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Modelling stochastic behaviour in simulation digital twins through neural nets
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ABSTRACT
In discrete event simulation (DES) models, stochastic behaviour is modelled by sampling 
random variates from probability distributions to determine event outcomes. However, the 
distribution of outcomes for an event from a real system is often dynamic and dependent on 
the current system state. This paper proposes the use of artificial neural networks (ANN) in DES 
models to determine the current distribution of each event outcome, conditional on the 
current model state or input data, from which random variates can then be sampled. This 
enables more realistic and accurate modelling of stochastic behaviour. An application is in 
digital twin models that aim to closely mimic a real system by learning from its past behaviour 
and utilising current data to predict its future. The benefits of the approach introduced in this 
paper are demonstrated through a realistic DES model of load-haul-dump vehicle operations in 
a production area of a sublevel caving mine.
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1. Introduction

Discrete event simulation (DES) is a popular model
ling approach due to its ability to represent complex, 
dynamic systems with stochastic behaviour whilst 
requiring fewer simplifying assumptions compared 
to analytical models (Banks, 1998). Stochastic beha
viour is incorporated in DES by using random vari
ables to represent event outcomes, with outcome 
probabilities represented by a probability distribution 
function. Random variables in a DES may relate to the 
time until an event occurs (e.g., the next customer 
arrives) or the change in the model state when an 
event occurs (e.g., number of items the customer 
orders). Usually, the distribution associated with a 
random variable in a DES model is set at the model 
design stage, remaining fixed throughout a simulation. 
For example, the time to failure for successive machine 
failures may be represented by a Weibull distribution 
with specified shape and scale parameters. In many 
real systems and processes, however, the distribution 
of an event outcome is statistically dependent on the 
values of certain variables. For example, the rate of 
arrival of customers may change with the time of day 
or the rate of failure for a manufacturing machine may 
change with the production rate demand. In these 
cases, the realism of the model may be improved if, 
instead of modelling average behaviour throughout a 
simulated time period, the distributions are adapted 
according to the current model state. Two approaches 
to representing the influence of covariates on time to 
event distributions are the proportional hazards and 
accelerated life models (Leemis et al., 1990). In these 

models, the covariates are modelled as having a multi
plicative effect on the hazard rate and event time, 
respectively. Leemis et al. (1990) showed how random 
variates can be generated in a simulation for acceler
ated life and proportional hazard models assuming a 
baseline parametric distribution function (Bender et 
al., 2005). Harden and Kropko (2019) introduced a 
method for generating random variates from a pro
portional hazard model without assuming a particular 
form for the baseline distribution function. The dis
tributions used in a model are usually chosen through 
statistical analysis of relevant data (Boos & Stefanski, 
2013) or estimation by experts (O’Hagan et al., 2006). 
However, the true relationship between the covariates 
and the distribution of the output variable may be 
extremely complex, interacting and non-linear. 
Furthermore, the number of covariates influencing 
the outcome distribution for an event may be large. 
Therefore, finding an accurate relationship between 
covariate values and the outcome distribution can be 
difficult using traditional statistical techniques.

Recent research has investigated the use of artificial 
neural networks (ANN) to predict outcomes or deci
sions within a DES model. ANN represents a machine 
learning approach that “learns” to predict an output 
for a given input by considering examples without 
explicit programming of rules. Bergmann et al. 
(2014) trained an ANN to make job scheduling deci
sions in a DES model of a manufacturing system. 
Chang and Chang (2018) utilised them to predict the 
treatment duration for patients within a DES model of 
a dental clinic based on their age and oral care habits 
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amongst other variables. De la Fuente et al. (2018) 
used ANNs in a DES model of a banking process to 
determine whether customer loan applications were 
accepted or rejected based on 20 variables such as the 
employment status of the customer. The existing lit
erature on integrations of ANNs within DES, such as 
described above, have exclusively described its use to 
model deterministic behaviour, where the outcomes 
depend only on the inputs. This is desirable when the 
behaviour that the model is seeking to replicate is itself 
deterministic, such as the job scheduling in Bergmann 
et al. (2014). However in other cases, such as the 
patient treatment duration in a dental clinic from 
Chang and Chang (2018), the real behaviour features 
uncertainty or randomness that would be beneficial to 
include in the model. Studying the stochastic beha
viour of complex systems or processes to gain insight 
into the likelihood of different outcomes is often a key 
reason for choosing to develop a DES model over 
alternative modelling approaches (Ross, 2012).

The prediction of conditional distributions with 
ANN has also been described in the literature through 
three main approaches: mixture density networks 
(MDNs) (Bishop, 1994), quantised Softmax networks 
(Van Den Oord et al., 2016) and kernel mixture net
works (Ambrogioni et al., 2017). Compared to tradi
tional methods that have been used with DES 
previously, such as the proportional hazards model 
(Leemis et al., 1990), the advantages include the ability 
to:

(1) Learn highly complex, non-linear relations 
between the distribution of a random variable 
and the values of covariates.

