technique to analyse the geometry of the prob-
lem. This technique samples points whose objective function values are below a
threshold, then calculates the covariance matrix associated with the distribution
of these points and finally calculates the eigenvectors of the covariance matrix.
Following this fitness landscape analysis, the directions of the eigenvectors are
used to build the pattern of a pattern search, see [22] and Section 2 for defini-
tion of pattern. The resulting pattern search is called Covariance Pattern Search
(CPS).

The results in [14] clearly show that the pattern based on the eigenvectors
of a well-estimated covariance matrix outperforms the classical pattern based
on the fundamental orthonomal basis (the directions of the variables). On the
other hand, the application of CPS is impractical since it requires the setting of
the above-mentioned threshold parameter for each optimisation problem. This
setting is performed empirically and thus requires a considerable computational
effort, especially in the high dimensional case. This feature makes CPS neither
versatile (over various problems) nor easily scalable.

The present paper proposes a pattern search that makes use of the intuition of
[14] about the search directions but follows an adaptive structure. The proposed
algorithm, namely Adaptive Covariance Pattern Search (ACPS) at the beginning
of the optimisation uses the fundamental orthonormal basis and while optimising
the function stores the visited successful points. These points are then used to
build the associated covariance matrix. The corresponding eigenvectors are then
calculated. ACPS is then restarted with the newly calculated pattern. After

Adaptive Covariance Pattern Search 3

the restart, ACPS stores the visited successful points to build a more accurate
pattern which is used after another restart. The procedure is repeated until
exhaustion of the computational budget. Thus, ACPS can be seen as a restarting
pattern search whose pattern changes at each restart and progressively adapts
to the geometry of the local optimum.

The remainder of this article is organised in the following way. Section 2
provides the theoretical foundations of pattern search and its generalised ab-
straction which is then used in this study. Section 3 describes CPS and justifies
the use of a basis of eigenvectors mentioned above to build the pattern. The lim-
itations of CPS are also outlined in Section 3. Section 4 illustrates the proposed
ACPS and provides details about its implementation and functioning. Section 5
tests the performance of ACPS and compares it against that of CPS, CMAES
and a Quasi-Newtonian method. Finally, Section 6 presents the conclusions of
this study.

2 Generalised Pattern Search

Before entering the description of the algorithms, let us introduce the notation
used throughout this paper. Let us indicate with x an n-dimensional vector of
real numbers (x ∈ Rn). We will refer to a numerical optimisation problem that
is the minimisation of a function f : D → Y where D ⊆ Rn and Y ⊆ R:

min
x∈D

f (x) .

In this study we will focus on the box constrained case ([a1, b1] × [a2, b2] . . . ×
. . . [an, bn] with × indicating the Cartesian product) which includes the uncon-
strained case]−∞,+∞[

n
= Rn.

In [22] Pattern Search has been conceptualised and interpreted as a family of
direct search methods, i.e. optimisation algorithms that do not require calcula-
tions of the gradient, and indicated as Generalised Pattern Search (GPS). GPS
family is characterised by two elements:

– a set of search directions (a basis of vectors) spanning the decision space D;
– a trial step vector endowed with a step variation rule.

From an initial point x the pattern search algorithms perturb the solution
along the search directions in an iterative manner. Let us indicate with k the
iteration index. Formally, the search directions are determined by two matrices.
The first is a non-singular matrix, namely the basis matrix, and it is indicated
with B ∈ Rn×n where Rn×n is the set of square matrices of real numbers of order
n. The second is a rectangular matrix, namely the generating matrix, and it is
indicated with Gk ∈ Zn×p where Zn×p is the set of matrices of relative numbers
of size n by p with p > 2n and rank n. The matrix Gk can be partitioned as:

Gk = (Mk,−Mk,LK)

4 F. Neri

where Mk is a non-singular matrix of order n, −Mk is the opposed matrix of
Mk, and Lk is a n by (p− 2n) matrix that contains at least the null column
vector o. The search directions are given by the columns of the matrix:

Pk = BGk = (BMk,−BMk,BLk) (1)

that is referred to as the pattern. Thus a pattern can be seen as a repository of
search directions, with n of them being the direction of a basis of Rn, n of them
being the same directions but in the opposite orientation, and potentially some
additional directions.

The GPS kth trial iteration along the ith direction is the vector sk, defined
as:

sk = ∆kBgik (2)

where ∆k is a positive real number and gik is the ith column of the matrix Gk.
The parameter ∆k determines the step size while Bgik is the direction of the
trial step.

