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Abstract 
We present a novel Bayesian nonparametric model for regression in 
survival analysis. Our model builds on the classical neutral to the 
right model of Doksum (1974) and on the Cox proportional hazards 
model of Kim and Lee (2003). The use of a vector of dependent 
Bayesian nonparametric priors allows us to efficiently model the 
hazard as a function of covariates whilst allowing 
nonproportionality. The model can be seen as having competing 
latent risks. We characterize the posterior of the underlying 
dependent vector of completely random measures and study the 
asymptotic behavior of the model. We show how an MCMC scheme 
can provide Bayesian inference for posterior means and credible 
intervals. The method is illustrated using simulated and real data.  

Keywords: Bayesian nonparametrics, Survival Analysis, Dependent Completely 

Random Measures.  
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1 Introduction 

The statistical analysis of the, potentially censored, survival time to an event has 

a long history. Often, estimates of the effects of observed covariates on the 

survival time distribution are key statistical quantities of interest. For example, 

information about white blood cells may be useful for the prediction of the time to 

death of leukaemia patients. There are several standard regression models. The 

accelerated failure time (AFT) model takes into account the effect of a covariate 

by accelerating or decelerating over time its effect on the survival time (Buckley 

and James, 1979). Alternatively, a parametric effect for the covariates can be 

combined with a nonparametric estimate of a baseline distribution of the survival 

time. The most popular example of this type of model is the semiparametric 

Cox (1972) model which has had a substantial impact in statistical and medical 

research, being introduced in one of the most cited statistical papers of all time 

(Ryan and Woodall, 2005).  

The Cox regression model assumes proportional hazards (PH) and can be easily 

fitted with partial likelihood methods (Cox, 1975). The combination of this 

inference method with the counting process formulation of the model (Andersen 

and Gill, 1982) has led to extensions to stratified analysis, proportional intensity 

models, frailty models, and so on (Therneau and Grambsch, 2000). The model 

also leads medical researchers to focus on differences in instantaneous risk 

(hazard) rather than mean or median survival as in common regression models. 

Under the PH assumption, the survival curves for any combinations of covariate 

values must have hazard functions that are proportional over time, i.e. have 

constant hazard ratios. This is sometimes not realistic. For example, if a 

treatment effect is negative at the beginning of a study and positive by the end. 

Failing to account for this can lead to poor model fits, particularly in the tails of 

the survival distribution. Such problems can be addressed by including 

interactions with time or stratifying according to the treatment (Kalbfleisch and 

Prentice, 2011). However, these approaches can lead to difficulties with 
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interpretation of effects. Alternatively, the structure of the model can be changed. 

For example, the proportional odds (PO) model relaxes the PH assumption of a 

constant hazard ratio by assuming hazard functions such that this property holds 

only when the time goes to infinity (Cheng et al., 1995; Murphy et al., 1997; Yang 

and Prentice , 1999).  

From the Bayesian perspective, the analysis of survival data was one of the first 

areas of application of Bayesian nonparametric techniques, see Doksum (1974) 

and Ferguson (1974), and Hjort et al. (2010) for a review. Popular priors include 

the beta process prior for the cumulative hazard function (Hjort, 1990), the 

extended gamma process (Dykstra and Laud, 1981), and the wide-class of 

neutral to the right (NTR) distributions (Doksum, 1974).  

In this paper, we focus on the NTR model which assumes that the survival 

function of a survival time of interest Y, which is  ( )S t Y t  , is given by  

(0, ]( ) .tS t e   (1) 

where μ is a completely random measure (CRM) (Kingman, 1967) for which 
a.s.

( )     to ensure that the distribution of Y is supported in  . As noted in 

Doksum (1974), such distribution is neutral to the right in the sense that if 

( ) 1 ( )F t S t   is the associated cumulative distribution function then  

12 1
1

1 1

( ) ( )( ) ( )
( ), , ,

1 ( ) 1 ( )

k k

k

F t F tF t F t
F t

F t F t








 
 (2) 

are independent for every 1 kt t . The structure is very general and includes 

the Dirichlet process (Ferguson, 1973) and Beta-Stacy process (Muliere and 

Walker, 1997) as special cases. The family of NTR distributions has desirable 

theoretical properties with survival data such as conjugacy for right-censored 

data (Ferguson and Phadia, 1979) and posterior consistency at an optimal rate 

(Kim and Lee, 2004). They are also a natural Bayesian nonparametric analogue 

of the widely-used frequentist Kaplan-Meier estimator. The approach was 

Acc
ep

te
d 

M
an

us
cr

ipt



extended to multiple samples by Epifani and Lijoi (2010) and Riva-Palacio and 

Leisen (2018) and to Cox regression modelling by Kim and Lee (2003). Their 

model assumes that the survival function, ( )S t
X

, for covariate value 

1( , , ) m

mX X  X  is modeled by  

 
, (0, ]( ) | .e tS t Y t e    

β X

X X  

Alternatively, Bayesian nonparametric regression survival models can be built by 

modelling the logarithm of the survival time using a dependent nonparametric 

prior. These allow for crossing survival and hazard curves and have 

straightforward interpretations. For example, the linear dependent Dirichlet 

process mixture (LDDP) (De Iorio et al., 2009) uses dependent Dirichlet 

processes (MacEachern, 1999) and the linear dependent tailfree process (Jara 

and Hanson, 2011) builds on Pólya tree priors. These approaches are reviewed 

by Hanson and Jara  (2013). Other approaches to non-proportional hazards 

include Nieto-Barajas (2014) who introduces a semiparametric model based on 

increasing additive processes, Nipoti et al. (2018) who propose a partially 

proportional hazards model using cluster-dependent random hazards, and 

Fernández et al. (2016) who model the hazard as a logistic transform of a sum of 

Gaussian processes.  

