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We study the dynamics of a bulk deterministic Floquet model, the Rule 201 synchronous one-
dimensional reversible cellular automaton (RCA201). The system corresponds to a deterministic,
reversible, and discrete version of the PXP model, whereby a site flips only if both its nearest neigh-
bours are unexcited. We show that the RCA201/Floquet-PXP model exhibits ballistic propagation
of interacting quasiparticles – or solitons – corresponding to the domain walls between non-trivial
three-fold vacuum states. Starting from the quasiparticle picture, we find the exact matrix product
state form of the non-equilibrium stationary state for a range of boundary conditions, including
both periodic and stochastic. We discuss further implications of the integrability of the model.

I. INTRODUCTION

In this paper we study the dynamics of a deterministic
reversible cellular automaton (RCA), the rule 201 RCA
in the classification of [1] or alternatively the “Floquet-
PXP” model (named so for reasons explained below).
This is a lattice system with dynamics subject to a local
kinetic constraint, whose evolution is defined in terms of
a local update rule which can be coded in terms of a peri-
odic circuit, and that we show to be exactly solvable. We
do this by constructing an algebraic cancellation struc-
ture which demonstrates the model’s integrability. This
is therefore a problem that relates to three distinct areas
of current research in condensed matter theory and sta-
tistical mechanics, namely, constrained dynamics, “Flo-
quet” systems, and integrability.

Constrained systems are of interest because they of-
ten display rich collective behaviour, most notably in
their dynamics. Such systems have explicit constraints
either in the definition of their state spaces or in
their dynamical rules. A typical example of the latter
class are fully-packed dimer coverings of a lattice [2–5]
where only certain configurations are allowed (i.e., those
with no-overlapping dimers and no uncovered sites).
Among the former class are kinetically constrained mod-
els (KCMs) [6–10], systems where dynamical rules are
such that configurational changes can only occur if a cer-
tain local condition – the kinetic constraint – is satisfied.
KCMs were originally introduced to model the slow co-
operative dynamics of classical glasses (see e.g. [9–11] for
reviews). More recently they have been generalised to ad-
dress questions in quantum non-equilibrium physics, in-
cluding slow relaxation in the absence of disorder [12, 13],
as an effective description of strongly interacting Ryd-
berg atoms [14], and as systems displaying non-thermal
eigenstates [15, 16].

In systems like dimer coverings, transitions are only
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possible within the constrained space of states, implying
constraints in the dynamics. Conversely, if in a KCM
the kinetic constraint is strong enough, a configurational
subspace may become dynamically disconnected thus be-
coming in effect a system with a constrained state space.
The RCA201/Floquet-PXP model we consider here is of
this kind: dynamical rules imply the existence of certain
locally conserved quantities, breaking the state space into
constrained subspaces disconnected by the dynamics. In
stochastic systems this is referred to as reducibility of
the dynamics [9], a concept distinct from non-ergodicity
which corresponds to the inability to forget initial condi-
tions in finite time within a connected component.

The second area of interest that our paper connects to
are (brick-wall like) circuit systems. By this we mean sys-
tems with space-time discrete dynamics defined in terms
of local gates applied synchronously throughout the sys-
tem. The set of all of these gates in space and over time
forms the “circuit”. This has become a much studied
problem in quantum many-body physics, where the gates
correspond to unitary (or unitary and dissipative) trans-
formations. Quantum circuits provide tractable mod-
els to study questions of entanglement, chaos, operator
spreading and localisation [17–25]. Furthermore, when
the sequence of applied gates is repeated periodically we
refer to those as Floquet systems. The circuit platform
is not only useful in unitary quantum many-body frame-
work, but also in classical deterministic systems of con-
tinuous [26] or discrete variables (RCAs) [27]. Moreover,
so-called duality symmetries under the swap of space and
time axes allow for remarkable advancements in analytic
tractability [20, 26, 27].

