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Abstract 

Vehicle-to-grid (V2G) services utilise a population of electric vehicle batteries to provide the 

aggregated capacity required to participate in power and energy markets. Such participation relies 

on the prediction of available capacity to support the reliable delivery of agreed reserves at a future 

time. In this work real historical trip data from a fleet of vehicles belonging to the University of 

Nottingham was used and a simulation developed to show how battery state-of-charge and 

available capacity would vary if these trips were taken in electric vehicles that were charged at 

simulated charging station locations. A time series forecasting neural network was developed to 

predict aggregated available capacity for the next 24-hour period given input data from the 

previous 24 hours and its increased predictive capability over a regression model trained using 

automated machine learning was demonstrated. The simulations were then extended to include 

delivery of reserves to satisfy the needs of simulated market events and the ability of the model to 

successfully adapt its predictions to such events was demonstrated. The authors conclude that this 

ability is of critical importance to the viability and success of future V2G services by supporting 

trading and vehicle utilisation decisions for multiple market events.  
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1. Introduction 

Vehicle-to-grid (V2G) is an emerging technology that allows the aggregation of a population of 

distributed energy stores (DES) in the form of electric vehicle batteries to help decarbonise 

transport, integrate renewable energy into the grid and participate in revenue-generating markets 

[1–6]. V2G services aim to capitalise on these market opportunities by optimising the charging and 

discharging schedules of vehicles while respecting the requirement for the vehicles to continue to 

fulfil their requirements as a means of transport [7,8]. The target markets are often complex and 

vary from country to country, however, they can typically be broadly classified into three types: the 

capacity market, the energy market and the balancing services market.  

The capacity market is a long-term instrument used by the system operator to ensure that 

electricity supply can continue to meet demand and can cope with times of system stress. 

Agreements are often made several years in advance of the delivery date and regular payments 

may be made to participants to support required investments [9]. Delivery of the agreed capacity 

however may be required at short notice, for example four hours ahead of the required period of 

delivery. In the energy market, generators sell electricity to suppliers for short and specific periods 

of time, called settlement periods that are 30-minutes long in the UK market for example. Trading 

may take place well in advance of the settlement period; however, the majority often takes place in 

the day-ahead market with further refinement of trading positions in the intraday market up to a 

cut-off point, called gate closure, which may run up to one hour before the settlement period [10]. 

The balancing or ancillary services market has the role of balancing supply and demand in real-time, 

building on the foundation of the other markets. Numerous mechanisms are employed to achieve 

this end including: firm frequency response (FFR), which requires participants to respond to a 

fluctuation in supply frequency by providing the agreed power within several seconds; demand side 



response (DSR) which requires participants to turn up, turn down or shift demand in real-time; and 

reserve services that require participants to provide or consume additional power at short notice 

[11].  

Such market opportunities have the potential to generate substantial revenue for a V2G service 

that could be used in-part to incentivise participants. However, overestimating available capacity 

and therefore entering into trading agreements that cannot be fulfilled would incur significant 

financial penalties. Equally, underestimating available capacity and therefore missing viable 

opportunities would reduce the revenue potential of the service. The viability and success of a V2G 

service is therefore dependent on prediction of available capacity from the fleet of vehicles. This 

work focusses on the near-term predictions that are required to satisfy the needs of energy trading 

in the dominant day-ahead and intraday markets and to assess the impact of delivery to the 

capacity markets and certain ancillary services that may be called upon at short notice.  

This is a problem that has been addressed previously in the literature. In [12], an aggregation of EVs 

was modelled using a queueing network to allow available capacities for both charge and discharge 

to be estimated however required charge and discharge durations to obey specific distributions 

that may not have been feasible in a real-life scenario. An aggregate model was also introduced in 

[13], which relaxed this constraint and was shown to produce accurate predictions for day-ahead, 

hour-ahead and real-time horizons using simulated charging demand scenarios. However, the 

authors concluded that future work should consider the uncertain reserve utilization introduced by 

the V2G fleet being called upon to deliver its reserves during real-time operation. 

In [14] it was noted that a live V2G system would require the real-time processing and analysis of 

very large datasets and therefore available capacity prediction should be treated as a big data 



analysis problem for which traditional techniques are not well suited. The parallel gradient boosted 

decision tree was used to predict available capacity using real data from over 500 EVs for timescales 

up to 24 hours and compared to several other machine learning techniques with some success in 

terms of both accuracy and training time. In [15] it was noted that the prediction model must 

consider not only regular behaviour but short-term uncertainty as well. The long short-term 

memory (LSTM) neural network was introduced as a deep learning technique well suited to learning 

such patterns in time series data. It was trained to accurately predict available capacity for 

individual vehicles over a 4.5-hour prediction horizon using real data to support potential 

participation in the FFR market. However, the impact of the delivery of available reserves during 

real-time operation on the prediction and longer prediction horizons were not considered. 

An extension of the LSTM is an encoder-decoder model in which a convolutional neural network 

(CNN) is used as the encoder and a LSTM network as the decoder. Although initially developed for 

natural language processing [16] and visual recognition tasks [17], such CNN-LSTM networks have 

been used with considerable success for time series forecasting problems in the literature. For 

example, residential energy consumption prediction [18], travel time prediction [19] and a similar 

network for precipitation nowcasting [20].  In this work, a CNN-LSTM model was developed to 

predict the aggregated available capacity for the next 24-hour period from a fleet of vehicles 

belonging to the University of Nottingham. Real historical trip data was used as input to a 

simulation that generated variations in available capacity as if these trips were taken in electric 

vehicles charged at simulated charging station locations. The execution of market trades was also 

simulated to investigate the impact of the delivery of available reserves on the predictions made by 

the model, which has received little attention in the literature to date.  