If xk is the current best solution at the iteration k, the trial point generated
by means of the trial step would be:

xt
k = xk + sk. (3)

The set of operations that yields a current best point is called the exploratory
move. The exploratory move succeeds when a solution with better performance
is detected, and fails when no update of the current best occurs. Within GPS
family, various Pattern Search implementations employ different strategies, e.g.
by attempting only one trial vector per step or exploring all the columns of∆kPk.
However, as explained in [22], Pattern Search implementations belong to the GPS
framework only if the following hypotheses, namely the Strong Hypotheses, are
verified.

Strong Hypotheses
Hypothesis 1: sk is generated by the pattern Pk or, in other words, is a column
vector of the matrix ∆kPk. The length is determined by the scalar ∆k.
Hypothesis 2: If there exists a column vector y of (BMk,−BMk) such that
f (xk + y) < f (xk), then the exploratory move must produce a trial step sk
such that f (xk + sk) < f (xk).
Hypothesis 3: The update of ∆k should follow some rules. In the case of a
failed exploratory move, ∆k has to decrease, however in the case of success ∆k

must either remain the same or increase.

The pseudocode of GPS is given in Algorithm 1.

3 Covariance Pattern Search

Covariance Pattern Search (CPS) [14] is an algorithm belonging to the GPS
family that performs a fitness landscape analysis of the problem to determine

Adaptive Covariance Pattern Search 5

Algorithm 1 Generalized Pattern Search [22]

INPUT x
k ← 1
xk ← x
while local budget condition do

generate the trial step sk from ∆kPk
calculate xt

k ← xk + sk # Exploratory Move
if f

(
xt
k

)
≤ f (xk) then

xk+1 ← xt
k

else
xk+1 ← xk

end if
k ← k + 1
update Pk and ∆k

end while
x← xk+1

RETURN x

the matrix B and hence the pattern in Eq. (1). The fitness landscape analysis
requires a threshold thr empirically set for each problem. Once this threshold
has been set, a number of candidate solutions/points are sampled in the decision
space D and their objective function values are calculated. The function values
are compared with a threshold thr and those values that are below thr are saved
in a data structure, while the others are discarded. The purpose of this operation
is to have a sample of points whose distribution describes the geometry of the
problem.

For example, Fig. 1 displays the scatter plot of points whose objective func-
tion value is below thr = 108 for the shifted and rotated ellipsoid in two dimen-
sions as in [10].

Fig. 1: Sample of points whose objective function (shifted and rotated 2D ellip-
soid) is below the threshold thr = 108

6 F. Neri

For the sake of clarity the calculation of the ellipsoid is performed by means
of the following procedure

INPUT x
z← Q (x− os)

f ←
∑n
i=1

(
106
) i−1
n−1 z2i

where Q is a rotation matrix and os is a shift vector. Let us indicate with V the
data structure where the m points whose objective function values are below thr
(like the blue points in Fig. 1). These points can be interpreted as the samples
of a multivariate distribution characterised by its mean vector µ and covariance
matrix C = [cj,l] where:

cj,l =

(
1

m

) m∑
i=1

((
xij − µj

) (
xil − µl

))
.

Subsequently, the n eigenvectors of the matrix C are calculated by means
of Cholesky Factorisation, see [19, 13]. These eigenvectors are the columns pi

of a matrix P =
(
p1,p2, . . . ,pn

)
. Algorithm 2 displays the pseudocode of the

Fitness Landscape Analysis.

Algorithm 2 Fitness Landscape Analysis

1: INPUT objective function f (x), decision space D, and parameters thr and samplesize
2: h← 1
3: for s = 1 : samplesize do
4: Sample (uniform distribution) a point x in the decision space D
5: if f (x) < thr then
6: Insert x into the data structure V: V (h)← x
7: h← h+ 1
8: end if
9: end for
10: Process the data structure V to calculate the mean vector µ and covariance matrix C
11: Apply Cholesky Factorisation to extract the eigenvectors P =

(
p1,p2, . . . ,pn

)

CPS makes use of the directions of the eigenvectors as those of the basis of
the decision space to build the pattern. Simply, CPS is a GPS where Eq. (1),
(2), and (3) are respectively

Pk = PGk = (PMk,−PMk,PLk) (4)

sk = ∆kPgik (5)

and

xt
k = xk + sk. (6)

The choice of exploring the decision space along the directions of the eigen-
vectors is justified by the fact that the covariance matrix C can be diagonalised