Classically, the prototypical circuit models are cellu-
lar automata (CA) [28, 29]. CAs can be both deter-
ministic and stochastic. If deterministic, they can ei-
ther be reversible or not, where the former (RCA [1],
see also [30]) can be considered as a model of clas-
sical many-body Hamiltonian (or symplectic) dynam-
ics. The RCA201/Floquet-PXP is a deterministic RCA,
closely related to the now much studied RCA54/Floquet-
FA [27, 31–41]. Just like the RCA54, the RCA201 (see
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detailed definitions below) is a one-dimensional lattice of
binary variables with local three-site gates applied simul-
taneously to two halves (of even/odd indexed sites) of the
lattice in two successive time-steps. The repeated appli-
cation of these makes the system a Floquet one. The
local gate implements the kinetic constraint in this con-
text. In the case of RCA54, the condition for a site to flip
is identical to that of the classical Fredrickson-Andersen
(FA) KCM [6, 9, 11]. For this reason RCA54 is some-
times called Floquet-FA [35–37]. In the case of RCA201,
the local condition for spin flips coincides with that of
the PXP model [14, 15, 42]. For this reason we call the
RCA201 the Floquet-PXP model.

The third area to which our work here connects is
that of integrable systems [43–45]. In particular, the
RCA54/Floquet-FA was shown to be integrable [1, 31],
with elementary excitations corresponding to interact-
ing localized quasiparticles (also referred to as solitons
in our context). From this observation many results fol-
lowed: the exact matrix product state (MPS) form of
the steady state distribution in the presence of stochas-
tic reservoirs [31, 32], the dominant decay modes [33],
the exact large deviation statistics of dynamical observ-
ables [34], the explicit MPS representation of the com-
plete time evolution of local observables [38], and the ex-
act MPS representation of multi-time correlations [39].
In this sense, the RCA54 is essentially a completely
solved model, despite the fact that a highly versatile cu-
bic algebraic cancellation mechanism put forward in [33]
has not (yet) been related to more standard Yang-
Baxter integrability structures. Here we show that the
RCA201/Floquet-PXP is also integrable in the same
sense as RCA54 and propose the corresponding algebraic
cancellation scheme. There is however a remarkable dif-
ference, namely RCA201 has a topological structure of
multiple vacua, and quasiparticles (connecting distinct
vacuum states) which interact attractively (rather than
repulsively as in the RCA54). As for the RCA54, our
construction allows us to obtain a number of results for
RCA201/Floquet-PXP, like the exact MPS solution of
its non-equilibrium stationary state (NESS) in a range of
boundary conditions that we present here.

Note added: Upon completion of this work we became
aware of the very recent Ref. [46] which also considers the
RCA201/Floquet-PXP model. While focusing mostly on
its quantum generalisation, Ref. [46] makes several obser-
vations about the classical RCA201/Floquet-PXP model,
notably its integrability due the conserved quasiparticles,
that coincide with the ones we make also here (we refer
the reader specifically to Appendix A of Ref. [46]). In our
paper here, however, we prove exactly these and various
other results.

The paper is organised as follows. In Sec. II we in-
troduce the model, discuss its kinematics and basic dy-
namics, in particular the definition of conserved quasi-
particles. In Sec. III we consider dynamics under pe-
riodic boundary conditions, that is, when evolution is

completely deterministic. The main result of that sec-
tion is the exact NESS, in the form of a Gibbs state over
the numbers of quasiparticles represented as an MPS. In
Sec. IV we consider the case of stochastic boundaries,
which can be obtained as a reduction of the periodic
boundary case, and compute the exact MPS form of the
corresponding NESS. In Sec. V we provide our conclusion
and an outlook of future work.

II. FLOQUET-PXP MODEL

A. Definition of the dynamics

We consider a system defined on a chain of even size
N of binary variables ni ∈ {0, 1} on sites i ∈ {1, . . . , N}
which we refer to as being either empty or occupied. At
discrete time t, the system is characterized by a configu-
ration that we represent by a binary string,

nt ≡ (nt1, n
t
2, . . . , n

t
N ) ∈ {0, 1}×N . (1)

The site i at time t is referred to as empty (or unexcited)
if nti = 0 and occupied (or excited) if nti = 1.