In this paper we build a tractable Bayesian nonparametric regression model for 

survival data based on the class of NTR distributions. The model assumes that  

  1 1( , ) (0, ] ( , ) (0, ]
( ) | d df t f t

S t Y t e
  

  
β X β X

X
X  

where 1, , df f  are known functions of the covariates X, β  are unknown 

parameters and 1( , , )d  μ  is a vector of completely random measures 

(VCRM). This extends the proportional hazards Cox regression model of Kim and 

Lee (2001) to allow for more general functions of the covariates and can be 

interpreted in a competing risks framework. Vectors of completely random 

measures have proven to be a useful tool for inducing dependence in Bayesian 
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nonparametric priors; see for example Lijoi et al. (2014), Camerlenghi et 

al. (2019a) and Camerlenghi et al. (2019b). We term this model a generalized 

additive neutral to the right regression (GANTR) model.  

GANTR provides a flexible regression modelling approach within an NTR model. 

It allows for non-proportional hazards and leads to clustering of observations into 

subpopulations (associated with different causes in the competing risks 

interpretation) according to covariate values. The model can be seen as a 

generalization of the multiple-sample model of Riva-Palacio and Leisen (2018) to 

allow for stratification into unknown covariate dependent clusters/sub-samples. 

The structure of the prior allows us to develop a posterior characterization and 

use it to construct an inference scheme that depends on the VCRM through its 

Laplace exponent. We concentrate on the class of compound random measures 

(Griffin and Leisen, 2017), and develop both an MCMC method and empirical 

Bayes method for estimating the hyperparameters. Unlike AFT models, the NTR 

approach models the survival function directly which eases the interpretation of 

the overall model and, particularly, the covariate effects. The tractability of the 

GANTR model allows us to derive the likelihood of the regression coefficients 

and the hyperparameters of the VCRM and so implement fast maximum a 

posteriori inference methods. We also find that the GANTR model leads to better 

fit of the data than the LDDP in both simulated and real data.  

The outline of the paper is as follows. In the next section we consider CRMs and 

VCRMs in more detail. In Section 3 we formally present the GANTR model. 

Section 4 develops a posterior characterization of the model and results 

necessary for the ensuing inference procedures. We present simulation and real 

data studies for our model in Section 5. Conclusions for the work are presented 

in Section 6. Proofs, further properties regarding asymptotic behavior, details 

regarding inference and further simulation studies are included in the 

supplementary material. Code for our model is available in 

https://github.com/alan7riva/GANTR.  
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2 Preliminaries 

VCRMs are a key building block of our proposed Bayesian nonparametric model. 

This section will introduce some basic ideas and representations through Laplace 

functional transforms. We will focus on the compound random measure (CoRM) 

class of VCRMs which were recently introduced by Griffin and Leisen (2017).  

Let  be a complete and separable metric space with corresponding Borel σ-

algebra  and probability space ( , , ) . We denote by  the space of 

boundedly finite measures in the measure space ( , )  and the associated Borel 

σ-algebra by .  

Definition 1. A random measure μ on ( , )  is called a completely random 

measure (CRM) if for any collection of disjoint sets 
1{ }n

i iA    the random 

variables 
1{ ( )}n

i iA 
 are mutually independent.  

In this paper, we restrict attention to CRMs of the form  

1
ii Y

i

w 




  

where 
1{ }i iw 


 and 

1{ }i iY 


 are collections of random variables taking values in   

and  respectively. We will refer to wi as jump heights and Yi as jump locations. 

Such CRMs can be characterized by their Laplace transform  

(1 ) (d ,d )
( )

s

A
e s y

Ae e
 




 

      (3) 

where 0   and ν is a measure on    such that  

min{ ,1} (d ,d )
A

s s y
 

   

for any bounded set A . The measure ν is usually called the Lévy intensity of 

μ. We denote the Laplace exponent of a CRM as ψt where for ,t     
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  0,
( ) log .

t

t e


 
      

See Kingman (1967) for a full review of CRMs. We say that a Lévy intensity ν is 

homogeneous if it can be written in the form  

(d ,d ) (d ) (d )s y s y    

where κ is a non-atomic measure on  referring to the jump locations and ρ is a 

measure on   referring to the jump heights. For example, we will use the 

homogeneous CRM with Lévy intensity  

(d ,d ) d (d ),
se

s y s y
s


 



  (4) 

where 0   and 0   which is a particular case of the Gamma process, see 

Phadia (2015). We refer to this process as the Gamma CRM which is denoted 

Gamma( , )  . There is a natural generalization of CRMs to the multivariate 

setting.  

Definition 2. A vector 1( , , )d  μ  of random measures on ( , )  is called a 

vector of completely random measures (VCRM) if, for any collection of disjoint 

sets 
1{ }n

i iA   , the random vectors  1 1{ ( ), , ( ) }n

i d i iA A    are mutually 

independent.  

The corresponding multivariate analogue of the Laplace transform (3) is  

,

( )1 1

(1 ) (d ,d )
( ) ( ) d Ad d

e y
A A

e e


   
 

 
 

  
   

λ s
s

 

where 1( , , ) ( )d

d    λ  and ν is a measure on ( )d   satisfying  

( )
min{|| ||,1} (d ,d )

d A
y

 
  s s  (5) 

for any bounded A . A d-dimensional VCRM with such Laplace transform can 

be represented as  
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1, ,

1 1

, ,
i ii Y d i Y

i i

w w 
 

 

 
   
 μ  

for a random collection of vectors 1, , 1{( , , )}i d i iw w 

  taking values in ( )d  and 

1{ }i iY 


 taking values in . The associated Laplace exponent for t   and 

 1( , , )
d

d   λ  is now given by  

    1 1 (0, ] (0, ]
( ) log .d dt t

t e
   


     λ  

The corresponding homogeneous case arises when  

(d ,d ) (d ) (d ).y y  s s  

Griffin and Leisen (2017) introduced a flexible class of VCRMs called compound 

random measures where the dependence structure of the vector is modeled in a 

constructive way.  