Adaptive Covariance Pattern Search 7

by means of the matrix P. The directions of the eigenvectors can be interpreted
as a new reference system characterised by a lack of correlation between pairs of
variables. Consequently, the new reference system fits the geometry of the prob-
lem. This concept is broadly used in other contexts, especially in Data Science,
and is closely related to Principal Component Analysis [9]. Furthermore, it was
shown in [15] that, if the sampling of points in V describes the geometry of the
basins of attraction, the directions of the eigenvectors identify the maximum and
minimum directional derivative. Thus, numerical results in [14] and [15] show
that CPS consistently outperforms the standard pattern search. The latter is a
pattern search that explores the space along the directions of the variables, that
is a pattern search whose matrix B of Eq. (1) is the identity matrix.

The fitness landscape analysis in Algorithm 2 has been applied to three local
search schemes in [15] and has been successfully integrated in a greedy imple-
mentation of pattern search in [14]. This greedy implementation based on [23]
updates the current best solution as soon as a better solution is found. Also,
this implementation explore both the orientation of each direction only when a
move along the first orientation failed. Algorithm 3 illustrates the implementa-
tion details of CPS as in [14].

Algorithm 3 Covariance Pattern Search according to the greedy implementa-
tion in [14]

1: INPUT x and matrix P calculated in Algorithm 2
2: k ← 1
3: xk ← x
4: while local budget condition do
5: h← k
6: for i = 1 : n do
7: xt ← xk − ρ · pi
8: if f

(
xt

)
≤ f (xk) then

9: k ← k + 1
10: xk ← xt

11: else
12: xt ← xk + ρ

2 · p
i

13: if f
(
xt

)
≤ f (xk) then

14: k ← k + 1
15: xk ← xt

16: end if
17: end if
18: end for
19: if h = k #If no improvement occurred then
20: ρ← ρ

2

21: end if
22: end while
23: x← xk
24: RETURN x

3.1 Limitations of Covariance Pattern Search

The main limitation of CPS is that a threshold thr must be empirically identified
for each problem. A wrong choice of thr would result into a poor functioning of

8 F. Neri

the algorithm. An excessively low thr value would cause an empty data structure
V (at least n+1 linearly independent vectors are needed to build the covariance
matrix C). An excessively high thr value would cause a data structure V that
covers the entire domain and does not describe the geometry of the problem.

The choice of a proper thr is not only fundamental to guarantee the func-
tioning of CPS but is also computationally expensive since it requires multiple
trial and error tests. The difficulty and thus computational cost of the setting of
thr grows with the dimensionality of the problem.

Another, albeit minor, limitation of CPS is that the algorithm is inherently
a local search. The fitness landscape analysis aims at describing the geometry of
a unimodal problem. Hence, CPS would likely not be usable to address multi-
modal problems.

4 The Proposed Adaptive Covariance Pattern Search

This paper proposes an adaptive algorithm, namely Adaptive Covariance Pattern
Search (ACPS), that exploits the same mathematical principles of CPS. Unlike,
CPS, the proposed ACPS does not require the setting of thr. Furthermore, the
proposed ACPS, while is still to be considered a local search, can be successfully
applied to some multimodal problems.

ACPS requires an initial solution x, an initial exploration radius ρ, and stop-
ping criteria on the minimum radius ρm and two computational budgets (max-
imum number of function calls), one local Bl one global Bg. The algorithm
initialises the matrix P to the identity matrix of size n (this corresponds to the
fundamental orthonormal basis of Rn). ACPS perturbs x along the directions
of the columns of the matrix P =

(
p1,p2, . . . ,pn

)
. By following the logic of

Algorithm 3, at the step k, for each variable i the algorithm calculates

xt = xk − ρ · pi (7)

and updates xk+1 to xt if the trial solution xt outperforms the current best
solution xk. If the exploration in Eq. (7) is unsuccessful (the trial solution does
not outperform the current best solution), ACPS attempts to explore the other
orientation, that is

xt = xk +
ρ

2
· pi, (8)

and tests the performance of the newly calculated xt before moving to the fol-
lowing design variable. Every time the trial solution xt outperforms the current
best solution xk, it occurs that the solution xt is saved and stored in the data
structure V. If the exploration along all the n directions fail then the exploration
radius ρ is halved:

ρ =
ρ

2

The algorithm is continued until the local budget Bl is exceeded or the search
radius is smaller than the minimum radius ρm.