The specific contributions made in the paper are as follows; it was demonstrated that the CNN-

LSTM model was able to generate accurate near-term aggregate capacity forecasts for the fleet, 

which is of value in informing trading and vehicle utilisation decisions made by the V2G service; the 

ability of the model to adapt to the impact of energy exported by the V2G service was 

demonstrated, which is important in supporting multiple trading events within a short timeframe 

and the importance of a multivariate input and the “signposting” of upcoming market events to 

achieve this was highlighted. 

The remainder of the paper is structured as follows; in the following section the methods are 

described including development of the dataset, state-of-charge simulations and the architecture of 

the model. In the following section, the results with and without simulated market events are 

presented, which are then discussed before the paper concludes.  

2. Methods 

The research framework used in this work is shown in Figure 1. Historical data from the University 

of Nottingham’s (UoN) fleet of vehicles was used as input together with the simulated locations of 

Electric Vehicle Supply Equipment (EVSE). This data was used to progressively build a dataset that 

simulated aggregate available capacity from the fleet that was used as input to 3 different 

predictive models; a naïve persistence model, an automated machine learning (AutoML) regression 

model and a CNN-LSTM time series forecasting model. The operation of the V2G service itself was 

also simulated through market events during which energy was exported from the vehicles. The 

time series forecasting model alone was used to predict available capacity in this scenario.  



 

Figure 1: Research framework used in this work; each process is described in the sub-section indicated. 

 



2.1. Vehicle Dataset 

53 weeks of historical data from a fleet of 48 vehicles belonging to 6 different departments of the 

University of Nottingham was analysed. Each of these vehicles was equipped with Trakm8 

telematics equipment [21] that provided details of each trip made by the vehicle including the time 

and GPS location at the start and end of the trip together with the distance travelled. Almost 

190,000 trips were completed during the 53-week period. The mean number of trips for the 48 

vehicles was 4,211 (s = 2,721) with a maximum of 13,268 and a minimum of 464. An anonymised 

excerpt is shown in Table 1. 

Table 1: Anonymised excerpt from the vehicle trip dataset, where v is the vehicle ID 

v start time start 

latitude 

start 

longitude 

end time end 

latitude 

(end_latv) 

end 

longitude 

(end_lngv) 

distance 

(m) 

1 2019-09-06 

09:55:27 

51.93866 -1.17032 2019-09-06 

10:01:34 

51.94276 -1.17109 1109 

1 2019-09-06 

10:10:27 

51.94274 -1.17107 2019-09-06 

10:28:25 

51.93907 -1.15245 4411 

20 2019-10-01 

08:59:08 

52.84003 -1.09277 2019-10-01 

09:35:28 

52.85763 -1.04591 8772 

20 2019-10-01 

09:39:58 

52.85762 -1.0459 2019-10-01 

10:01:45 

52.84005 -1.09298 6461 

The Haversine formula, shown in Equation 1, was used to calculate the great-circle distance 

between the location at the end of each trip with the simulated locations of six V2G EVSE 

installations on three university campuses within the city of Nottingham, UK. These locations were 

chosen following analysis of typical parked locations, assessment of infrastructure requirements 

and interviews with fleet managers [22]. Where the vehicle was parked within a 100m radius of an 

EVSE it was defined to be close enough to be connected to the charge point. A radius of 100m was 



chosen to account for small variances in GPS locations and as a suitable distance within which a 

connection could be made with only minor changes in behaviour e.g. parking in a different space 

within the same car park. The 53-week period was divided into consecutive half-hour periods. If a 

vehicle was stationary within 100m of an EVSE for a full half-hour period, it was assumed that it 

would be connected and hence available to a V2G aggregation service for charge or discharge i.e. 

𝑎𝑣 = 1. 

Equation 1: Haversine formula to calculate great-circle distance, disti, in km between  the location of a parked vehicle v 

(end_latv and end_lngv) and EVSE i, (evse_lati and evse_lngi) where r is the radius of the earth (6,371km) (a); vehicle 

availability, av, based on the distance to the closest EVSE (b). 

(𝑎) 𝑑𝑖𝑠𝑡𝑖 = 2. 𝑟. arcsin (√sin2 (
𝑒𝑣𝑠𝑒_𝑙𝑎𝑡𝑖 − 𝑒𝑛𝑑_𝑙𝑎𝑡𝑣

2
) + cos(𝑒𝑛𝑑_𝑙𝑎𝑡𝑣) . cos(𝑒𝑣𝑠𝑒_𝑙𝑎𝑡𝑖) . sin2 (

𝑒𝑣𝑠𝑒_𝑙𝑛𝑔𝑖 − 𝑒𝑛𝑑_𝑙𝑛𝑔𝑣

2
)) 

(𝑏) (min{𝑑𝑖𝑠𝑡𝑖}𝑖=1
6 < 0.1 → 𝑎𝑣 = 1) ⋀ (min{𝑑𝑖𝑠𝑡𝑖}𝑖=1

6 ≥ 0.1 → 𝑎𝑣 = 0)  

The total kilometres travelled for each trip was recorded for the half-hour period and day within 

which the trip was completed. Where more than one trip was completed by a vehicle within a half-

hour period, the distance of each trip was summed. Two additional binary features were also added 

to the dataset that had the potential to impact vehicle availability: holiday i.e. whether the day was 

a public or university holiday; and weekend. Although the latter could be derived from the day, it 

was added as a separate feature given its potential importance. The resulting dataset contained 

over 850,000 rows, 57% of which represented half hour periods in which a vehicle was available. 