(2) Output arbitrary distributions that are not con
strained to a particular form.

(3) Train efficiently on large data sets and update 
when new training data become available.

The main contribution of this paper is to introduce 
and demonstrate an approach to using these special 
types of ANN, such as MDN, for predicting the con
ditional distribution of outcomes of events within DES 
models. The advantage over the use of conventional 
regression ANNs within DES, that merely predict the 
most likely value, is that these conditional distribu
tions can then be sampled from, embedding realistic 
modelling of stochastic behaviour and uncertainty. 
Since obtaining predictions from a trained ANN has 
very low computational expense, these advantages can 
be obtained without compromising the efficiency of a 
DES model. The paper also contributes towards the 
creation of realistic digital twin DES models that 
represent a real physical counterpart. This is achieved 
by training the ANN embedded in the DES on data 
from the real system received via sensors and IT sys
tems, resulting in it mimicking the stochastic 

behaviour and adapting over time through continuous 
learning. Digital twin models (Grieves, 2014; Haag & 
Anderl, 2018; Negri et al., 2017; Tao et al., 2018) have a 
key role in the fourth industrial revolution in the 
manufacturing industry, known as Industry 4.0 (Lasi 
et al., 2014), that encompasses the trends of connec
tivity, intelligence and flexible automation.

The remainder of the paper is organised as follows: 
Section 2 introduces ANNs for conditional distribu
tion prediction, Section 3 describes how to integrate 
them within DES models, Section 4 demonstrates the 
benefits of the approach in a DES model of operations 
within a sublevel caving mine, and Section 5 provides 
some conclusions and areas for future work.

2. ANNs for prediction of conditional 
distributions of random variables

An ANN (Aggarwal, 2018) is a type of computing 
system that seeks to learn the transformation from a 
set of real-valued input variables to a set of real-valued 
set of output variables by learning the association from 
example training data. They comprise of a collection 
of connected nodes, where each node receives a set of 
real values as input and performs a transformation on 
those inputs to produce a real-valued output. In a 
feedforward design (Francois Chollet, 2017), nodes 
are arranged in layers with each node receiving input 
from nodes in the previous layer and feeding its output 
to nodes in the subsequent layer. The architecture of 
an ANN, see Figure 1, consists of three types of layer:

● The first layer, known as the input layer, repre
sents the input vector of received information 
(sometimes called features).

● Intermediate layers, known as hidden layers, pro
cess information received from the previous layer 
into output information.

● The last layer, known as the output layer, repre
sents the output vector calculated from informa
tion received from the previous layer.

In addition to feedforward networks, other architec
tures exist, such as recurrent neural networks 
(Francois Chollet, 2017) where connections between 
nodes form a directed graph along a temporal 
sequence. When each node in a layer is connected to 
all the nodes in the previous layer, the ANN is known 
as fully connected or dense. Each input connection to 
a node is assigned a weight and the weighted sum of its 
inputs plus a possible bias term is computed. The 
computation performed by an ANN node is repre
sented in Figure 2.

A non-linear activation function is then applied to 
the summation value to produce the output value, the 
purpose of which is to enable the ANN to represent 
complex non-linear functions. The rectified linear unit 
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(ReLU) and Softplus are two widely used activation 
functions that force the output to a non-negative value: 

ReLU sð Þ ¼ max 0; sð Þ 1 

Softplus sð Þ ¼ ln 1þ esð Þ 2 

where ln xð Þ is the natural logarithm of x. Softmax is 
another widely used activation function that, when 
applied to a set of nodes, normalises the outputs 
such that each is from the interval 0 to 1 and they 
sum to 1, thus allowing them to be interpreted as 
probabilities: 

Softmax sið Þ ¼
esi

PN
j¼1 esj

3 

where N is the number of nodes to which the activa
tion is applied and si is the summation value for 
node i.

The neural network is trained by estimating the 
error gradient with respect to the weights and bias 
in the ANN, where the error is computed through 
a loss function, for training examples comprising of 
input and output pairs and then adjusting the 
weights in the network to minimise the error 

through a process known as backpropagation 
(Hecht-Nielsen, 1992). An optimisation algorithm 
is used to determine how the weights are adjusted 
during training. A recent review of popular opti
misation algorithms (Ruder, 2016) suggested Adam 
(Kingma & Ba, 2014) might be the best overall 
choice. A best practice, to speed up learning and 
improve convergence, is to perform feature scaling 
to normalise each input variable so that they share 
approximately the same distribution prior to train
ing the ANN (Francois Chollet, 2017). A common 
approach is z-score normalisation to set the mean 
and standard deviation to 0 and 1, respectively, for 
each input variable: 

x0 ¼
x � ~x

σx
4 

where x is the value of the input variable prior to 
normalisation and ~x and σx are the values for the 
mean and standard deviation of the input variable 
within the training data.

The batch size and number of epochs are user- 
definable hyperparameters that specify the number of 
training examples utilised per update iteration and 

Figure 2. Computation performed by an ANN node with bias and non-linear activation function.