Adaptive Covariance Pattern Search 9

When the algorithm is stopped, the covariance matrix C is calculated on the
basis of the samples in the data structure V and its eigenvectors p1,p2, . . . ,pn

calculated by Cholesky Factorisation. Thus, the matrix P =
(
p1,p2, . . . ,pn

)
is

updated. The initial radius ρ is initialised to its original value and the algorithm
restarted on the current best solution xk for up to extra Bl function calls. Also
the data structure V is reinitialised at each restart. ACPS is stopped when
the condition on the global budget Bg is exceeded. Algorithm 4 displays the
functioning of the proposed ACPS.

Algorithm 4 Adaptive Covariance Pattern Search

1: INPUT x of n elements
2: P← identity matrix I of size n
3: while global budget condition Bg do
4: k, l← 1
5: xk ← x
6: # Local run
7: while local budget condition Bl and ρ > ρm do
8: h← k
9: for i = 1 : n do
10: xt ← xk − ρ · pi
11: if f

(
xt

)
≤ f (xk) then

12: k ← k + 1
13: xk ← xt

14: V (l)← xt

15: l← l + 1
16: else
17: xt ← xk + ρ

2 · p
i

18: if f
(
xt

)
≤ f (xk) then

19: k ← k + 1
20: xk ← xt

21: V (l)← xt

22: l← l + 1
23: end if
24: end if
25: end for
26: if h = k #If no improvement occurred then
27: ρ← ρ

2

28: end if
29: end while
30: Locally RETURN x
31: if the data structure V contains at least n+ 1 vectors then
32: Calculate the covariance matrix C from the samples in V
33: Apply Cholesky Factorisation to extract the eigenvectors P =

(
p1,p2, . . . ,pn

)
34: end if
35: Initialise ρ to its initial value and V to an empty data structure
36: end while
37: x← xk
38: RETURN x

The proposed ACPS in Algorithm 4 can be considered as a restarting version
of CPS in Algorithm 3 where the exploration radius is re-initialised at each
restart, the search directions of the matrix P are updated at each restart, and
the starting solution x (input) is the output of the local search at the previous
stage (before the restart).

10 F. Neri

Furthermore, the proposed ACPS embeds within the search a fitness land-
scape analysis similar to that presented in Algorithm 2. However, while in CPS
the threshold thr is prearranged and constant, in ACPS the threshold is adap-
tive and integrated within the search logic. At each restart ACPS uses a different
threshold that is f (xk) with xk starting point of that local run (inner while loop
in Algorithm 4).

At each local run, the proposed ACPS lowers (for minimisation) the value
of the threshold and progressively refines the search directions (eigenvectors) to
better fit the local features of the fitness landscape.

In order to illustrate the functioning of the proposed ACPS Fig. 2 shows
the trajectory of the algorithm in four consecutive local runs. With the term
trajectory we mean the current best solutions visited by ACPS. Fig. 2 refers to
the shifted and rotated ellipsoid in two dimensions:

INPUT x
z← Q (x− os)

f ←
∑2
i=1

(
106
) i−1

1 z2i

where the shift vector is

os =

(
−21.98
11.55

)
and the rotation matrix is

Q =

(
−0.6358 −0.7718
−0.7718 0.6358

)
.

A random point x has been sampled within the domain. The objective func-
tion value of this starting point is 7.4385e+ 09.

Fig 2 shows that in the first local run the algorithm, while moving along
the directions of the variables (black and red dashed lines), approaches the opti-
mum but remains still far from it. After the restart, ACPS uses the new search
directions, i.e. the eigenvectors of the covariance matrix of the distribution of
samples collected during the first local run. This system of reference appears to
be ineffective. We may observe that during the second local run only a marginal
improvement is achieved. However, the budget spent in the second local run is
not wasted: the points sampled during the second local run enable the detection
of an effective reference system (eigenvectors in the third local run). During the
third local run ACPS exploits the benefits of the fitness landscape analysis and
quickly detects a solution close to the optimum. The results are then refined in
the fourth local run where the eigenvectors are slightly corrected.

It must be observed that the proposed ACPS resembles Rosenbrock Method
[20] since they both use a basis of vector which is progressively adapted during
the run (Rosenbrock Method belongs to the GPS family). However, the two
algorithms are radically different in the way the basis is selected and updated.

Adaptive Covariance Pattern Search 11

(a) First local run (b) Second local run

(c) Third local run (d) Fourth local run

Fig. 2: Trajectory of ACPS in four consecutive local runs on a rotated and shifted
ellipsoid. The red dots are current best solutions and the trajectory of the ACPS
is shown as a blue solid line. The black and red dashed lines indicate the eigen-
vectors. The best objective function values are on the top of each figure.