This dataset was used as input to the state-of-charge (SoC) simulations. Sample entries are shown 

in Table 2. 



Table 2: Example entries from the vehicles dataset used as input to the SoC simulations, where v is the vehicle ID from 1 

to 48, d is the department ID from 1 to 6, av  is availability of vehicle v and km is trip distance. 

v d day half-hour weekend holiday av km 

1 3 1 1 0 1 0 0.4 

2 2 3 35 0 0 1 0 

3 6 4 26 0 1 0 1.2 

3 6 4 27 0 1 1 0 

4 1 6 20 1 0 1 0 

 

2.2. State-of-Charge Simulation 

To determine battery state-of-charge for each vehicle during the sample period, a simulation was 

developed that calculated the SoC for each half hour period depending on a vehicle's availability 

and any trips that had been completed. The aim of this simulation was to support analysis of the 

learning models by producing a pattern of variation for state-of-charge with similar characteristics 

to a real-life scenario rather than to accurately simulate given vehicles and/or EVSE. The 

parameters used and their settings for the experiments considered in this work are defined in Table 

3. 

Table 3: Parameters for the SoC simulation 

Parameter Description Setting Units 

battery_capacity Maximum capacity of a vehicle’s battery 40 kWh 

rapid_rate Rapid charging rating of a vehicle, typically using DC 

power 

50 kW 

slow_rate Slow charging rating of a vehicle 6 kW 

export_rate Power rating of export to the grid 50  kW 

vehicle_η Energy used per km travelled by a vehicle 0.2 km/kWh 



SoC_min The minimum state-of-charge that must observed to 

satisfy vehicle user requirements when calculating 

available capacity  

50 % 

SoC_start Battery charge at the start of the simulation 100 % 

charging_η  Efficiency of the charging process accounting for losses 90 % 

 

Much research has been undertaken to understand the impact of battery degradation on electric 

vehicles (EV) as a result of V2G [23–26]. Evaluation of the impact these different operational 

models might have on the outputs of the work discussed in this paper is out of scope.  However, it 

must be acknowledged that there is a very real correlation between battery power flow rates and 

potential return on investment from V2G market trading; high power rates for example have been 

shown to significantly increase battery aging in Lithium-ion batteries [27]. Depending upon the 

operational cycle selected however, V2G operation can in some instances extend the life of the 

battery beyond that of an equivalent battery not undertaking V2G services [28].  

In this work we use a simplified charging and discharging model in order to simulate the typical use 

expected of EVs, whilst ensuring SoC is kept within a usable limit for V2G market trading [29].  It 

was assumed that a vehicle would use rapid DC charging to a maximum 80% SoC during the typical 

working day from 07:30 to 19:00, which would allow vehicle batteries to recharge as quickly as 

possible to support ongoing usage while working within an efficient SoC range for DC charging. It 

was also assumed that slow charging would be used when vehicles were typically stationary for 

longer periods between 19:30 to 07:00, which would allow vehicles to charge to 100% where 

possible while helping to manage battery degradation.  



The initial battery SoC was set according to the SoC_start parameter and each half hour period 

processed in chronological order. The state-of-charge for each vehicle for a half-hour period 

(𝑆𝑜𝐶𝑣
ℎℎ) was calculated as follows, where 𝑆𝑜𝐶𝑣

ℎℎ−1 is the state-of-charge of vehicle v for the 

immediately preceding half-hour period: 

1. For each half hour period a vehicle was available (av=1) during the day from 07:30 to 19:00:  

𝑆𝑜𝐶𝛿 =
𝑟𝑎𝑝𝑖𝑑_𝑟𝑎𝑡𝑒 ∗ 0.5 ∗ 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝜂  

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

𝑆𝑜𝐶𝑣
ℎℎ = 𝑀𝑖𝑛(𝑆𝑜𝐶𝑣

ℎℎ−1 + 𝑆𝑜𝐶𝛿 ,  80) 

2. For each half hour period a vehicle was available (av=1) overnight from 19:30 to 07:00: 

𝑆𝑜𝐶𝛿 =
𝑠𝑙𝑜𝑤_𝑟𝑎𝑡𝑒 ∗ 0.5 ∗ 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝜂 

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

𝑆𝑜𝐶𝑣
ℎℎ = 𝑀𝑖𝑛(𝑆𝑜𝐶𝑣

ℎℎ−1 + 𝑆𝑜𝐶𝛿 ,  100) 

3. For each half hour period in which a trip was completed i.e. where km > 0: 

𝑆𝑜𝐶𝛿 =
𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝜂 ∗ 𝑘𝑚

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

𝑆𝑜𝐶𝑣
ℎℎ = 𝑀𝑎𝑥(𝑆𝑜𝐶𝑣

ℎℎ−1 − 𝑆𝑜𝐶𝛿 ,  0) 

4. For all other half hour periods, the SoC was unchanged: 

𝑆𝑜𝐶𝑣
ℎℎ = 𝑆𝑜𝐶𝑣

ℎℎ−1 

Following these updates, the potential available capacity from each vehicle within each half hour 

period (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣
ℎℎ) was calculated using the state-of-charge at the end of the previous 

period as follows: 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣
ℎℎ = 𝑀𝑎𝑥 (

(𝑆𝑜𝐶𝑣
ℎℎ−1 − 𝑆𝑜𝐶_𝑚𝑖𝑛)

100
, 0) ∗ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑎𝑣 

Thus, capacity was available whenever a vehicle was available with a SoC in excess of the minimum 

constraint. There are several simplifying assumptions in this simulation: the charging rate was 



assumed to be linear; vehicle efficiency was assumed to be the same in all conditions and for all trip 

types; it was assumed no battery degradation had occurred; and it was assumed all charging 

stations and vehicles were of the same type. While these factors would need to be considered in a 

real system, this level of detail was not necessary to support the primary purpose of this study. 