The dynamics of the system consists of two distinct
time-steps. In the first time-step, nt → nt+1, only the
sites with even index are acted upon by the local update
rule (i.e., sites with odd index are left unchanged, that is,
nt+1
i+1 = nti+1 for even i). In contrast, during the second

time-step, nt+1 → nt+2, only the odd sites are updated
and the even sites are left unchanged, nt+2

i = nt+1
i for i

even. This staggered dynamics is generated by the dis-
crete space-time mapping

nt+1 =

{
ME(nt), t = 0 (mod 2),

MO(nt), t = 1 (mod 2),
(2)

where ME and MO are maps defined by local updates,

nt+1
i =

{
f ti , i+ t = 0 (mod 2),

nti, i+ t = 1 (mod 2),
(3)

with the shorthand notation,

f ti ≡ f(nti−1, n
t
i, n

t
i+1), (4)

denoting a local three-site update rule (or gate) acting
on site i. One full step of time evolution (i.e., two con-
secutive time-steps, t → t + 2) is then defined to be the
successive application of the even and odd maps, ME

and MO, respectively (see Eq. (2)),

M(nt) ≡MO

(
ME(nt)

)
= nt+2. (5)

As the mapM is applied periodically, we call this a Flo-
quet dynamics. A schematic representation of the dis-
crete time evolution (5) is presented in Fig. 1.
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FIG. 1. Dynamical scheme. Evolution of four sites of the
lattice under a full time-step (i.e., consecutive even and odd
time-steps) of the deterministic dynamics. During the first
time-step, only the even sites are updated by the map ME

whose action is denoted by blue (solid). Alternatively, in the
second time-step only odd sites are updated byMO, denoted
by purple (dotted).

In the bulk, i ∈ {2, . . . , N − 1}, the discrete dynamics
is given by the deterministic RCA rule 201 (RCA201)
function [1],

f ti = 1 + nti−1 + nti + nti+1 + nti−1n
t
i+1 (mod 2). (6)

A diagrammatic illustration of this local update rule is
depicted in Fig. 2. This update rule can be thought of as
a kinetic constraint: site i can only flip if both its nearest
neighbours are empty (and it does so deterministically).
In the KCM jargon it corresponds to the constraint of the
“two-spin facilitated” Fredrickson-Andersen model [9].
This constraint is the same as that of the kinetic en-
ergy in the PXP model [14, 15, 42], and from it follows
the alternative name of the RCA201 model.

Here and in the next section we will assume that the
whole system is closed, of even size N , and has periodic
boundary conditions (PBC). In later sections we gener-
alise to other kinds of boundaries. PBC are imposed in
the usual manner by identifying a pair of sites nt0 ≡ ntN
and ntN+1 ≡ nt1. The dynamics for the sites at the left
and right boundaries, i ∈ {1, N}, is then given by bound-
ary functions equivalent to the RCA201 function (6),

f t1 ≡ f(ntN , n
t
1, n

t
2),

f tN ≡ f(ntN−1, n
t
N , n

t
1).

(7)

B. Structure of the configuration space

The local dynamics generated by the RCA201 func-
tion (6) imposes a constraint on the system that derives
from the spatial localization (immobility) of adjacent oc-
cupied sites within configurations, n = (. . . , 1, 1, . . .).
Such pairs of excited sites are invariant under time evo-
lution, as illustrated in Fig. 3. The kinetic constraint
therefore makes the set of configurations N = {0, 1}×N
reducible under the dynamics, that is, it becomes parti-
tioned into disjoint subsets, or irreducible components,

i
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FIG. 2. Rule 201. Illustration of the action of the local
gates implementing the deterministic RCA201 function (6).
The white and black squares represent empty and occupied
sites, respectively. In each of the diagrams, only the central
site is updated; green (solid) and red (dotted) borders indicate
whether the site has changed or not under the gate action.

spanned by distinct subsets of dynamically connected
configurations identified by the positions of pairs of adja-
cent occupied sites. The largest of these subsets, denoted
by N0, contains the configuration n = (0, 0, . . . , 0, 0) and
is the unique subset of configurations that contain no
adjacent occupied sites.
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FIG. 3. RCA201/Floquet-PXP trajectory. A trajectory
of the model with PBC illustrating the spatial localization of
pairs of excited sites where only configurations at full time-
steps are shown (i.e., n0, n2, n4, . . .). In this trajectory there
are two solitons that change direction under reflection with
the localised pair (see Subsec. II D for details on soliton re-
flection). Note also the distinct cycles of the vacua motifs. In
the remainder of the paper we focus on the configurational
sector with no pairs of excited neighbours.