5 Numerical Results

In order to test and compare the performance of ACPS, a set of functions from
the IEEE CEC2013 benchmark [10] have been selected and adapted. Since ACPS
is a local search we selected all the unimodal problems, hence reproducing the
testbed of CPS used in [14]. We also reproduced both the versions of ellipsoid
presented in [14] (f2 and f3). The condition number of these two ellipsoids
worsens with dimensionality at different speeds. In this paper, alongside bent
cigar and discus we included their modified versions. Finally, in order to show
that ACPS is capable, to some extent, to handle multimodal fitness landscapes,
we included two simple multimodal functions from [10]. The list of the functions
used in this study is displayed in Table 1. As shown in Table 1, each problem has
been shifted and rotated: the variables x is transformed into z. The shift vector

12 F. Neri

os of [10] has been used. The rotation matrices Q have been randomly generated.
One matrix Q has been generated for each problem and dimensionality value.

Table 1: Objective functions used in this study

Domain

[−100, 100]n

Shift and Rotation

INPUT x
z← Q (x− os)

function name function calculation

sphere f1 ←
∑n

i=1 z
2
i

ellipsoid 1 f2 ←
∑n

i=1 50
(
i2zi

)2
ellipsoid 2 f3 ←

∑n
i=1

(
106
) i−1
n−1 z2i

bent cigar f4 ← z21 + 106∑n
i=2 z

2
i

modified bent cigar f5 ← z21 + 106
(∑n

i=2 zi
)2

discus f6 ← 106z21 +
∑n

i=2 z
2
i

modified discus f7 ← 106z21 +
(∑n

i=2 zi
)2

sum of powers f8 ←
√∑n

i=1 |zi|
(2+4 i−1

n−1)

Schwefel 2.21 f9 ← maxi=1,...,n |zi|
Rosenbrock f10 ←

∑n−1
i=1

(
100

(
z2i − zi+1

)2
+ (zi − 1)2

)
Rastrigin f11 ← 10n+

∑n
i=1

(
z2i − 10 cos (2πzi)

)

We have compared ACPS against the following three algorithms:

– Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [4] with an estima-
tion of the gradient such that it may be applied to black-box problems;

– Covariance Matrix Adaptive Evolution Strategy (CMAES) [7];
– Covariance Pattern Search (CPS) [14].

The motivation behind these three competitors is the following: 1) BFGS
is a Quasi-Newtonian algorithm that estimates the gradient and is here used a
benchmark algorithm; 2) CMAES is a prevalent algorithm that, like CPS and
ACPS are based on theoretical considerations about multivariate distributions
and the covariance matrix; 3) CPS, is a pattern search whose pattern is build
according to the same principles used in ACPS. Since the difference in perfor-
mance between CPS and ACPS is due to the proposed adaptation, CPS can be
seen as the direct competitor of ACPS in this study. All the algorithms in this
study have a comparable time complexity of O

(
n2
)
.

The problems in Table 1 have been considered in 10, 30 and 50 dimensions.
For each problem in Table 1, dimensionality level, and algorithm in this study, 51
independent runs have been performed. For each run, the four algorithms under
consideration have been run with the same initial solution. All the algorithms

Adaptive Covariance Pattern Search 13

Table 2: Thresholds thr for CPS in 10, 30, and 50 dimensions
n f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
10 104 109 5 · 108 2 · 1010 109 2 · 106 106 104 102 5 · 109 3 · 104

30 8 · 104 1012 2 · 109 1011 109 106 106 5 · 105 1.5 · 102 5 · 1010 105

50 105 5 · 1013 5 · 109 2 · 1011 1010 2 · 107 107 106 1.5 · 102 1011 2 · 105

in this paper have been executed with a budget of 10000 ·n function calls where
n is the problem dimensionality.

As reported in [14], the budget of CPS has been split in two parts: 5000 · n
function calls have been used to build the covariance matrix C, whilst 5000 · n
function calls have been spent to execute the algorithm along the directions of
its eigenvectors. In order to set the threshold thr, we used the recommended
values in [14] and tuned them in order to let the algorithm achieve the best
performance. Table 2 displays the thresholds used in this work.