Definition 3. Given a d-variate probability density function h and an univariate 

Lévy intensity   we say that a d-variate VCRM μ  is a compound random 

measure (CoRM) with score distribution h and directing Lévy measure   if the 

d-variate Lévy intensity of μ  is given by  

1(d ,d ) , , (d ,d )d .d dss
y z h z y

z z
 



  
   s s  

In Riva-Palacio and Leisen (2019), the existence of marginal first moments for 

the score distribution in a CoRM is shown to be sufficient for the integrability 

condition (5) to be satisfied; in this work we only consider CoRMs with such 

score distributions. Furthermore Riva-Palacio and Leisen (2019) shows that 

CoRMs have an elegant interpretation in terms of discrete measures. Indeed, if μ 

is a homogeneous univariate CRM with Lévy intensity (d ,d )s y  and series 

representation  
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a.s.

1

(·) (·)
jj u

j

w 




  

for random sequences 
1{ }i iw 


 in   and 

1{ }i iu 


 in , and if 1, , 1{ ( , , )}j j d j jv v 

 v  

is an independent identically distributed (i.i.d.) sequence with common 

distribution h; then the associated CoRM 
1( , , )d  μ  is such that  

a.s.

,

1

(·) (·).
ji i j j u

j

v w 




  (6) 

An interesting example of a CoRM is defined by a LogNormal ( , )m , score 

distribution, with mean vector m and covariance matrix  . Such choice allows us 

to distribute the mass of the directing Lévy intensity across the d-dimensional 

space of the CoRM intensity. The Lévy intensity of a CoRM with such score 

distribution and Gamma directing Lévy measure is presented in the 

supplementary material. In particular we will use the following construction.  

Definition 4. We say that a d-dimensional random variable Z is given a 

LogNormal   distribution if its probability density function is  

 ( )

1

1
( ) LogNormal (1 ) , I .

d
d

i

i

p z z
d

  


   e 1  

where LogNormal( | , )z m  is the probability density function of a multivariate 

lognormal distribution using the parameterization discussed at the end of Section 

2,  
1

(0,1],
d

i i



 e  is the canonical basis in d , (1, ,1) , 0d    1  and ( )I d  is 

the d-dimensional identity matrix.  

We can use the above as the score distribution in a CoRM with Gamma directing 

Lévy measure. Observe that when using a mixture for the score distribution of a 

CoRM the Lévy intensity is a sum of the Lévy intensities corresponding to the 

mixture components with the directing Lévy measure fixed.  
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The LogNormal   is a d component mixture model. For small values of σ, the 

effect of the parameter δ is twofold. Firstly, when used as the score distribution in 

a CoRM, it controls the dependence between dimensions of the VCRM. If δ = 1 

the mass of the distribution is accumulated near the point 1 and the related 

CoRM has a Lévy intensity which accumulates mass near the identity axis. This 

CoRM is close to a completely dependent VCRM where all dimensions are 

almost surely equal. On the other hand, if 0  , the LogNormal   distribution 

accumulates mass near the points  
1

d

i i
e  and the related CoRM Lévy intensity 

accumulates mass near the axes in ( )d , which will be close to an independent 

entries VCRM. Values of (0,1)   will modulate between these distributions and 

VCRMs. Secondly, in the multiple-sample information setting where the 

regression functions 
,{ 1}( , )

k ji kf  Xβ X 1  for 1, ,i d  , then as 0   and 0   

the GANTR model is equivalent to an NTR model for each sample. While if δ = 1 

and 0   the GANTR model is equivalent to a NTR model. The parameter σ 

serves to diffuse the mass of the distribution. The modulating effect of δ 

decreases as σ increases so we chose a relatively small value of σ.  

3 Survival regression model 

The neutral to the right process (Doksum, 1974) for the survival function was 

defined in (1) as the exponential transform of a CRM μ for which 
a.s.

( )    . We 

say that a random variable Y with this survival function has a neutral to the right 

distribution, which is denoted  ~ NTR ,Y   where μ is a CRM.  

Definition 5. Let 1
ˆ, , , {0}, { }n

i in m d b Y Y    with iY  , and 
1{ }n

i iX X  with 

,1 ,( , , ) m

i i i mX X  X  be a random sample. We say ˆ{ , }Y X  follow a generalized 

additive neutral to the right regression (GANTR) model if, for 1( , , ) ( )n

nt t   t , 

the joint survival function is  

1 1( , ) (0, ] ( , ) (0, ]

1 1

1

( ) , , | i i d i d i

n
f t f t

n n

i

S Y t Y t e
  



     
  

β X β X

X
t X  (7) 
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where 
1( , , ) b

b   β , 
1{ , , }d  μ  are a VCRM with Lévy intensity 

( , )d dt
c

s , where c are parameters of the Lévy measure, and : b m

if
   for 

{1, , }i d  .  

The GANTR model for a single observation can be seen as an NTR distribution 

conditionally on the covariates 
iX   

ind

1

| ~ NTR ( , )
d

i i j i j

j

Y f 


 

 
 
X β X  (8) 

which allows us to use results about NTR processes with our model. For 

example, neutrality to the right as in equation (2) is satisfied conditionally on the 

covariates, as in Proposition 3 of Riva-Palacio and Leisen (2018)  

Some previously proposed models arise as special cases of the GANTR model. 