It is straightforward to see that the cardinality of this
subset grows exponentially according to a Fibonacci-like
sequence known as the Lucas sequence,

|N0(N)| = LN ∼ ϕN , (8)

where LN is the N th Lucas number, defined by the recur-
sion relation LN = LN−1 + LN−2 with L1 = 1, L2 = 3,
and where ϕ = (1 +

√
5)/2 is the golden ratio. To see
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this we first consider the set of configurations, denoted
here by N′0, of a non-periodic system of size N with no
adjacent occupied sites. Every configuration in this sys-
tem with nN = 0 can be obtained by appending 0 to the
end of every configuration of a system with N − 1 sites,
whilst every configuration with nN = 1 can be obtained
by appending 01 to the end of every configuration of a
system with N − 2 sites. As such, the cardinality of the
set N′0 satisfies the linear recursion relation

|N′0(N)| = |N′0(N − 1)| + |N′0(N − 2)| , (9)

with |N′0(1)| = 2 and |N′0(2)| = 3. This is, of course, the
celebrated Fibonacci recursion relation, and so we have

|N′0(N)| = FN+2, N > 0, (10)

with FN the N th Fibonacci number, defined by the rela-
tion FN = FN−1 + FN−2 with F1 = 1 and F2 = 1.

We now impose PBC on the system which equates to
eliminating all configurations with n1 = nN = 1. This
yields a set, denoted by N0, whose cardinality is given by

|N0(N)| = |N′0(N)| − |N′0(N − 4)| , (11)

with |N0(1)| = 1 and |N0(2)| = 3. By substituting in the
result from Eq. (10) and subsequently using the funda-
mental equation relating Fibonacci and Lucas numbers,

LN = FN+1 + FN−1, (12)

it is trivial to see that this is exactly the Lucas recursion
relation provided, |N0(N)| = LN , N > 0. For simplicity,
we shall focus the majority of our discussion on this sub-
space spanned by states with PBC whose configurations
contain no adjacent occupied sites.

C. Ballistic propagation of non-trivially interacting
quasiparticles

The physical interpretation of the dynamics in the sub-
space with no adjacent occupied sites, induced by the de-
terministic RCA201 function (6), can be intuitively un-
derstood in terms of the ballistic propagation of interact-
ing quasiparticles representing collective excitations on a
non-trivial vacuum. Specifically, the vacuum is defined as
a cycle of three distinct motifs, respectively composed of
repeating 0s, alternating 0s and 1s (starting and ending
with 0s on odd sites), and alternating 1s and 0s (starting
and ending with 0s on even sites), as illustrated in Fig. 4.
Indeed, it can be easily demonstrated that the configura-
tions composed entirely of repeating these three distinct
arrangements form a unique, invariant trajectory, which
we refer to as the vacuum trajectory,

(0, 0, 0, 0, . . . , 0, 0)→ (0, 1, 0, 1, . . . , 0, 1)→
(1, 0, 1, 0, . . . , 1, 0)→ (0, 0, 0, 0, . . . , 0, 0).

(13)

Note that when presenting trajectories (e.g. Figs. 3-8) we
only show configurations at full time-steps (i.e., after the

successive application of both the even and odd maps)
such that, from left to right, the columns of the lattices
correspond to the configurations nt, nt+2, nt+4, . . ., for t
even.

i

t

FIG. 4. Vacuum configurations. The three vacuum states
are given by the spatial repetition of the motifs composed of
all 0s, of alternating 0s and 1s with 1s on even sites, and al-
ternating 0s and 1s with 1s on odd sites. In the absence of
solitons, under the dynamics the three vacua repeat periodi-
cally with period three. In the panel on the right we represent
the three vacuum states in orange (light gray) for the all 0s,
blue (mid gray) for the 01s, and purple (dark gray) for the
10s, respectively.

The quasiparticles, pairs of adjacent empty sites at the
interfaces between vacua, propagate with an effective ve-
locity of ± 1

3 and interact via a scattering process which
effectively triples their velocity to ±1 for one time-step
(see Fig. 5). To distinguish the quasiparticles, we refer
to them as either positive or negative depending on the
sign of their velocity and denote their number within a
configuration by the tuple,

Qn ≡ (Q+
n , Q

−
n ), (14)

where Q±n denotes the number of positive and negative
quasiparticles, respectively, in the configuration n.