 

The first week of data was used to initialise the simulated SoC. The simulation was run with several 

different SoC_start settings and the vehicles SoC at the end of the initialisation week observed to be 

identical in all cases. This showed that the simulation was not sensitive to the initial SoC and the 

subsequent 52 weeks therefore represented valid behavioural patterns rather than nuances of the 

starting configuration. To illustrate the output of the simulation, Figure 2 shows changes in SoC and 

available capacity for two sample vehicles from a representative 7 days. Vehicle A was frequently 

used during the working week but consistently returned to park next to an EVSE allowing it to 

maintain a high SoC and enable substantial available capacity, such a vehicle would likely be 

valuable to an aggregator. Vehicle B however was only parked next to an EVSE on Monday and 

although it was stationary for much of the week this capacity was not available. If this pattern was 

sustained the vehicle would only occasionally be of value to an aggregator. 

 



 

Figure 2: State-of-Charge (left axis) and available capacity (right axis) for 2 sample vehicles over a one-week period in 

the simulation. 

For some vehicles the SoC dropped to zero, which indicated that the usage of the vehicle and/or 

the chosen locations of the EVSEs was not compatible with participation in a V2G service as they 

were not able to retain enough charge to sustain normal usage. These vehicles were thus excluded 

from subsequent analysis, leaving a total of 33 vehicles. 

2.2.1. Market Event Simulation 

To investigate the impact of exporting energy, the simulations were also extended to include 

market events that occurred during a specified half-hour period. It was assumed that at the time of 

a market event all available capacity would be exported, as may be the case where an aggregator 

calls upon a fleet to deliver all its available reserves to satisfy the requirements of a larger trade for 

example. For each half-hour period in which a market event occurred (hh), the following 

modifications to the simulation were made, where 𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦𝑣
ℎℎ is the energy exported by 

vehicle v during half-hour period hh: 

𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦𝑣
ℎℎ = 𝑀𝑖𝑛(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣

ℎℎ, 𝑒𝑥𝑝𝑜𝑟𝑡_𝑟𝑎𝑡𝑒 ∗ 0.5) 

𝑆𝑜𝐶𝛿 =
𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦𝑣

ℎℎ 

𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 



𝑆𝑜𝐶𝑣
ℎℎ = 𝑆𝑜𝐶𝑣

ℎℎ−1 − 𝑆𝑜𝐶𝛿 

Note that export losses were not considered in the simulation. These modifications had the effect 

of exporting all available capacity from each vehicle within the constraints of the maximum export 

rate. The half-hour period of a simulated market event was chosen randomly within a specified 

date range with a uniform distribution. Although market events may occur more regularly in a real-

life service, this random distribution is likely to represent the most challenging scenario for the 

model to adapt to. For simulations in which market events were considered, a total of 52 events 

were generated for the 52-week period following the initialisation week. 

2.3. Aggregated Dataset 

The output of the state-of-charge simulations was used to generate an aggregated dataset that 

formed the input to the machine learning models. To determine the total available capacity during 

each half-hour period, available capacity from each of the 33 viable vehicles was summed. Figure 3 

shows an example week of this aggregated available capacity. 

 

Figure 3: Aggregated available capacity from the 33 viable vehicles over an example week. 



For simulations including market events, exported energy was also summed across the 33 vehicles 

to yield the total exported energy for each half-hour period. This resulted in an aggregated dataset 

consisting of 17,520 rows (365 days * 48 periods). The first 280 days (76.7%) of the dataset were 

used as a training dataset and the subsequent 85 days (23.3%) were used as an independent test 

dataset. There were fourteen holidays in total, 11 (78.6%) of which were in the training dataset and 

3 (21.4%) within the test dataset.  

For simulations including market events, 40 were randomly generated during the training period 

and 12 during the test period. Sample entries from the aggregated dataset are shown in Table 4. 

Table 4: Sample entries from the aggregated dataset used as input to the machine learning models. 

day half-hour weekend holiday exported energy available capacity 

2 14 0 0 0 580.0 

1 29 0 0 0 110.7 

6 11 1 0 640.0 640.0 

0 37 0 1 0 597.5 

 

2.3.1. Time Series Dataset 

The CNN-LSTM network is a multivariate, multi-step time series forecasting model that makes use 

of information from the immediate past to inform the near future. In this work the previous 24 

hours of data was used to predict the following 24 hours. The input data was therefore extended to 

include the features from the prior 48 half-hour periods and the target feature was extended to 

include the available capacity for 48 future half-hour periods. Thus, for a given half-hour period or 

timestep t, the model was presented with rows t-1 to t-48 from the aggregated dataset and was 

required to make a prediction of available capacity for timesteps t to t+47. This process is visualised 

in Figure 4. 



 

Figure 4: Input and output windows for a sample datapoint at the start of Tuesday. The previous 24-hours of data 

were used as the input window and predictions were required for the subsequent 24-hours. 