If {0,1}m

i X  such that , 1i j X  if and only if the i-th observation belongs to the j-

th sample, the multiple-sample NTR model of Riva-Palacio and Leisen (2018) for 

m samples can be recovered by choosing 
,{ 1}( , )

i jj if  Xβ X 1 . The Cox NTR 

model of Kim and Lee (2003) arises when d = 1 and ,

1( , )f e  β X
β X . Unlike the 

Cox NTR model, the GANTR model allows for nonproportional hazards. Indeed, 

if 
1
( )S t

X
 and 

2
( )S t

X
 are the survival functions at time t of GANTR distributed 

random variables Y 1, Y 2 with respective covariates 

1 1,1 1, 2 2,1 2,( , , ), ( , , )m mX X X X   X X , such that 
1 2X X  then  

1 2 1

(0, ]

1

( ) ( ) ( ) 1 i i

d
r t

i

S t S t S t e




 
    

X X X  

where 2 1( , ) ( , ), {1, , }i i ir f f i d   β X β X , and, clearly, the survival functions for 

different covariates values can cross at any point t   if d > 1.  

The GANTR model has been motivated as a flexible model of the effects of 

covariates on the survival function but it can also be viewed as a competing risks 

model (Prentice et al., 1978). We assume d independent latent causes for the 
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event of interest and define the survival function for the j-th cause with covariates 

X to be  

( , ) (0, ]

, ( ) .j jf t

jS t e



β X

X
 

The survival function for all risks across a sample is the GANTR model. The 

structure of models means that fj and μj are not separately identified (although, 

their product is identified). This is not necessarily a problem for Bayesian 

inference if we are only interested in functions of these products (such as the 

survival function) and a prior can be placed on β and μj. Alternatively, we can 

choose a parameterization which identifies each product (for example, by fixing 

the value of 0( , )jf β X  for a specific covariate value 
0X ). The survival function for 

all risks for a covariate X be re-expressed as  

1 1

( , ) (0, ] ( , ) ( , ) (0, ]

( ) ,

d d

j j j j

j j

f t f w t

S t e e
 

 

  
 

β X β X β X

X
 (9) 

where 
1

( , ) ( , ) ( , )/
d

j j k

k

w f f


 β X β X β X  and 
1

( , ) ( , )
d

k

k

f f


β X β X . Under the 

latter parametrization, the wj’s are weightings on each latent cause (which 

depends on covariates) and allow departures from a Cox proportional hazards 

models which occurs if ( , )jw β X ’s do not depend on X. Observations which have 

similar ( , )jw β X  will have similar survival curves and this allows us to define 

subpopulations which tend to have similar survival outcomes. We illustrate this 

idea in Section 5 using data from melanoma patients. This parameterization can 

be identified by fixing the value of 
0( , )f β X  at covariate value 

0X . The 

competing risk interpretation also leads to a simple simulation scheme for our 

model. We sample iY  as survival times according to the survival function , ( )jS tX
 

and set 1min{ , , }dY Y Y  .  

Acc
ep

te
d 

M
an

us
cr

ipt



The GANTR model with a CoRM chosen as the VCRM μ , can be represented 

as a conditional NTR model where, by substituting (6) into (8),  ~ NTRY   

where  

,

1 1

( , ) .
j

d

i i j j u

j i

f m w 


 

 
   
  β X  

The measure   is a CoRM with the same directing Lévy measure as 
1, , d   

and scores 
,

1

( , )
d

i i j

i

f m


 β X . In this form, the score distribution of the CoRM is 

marginally a random linear combination of the regression functions 
1, , df f .  

4 Posterior characterization 

The form of the GANTR model allows us to derive an analytic expression for the 

posterior distribution given right-censored data. This result allows us to construct 

an inference scheme for the model as explained in Section 5. We assume that a 

sample of size n is observed and that there are (right) censoring times 
1, , nC C  

which are i.i.d. and independent of the survival times 1, , nY Y . We observe the 

time min{ , }i i iT Y C  and the indicator variable  (0, ]ii C iJ Y1  which is 0 if the i-th 

observation is censored. Let 1{( , , )}n

i i i iT J  X  be the survival data available for 

analysis. The k n  order statistics (without repetition) of 1, , nT T  are represented 

by (1) ( )kT T  and define (0) 0T   and ( 1)kT    . The number of right-censored 

observations (for which Ji = 0) and exact observations (for which Ji = 1) at time 

( )jT  are c

jn  and e

jn  respectively. The indices of the right-censored and exact 

observations at time ( )jT  are  

( ) ( )

( ) ( ){ :  and 1} and { :  and 0}e c

j l j l j l j lI l T T J I l T T J       

respectively. The indices of all exact observations is ( ) ( )

1

e k e

j jI I  . It is useful to 

define the pairs of functions, for bb  and {1, , }i d  ,  
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( )

( ) ( ) ( )

, , ,( , ) ( , ), ( , ) ( , )
e

j

k
e e e

i j i l i j i r

r jl I

h f h h


  b X b X b X b X  

and  

( )

( ) ( ) ( )

, , ,( , ) ( , ), ( , ) ( , )
c

j

k
c c c

i j i l i j i r

r jl I

h f h h


  b X b X b X b X  

for {1, , }j k   and ( ) ( )

, 1 , 1( , ) ( , ) 0e c

i k i kh h  b X b X . We group these functions in the 

vectors  
( ) ( ) ( )

1, ,( , ) ( , ), , ( , )
e e e
j j d jh h h b X b X b X  and 

 
( ) ( ) ( )

1, ,( , ) ( , ), , ( , ) .
c c c
j j d jh h h b X b X b X  Initially, we derive the likelihood of right-

censored data  in the GANTR model. We assume the following condition on 

the GANTR model.  