Both CPS and ACPS have been run with an initial radius ρ equal to 10%
of the domain width. As for ACPS, as mentioned above Bg = 10000 · n. The
maximum local budget Bl has been set equal to 1000 · n and the minimum ra-
dius to restart the algorithm has been set equal to 10−15. Table 3 displays the
numerical results for the four algorithms under consideration and the problems
in Table 1. Table 3 shows mean value and ± standard deviation over the 51
independent runs performed. Furthermore, to statistically investigate the ques-
tion of whether the application of the proposed method results in performance
gains, the Wilcoxon rank-sum test has been applied, see [5]. In the Tables in
this section, a “+” indicates that gCPS significantly outperforms competitor,
a “-” indicates that the competitor significantly outperforms gCPS, and a “=”
indicates that there is no significant difference in performance.

Results in Table 3 show that CMAES, CPS, and ACPS are better suited
than BFGS to address the black box problems (and hence without informa-
tion on the gradient). Numerical results show that ACPS consistently displays
a better performance than CPS, thus indicating the effectiveness of the pro-
posed adaptation. Furthermore, ACPS has a performance comparable to that
of CMAES. In the low dimensional case (n = 10), both the algorithms detect
solutions very close to the optimum for the nine unimodal problems (f1−f9) and
detect the global optimum in several runs while they detect a local minumum
for the two multimodal problems (f10 − f11). In higher dimensions, we observe
that the performance of both CMAES and ACPS deteriorates on some problems
and remain excellent on others. For example, CMAES performs extremely well
on f2 − f4 regardless of number of variables while ACPS deteriorates its per-
formance as the number of dimensions increases. Conversely, ACPS handles the
f5 − f7 problems better than CMAES. On average, ACPS and CMAES display
a similar performance across the entire set of functions over the three numbers
of dimensions under consideration. Thus, ACPS appears to be more competitive
with CMAES than CPS. Fig. 3 displays two examples of convergence trend for
two randomly selected runs. The “staircase” trend of ACPS can be noticed: some

14 F. Neri

Table 3: Average error avg ± standard deviation σ over 51 runs for the
problems listed in Table 1: Adaptive Covariance Pattern Search (ACPS)
with ACPS reference for Wilcoxon vs Covariance Pattern Search (CPS) [14],
Covariance Matrix Adaptive Evolution Strategy (CMAES) [7], and Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [4].

BFGS CMAES CPS ACPS

avg σ W avg σ W avg σ W avg σ

10 dimensions

f1 1.8757e-20 2.4576e-21 + 1.6841e-15 1.2496e-15 + 7.2365e-29 9.6235e-29 + 0.0000e+00 0.0000e+00

f2 1.8956e-13 4.1016e-14 + 1.5739e-15 1.1095e-15 + 1.5810e-01 5.5370e-01 + 4.4034e-23 6.9361e-23

f3 6.6365e-11 2.6183e-12 + 1.7152e-15 1.0734e-15 + 1.0352e+04 2.4610e+04 + 7.1972e-16 1.7443e-15

f4 4.8479e-01 1.6494e+00 + 1.4131e-15 1.1850e-15 - 2.0252e+04 1.3731e+04 + 2.5260e-14 1.1648e-13

f5 1.2818e-09 2.0603e-09 + 8.8699e-15 1.0347e-14 + 3.4509e-06 5.9736e-06 + 3.3716e-23 1.2212e-22

f6 3.2306e-10 5.0825e-11 + 1.3737e-15 1.3659e-15 = 1.9279e-12 2.4744e-12 - 8.8372e-11 4.7050e-10

f7 3.9439e-12 7.2576e-12 + 6.6387e-15 1.0289e-14 + 5.2635e-19 1.1885e-18 + 3.0987e-27 1.1885e-18

f8 1.1967e-07 4.3589e-07 + 9.8002e-13 8.9374e-13 - 1.7431e-05 5.0694e-06 + 4.1666e-08 6.3467e-08

f9 7.1074e+01 2.9732e+01 + 7.7677e-10 2.1798e-10 - 5.7996e+00 8.9728e+00 + 1.4098e-06 7.6446e-06

f10 1.1960e+00 1.8581e+00 + 7.973e-01 1.62193+00 + 1.1752e+02 2.8670e+02 + 5.3985e-27 2.5363e-27

f11 8.7917e+02 4.2825e+02 + 1.6069e+01 1.6267e+01 - 6.4207e+01 3.0468e+01 = 5.7508e+01 2.5321e+01