Figure 1. A dense ANN with three input nodes (representing input vector x ¼ x1; x2; x3ð Þ), two hidden layers with four nodes each 
and an output layer with six nodes (representing output vector y ¼ y1; y2;y3; y4; y5; y6

� �
).
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number of complete passes through the training data 
set, respectively. The goal of training is to enable the 
network to give an optimal prediction for the output 
when it is presented with an input value. The tendency 
for ANNs to perform better on training data com
pared to new data is known as overfitting (Francois 
Chollet, 2017). A common step to reduce overfitting is 
to split the training data into training and validation 
sets, where the latter is not used to train the ANN but 
instead test the performance of the ANN once trained. 
It was proven by Hornik (Hornik, 1991) that multi- 
layer feedforward ANNs are universal approximators, 
theoretically capable of approximating any measurable 
function.

A conventional regression ANNs predicts a 
continuously valued scalar target value from 
the values of the input vector variables, using a 
loss function during training that gives a mea
sure of the average difference between this out
put and the true value (e.g., root mean squared 
error (RMSE) or mean squared error (MSE)) 
(Francois Chollet, 2017). However, this results 
in a conditional average output that provides 
only a limited description of the properties of 
the target value (Bishop, 1994). It does not 
account for variance in the target value or the 
possibility of it taking one of multiple values for 
a given input. A solution that gives a complete 
description of the target value is to instead have 
the ANN predict its probability distribution 
conditional on the input vector. This can be 
achieved by configuring the output layer of the 
ANN to represent the density function of the 
distribution and setting the loss function to be 
minimised as the negative natural logarithm of 
the likelihood of the target values in the training 
data (Bishop, 1994). Three main strategies have 
been proposed in the literature: mixture density 
networks (MDNs) (Bishop, 1994), quantised 
softmax networks (Van Den Oord et al., 2016) 
and kernel mixture networks (Ambrogioni et al., 
2017). For an MDN, the outputs represent the 
weights (non-negative and summing to 1) and 
parameters for the weighted sum of multiple 
parametric distributions, i.e. representing a mix
ture density model. MDNs can in theory repre
sent arbitrary conditional probability 
distributions, similar to how a conventional 
ANN can represent arbitrary functions (Bishop, 
1994). The number of components in the mix
ture and choice of parametric distribution for 
each are user-definable hyperparameters for the 
network. MDNs have been shown to accurately 
predict distributions in a number of applica
tions, such as speech synthesis (Zen & Senior, 

2014). An example showing the advantage of 
MDNs over regression ANNs for predicting out
put values from stochastic and multi-modal 
functions is given in Appendix A. For a quan
tised softmax network, the outputs represent the 
weights (where the weights are non-negative and 
sum to 1) for a mixture of a finite set of uniform 
distributions with non-overlapping ranges of 
equal length that together cover the range of 
the output values in the training data. The num
ber of bins over which the range of the random 
variable is divided is a hyperparameter for the 
network. Compared to MDNs, they have the 
advantage of approximating arbitrarily complex 
conditional distributions without making any 
parametric assumptions (Ambrogioni et al., 
2017). For a kernel mixture network, the out
puts represent the non-negative weights, sum
ming to 1, of a family of sets of distribution 
functions (referred to as kernel functions in 
this context), where the distributions in each 
set have different scale parameters (where those 
scale parameters are the same for each family of 
sets) and each family of sets is centred at output 
values from a subset of the training data. 
Typically, a normal distribution is used for the 
distribution function where the scale parameter 
corresponds to the standard deviation and the 
mean parameter is used to centre the distribu
tions at the training data output values. The set 
of scale parameters to use for each family of 
distributions is a hyperparameter for the net
work. Ambrogioni et al. (2017) suggest that the 
subset of output values from the training data 
used as centre points are chosen by recursively 
removing each value that is closer than a speci
fied constant to its predecessor. In their experi
ments, kernel mixture networks resulted in 
higher likelihoods on the test data and less over
fitting compared to quantised softmax networks. 
In summary, the three strategies all essentially 
represent mixtures of distributions in different 
forms: the parameters and weights of parametric 
distributed components are predicted by an 
MDN, the weights of non-overlapping uniform 
distributed components are predicted by a 
quantised softmax network and the weights of 
components from families of distributions with 
different scale parameters centred at a subset of 
output values from the training data are pre
dicted by a kernel mixture network. A weakness 
of ANNs is that they are “black box” models as, 
although they can approximate any function, 
they do not readily provide insight into the 
structure of the function being approximated.

4 S. REED ET AL.



3. Integration of ANNs within a DES to predict 
random variable distributions

The idea proposed by this paper is to use ANNs within 
a DES model to predict the distribution of random 
variables during simulation according to the values of 
covariates derived from the model state. This gives the 
advantage over traditional covariate distribution 
methods that complex relationships between covariate 
values and the random variable distribution can be 
accurately modelled. Compared to conventional 
regression ANNs which only predict the most likely 
value, it also has the advantage of retaining the sto
chastic behaviour in the model by predicting arbitrary 
distributions. An approach to integrating ANNs with a 
DES model is now given.