Condition 1. the VCRM μ  has a Lévy intensity ( ,d )dy s s  such that 

 ( ) ,(0, ]t t s s  is differentiable in the sense that the partial derivative 

0 0
( ) ( ) / |t t t tt     s s  exists and, as , ( ) (exp( ))ts s ks    with 

 ( )

( ) ( )

1, ,

1

min ( , ) ( , )e

d
e c

j i j ij I
i

k h h


 
  

 
 β X β X  for any 0 0t  .  

This is a weak condition and is equivalent to requiring that the derivative of ( )t  

exists in the homogeneous case.  

In the following result we provide a convenient expression for the likelihood of β , 

the regression coefficients, and c, the hyperparameters of the Lévy intensity, in 

the GANTR model. We want to emphasize the dependence of the Lévy intensity 

on c so in the following proposition we use the particular notation ,, t 
c c  and 

,t
c  for the Lévy intensity, partial derivative as above and Laplace exponent, 

respectively.  

Proposition 1. Let  be survival data and assume a GANTR model with 

Condition 1. Let ,t
c  be the Laplace exponent associated to 

c
, then the 

likelihood of β  and c is given by  
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   

  

( ) ( ) ( ) ( )

, ,( ) ( 1)
1

( ) ( )
,1,

( )
( ) ( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

,
( )

1 1

( , ; )

1 ( )d{ }

k
c e c e

T j j T j jj j
j

e c
j i ij i i l i

d j
e e

j

d d
h h s f s

T

i ij I l I

l e

e e

 










      

  

  




 
    
   

c ch β X h β X h β X h β X

β X β X β X

c

β c

s s

  (10)  

The next theorem provides the posterior distribution of the model in (7) with a 

general VCRM and possibly right-censored data.  

Theorem 1. Let  be survival data and assume a GANTR model with Condition 

1. If 0if   for at least one {1, , }i d  , the posterior distribution of μ  is the 

distribution of the random measure  

( ) ( )
( )

1 1, ,( , , ) ( , , )
j j

e

d j T d j T

j I

M M    



    

where  

i) 
1( , , )d    μ  is a d-variate CRM with Levy intensity  

( ) ( )

( 1) ( )

1
( , ) ( , ),

{d ( , )}

1

(d ,d ) (d ,d )
e c
j j

j j

k

y T T

j

y e y 



  






h β X h β X s

s s 1  

ii) The vectors of jumps ( )1, ,{( , , )} ej d j j I
M M


  are mutually independent 

and the vector of jumps corresponding to the exact observation ( )jT  

has density  

  
( ) ( )

,, 1

( )
( )

( , ) ( , ) ( , )

1 1

( ) 1 ( )
e c

i j ii j i l i

j
e

j

d d
h h s f s

j T

i il I

g e e   

 

 
    
  

β X β X β X
s s  

iii) The random measure 
μ  is independent of ( )1, ,{( , , )} ej d j j I

M M


 . 

The above characterization can be seen as a conjugacy property where, similarly 

to NTR distributions (see for example in Ferguson and Phadia, 1979), the 

posterior is updated to be GANTR model with ( )μ , furthermore this can be used 

to calculate the posterior mean of the survival function of a new time event Y  
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with associated new covariate X , i.e. | |( ) | , ,S t Y t         μ μX
μ β X . 

Such a posterior mean, where we have integrated out the underlying VCRM μ , 

can be used for estimation purposes; its calculations is made explicit in the next 

corollary.  

Corollary 1. In the setting of Theorem 1, we denote  

( )

( ) ( )( ) { :  is an exact observation } { : }.e

l lI t l T l T t    

Let ( ) | , ,S t Y t   X
μ β X  be the survival function of an GANTR distributed 

r.v. Y  associated with a covariate vector X . Then  

 
1

{ }( ) ( 1) ( 1)
1

( ) ( )

1

( )
( )

( ) ( )

1

( ) ( )

( , ) ( , ), ( , )

( )
1

( , ) ( , ), ( ,

( )

ˆ ( ) ( ) | , ,

1 ( )d

1

k

t T t T T tj j j
j

e c
jj i l i

d j
e

j

e c
jj i

d

d
f s

T

il I

f

S t S t e

e e

e e

 




 
   











 

    



   


   

 
   



 



V V

X X

V h β X h β X s β X

h β X h β X s β

β X

s s

1

( )

( )
( )

)( )

1

( )d
e

l i

j
e

j

d
sj I t

T

il I





 
  


 

X
s s

  (11) 

where    1 1, ( , ), , ( , )d dV V f f   V β X β X  and    is the Laplace exponent 

of   in Theorem 1.  

The following lemma gives an analytic expression for integrals of the type that 

appear in both the posterior mean of Corollary 1 and likelihood function of 

Proposition 2.  

Lemma 1. Let ν be a Lévy intensity associated to a d-variate VCRM, ψt its 

Laplace exponent, 1, , ( ) {0}, ( )d d

m

   q q q  and 

1 | |{ , , } {1, , }II i i m     . We define 2 | |1 { , , }II i i  . Then  

 ,,

( ) (0, ]

#( )

1

1

1 (d ,d )

( 1) .

l
d t

l I

S

t l t l

S I l S l S

e e x

 



  




  



    
             

 

  

q sq s
s

q q q q q
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The above lemma provides a readily available estimator Ŝ
X

, in Corollary 1, if the 

Laplace exponent associated to the underlying VCRM can be easily computed. 