For simulations not including market events, 5 input features were used in the input window for 

each datapoint i.e. day, half-hour, weekend, holiday and available capacity. However, both 

weekend and holiday features were shifted backwards by a day i.e. by 48 rows. The meaning of 

these features thus became whether there was a weekend or holiday at the same time tomorrow. 

This was information that could be more effectively used to influence the forecasted available 

capacity for the subsequent timesteps. Where market events were simulated, exported energy was 

also included in the input window and thus a total of 6 features were used. The same 48-row 

shifting operation was performed for the exported energy column in this case. All features were 

scaled using a min-max scaler between the bounds 0 and 1. 



2.4. Prediction Models 

2.4.1. Naïve Persistence Model 

To establish a baseline for the machine learning techniques, a naïve persistence model was used. 

This model assumed that available aggregated capacity for the required future timestep was the 

same as the currently available capacity. Thus, for each row of the dataset at timestep t, predictions 

of available capacity for timesteps up to t+47 were all made equal to the available capacity 

observed at t-1.  

2.4.2. AutoML Regression Model 

Figure 3 shows a relatively regular pattern of availability throughout the week with high availability 

during the weekend and overnight, reduced availability during the working day and a small peak 

during lunchtime. To provide a benchmark for the CNN-LSTM, the auto-sklearn automated machine 

learning (AutoML) toolkit [30] was used to fit a regression model to this general pattern. This model 

produced a single prediction for each row of the dataset i.e. there was no time series forecasting. 

The AutoML toolkit optimised pre-processing, model choice and associated hyperparameters in 

addition to training the model itself. Twelve regression algorithms including K-nearest neighbours, 

decision trees and extreme random forests were available to the optimisation process together 

with fourteen feature pre-processing methods and four data pre-processing methods. An ensemble 

model was also automatically built by auto-sklearn from the individual models generated during the 

run. The toolkit was run with default parameters [31] using the aggregated dataset with available 

capacity as the target feature. Market events were not considered and thus the exported energy 

column was not used. Mean absolute error (MAE) was used as the key metric to compare 

performance with the CNN-LSTM model as shown in Equation 2:  



Equation 2: Mean absolute error (MAE), where n is the number of rows in the test dataset. 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖|

𝑛
𝑖=1

𝑛
 

To compare the models, predictions were required for the subsequent 48 half-hour periods or 

timesteps for each row of the test dataset. However, the AutoML regressor produced a single 

prediction for each row rather than a time series forecast. A prediction for each of the subsequent 

timesteps could however be generated by presenting the input data for each individually. As each 

prediction was the same regardless of the timestep at which it was made, MAE was the same for 

each of the 48 prediction horizons i.e. MAE was the same for the set of predictions made at 

timestep t, t+1 and for all subsequent timesteps.  

2.4.3. CNN-LSTM Time series Forecasting 

The architecture of the CNN-LSTM model is shown in Figure 5. The principal role of the CNN was to 

learn and encode input features and the role of the LSTM was to decode this internal 

representation and learn temporal dependencies between features.  



 

Figure 5: Architecture of the forecasting model. A convolutional neural network was used to encode the input, which 

was decoded using a stacked-LSTM network. 

For a give timestep t, the network operated as follows: 

1. The previous 24 hours of data from the aggregated dataset was presented as input to the 

convolutional layer. This resulted in 48 rows i.e. timesteps t-1 to t-48. 

2. A kernel or filter with a 2-row window was used. The filter was moved along the input data one 

row at a time producing an output at each step via a rectified linear unit (ReLU) activation 

function. The input data was zero-padded thus resulting in 48 outputs for each filter. This 

process was repeated for 64 filters supporting the learning of multiple different features in the 

input data.  



3. A one-dimensional max pooling layer was used to down-sample this data and help make the 

representation more invariant to small changes in the location of the input features. This was 

achieved by using a filter or pool of size 2 and iterating over the output from the convolutional 

layer. The maximum value of each pool was retained.  

4. A flatten layer was used that concatenated the multi-dimensional output from the max pooling 

layer into a single vector, thus forming a representation of the features in the input from the 

previous day. 

5. This representation was repeated to produce 48 copies to be used as input to the next layer. A 

copy was required for each of the subsequent 48 timesteps for which available capacity was to 

be predicted.   

6. An LSTM layer [32] was used which consisted of 100 units, each with the potential to learn 

different temporal sequences and dependencies in the input data. Each recurrent unit produced 

48 outputs representing the 48 timesteps to be predicted. 

7. A second LSTM layer was used to support the learning of higher-level dependencies taking input 

from the 100 individual units in the previous layer. Each recurrent unit in this layer also 

produced 48 outputs representing the predicted timesteps. 

8. A final fully connected dense layer was used that took input from each of the 10 LSTM units in 

the previous layer and produced as output the predicted available capacity using a ReLU 

activation function. A time-distributed layer was used meaning that each of the 48 vectors from 

the previous layer were presented individually. The final output was therefore a 48-element 

vector representing predicted capacity for the subsequent 24-hour period. 

This architecture resulted in 660,083 trainable parameters when all input features were used as 

detailed in Table 5: 



Table 5: Parameter analysis of the CNN-LSTM network  

Layer Output 

Shape 

Trainable Parameters 

(no exported energy feature) 

Trainable Parameters  

(with exported energy feature) 

Convolutional 48 x 64 704 832 

Max Pooling 24 x 64 0 0 

Flatten 1 x 1536 0 0 

Repeat Vector 48 x 1536 0 0 

LSTM 1 48 x 100 654,800 654,800 

LSTM 2 48 x 10 4,400 4,400 

Time Distributed Dense 48 x 1 11 11 

 Total: 659,955 660,083 

To train the network, batches of 48 training samples were presented before network weights were 

updated. This batch size was chosen to represent a realistic real-life scenario using on-line learning 

in which data was received daily from the previous day’s activity. Error was minimized using the 

Adam optimiser [33] and mean squared error across all predictions as the loss function. To protect 

against overtraining, loss on the independent training set was assessed at the end of every epoch. If 

this loss did not improve for 10 epochs training was stopped and the best model used to calculate 

the mean absolute error using the samples in the test dataset. Training was run for a maximum 100 

epochs but in practice the actual number of epochs was less than this given the early-stopping 

feature. 

