Supporting Information

Carbon Emcoating Architecture Boosts Lithium Storage of Nb₂O₅

Qing Ji^{1,2†}, Zhuijun Xu^{1,3†}, Xiangwen Gao^{4,5†}, Ya-Jun Cheng^{1,4*}, Xiaoyan Wang¹, Xiuxia Zuo¹, George Z. Chen^{2, 6}, Binjie Hu^{2*}, Jin Zhu¹, Peter G. Bruce^{4,7,8}, Yonggao Xia^{1,9*}

 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, Zhejiang Province 315201, People's Republic of China

The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo,
Zhejiang Province 315100, People's Republic of China

University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan
District, Beijing 100049, People's Republic of China

 Department of Materials, University of Oxford, Parks Rd, OX1 3PH, Oxford, United Kingdom

 Materials Science and Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA

6. University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

7. The Henry Royce Institute, Parks Road, Oxford OX1 3PH, United Kingdom.

8. The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot

OX11 OR1, United Kingdom

 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing 100049, P. R. China

AUTHOR INFORMATION

*Corresponding Author

E-mail Address: chengyj@nimte.ac.cn, binjie.hu@nottingham.edu.cn,

xiayg@nimte.ac.cn

[†]<u>These authors contributed equally to this work.</u>

Figure S1. SEM (a-1), TEM (a-2), HRTEM (a-3) and SAED (a-4) images of coral

 Nb_2O_5 (activated at 900 $^{\rm o}C$ for 2 h).

Figure S2. Thermogravimetric profiles (a) and Raman spectroscopy (b) of the pristine carbon embedding and CO₂-activated Nb₂O₅/carbon nanohybrids.

Table S1. Carbon content and relative intensities of D band &G band of theNb2O5/carbon nanohybrids prepared with different CO2 activation conditions

Carbon Structure	Pristine	800°C-2h	900°C-1h	900°C-2h
Carbon Content (%)	40	27	8	0
I _D :I _G	1.36	1.39	1.36	1.00

	Indifolity offices at various cond	various condition			
	Porosity and carbon	Drigting	EDC	EPC	Coral Nb ₂ O ₅
	content	riistine	(800°C-2h)	(900°C-1h)	(900°C-2h)
_	BET Surface Area (m ² g ⁻¹)	57.7	100	221	15.9
_	Pore Volume (cm ³ g ⁻¹)	0.146	0.391	0.348	0.0225
_	Carbon Content (%)	40	27	8	0

Table S2. BET surface area of the pristine and CO₂-activated Nb₂O₅/carbon nanohybrids at various condition

Figure S3. XPS survey and high resolution of O1s, C1s and Nb3d of the pristine carbon embedding Nb₂O₅ (a), EDC structured Nb₂O₅ (b) and coral Nb₂O₅ (c).

(532 eV) and ND-O $(530 eV)$.	<u>.</u>	
Sample	Carbonate/C-C	C-O/Nb-O
Embedding	0.20	0.37
EDC(800-1h)	0.17	0.147
EDC(800-2h)	0.058	0.32
EPC	0.072	0.23
Coral Nb ₂ O ₅	/	0.17

Table S3. Peak area comparison of carbonate (288 eV) and C-C (284.6 eV) & carbonate (532 eV) and Nb-O (530 eV).

Figure S4. CV profiles of the pristine (a), EDC structured Nb₂O₅ (b) and coral Nb₂O₅ (c).

Figure S5. Charge/discharge curves of the pristine (a), EDC structured Nb_2O_5 (b) and coral Nb_2O_5 (c).

Figure S6. Performance comparison of the EPC structured Nb₂O₅ and carbon coated Nb₂O₅. Note that the carbon coated Nb₂O₅ is prepared by ball milling the coral Nb₂O₅ with dental resin-derived carbon (1C=200 mA g⁻¹).

Figure S7. The relationship between peak current (I_P) and the square root of scan rate ($v^{1/2}$) of the EPC structured Nb₂O₅.

Figure S8. Nyquist plots of pristine, EPC and EDC structured Nb₂O₅ (Inset: the corresponding equivalent circuit model).

The EPC (2.96 Ω) and EDC (3.88 Ω) structured Nb₂O₅/C nanohybrids both present lower Rs (ohmic resistance of all cell components) than pristine sample (21.8 Ω). In addition, a decrease trend is observed after CO₂ activation in the semicircle of Rct. The decreased resistance could be assigned to the unique carbon structure, which improves the diffusion behavior.