The initial step is to identify the random variables 
in the DES model for which the distribution will be 
predicted by an ANN and, for each of these, identify 
the covariates that will form the input vector. A 
requirement is that training data pairs of covariate 
value vectors and outcome variable values are available 
and that the input variables to an ANN can be derived 
from the DES model state or input whenever the 
generation of a random variate is required.

For each ANN, the relevant training data should 
then be divided into training and validation sets and 
normalised. The configuration for the ANN must then 
be chosen including the number of nodes per layer, 
number of hidden layers, number of mixture compo
nents, distribution function for each mixture compo
nent, loss function, optimisation algorithm, batch size 
and number of epochs. In most cases, the process of 
choosing an ANN configuration should be iterative, 
using feedback from performance on the validation 
data set during training. Once the ANN is trained and 
performing sufficiently well on the validation data set, 
it is ready for embedding within the DES model.

The trained ANNs are integrated into the DES 
model, along with the input normalisation function 
that was used during training and a data structure, 
such as an array, referencing the mixture distribution 
components of the density function predicted by the 
ANN. If the ANN is a quantised softmax network then 
the mixture components referenced in the data struc
ture will be uniform distributions with minimum and 
maximum parameters set to each cover a portion of 
the output range. If the ANN is a kernel mixture net
work, then the mixture components referenced in the 
data structure will correspond to some parametric 
distribution (such as normal) with width parameters 
set to the values chosen as hyperparameters for the 
network and location parameters set to centre them at 
the subset of output values from the training data. 
Finally, if the ANN is an MDN then the mixture 
components referenced in the data structure will be 
types of parametric distribution (e.g., Weibull) but the 

parameter values will not be set since these are pre
dicted by the MDN rather than fixed. The authors 
recommend that the DES model is constructed as a 
software code to ease this integration step and suggest 
the use of open-source DES modelling libraries, such 
as DESMO-J (Göbel et al., 2013).

To generate a random variate for a random variable 
that uses an ANN to predict its conditional distribu
tion, several steps are performed. The input vector is 
formed from variable values from the current DES 
model state or input and then normalised using the 
scaling function associated with the ANN that was 
used for the training data. An output vector, repre
senting the conditional distribution, is then obtained 
as a prediction from the ANN using the normalised 
input vector. A categorical distribution is then formed 
that is parametrised with the predicted weights for the 
mixture distribution components in the output vector. 
A random sample is taken from this categorical dis
tribution to select a mixture distribution component 
according to the predicted weights. Where the ANN is 
an MDN, the parameter values for this distribution 
component are set according to the predicted values in 
the output vector (for the other cases, the parameter 
values are already fixed). Finally, the random variate is 
sampled from this mixture distribution component. 
The sampling of random variates from these distribu
tions is performed in the same way as in any other 
DES model through the use of a pseudo-random num
ber sampling algorithm (Andrews & Moss, 2002). The 
full process is illustrated by the flowchart in Figure 3.

4. Application to modelling load-haul-dump 
vehicle operations in a sublevel caving mine

To demonstrate the benefits of the new approach pre
sented in this paper, a DES model representing load- 
haul-dump (LHD) vehicle operations in the produc
tion area of a sublevel caving mine was developed. 
LHD vehicles are used in these mines to load mined 
material, transport it to ore pass shaft entrances and 
dump it down the ore shafts. The efficiency with which 
they operate can have a significant impact on the over
all mining production rate (Skawina et al., 2015). The 
goal of the analysis is to evaluate the impact on the 
production from different configurations in terms of 
the number of ore passes and the number of rock 
breaking machine operators. The modelling was 
implemented in the Python programming language, 
with MDNs developed and trained using the Keras 
(François Chollet, 2017) neural network library and 
Tensorflow (Abadi et al., 2015) machine learning 
library, and the DES model developed using the 
SimPy discrete event simulation library (Dagkakis & 
Heavey, 2016). The example is for demonstrative pur
poses only and does not represent a real mining site, 
although realistic assumptions were used.

JOURNAL OF SIMULATION 5



4.1. Sublevel caving mining process overview

Figure 4 shows a typical sublevel caving mine. A pro
duction area is a subsection of the mine at a certain 
depth (known as a sublevel) and consists of:

● A footwall drift parallel to the ore body.
● A set of production drifts, with entrances spaced 

along the footwall drift, aligned perpendicular to 
the footwall drift that go through the ore body.

● A set of ore pass drifts, with entrances from the 
footwall drift, with an ore pass shaft entrance and 
rock breaking machine at the far end.