Further theoretical properties of the GANTR model regarding asymptotic 

behavior are discussed in the supplementary material. The results in this section 

are valid for GANTR models based on general non-homogeneous VCRMs. In the 

rest of the paper, however, we will work with homogeneous VCRMs consisting of 

CoRMs with LogNormal score distributions. Epifani and Lijoi (2010) discuss the 

flexibility of NTR models built using homogeneous VCRMs which is illustrated by 

the asymptotic properties of this sub-class of the GANTR model, see 

supplementary material.  

5 Simulation and real data studies 

In this section we analyze a simulation study and two real survival datasets with 

the GANTR model and the Linear Dependent Dirichlet Process (LDDP) (De Iorio 

et al., 2009) using the implementation in the R library “DPpackage” (Jara et 

al., 2011). The first real dataset illustrates the identification of subpopulations 

with GANTR and the second dataset illustrates the performance of the GANTR 

model relative to the Cox regression model. The GANTR model uses a CoRM as 

the underlying VCRM with a LogNormal   score distribution with 0.1   and a 

homogeneous Gamma directing Lévy process with parameters α and γ, whose 

intensity is given in (4), and (d ) dy y  . There are also analysis of a further 

simulation study and a real survival dataset in the Supplementary material.  

We consider two hybrid inference approaches. In both approaches, we first set 

( , )  . We have found that an effective approach is to use the MAP estimate 
MAP

MAP MAPˆ ˆ( , ) c  under the corresponding NTR model using the homogeneous 

Gamma CRM μ without considering covariates. In such NTR setting, a priori the 

mean survival is given by (0, ] 1ˆ( ) exp log 1tS t e t 


   
          

. So we can 

assign priors on γ and α which reflect the rate of survival times in an exponential 
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model. In particular we used a log-normal prior centered in 
1

/
n

i

i

n T


  and variance 

0.001 for γ and a log-normal prior centered at one with variance 0.1 for the bone 

marrow data and 0.01 for the Kidney transplant data due to the rates in the 

different data sets. This centers the GANTR model around the data and captures 

the overall rate of the survival times while allowing small values of δ to indicate 

departure from the NTR model that does not consider covariate effects.  

The posterior distribution of δ and β , conditional on ( , )   or ˆ ˆ( , )  , can be 

calculated using the likelihood ˆ ˆ( ,( , , ); )l   β  in (10). A closed form expression 

for the Laplace exponent of the LogNormal   CoRM is not available but a 

Monte Carlo estimate can be easily calculated using draws from the score 

distribution and the Laplace exponent of the directing gamma CRM (this can also 

be used for the calculation of the posterior mean survival curve in Corollary 1). 

The two inference approaches differ in how δ and β  are inferred. Firstly, a 

MCMC scheme (see Supplementary material) can be used to draw samples from 

the posterior distribution of δ and β  allowing Monte Carlo estimates of the 

posterior mean survival and credible intervals to be calculated. Alternatively, a 

maximum a posteriori (MAP) estimate of δ and β  can be found using numerical 

optimisation of the posterior distribution. We use the LFBGS routine of the Optim 

pacakge in Julia (Mogensen and Riseth, 2018). Details regarding evaluation of 

the likelihood gradient are given in the supplementary material. This only involves 

one evaluation of equation (11), in contrast to the MCMC approach, but at the 

expense of ignoring posterior uncertainty in the parameters. We will denote the 

MAP estimate of a generic parameter θ by MAP̂ .  

5.1 Simulated example 

We consider a competing risks example. For 1, ,i n  , there is a covariate Zi 

which normal distribution with mean 1 and variance 0.75 truncated to (0, 2) and 

there are three possible risks: 
i.i.d.

(0)

1/2.2

1.75
~ We 2.2,iY

l

 
  

, 
i.i.d.

(1)

1/1.2

2.2
~ We 1.2,

(1 )
iY

l

 
   

, 
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i.i.d.
(2)

1/5.3

1.5
~ We 5.3,

(1 )
iY

l

 
   

 where We( , )k   represents a Weibull distributions with 

shape parameter k and scale λ and (0,1)l  . If 1iZ  , we observe 

 (1) (0)min ,i i iY Y Y  and, otherwise,  (2) (0)min ,i i iY Y Y . This defines two sub-

populations which are determined by whether (or not) the covariate is above the 

threshold value of 1. The parameter l controls the difference between the 

distributions for the two groups with the distributions becoming more similar as 

moves from 0 to 1. We generate two data sets of 200 observations with l = 0.1 

and l = 0.9.  

We fit the GANTR model with regression functions  1( , )
z

f z





1  and 

 2( , )
z

f z





1  where β controls the threshold between two sub-populations. For 

simplicity we took ( , ) (1,1)   . We use both the MAP and MCMC methods for 

inference. We ran the MCMC algorithm with 10000 iterations, which essentially 

achieved convergence.  

Results of fitting the GANTR and LDDP models to data generated with l = 0.1 are 

shown in Figure 1. Both models can clearly reconstruct the true survival curves 

with both inference methods for the GANTR model providing estimates that are 

closer to the true survival curves than the LDDP models. This visual impression 

is supported by the L2 distance between a point estimate and the true curves in 

Table 1. In fact, the fitted survival curves are very similar for the full posterior 

inference and MAP estimation. Other aspects of inference are also similar, the 

MAP and posterior mean estimates of the threshold parameter β are 1.01 and 

1.02 respectively (which are very close to the true value), and similarly, the 

corresponding estimates of δ are 0.18 and 0.19 respectively. The estimated 

value of δ is close to zero which indicates that the two groups are nearly 

independent. Table 1 also shows the L2 distances between point estimates of the 

survival curve and its true value for data generated with l = 0.9. Again, both 

GANTR estimates have smaller L2 distances than the LDDP model. Fitting the 

GANTR model using MCMC took about 2 hours for 200 observations and about 
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3 hours for 400 observations. On the other hand, MAP estimation took around 5 

minutes for both 200 and 400 observations. The similarity of estimated survival 

curves and the shorter computation time leads us to only consider MAP 

estimation for the real data examples in the rest of this section. The 

supplementary material includes results from fitting the GANTR and LDDP 

models to simulated data sets with l = 0.1 with 400 observations and l = 0.9 with 

both 200 and 400 observations.  