30 dimensions

f1 4.3857e-20 1.6043e-20 + 1.4429e-15 1.0251e-15 + 5.5283e-28 1.3526e-28 + 0.0000e+00 0.0000e+00

f2 1.3352e-09 3.3772e-10 - 2.9032e-15 5.7236e-16 - 7.1932e+05 9.4686e+05 + 5.7209e-05 1.7248e-04

f3 3.2738e-11 1.5479e-12 - 2.0379e-15 2.0379e-15 - 1.0276e+05 7.1458e+04 + 8.8106e-07 2.7855e-06

f4 4.5544e+00 2.4117e+01 + 1.3962e-15 4.6239e-16 - 3.7216e+03 4.2577e+03 + 9.4800e-02 2.8220e-01

f5 1.8926e-08 2.5487e-08 + 5.9103e+03 1.5913e+04 + 1.8790e-09 5.9420e-09 + 6.2125e-24 1.9636e-23

f6 1.5200e-10 1.9637e-11 - 4.1546e-15 2.3165e-15 - 1.2576e+02 1.4733e+02 = 1.6064e+02 3.4634e+02

f7 5.9737e-13 1.2614e-12 + 1.0770e-14 1.2033e-14 + 9.7797e-27 1.1411e-26 = 5.3015e-27 5.8250e-27

f8 1.2390e-05 2.84323e-06 + 1.5671e-11 2.0251e-11 - 9.2850e-05 1.8269e-05 + 9.2440e-07 5.7487e-07

f9 1.1706e+02 3.2399e+01 + 1.3042e+00 2.8263e+00 = 4.2458e+01 1.1286e+01 + 2.2920e+00 2.0570e+00

f10 1.7275e+00 2.0093e+00 + 7.9730e-01 1.6809e+00 + 3.7031e+00 2.0897e+00 + 3.9870e-01 1.2607e+00

f11 2.0621e+03 6.1136e+02 + 5.0942e+01 1.0997e+01 - 3.9956e+02 1.2392e+02 + 2.7569e+02 8.9984e+01

50 dimensions

f1 8.5482e-20 1.9014e-20 + 1.1890e-15 3.3954e-16 + 1.2148e-27 6.1144e-28 + 0.0000e+00 0.0000e+00

f2 1.5972e-07 3.7724e-08 - 2.1614e-14 4.5515e-15 - 3.5727e+07 1.9921e+07 + 3.9667e+05 3.6613e+05

f3 9.2288e-011 4.6933e-12 - 1.3092e-15 5.9487e-16 - 1.9244e+05 6.5138e+04 + 1.3150e+02 3.5391e+02

f4 9.8654e-01 3.4845e+e00 - 1.2358e-15 5.8376e-16 - 4.6930e+03 5.8099e+03 + 1.6111e+01 3.273e+01

f5 1.9741e-08 2.8660e-08 + 5.2536e+04 1.5800e+05 + 4.700e-03 1.4700e-02 + 1.6298e-31 4.3564e-31

f6 1.1937e-10 7.3146e-12 - 3.0884e+04 9.7663e+04 + 1.2573e+02 1.2764e+02 = 1.0434e+02 1.3584e+02

f7 1.5341e-13 3.2062e-13 + 1.8735e+00 4.4116e+00 + 1.3449e-26 2.7367e-26 = 1.3501e-27 1.8298e-27

f8 1.1253e-05 1.8968e-06 + 6.5703e-11 3.2925e-11 - 1.3238e-04 1.4419e-05 + 2.3891e-06 1.2608e-06

f9 1.2855e+02 2.7862e+01 + 9.6761e-06 2.8014e-05 - 6.3083e+01 1.2169e+01 + 1.8681e+01 9.8691e+00

f10 1.9933e+00 2.0274e+00 + 1.1960e+00 1.9257e+00 + 1.0012e+02 2.3364e+02 + 7.9730e-01 1.6809e+00

f11 3.3820e+03 1.0348e+03 + 1.1004e+02 1.3796e+01 + 8.2749e+02 2.0231e+02 + 6.2442e+01 1.9581e+01

sharp improvements coincide with a restart and thus the identification of a new
pattern.

6 Conclusion

The present paper proposes an adaptive pattern search that uses the search di-
rections given by the eigenvectors of the covariance matrix built by means of suc-
cessful visited points. The proposed ACPS is a restarting local search algorithm
that at each restart adapts the search directions on the basis of the information
gathered in the previous local run. Hence, ACPS progressively adapts the search
directions to the problem under study.