Sets of holes forming a fan pattern, known as a ring, 
are drilled upwards into the ore body within the pro
duction drifts at set intervals and loaded with explo
sive charges. During a process known as blasting, the 
charges in the rings at the far end of a production drift 
are detonated. This causes the drilled ore to fracture 
and cave into the vacant space below under the force 
of gravity (Kvapil, 2008). The caved material forms a 
drawpoint from which an LHD vehicle removes mate
rial through the following process:

(1) Travels to a drawpoint.
(2) If the shut-off criteria (described later) for the 

drawpoint are not met:
a. Loads its bucket with caved material.
b. Selects the ore pass where the material will 

be dumped.
c. Transports the loaded material to the shaft 

entrance of the selected ore pass.
d. Dumps the loaded material from the LHD 

vehicle bucket into the ore pass shaft.
(3) If the shut-off criteria are met, a catch-wall is 

built using the LHD vehicle bucket.

The adjacent ring in the drift is then be blasted and the 
process repeated for the new drawpoint until the drift 
is completely developed.

4.2. Impact of waste rock on the mining process

During caving, waste rock from above the ore body 
mixes with the ore, resulting in dilution at the draw
point (Bull & Page, 2000). The extraction of material 
from a drawpoint causes further caving, replacing the 

Figure 3. Flowchart of the steps involved with sampling a random variate for a random variable for which the distribution is 
represented by an MDN.

Figure 4. A typical sublevel caving mine (Courtesy of Atlas Copco AB).
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removed material. The general trend is for the waste 
rock proportion to increase with the extraction ratio, 
the latter defined as the total weight of material 
removed from a drawpoint of a blasted ring divided 
by the planned tonnage calculated from the ring geo
metry (Shekhar, 2018). However, it can vary consider
ably between successive LHD bucket loads (Shekhar et 
al., 2019) and factors such as the ring geometry and 
composition of caved rock from the adjacent produc
tion area above. If waste rock dilution exceeds a cer
tain level, the material becomes uneconomical to 
process. Mines, therefore, utilise a set of heuristics 
known as shut-off criteria to determine when to stop 
extracting from a drawpoint. Waste rock is consider
ably less dense than ore (e.g. reported averages of 2.8 
and 4.8 tonnes per m3, respectively, at the LKAB 
Kiruna mine (Shekhar et al., 2017)) and therefore the 
LHD is able to accelerate and decelerate faster when 
loaded with material at higher waste rock dilutions, 
reducing average travel times for a given route. 
Furthermore, the material dumped at an ore pass 
shaft entrance may contain boulders that result in a 
blockage that must be cleared. Until a blockage is 
cleared, an LHD cannot dump material there and 
must either wait or use another. A remotely operated 
rock breaking machine positioned at each shaft 
entrance is used to clear these blockages. On average, 
waste rock contains more boulders and each takes 
longer for the rock-breaking machine to destroy than 
ore boulders. Reported data from the LKAB Kiruna 
mine (Drakenberg, 2007) showed that the mean num
ber of boulders per tonne of ore and waste rock was 
0.063 boulders and 0.115, respectively, and the pro
portions of boulders of size classification minor, small, 
medium (classified as big in (Drakenberg, 2007)) and 
large was 22.5%, 52.5%, 18.75% and 6.25%, respec
tively. The same study found that whilst minor size 
boulders could pass through the ore shaft without a 
problem, the mean time to destroy a boulder of the 
other sizes by a rock breaker (excluding waiting time 
for an available operator) was as shown in Table 1.

The influence of waste rock on LHD vehicle activ
ities within a sublevel caving mine should therefore be 
included in the model due to its significant impact. 

However, the distribution of the waste rock in material 
from a drawpoint is conditional on the extraction rate 
and properties of the blasted ring; the distribution for 
the travel time of an LHD is conditional on the waste 
rock proportion and volume of loaded material; and 
the distribution of the time to clear an ore pass of 
boulders is conditional on the weight and proportion 
of waste material in the dumped material. The func
tional relationships between these distributions and 
covariates are complex and non-linear. DES models 
of operations in the production areas of sublevel cav
ing mines have been developed in the past by Vagenas 
(1996) and Skawina et al. (2015). However, these 
models did not consider the impact of waste rock.

4.3. Model description and analysis scenarios

The model was developed to simulate a single LHD 
vehicle operating within a production area of a sub
level caving mine with the basic layout depicted in 
Figure 5.

Three scenarios were analysed using the model, 
named A, B, and C. In Scenario A and Scenario C, it 
was assumed that there were two ore passes in the 
production area (see Figure 5), whilst an ore pass 
with its entrance located equidistantly between the 
other two was added for Scenario B. In Scenario A 
and Scenario B, the availability of a single operator of 
the rock breaking machines at any time was assumed, 
whilst this was increased to two operators for scenario 
C. Realistic assumptions were used in the model for 
ring geometries and spacings; LHD operator selection 
of drawpoints and ore passes; material volumes loaded 
in the LHD vehicle bucket; LHD vehicle loading, 
dumping and catch wall construction times; the 

Figure 5. Layout of the drifts in the production area in which the LHD vehicle operates.

Table 1. Mean times, in seconds, for a rock breaker to destroy 
boulders of different sizes and material types (derived from a 
study at the LKAB Kiruna mine (Drakenberg, 2007)).