5.2 Real data studies 

5.2.1 Melanoma survival data 

Andersen et al. (2012) includes a study of 205 patients with melanoma who had 

a tumor removed by surgery. The thickness of the tumor was a covariate of 

interest as an increase in the tumor’s thickness is thought to increase the 

chances of death. The data were right-censored for 72% of the patients. Again 

we use a two-dimensional GANTR model.  

The lack of a straightforward way to stratify the patients into subpopulations 

according to tumor thickness motivated us to use a flexible regression model 

using two regression functions. There are many possible constructions for these 

regression functions such as univariate or multivariate splines (Denison et 

al., 2002) or Gaussian processes. We choose to use a Lagrange interpolator 

polynomial (see Friedberg et al., 2013). Let 1 2 3 4 5( , , , , )q q q q qq  be the five 

number summary of the observed tumor thickness values and ,L
q β

 be the 

Lagrange interpolator polynomial with knots  
4

51
( , ) {( ,0)}i i i
q q


  where 

4

1 4( , , ) [0,1]   β  are unknown parameters to define the regression functions: 

  1 ,( , ) max min 1, ( ) ,0f z L z
q β

β  and   2 ,( , ) max 1 max ( ),0 ,0f z L z 
q β

β . This 

leads to non-negative regression functions which are constrained so that 

1 2( , ) ( , ) 1f z f z β β . These functions can be interpreted as weights on two 

subpopulations, as in (9), which are determined by whether (or not) 

1 2( , ) ( , )f z f zβ β . The parameter δ controls the sharing between these 
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subpopulations (i.e. there is very little sharing if δ is close to 0). The fixed value of 

the last knot, 
5( ,0)q , constrains 

2 ( , )f z β  to be close to one (and 
1( , )f z β  to be 

close to zero) for large values of z and so we can interpret μ2 as the competing 

risk of patients with large tumor thicknesses and μ1 as the competing risk of 

patients with small tumor thicknesses.  

The MAP estimates of β  imply that 
1( , )f z β  crosses 

2( , ) 1f z β  at 3.3984 (shown 

in Figure 2). and the estimated MAPˆ 0.000972   indicates little sharing of 

information. This suggests two subpopulations defined by the threshold tumor 

thickness of 3.3984 with substantially different survival curves in each 

subpopulation. This is illustrated by the estimated survival curves with different 

tumor thicknesses in Figure 3. The estimated survival curves for each 

subpopulation are illustrated by the curves for thicknesses 1.5 and 6.1 which 

show clear differences with a better prognosis for smaller tumor thicknesses. The 

estimated survival curve for thickness 3.4 (close to the threshold value) shows 

the smoothing induced by the model between the subpopulations. The presence 

of the two heterogeneous subpopulations detected by the GANTR model are 

supported by the plotted Kaplan-Meier curves and the LDDP mean fits for the 

survival curves, which are shown for comparison.  

5.2.2 Kidney transplant data 

We consider the Kidney transplant dataset from the survival analysis book of 

Klein and Moeschberger (2006) which is available in the R package ”KMsurv” by 

Yan (2012). This dataset consists of 863 observations of which 723 were right-

censored. There are two binary covariates: sex (male or female), and race (white 

or black), and age is treated as a continuous covariate. The combinations of race 

and sex can be used to divide the patients into four groups: 1) Male-White, 2) 

Male-Black, 3) Female-White and 4) Female-Black. We consider a GANTR 

model with d = 4 and regression functions  

0,mw 1,mw age 0,mb 1,mb age

mw {Male-White} mb {Male-Black}( ) , ( ) ,
z z

f e f e
    

 z z1 1  
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0,fw 1,fw age 0,fb 1,fb age

fw {Female-White} fb {Female-Black}( ) , ( ) .
z z

f e f e
    

 z z1 1  

The intercept coefficients 0,mw 0,mb 0,fw, ,   , and 0,fb  account for the heterogeneity 

in the populations. The coefficients of the interactions between group and age 

1,mw 1,mb 1,fw, ,   , and 
1,fb  account for differences in the effect of age between the 

groups. The White-Male subpopulation consists of 431 observations and the 

White-Female of 278 observations. The two other groups are much smaller with 

92 observations in the Black-Male group and 59 observations in the Black-

Female group; this restricts the ages for which Kaplan-Meier estimates can be 

provided. In the GANTR model, the estimated value of MAPˆ 0.3731   which is 

indicative of the borrowing of information in the model’s fit. The estimated values 

for the regression functions’ parameters are presented in Table 2. We find that 

the Cox regression provides good fits for many ages. However, we find some 

discrepancies between the Cox regression model and both nonparametric 

models (white, male, age 65) and between the two nonparametric models (black, 

male, age 50). In both cases, the GANTR fit is much closer to the Kaplan-Meier 

than the Cox regression model or LDDP for black, males aged 50. Further fits are 

presented in the supplementary material.  