The quasiparticles can be detected diagrammatically
by observing four consecutive sites of the lattice. If the
binary string of these four adjacent sites reads either
(0, 0, 0, 1), (1, 0, 0, 0), or (1, 0, 0, 1) then a quasiparticle
is present, as succinctly detailed by the following tables,

e o e o
0 0 0 1 −
1 0 0 0 −
1 0 0 1 +

,

o e o e
0 0 0 1 +
1 0 0 0 +
1 0 0 1 −

, (15)

where e/o denotes whether the adjacent sites indices are
even or odd and +/− whether the quasiparticle present
is positive or negative. Note, these tables are only asso-
ciated with detecting quasiparticles on t even time-steps.
The corresponding tables for t odd time-steps can be ob-
tained by exchanging the quasiparticles, i.e., + ↔ −.
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FIG. 5. Interacting quasiparticles. A fragment of a tra-
jectory depicting the ballistic propagation and non-trivial in-
teraction of opposing quasiparticles. On the right, green (mid
gray) and red (dark gray) represent the locations of the posi-
tive and negative solitons, respectively, that is, they indicate
the sites that straddle domain walls between distinct vacua
(white). The collision is coloured in yellow (light gray). No-
tice the transient speeding up of both solitons, which emerge
from the collision further away from their original trajectories.

The quasiparticles can equivalently be identified by ob-
serving pairs of adjacent sites at the interfaces between
vacua.

Finally, we note that the numbers of positive and neg-
ative quasiparticles within any given configuration n are
constrained. Specifically, they must satisfy the following
equality,

Q+
n −Q−n = 0 (mod 3). (16)

To prove this, we introduce a graph representation for
the lattice, as illustrated in Fig. 6. Specifically, we define
a directed bipartite graph composed of two disjoint and
independent sets of vertices, each identically labelled by
binary strings of length four, and a set of directed edges
between them. Here, the vertices of the two vertex sets
represent the binary strings of consecutive sites within
the lattice starting on even and odd sites, respectively,
and the directed edges the possible transitions between
them as the lattice is positively translated. We can sim-
plify the graph by contracting paths along the directed
edges between vertices whose binary labels denote quasi-
particles. From here, with a relabelling of the vertices to
denote positive and negative quasiparticles, it is trivial
so see that any cycle of the graph satisfies Eq. (16).

D. Adjacent excitations and quasiparticle reflection

As illustrated in Fig. 3, pairs of adjacent occupied sites
within configurations (i.e., n = (. . . , 1, 1, . . .)) are invari-
ant to time-evolution. That is, neighbouring excitations
are spatially localized. This kinetic constraint, imposed
by the deterministic dynamics, induces a partitioning of
the configuration space into disjoint subspaces spanned

0
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1

2 4

58
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FIG. 6. Quasiparticle number constraint. Graph repre-
sentation of the lattice illustrating the constraint (16) on the
number of quasiparticles where, for readability, binary strings
have been replaced by decimal integers (e.g. (0, 0, 1, 0) ≡ 2).
Vertices whose labels start on even and odd sites are repre-
sented by circles and squares with those denoting positive and
negative quasiparticles in green (dashed) and red (dotted),
respectively. Black arrows then denote the directed edges be-
tween them. The cycle corresponding to the configuration,
n = (0, 1, 0, 0), is indicated by bold arrows as an example.

by subsets of configurations characterized by the loca-
tions of adjacent occupied sites. The set of configura-
tions N = {0, 1}×N is therefore reducible under the dy-
namics. In Subsec. II B, we showed that the dimension
of the largest of these subspaces, spanned by the subset
of configurations with no adjacent excitations, denoted
by N0, grew exponentially according to the Lucas se-
quence (8). We can similarly show that the dimension of
every other subspace, each spanned by a subset of con-
figurations identified by the locations of its neighbouring
occupied sites, is given by

|Nj(N)| =

B∏
k=1

FNk
, j > 0, (17)