Size

Material

Waste Rock Ore

Small 220 142
Medium 348 276
Large 750 408
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shut-off criteria for drawpoints; and the schedules for 
blasting and LHD vehicle operator shifts.

MDNs were used in the model to determine the 
distributions of three random variables during 
simulation: the proportion of waste rock in each 
bucket of material loaded by an LHD vehicle, the 
time taken for an LHD vehicle to travel between 
two points in the production area and the time 
taken for a rock-breaking machine to clear an ore 
pass shaft entrance of boulders after a bucket of 
material is dumped there.

4.3.1. Training data generation
For each of the MDNs, a training data set of input 
vector and output value pairs was generated from 
simulation models. For the vehicle travel time MDN, 
the training data were generated by sampling random 
routes and using a continuous simulation, with a small 
time step, of the vehicle kinematics with random var
iations in acceleration, braking and disturbances to 
replicate driver inputs and traffic. The data for training 
the waste rock MDN was generated by randomly 
sampling, for each drawpoint, a sigmoid curve and 
Gompertz curve for the mean and standard deviation, 
respectively, of the waste rock dilution against extrac
tion ratio. These curves were chosen to mimic the 
dilution curves for sublevel caving mines suggested 
by Bull and Page (2000). The volume of material 
extracted in a bucket load from each drawpoint was 
simulated by sampling from a uniform distribution, 
which matches the distribution choice in the model by 
Vagenas (1996). Meanwhile, the waste rock propor
tion in the loaded material was sampled from a normal 
distribution, representing the variation between con
secutive buckets as shown by Shekhar (2018), with the 
mean and standard deviation taken from the draw
point curves that were computed from the simulated 
extraction ratio. For the rock breaking MDN, the 
training data were generated by randomly sampling 

dumped material weights and waste rock proportions 
from uniform distributions, where uniform distribu
tions were chosen to follow the model from Vagenas 
(1996). The sampling of boulder breaking times uti
lised the results reported by Drakenberg (2007), sum
marised in Section 4.2, through the following 
procedure:

(1) The number of boulders in the waste and ore 
proportions were sampled from a Poisson dis
tribution according to the reported rates.

(2) The boulder sizes were sampled from a catego
rical distribution according to the reported 
probabilities.

(3) The breaking times for the individual boulders 
were sampled from normal distributions with 
mean selected according to those reported for 
the boulder size and waste rock proportion and 
estimated standard deviations (since none were 
reported by Drakenberg (2007)).

(4) The individual boulder breaking times were 
summed to get the total time.

Note that in a practical setting, the training data might 
instead comprise observations of the real system or 
process allowing highly realistic modelling and the 
implementation of digital twins that learn over time. 
Each set of training data was split into two groups: 
training data (75%) and validation data (25%). The 
values for the input variables in the data were normal
ised using z-score normalisation (see Equation 4). A 
configuration for each MDN was found through trial 
and error that gave good predictive performance for 
the validation data.

4.3.2. Waste rock proportion in material loaded 
into bucket of LHD vehicle
An MDN was trained, using data generated from a 
simulation model, to predict the distribution of the 

Figure 6. Cumulative distribution function for the waste rock proportion predicted by the trained MDN for an extraction ratio of 
0.9677 and waste rock proportion by weight of the previous five loaded buckets of 0.71, 0.62, 0.76, 0.71 and 0.74. The contribution 
from each of the two mixture components is also shown.
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proportion by weight of waste rock in each bucket of 
material loaded by an LHD vehicle from a drawpoint 
based on the extraction ratio and the proportion of 
waste rock in previously loaded buckets of material. 
The MDN was configured to represent a mixture dis
tribution with two Beta distributed components. The 
beta distribution was chosen since it is defined on the 
interval 0 to 1 matching the range of possible waste 
rock proportions, whilst the use of multiple compo
nents allows the MDN to predict more complex dis
tributions, as discussed in Section 2 and demonstrated 
in Appendix A (e.g. comparing the predictions from a 
regression ANN, single component MDN and two 
component MDN shown in Figures A1–Figures A3, 
respectively, when trained on the same sample data). It 
was configured from dense layers: an input layer with 
six nodes, two hidden layers with 15 nodes each with 
ReLU activation and an output layer comprising two                    

nodes with a Softmax activation, representing the 
weightings of the mixture components, and four 
nodes with a Softplus activation, representing the 
shape parameters of the mixture components. The 
loss function was set to the negative natural logarithm 
of the likelihood and the MDN was trained with a 
batch size of 50 over 25 epochs using the Adam opti
misation algorithm. An example of a distribution pre
dicted by the trained MDN is shown in Figure 6.

4.3.3. Travel time along a segment for an LHD 
vehicle
An MDN was trained, using data generated from a 
simulation model, to predict the distribution of the 
time for an LHD vehicle to travel between an origin 
and destination in the production area based on the 
proportion of the maximum load carried in its bucket 
and distances of segments of the journey. The MDN 

Figure 7. Cumulative distribution function for the journey time predicted by the trained MDN for a maximum load proportion of 0 
and segment travel distances of 25 m, 400 m and 80 m. The contribution from each of the three mixture components is also shown 
along with the empirical cumulative distribution function derived from sample data generated from the training data simulation 
model for the same maximum load proportion and segment travel distances.