To determine the accuracy of a trained model at different prediction horizons, MAE was calculated 

for each timestep individually. A time series of predictions for the subsequent 48 half-hour periods 

was produced by the model for each row of the test dataset. MAE was then calculated across the 

test dataset for all predictions at each timestep or horizon as shown in Equation 3, where h is the 

prediction horizon from 0 to 47, 𝑀𝐴𝐸𝑡+ℎ is the mean absolute error for prediction horizon h, 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
𝑡+ℎ is the predicted available capacity at horizon h for row i of the test dataset, 



𝑎𝑐𝑡𝑢𝑎𝑙𝑖
𝑡+ℎ is the actual available capacity at timestep h for row i of the test dataset and n is the 

number of rows in the test dataset: 

Equation 3: Mean absolute error across the test dataset for prediction horizon h  

𝑀𝐴𝐸𝑡+ℎ  =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝑡+ℎ − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖
𝑡+ℎ|𝑛

𝑖=1

𝑛
 

3. Results 

3.1. Without simulated market events 

This section presents results for the Naïve persistence forecast, AutoML regressor and CNN-LSTM 

model using the aggregated dataset that was produced from simulations that did not include 

market events. Following training, MAE was calculated for each of the 48 prediction horizons for 

the AutoML regressor and CNN-LSTM using Equation 2 and Equation 3 respectively. A series of 10 

independent training and test runs were performed for both models and the results were averaged 

across these 10 runs in each case. Results are shown in Figure 6. 



 

Figure 6: Average results for 10 runs of the AutoML regressor and the CNN-LSTM model for prediction horizons up to 

48 timesteps (24-hours). Dashed lines show 1 standard deviation above the mean. Results at prediction horizon 0 are 

also shown for a Naïve persistence forecast. 

MAE for the naïve forecast quickly escalated to 36.7 kWh and 51.3 kWh at prediction horizons 1 

and 2 respectively and therefore results are only shown for horizon 0 i.e. timestep t. The ability for 

this simple approach to demonstrate an improvement over the AutoML regressor at timestep t did 

however suggest there was value in using the current available capacity to inform predictions. This 

hypothesis was strengthened by the CNN-LSTM model results, which consistently outperformed the 

AutoML regressor. Results for the latter were the same at all prediction horizons as this technique 

did not include any explicit time series forecasting i.e. the model provided the same prediction for a 

given data point independently from when that prediction was made. The MAE across all horizons 

was 21.95 kWh (s = 0.64 kWh) for the CNN-LSTM compared with 28.4 kWh (s = 0.13 kWh) for 

AutoML, which was a 22.7% improvement in accuracy. A Welch’s t-test was used to confirm that 

this was a highly statistically significant difference (p < 0.001). 



To highlight the differences in the performance of the two models, actual capacity and predicted 

capacity at a prediction horizon of 0 (i.e. the current timestep), for a sample 4-week period within 

the test dataset are shown in Figure 7. Given the parameters selected for the SoC simulation the 

maximum capacity each vehicle was able to contribute during a half-hour period was 20kWh i.e. 

50% of the maximum battery capacity of 40kWh. This energy would be delivered at a rate of 40kW 

over the 30 minutes. With 33 viable vehicles the maximum capacity available from the fleet for any 

one period was therefore 660kWh. 



 

Figure 7: Actual vs predicted capacity for a sample 4-week period in the test dataset. AutoML regressor (a); CNN-

LSTM model (b) at prediction horizon 0 i.e. the current timestep (t). 

 

The figure reveals that the capacity predicted by the AutoML regressor followed a regular pattern 

during a calendar week and there was no response to variations from the typical pattern that 

occurred during the sample period. This was particularly apparent for the 3rd weekend, during 

which available capacity was significantly lower than usual and hence the prediction error was 

relatively high; such overestimation could result in financial penalties for an aggregator. The 



Pearson correlation coefficient for the AutoML regressor, 𝑟, over the 4 weeks was calculated as 𝑟 = 

0.969. In contrast, the CNN-LSTM model was able to quickly adapt to deviations from the typical 

pattern and predicted capacity closely correlated with actual capacity with a Pearson’s 𝑟 = 0.993.  

Figure 6 showed, however, that the performance of the CNN-LSTM model gradually decreased as 

the prediction horizon increased. To provide more insight into the difference in performance for 

different prediction horizons, predicted and actual capacity for timesteps 11 (6 hours) and 47 (24 

hours) over the same 4-week period are shown in Figure 8. 



 

Figure 8: Actual vs predicted capacity for the sample 4-week period for the CNN-LSTM model at timestep 11 i.e. a 6-

hour prediction horizon (a); and timestep 47 i.e. a 24-hour prediction horizon (b). 