where B denotes the number of groups of adjacent sites
(which we refer to as reflective boundaries for reasons
discussed below), and {Nk} the sizes of the subsystems
between them. For example, for the subset of configura-
tions of size N = 16 with localized excitations on sites
n1, n2 and n7, n8, n9 we have B = 2 giving two distinct
subsystems of sizes Nk ∈ {4, 7}. The dimension of the
subspace is then |Nj(16)| = F4 · F7. To see this, we
note that we can consider each of the subsystems that
occupy the sites between reflective boundaries as inde-
pendent systems of size Nk with zeroes on the first and
last sites (the time-invariance of the adjacent occupied
sites immobilizes the neighbouring empty sites, as shown
in Fig. 3). We then recall that the dimension of a non-
periodic system of size Nk with zeroes on the first and
last sites (i.e., an effective system size of Nk− 2) is given
by FNk

, see Eq. (10). Given that each non-periodic sub-
system is independent, the dimension of the system of
size N , spanned by the set of configurations with fixed
adjacent occupied sites, is simply the product of the di-
mensionality of its constituent subsystems.
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In terms of the quasiparticles, the localized excitations
play the role of reflective boundaries as illustrated in
Fig. 7. This affects both the systems statics and dynam-
ics. Firstly, the conservation of the numbers of positive
and negative quasiparticles no longer holds. Instead, for
systems with reflective boundaries, only the total num-
ber of quasiparticles is conserved. This can be seen by in-
specting Fig. 7 and noting that the negative quasiparticle
is converted to a positive quasiparticle upon interacting
with the localized excitations that constitute the reflec-
tive boundary. A similar reasoning then follows for every
quasiparticle as it collides with the boundary. Secondly,
the numbers of positive and negative quasiparticles are
no longer constrained, that is, Eq. (16) need no longer be
satisfied. To see this, consider the illustrative proof of the
constraint (16) in Fig. 6. For systems with adjacent occu-
pied sites, we need to introduce additional vertices to the
graph representation of the lattice that correspond to the
seven binary strings of length four with adjacent 1s (i.e.,
(0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1, ), (1, 1, 0, 0),
(1, 1, 1, 0), (1, 1, 1, 1)). Doing so subsequently introduces
multiple edges between the vertices that facilitate new cy-
cles through the graph which violate the constraint (16).
A further consequence of the introduction of adjacent oc-
cupied sites to the system is that the rules for identifying
quasiparticles near the reflective boundaries are different
from those outlined in (15). For example, if the sites ad-
jacent to the boundary read (1, 0, 0, 1) then this does not
represent a quasiparticle (see Fig. 7) whilst it would in
the bulk. This can be mitigated with respect to simple
quasiparticle counting by neglecting the sites directly ad-
jacent to the pairs of excitations (as quasiparticles cannot
occupy these sites).

In the remainder of the paper we focus on the case
without consecutive occupied sites for simplicity. Note
that the discussion above enables us to (at least quanti-
tatively) extend the results to any sector with fixed po-
sitions of excitation pairs.

III. EXACT STATIONARY STATE FOR
PERIODIC BOUNDARY CONDITIONS

To study the macroscopic properties of the closed sys-
tem we construct a class of macroscopic equilibrium
states which we define as probability distributions over
the set of configurations. For simplicity we will restrict
most of the discussion to the configuration sector without
pairs of adjacent excited sites, in which case the num-
bers of both types of quasiparticles are conserved (being
invariant, a cluster of two or more consecutive occupied
sites acts as a reflective boundary for quasiparticles there-
fore changing their type but not their total number, see
Fig. 3). In this sector the simplest class of steady states
can be constructed by introducing two chemical poten-
tials, µ+ and µ−, associated with numbers of positive
and negative quasiparticles, respectively.

As we will demonstrate, such states can be expressed

i
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FIG. 7. Reflective boundaries. The action of the spatially
localized neighbouring excitations (i.e., reflective boundaries)
on the propagation of a quasiparticle. The negative quasipar-
ticle (red/dark gray) is converted into a positive quasiparticle
(green/mid gray) upon colliding with the boundary with the
interaction (yellow/light gray) taking a similar form as that
with an opposing quasiparticle, cf. Fig. 5 (here, we have addi-
tionally colored the occupied (black) and empty (white) sites
of the vacua to improve the presentation of the figure). Note,
for closed systems with reflective boundaries, the number of
each type of quasiparticle is no longer conserved; only the
total number of quasiparticles is conserved.

in two equivalent forms. We start with the patch state
ansatz (PSA) formulation of the steady state, as intro-
duced by [31]. The main advantage of the PSA formu-
lation is the construction, which can be done in absence
of knowledge of conserved quantities, by simply requir-
ing the states to be stationary and at the same time ex-
hibit short-range correlations. Equivalently, the steady
states can be expressed in terms of matrix product states
(MPS). They obey a similar cubic algebraic relation to
the MPS form of the RCA54 steady states [33].