Figure 8. Cumulative distribution function for the time for the rock breaker to clear the ore pass shaft, as predicted by the trained 
MDN when the weight of material dumped is 17.3 tonnes and waste rock proportion is 0.58. The individual contribution to this 
from each of the two mixture components is shown separately. The empirical cumulative distribution function, generated from the 
training data simulation model for the same material weight and waste rock proportion, is also shown for comparison.
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was configured to represent a mixture distribution 
with three lognormally distributed components. It 
was configured from dense layers: an input layer 
with four nodes, two hidden layers with 25 nodes 
each with ReLU activation and an output layer com
prising three nodes with a Softmax activation, repre
senting the weightings of the mixture components, 
three nodes representing the location parameters of 
the mixture components and three nodes with a 
Softplus activation, representing the scale parameters 
of the mixture distribution components. The loss 
function was set to the negative natural logarithm of 
the likelihood and the MDN was trained with a batch 
size of 50 over 25 epochs using the Adam optimisation 
algorithm. Figure 7 shows a distribution predicted by 
the MDN along with an empirical distribution derived 
from 10,000 samples generated from the training data 
simulation model, both corresponding to the same 
maximum load proportion and segment travel dis
tances. The close agreement between the two distribu
tions shows that the MDN accurately predicts the true 
distribution.

4.3.4. Rock breaker ore pass shaft entrance 
clearance time
An MDN was trained, using data generated from a 
simulation model, to predict the distribution of the 
time required by a rock-breaking machine to clear an 
ore pass of boulders in material dumped by an LHD 
vehicle based on the material weight and waste rock 
proportion. The MDN was configured to represent a 
mixture distribution with two lognormally distributed 
components. It was configured from dense layers: an 
input layer with two nodes, two hidden layers with 15 
nodes each with ReLU activation and an output layer 
comprising two nodes with a Softmax activation, 
representing the weightings of the mixture compo
nents, three nodes representing the location para
meters of the mixture components and three nodes 
with a Softplus activation, representing the scale para
meters of the mixture distribution components. The 
loss function was set to the negative natural logarithm 
of the likelihood and the MDN was trained with a 
batch size of 50 over 25 epochs using the Adam opti
misation algorithm. Note that since the probability of 
value 0 for a log-normally distributed variable is 0 and 
hence the log-likelihood undefined, a small value (1e- 
20) was added to each output value in the training 
data, thus allowing the log-normal mixture model to 
be fitted. Figure 8 shows a distribution predicted by 
the MDN along with an empirical distribution derived 
from 10,000 samples generated from the training data 
simulation model, both corresponding to the same 
material weight and waste rock proportion. The simi
larity between the empirical and predicted distribu
tions shows that the MDN accurately predicts the true 
distribution.

4.3.5. Simulation of the LHD vehicle
A typical activity cycle for an LHD vehicle during a 
simulation will now be described. The drift from 
which it next loads material is selected and the travel 
time to that drawpoint then sampled. This sample is 
taken from the distribution predicted by the travel 
time MDN, based on the loaded material and the 
route from its current location. On arrival at the 
drawpoint, the volume of material loaded is sampled 
from a fixed distribution and the amount of waste rock 
in that material is sampled from a distribution pre
dicted by the waste rock proportion MDN based on 
the current extraction ratio and waste rock propor
tions from previously loaded buckets. From the 
sampled load volume and waste rock proportion, the 
weight of loaded material is calculated. An ore pass is 
then selected to dump material, with priority to 
unblocked and closest, and the travel time sampled 
from the distribution predicted by the travel time 
MDN based on the loaded weight and route from the 
drawpoint. On arrival at the ore pass, if clear, the 
material is dumped otherwise the vehicle waits until 
it has been unblocked. The time to clear the ore pass of 
dumped material by the rock breaker is then sampled 
from the distribution predicted by the rock breaker 
MDN based on the weight of material dumped and 
waste rock proportion. In addition to this repeating 
activity cycle, other details including the scheduling of 
vehicle operator changeovers and breaks are also 
simulated.

5. Results

The model was simulated to determine the time taken 
to complete the development of the production area in 
the three scenarios under consideration, with the use 
of MDNs allowing the impact of waste rock on LHD 
vehicle operations to be simulated realistically. The 
time to develop the production area was simulated as 
1529 days in Scenario A (shown in Figure 9 with 
progress in individual production drifts), 1427 days 
in Scenario B and 1266 days in Scenario C.