6 Conclusions 

In a Bayesian nonparametric setting, we have introduced the GANTR model for 

possibly right-censored survival data. Our model generalizes the NTR models in 

a regression setting where non-proportional hazards are allowed. Our model can 

be interpreted in a competing risks framework. As a particular case of the 

GANTR, we can recover the multiple-sample models of Epifani and Lijoi (2010) 

and Riva-Palacio and Leisen (2018). The posterior characterization of the model 

was presented in Theorem 1 and asymptotic properties of the model are 

discussed in the supplementary material. We presented two approaches to draw 

posterior mean estimators for the survival curve, where the vector of completely 

random has been integrated out. The first relies on an MCMC sampler and the 
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second in a maximum a posteriori procedure. Simulations studies provide 

evidence of the accuracy of our methodology and ease of interpretation. We also 

showed how these models can be used in real data studies to allow for non-

proportional hazard effects and crossing survival functions, and to discover 

subpopulations with different survival curves.  

The GANTR model relies on the random weights of the underlying VCRM to 

allocate mass on latent competing risks. A generalized additive model is applied 

to the competing risks where interpretable covariate effects, e.g. Cox proportional 

hazards effects, are introduced in the regression functions. Thus the model in the 

NTR setting focuses on the random weight structure of the underlying CRM. 

However, time varying effects, such as accelerated failure times (e.g., 

Christensen & Johnson, 1988), can be considered in an interpretable manner by 

focusing on the location component of the underlying CRM.  

Another approach that could be considered in survival analysis is the frailty 

model. It generalizes the proportional hazards model by introducing a 

multiplicative random effect. Frailty models are often used to model clustered 

survival data, for example arising in multi-center clinical trials. However, such 

heterogeneities can be modeled directly with the GANTR model in a multiple-

sample framework given by the different clinical centers. As such, although it is 

possible to include a frailty term in our model to introduce a mixed effect, we 

preferred to focus on the multiple-sample interpretation of our model. Future work 

will be devoted to explore this research line.  

We have not considered inference for left-censored or interval-censored 

observations. Previous approaches to this problem in the Bayesian 

nonparametric setting include Doss (1994) based on mixtures of Dirichlet 

processes, Jara and Hanson (2011) based on a linear dependent Poisson-

Dirichlet process and Kim and Lee (2003) focused on NTR distributions from the 

focus of cumulative hazards. We believe that our approach could be extended to 
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using the approach of Kim and Lee (2003) but we leave this problem to future 

work.  

The GANTR approach leads to an analytic form for the marginal likelihood 

(integrating over the vector of completely random measures). This is an attractive 

feature which allows us to calculate MAP estimates of hyperparameters. This can 

be seen as an empirical Bayes approach which approximates the fully Bayesian 

approach that we also consider. Petrone et al. (2014) provide a discussion on 

empirical Bayesian methods, including asymptotic results. The use of MAP 

estimates for hyperparameters is becoming increasingly popular in Bayesian 

nonparametrics, see e.g. Masoero et al. (2019) and Di Benedetto et al. (2017), 

where the number of hyperparameters is usually small and well-informed by the 

data. This contrasts with flexible Bayesian nonparametric regression approaches 

which model the logarithm of the survival time using a dependent Dirichlet 

process. We believe that this allows the GANTR to be applied more easily to 

problems with many observations or covariates where MCMC samplers may mix 

slowly.  
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Fig. 1 Competing risk simulation study (l = 0.1): posterior mean of the survival 

function (with 95% credible intervals) from the GANTR and LDDP models and 

GANTR MAP fits for z = 0.66 (true —–, GANTR —–, LDDP —–, GANTR MAP —

–), and z = 1.44 (true —–, GANTR , LDDP , GANTR MAP ). 
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Fig. 2 Melanoma study: plots of 
1( , )f z β  ( ) and 

2 ( , )f z β  ( ) for the 

MAP estimate of β  with the minimum and maximum  and sixtiles  of 

the thickness values. 
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Fig. 3 Melanoma study: fitted survival curves for thickness 1.5 (GANTR MAP —

–, LDDP mean.....), thickness 3.4 (GANTR MAP , LDDP mean ), and 

thickness 6.1 (GANTR MAP —–, LDDP mean ). The Kaplan-Meier fits of 

observations with thicknesses in the windows:  1.255,1.75  (—–),  2.7,4.1  (—–) 

and  4.1,8.1 , ( ). 
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Fig. 4 Kidney transplant data: Fits for white-male, ages 40 and 65, black-male 

and black-female, ages 50, sub-populations; GANTR MAP ( ), Kaplan-Meier 

(—-), Cox regression (.....) and LDDP mean (.....). 

Acc
ep

te
d 

M
an

us
cr

ipt



Table 1 L2 distance between estimated survival functions and true survival 

functions for z = 0.66 and z = 1.44 over evaluation meshes at every 1/60 

between 0 to 3.5 for l = 0.1 and at every 1/50 between 0 and 5 for l = 0.9. 

Simulation study  l = 0.1   l = 0.9   

L2 distance with true survival z = 0.66 z = 1.44 z = 0.66 z = 1.44 

GANTR mean survival  0.278  0.404  0.272  0.258  

GANTR MAP survival  0.193  0.551  0.253  0.24  

LDDP mean survival  0.33  0.619  0.38  0.824  

Acc
ep

te
d 

M
an

us
cr

ipt



Table 2 MAP estimators for regression functions’ parameters in kidney transfer 

real data study. 

MAP

0,mw̂  MAP

1,mw̂  MAP

0,fw̂  MAP

1,fw̂  MAP

0,mb̂  MAP

1,mb̂  MAP

0,fb̂  MAP

1,fb̂  

–5.2504  0.0521  –3.8825  0.0155  –4.6746  0.0331  –2.6801  0.00002  
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