At timestep 11 i.e. a 6-hour prediction horizon, delays in the model’s response to deviations from 

the typical pattern became apparent and Pearson’s 𝑟 dropped to 0.985. Predicted capacity at the 

start of the 3rd weekend for example was initially much higher than the predicted capacity, before 

the model responded and more closely predicted actual capacity. The model also responded in a 

similar way to some of the differences in available capacity for overnight periods, for example on 



the Monday and Tuesday of week 4, however these periods were typically over before the model 

could fully recover. As there were no features in the dataset to indicate when deviations from the 

typical pattern would occur the model relied on autoregression of the available capacity feature 

and therefore could not modify its prediction until the presence of the deviation was presented to 

it within its input window. This effect became particularly apparent at timestep 47 i.e. a 24-hour 

prediction horizon. The response to the 3rd weekend deviation did not occur until it had been 

present for over 24-hours and there was now no discernible response to deviations in overnight 

periods. Pearson’s 𝑟 was calculated as 0.976. 

3.2. With simulated market events 

This section presents results for the CNN-LSTM model using the aggregated dataset that was 

produced from simulations that included market events and hence the export of energy. Two 

different experiments were performed using this dataset:  

1. No exported energy feature: although the market events impacted available capacity due to 

the export of energy, the exported energy column was not added to the input features.  

2. With exported energy feature: the additional exported energy column was included in the 

aggregated dataset resulting in 6 input features.  

A total of 10 independent runs were performed for each scenario. The results shown in Figure 9 

show the MAE averaged over these runs. In both cases the error was higher than the experiments 

with no market events, which was as expected given the additional uncertainty in the simulation. 

The MAE across all timesteps with the exported feature was 26.90 kWh (s = 1.05 kWh) compared to 

33.13 kWh (s = 1.09 kWh) without the exported feature, which was an 18.9% improvement. A 



Welch’s t-test was again used to confirm that this was a highly statistically significant effect (p < 

0.001). 

 

Figure 9: Average results for 10 runs of the CNN-LSTM model for a 48 timestep (24-hour) prediction horizon with and 

without the exported energy feature. Simulations included market events. Dashed lines show 1 standard deviation 

above the mean. 

To explore the reasons for this discrepancy, predicted capacity for the current timestep, during an 

example weekend in which a market event occurred is shown in Figure 10 for a model trained with 

the exported energy feature (a) and without that feature (b).  



 

Figure 10: Impact of a simulated market event at Saturday, 08:00 on predicted capacity for the current timestep for a 

model trained with the exported feature (a) and without that feature (b). 

Typically, the pattern during the weekend was for available capacity to remain relatively consistent. 

However, the market event reduced available capacity to 0 before most vehicles used in that event 

charged back to 80% using rapid charging. During the evening, slow charging was then used to 



charge back to 100%. This impact was predicted by both models, which responded to the presence 

of a market event by quickly reducing predicted capacity. In both cases the response did not occur 

until the time period after the event and hence this information was present in the input window of 

the model. This suggested that autoregression was used in both cases. The MAE over this period 

was 24.5 kWh for model (a) as opposed to 31.2 kWh for model (b), however this was not a 

statistically significant difference (p > 0.05).  

The same analysis was performed for this market event at timestep 47 i.e. a 24-hour prediction 

horizon. Actual and predicted capacity for both models are shown in Figure 11. In this case, it was 

no longer possible for either model to use autoregression as by the time the impact of the event on 

available capacity was present in the input data its impact on subsequent time periods had passed 

i.e. there was no impact of the event 24-hours after it had occurred. However, the figure shows 

that model (a) still responded to the event by adjusting predicted capacity. Note that the model 

now responded at the actual time period of the event rather than the next time period confirming 

that autoregression was not used as the impact on available capacity was not yet present in the 

input window. The impact of the market event was completely missed by model (b), which resulted 

in MAE over this period of 64.6 kWh as opposed to 33.6 kWh for model (a). A highly statistically 

significant difference (p < 0.001). 



 

Figure 11: Impact of a simulated market event at Saturday, 08:00 on predicted capacity at timestep 47 i.e. 24-hour 

prediction horizon for a model trained with the exported feature (a) and without that feature (b). 

 



4. Discussion 

The results presented in this paper showed that for accurate near-term predictions, consideration 

of the current status and recent past was important to allow inevitable variations in typical patterns 

of available capacity to be tracked. The CNN-LSTM model was able to use the previous day’s data to 

more accurately predict available capacity for the next day, which would allow a V2G service to 

refine its position in the energy markets and assess the impact of ancillary service delivery. To do so 

however, knowledge of the variations in available capacity was required in the input window of the 

model to support use of autoregression. As an example, in the dataset used in this work, fewer 

vehicles than usual were available to the service on some weekends. This may have been caused by 

several factors, for example special events at the University or adverse weather or traffic conditions 

making it difficult for the vehicles to return to their usual weekend parking locations. These, or 

other potential factors were not explicitly represented in the training dataset however and 

therefore the model was only able to respond to the corresponding impact on available capacity 

when that impact was presented to it within its input window. For this reason, the earliest the 

model could respond was the length of the prediction horizon. For short prediction horizons, any 

errors were quickly rectified however for longer prediction horizons these errors persisted for 

corresponding lengths of time. For 24-hour ahead predictions any sustained variation would need 

to be present for at least 24-hours for the model to be able to respond through autoregression. For 

a variation lasting a whole weekend therefore the model was able to respond for the second day of 

the weekend, however for shorter durations such as for overnight periods, the variations were over 

before they entered the input window and thus the model was unable to respond. Prediction errors 

thus grew as the prediction horizon was increased.  