Figure 10 shows the amount of time the LHD 
vehicle spent performing different activities during 
the simulation of each of the three scenarios. It 
spent the largest proportion of time travelling 
between locations in the production area in all 
three scenarios and the time spent waiting to 
unload, due to boulders blocking the ore pass 
shaft entrance, was greatest in Scenario A and 
least in Scenario C. Therefore, increasing the num
ber of rock breaking machine operators from one 
to two is more effective than increasing the number 
of ore passes from two to three for reducing wait
ing times to dump material and increasing the 
production rate.
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6. Conclusions and future work

This paper showed how ANNs designed to predict the 
distribution of the output based on a given input, such 
as MDNs, can be incorporated within a DES model to 
enhance the realism of the modelled stochastic beha
viour. The example model of LHD vehicle operation 
in a sublevel caving mine illustrated the significant 
impact that waste rock in mined material has on the 
production rate, something not captured in previous 
DES models of similar scenarios (e.g., Vagenas (1996) 
and Skawina et al. (2015)). The results show that 
improved modelling of complex stochastic behaviour 
can be achieved within a DES by embedding MDNs, 
or other types of distribution predicting ANN, using 
the approach shown in this paper. This represents an 
enhancement over embedding conventional regres
sion ANNs into DES, as introduced previously (e.g., 
Bergmann et al. (2014)), as they can only predict 
expected outcomes in a deterministic way. A main 

application of the approach is in the development of 
digital twin models that model the true behaviour of 
real-world system, adapting to changes over time. An 
area for future work is the development of the example 
model into a digital twin where the MDNs are trained 
on data from a real mine, giving the potential to 
optimise the production plan using the efficient 
MDN-DES model.
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Appendix A Comparison of regression ANNs 
and MDNs in predicting stochastic and multi- 
modal functions

To demonstrate the capabilities of MDNs compared to a 
conventional regression ANN, consider the function 
described by Equation. 5: 

y ¼ N 1þ x; 0:1xð Þ þ Bern x2� �
; 0 � x � 1 5 

where Bern pð Þ is a Bernoulli distributed random variable 
with probability p and N μ; σð Þ is a normally distributed ran
dom variable with mean µ and standard deviation σ. A training 
data set, comprising 5000 data points, was generated by ran
domly sampling x values from the uniform distribution over 
interval 0 � x � 1 and randomly sampling corresponding y 
values from Equation 5. Three different dense ANNs were 
trained on these training data to learn the function described 
by Equation 5: a conventional regression ANN, an MDN with 
one normally distributed component and an MDN with two 
normally distributed components. The three ANNs shared the 
following identical configuration for the input and hidden 
layers: an input layer with a single node (representing input 
x); two hidden layers with 25 nodes each and ReLU activation. 
They were all trained using the Adam optimiser with a batch 
size of 25 over 50 epochs. Only the output layers and loss 
functions were different, reflecting the different approaches:

● Regression ANN: an output layer with a single node 
(representing output y) and MSE loss function.

● Single component MDN: an output layer with two nodes, 
representing the mean and standard deviation of a nor
mal distribution describing output y, and loss function 
computed as the negative natural logarithm of the like
lihood. The node representing the standard deviation 
used a Softplus activation.

● Two component MDN: an output layer with six nodes 
(representing the weight, mean and standard deviation 
for each of two normally distributed components of a 
mixture distribution describing output y) and loss func
tion computed as the negative natural logarithm of the 
likelihood. The nodes representing the weights used a 
Softmax activation whilst those representing the standard 
deviation used a Softplus activation.

A plot of the predicted y values for 0 � x � 1 from the 
regression ANN is shown in Figure A1, along with the training 
data points. The ANN predicts y values that approximate the 
mean average of the training data, but gives no quantification of 
its distribution, resulting in a poor representation of the under
lying function given in Equation 5 from which the training data 
were generated. For example, at x � 0:8 it predicts y � 1:4 
which has an extremely low probability of occurrence accord
ing to Equation 5.

Figure A2 shows a plot of the mean, along with the interval 
within one standard deviation, for the predicted normal dis
tribution of y for 0 � x � 1 from the single component MDN, 
along with the training data points. The predicted mean values 
for y are similar to the predicted y values from the regression 
ANN, however by also providing a measure of the deviation it 
gives a much better representation of the underlying function. 
Nevertheless, due to being limited to a single normally distrib
uted component, it gives a poor representation of the true 
distribution of y for certain x values. For example, at x � 0:2 
it significantly underestimates the probability of y � 0:8.

Figure A3 shows a plot of the weights, means and interval 
within one standard deviation, for the predicted normally 
distributed components of y for 0 � x � 1 from the two- 
component MDN, along with the training data points. It 
shows that this model accurately predicts the distribution of 
y over the whole interval 0 � x � 1.

This example shows that MDNs can predict complex 
distributions for a continuous variable conditioned on one 
or more covariates by learning from suitable training data, 
providing more powerful predictive capabilities than con
ventional regression ANNs when the underlying function to 
be learned is stochastic and multi-modal.

Figure A1. Plot showing predictions from regression ANN trained on 5000 data points generated from model described by 
Equation 5.
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Figure A3. Plot showing predictions from MDN with two normally distributed components trained on 5000 data points generated 
from model described by Equation 5.

Figure A2. Plot showing predictions from MDN with one normally distributed component trained on 5000 data points generated 
from model described by Equation 5.
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