This adaptive logic is here opposed to the fitness landscape analysis of CPS
that occurs separately and prior to the optimisation. Two important advantages
of ACPS with respect to CPS are: 1) ACPS does not require the setting of a
threshold; 2) ACPS uses its entire computational budget to perform the opti-
misation, that is a budget dedicated to the fitness landscape analysis does not
need to be allocated.

Adaptive Covariance Pattern Search 15

(a) f9 in ten dimensions (b) f4 in ten dimensions

Fig. 3: Two examples of convergence trend (logarithmic scale), i.e. objective func-
tion values vs function calls.

Numerical results show that, thanks to its adaptive logic, ACPS systemat-
ically outperforms CPS for the problems considered in this study. Thanks to
its restarting logic, ACPS, albeit a local search, can successfully tackle simple
multimodal optimisation problems. In ten dimensions ACPS displays a perfor-
mance comparable to that of CMAES for all the problems under study. In higher
dimensions (thirty and fifty), the performance of ACPS and CMAES diverge on
the single problems: for some problems ACPS appears to be better suited than
CMAES and for some other problems the opposite happens. Over the entire set
of test problems, ACPS and CMAES display a comparable performance.

References

1. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control
Parameters in Differential Evolution: A Comparative Study on Numerical Bench-
mark Problems. IEEE Trans. Evolutionary Computation 10(6), 646–657 (2006)

2. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: Classi-
fication of hyper-heuristic approaches. In: Handbook of Meta-Heuristics, pp. 449–
468. Springer (2010)

3. Caraffini, F., Neri, F., Epitropakis, M.G.: Hyperspam: A study on hyper-heuristic
coordination strategies in the continuous domain. Inf. Sci. 477, 186–202 (2019)

4. Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New York,
NY, USA, second edn. (1987)

5. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: A study of statistical tech-
niques and performance measures for genetics-based machine learning: accuracy
and interpretability. Soft Computing 13(10), 959–977 (2008)

6. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In: Proceedings of the
IEEE International Conference on Evolutionary Computation. pp. 312–317 (1996)

16 F. Neri

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

8. Jana, N.D., Sil, J., Das, S.: Continuous fitness landscape analysis using a chaos-
based random walk algorithm. Soft Computing 22, 921–948 (2018)

9. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, Springer,
2nd edn. (2002)

10. Liang, J., Qu, B., Suganthan, P., Hernández-Dı́az, A.: Problem definitions and
evaluation criteria for the cec 2013 special session on real-parameter optimization
(01 2013)

11. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes
using entropy. In: 2009 IEEE Congress on Evolutionary Computation. pp. 1440–
1447 (2009)

12. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Information Sciences 241, 148 – 163
(2013)

13. Neri, F.: Linear Algebra for Computational Sciences and Engineering. Springer,
second edn. (2019)

14. Neri, F., Rostami, S.: A local search for numerical optimisation based on covari-
ance matrix diagonalisation. In: Castillo, P.A., Laredo, J.L.J., de Vega, F.F. (eds.)
Applications of Evolutionary Computation - 23rd European Conference, EvoAppli-
cations 2020, EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings. Lecture
Notes in Computer Science, vol. 12104, pp. 3–19. Springer (2020)

15. Neri, F., Zhou, Y.: Covariance local search for memetic frameworks: A fitness
landscape analysis approach. In: IEEE Congress on Evolutionary Computation,
CEC 2020, Glasgow, United Kingdom, July 19-24, 2020. pp. 1–8. IEEE (2020)

16. Ochoa, G., Malan, K.: Recent advances in fitness landscape analysis. In: López-
Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019. pp. 1077–1094. ACM (2019)

17. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks of population-based
algorithms in continuous spaces. In: Applications of Evolutionary Computation -
23rd European Conference, EvoApplications 2020, Held as Part of EvoStar 2020,
Seville, Spain, April 15-17, 2020, Proceedings. pp. 70–85 (2020)

18. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of Adaptive Memetic
Algorithms: A Comparative Study. IEEE Transactions On Systems, Man and Cy-
bernetics - Part B 36(1), 141–152 (2006)

19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C (2Nd Ed.): The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA (1992)

20. Rosenbrock, H.H.: An automatic Method for finding the greatest or least Value of
a Function. The Computer Journal 3(3), 175–184 (1960)

21. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation 16, 529–555 (2008)

22. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on
Optimization 7(1), 1–25 (1997)

23. Tseng, L.Y., Chen, C.: Multiple trajectory search for Large Scale Global Opti-
mization. In: Proceedings of the IEEE Congress on Evolutionary Computation.
pp. 3052–3059 (2008)

24. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997)