To allow the model to respond to deviations from the typical pattern for longer prediction horizons, 

additional features in the multivariate model were required. This approach was taken for weekends 

and holidays that were shifted back a day such that they were represented in the model’s input 

window 24-hours prior to their occurrence i.e. their meaning changed to become a weekend or 

holiday at the same time on the subsequent day. Another example of such a feature was the 

exported energy feature. In this case, the future export commitments that the V2G service had 

entered in to were added to the input window 24 hours in advance so that the model was able to 

adjust its predictions accordingly based on the impact of such exports in the training data. The 

results showed that the model was able to use this information to respond to randomly scheduled 

market events 24 hours in advance. This approach could also be extended to add features for 

different timescales. For example, as the V2G service refined its position closer to gate closure, 

additional trades could be added in a 12 hour ahead feature or a 6 hour ahead feature. These 

would extend the feature set used during training of the model.  

In addition to predicting the impact of exports that have already been committed to, the model 

could also be used as an exploratory tool by the V2G service to determine the value of potential 

opportunities. There are likely to be multiple objectives in deciding on the best opportunities, for 

example: availability of the required capacity at the required time; the predicted margin of available 

capacity for those not using all the fleets reserves; revenue potential of the opportunity; and the 

ability of the fleet to recharge and support potential demands from ancillary services or additional 

trades in the near-future. In this way, the trained model effectively becomes part of a fitness 

function for a multi-objective optimisation algorithm [34,35], a technology that also has potential 

for optimising the design of the model [36]. 



The model used in this work made a prediction for 48 timesteps ahead i.e. 24 hours. This prediction 

horizon may not, however, be sufficient to meet all the near-term needs of the V2G service. For 

example, the day-ahead market typically closes at midday on the day before the trade. Predictions 

at a 36- or 48-hour horizon may therefore be required to maximise the opportunities in this market. 

The model explored in this work can however be extended to increase the prediction horizon by 

introducing additional timesteps in the recurrent networks at the heart of the decoder i.e. by 

increasing the number of repeats of the encoded features vector. This may also require increasing 

the number of units in the LSTM layers to learn the additional temporal dependencies. However, 

the results showed that the performance of the model decreased as the prediction horizon 

increased, a trend that would likely continue as the predictive power of the recent past diminished. 

One approach for improving long-horizon forecasts for LSTM networks is the inclusion of an 

expectation bias [37]. However, it is also likely to be of value to emphasise the contribution of a 

model that learns the general pattern of available capacity such as the regression model used in 

this work as the prediction time horizon increases. For both approaches, identification and explicit 

inclusion of features impacting available capacity will be important to reduce prediction errors and 

optimise the model. 

Another important consideration is ongoing adaptation of the predictive model. While a historical 

data set allows training of an initial model, it must be continually updated using new data acquired 

during operation of the service. The Adam optimizer used in this work is an extension of stochastic 

gradient descent, which is well suited to such on-line learning. Training data was presented to the 

model in batches of 48 timesteps, which is representative of a real-life scenario in which 24 hours 

of data may be received at the end of each day’s operation and used to continually update the 

model. This process would allow refinement of the model to variation in the fleet’s behaviour, 



however, more substantial changes may require concept drift aware algorithms that automatically 

tune the learning rate to support more rapid adjustment of network parameters [38]. 

This work has been principally concerned with the prediction of available capacity given typical 

vehicle behaviour. However, it should be noted that future V2G services will operate in the context 

of future power grids that are increasingly fed by renewable energy, which can result in large power 

fluctuations and frequency instabilities [39]. V2G has great potential in helping to balance out these 

fluctuations through participation in ancillary services for example however it will be important for 

the energy system as a whole to ensure that it is integrated so as to ensure it contributes to the 

solution rather than exacerbate the problem. In some contexts, such as for smaller scale 

community energy systems, it may also be necessary for the V2G service to consider prediction of 

renewable energy generation, which is inherently intermittent and irregular thus introducing 

additional challenges for the predictive models that may require consideration of additional or 

alternative techniques. 

5. Conclusions 

In this work we have developed a deep CNN-LSTM time series forecasting model to predict the 

available capacity from a fleet of 48 vehicles for the next 24 hours. Such forecasting is important to 

support trading and vehicle utilisation decisions made by emerging V2G aggregation services in the 

critical near-term period. The model achieved a MAE of 21.95 kWh over a 24-hour prediction 

horizon, which was a highly statistically significant improvement of 22.7% over a regression model 

trained using automated machine learning. It was demonstrated that the CNN-LSTM model was 

able to use knowledge of the immediate past to correct for inevitable deviations from the regular 

patterns of available capacity learned by the AutoML regressor. However, this ability diminished as 



the prediction horizon grew thus highlighting the need to represent the sources of such deviations 

in the input features where possible.  

The model was also demonstrated to be capable of adapting to the operation of the V2G service by 

utilising knowledge of previous energy export events to predict the impact of upcoming events at 

randomised times. The CNN-LSTM model achieved a MAE of 26.9 kWh with simulated market 

events that were “signposted” in the input features 24-hours in advance, a highly statistically 

significant improvement of 18.9% over the same model without such signposting. This ability to 

adapt to the impact of the actions of the aggregator is critical to inform ongoing operation of the 

service and to support multiple market events within a short timescale.  

This work has considered a relatively small fleet of vehicles and a live service would require a larger 

and more complex operation including: scaling the service with additional vehicles and fleets; 

dealing with inevitable heterogeneity of vehicles, batteries, driving styles and EVSE; and optimising 

revenue from multiple potential market opportunities. All these factors add additional complexity 

to the optimisation problem and will be the subject of future work. 
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