A. Macroscopic states and master equation

We start the discussion of stationary states by first
introducing the necessary formalism. Each configuration
of the system n is associated with a probability pn, that
satisfies the non-negativity and normalization conditions,

pn ≥ 0,
∑
{n}

pn = 1. (18)

Each probability distribution, given by the set of config-
urational probabilities {pn}, can be uniquely represented
by a state vector,

p =
∑
{n}

pn

N⊗
i=1

eni , en ≡
[
δn,0
δn,1

]
, (19)

where e0 and e1 are the standard basis vectors of R2

and p ∈ (R2)⊗N . The state space is then identified as a
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FIG. 8. Typical trajectory of the RCA201/Floquet-PXP. A typical trajectory of the model in the subspace spanned by
states with no adjacent occupied sites. The left panel represents the up and down sites as black and white, respectively. The
middle panel shows the vacuum colour scheme (see Fig. 4) while the right panel highlights the solitons (see Fig. 5). In this
trajectory there are five solitons – four positive movers and one negative – that collide and wrap around the system due to the
PBCs. Note that the location of the solitons coincides with domain walls between the vacuum states.

convex subset of the vector space (R2)⊗N .
The master equation describing the discrete time evo-

lution of the system can be written as

pt+1 =

{
MEp

t, t = 0 (mod 2),

MOp
t, t = 1 (mod 2),

(20)

where ME and MO are transition matrices associated
with the even and odd time-steps in (2), respectively,

MO : pn1n2...nN−1nN
7→ pf1n2...fN−1nN

,

ME : pn1n2...nN−1nN
7→ pn1f2...nN−1fN .

(21)

The one time-step propagators are equivalently given as
products of local operators (gates),

ME = U2U4 · · ·UN−2UN ,

MO = U1U3 · · ·UN−3UN−1,
(22)

where for the bulk, i ∈ {2, . . . , N − 1},

Ui = I⊗(i−2) ⊗U⊗ I⊗(N−i−1), (23)

are matrices encoding the deterministic bulk function
in (4) (with the subscript indicating on which site of the
lattice the operator acts non-trivially) whereas for the
boundaries, i ∈ {1, N},

U1 = I⊗N + (X− I)⊗P⊗ I⊗(N−3) ⊗P,

UN = I⊗N + P⊗ I⊗(N−3) ⊗P⊗ (X− I),
(24)

are matrices encoding the left and right boundary func-
tions, f t1 and f tN , respectively. Here,

U = I⊗3 + P⊗ (X− I)⊗P, (25)

is the 8 × 8 permutation matrix enacting the local time

evolution rule of Eq. (6) on the vector space (R2)⊗3,

U =



0 1
1

1 0
1

1
1

1
1


, (26)

with I, P, and X the 2×2 identity, projector and Pauli-X
matrices, respectively, acting on R2,

I =

[
1 0
0 1

]
, P =

[
1 0
0 0

]
, X =

[
0 1
1 0

]
. (27)

B. Patch state ansatz formulation of Gibbs states

We require a stationary state p to map into itself after
a full time-step composed of an even and odd time-step,
respectively,

p = MOMEp. (28)

Due to the reversibility of the dynamics, U−1 = U, the
stationarity condition can be equivalently recast as

MOp = MEp. (29)

Similarly to the PSA introduced for RCA54 in [31], we
propose the following form of the state p,

pn ∝ Xn1n2n3n4
X ′n2n3n4n5

Xn3n4n5n6
· · ·

· · ·X ′nN−2nN−1nNn1
XnN−1nNn1n2

X ′nNn1n2n3
. (30)

The values X
(′)
nini+1ni+2ni+3 are determined so that the

stationarity condition in Eq. (29) is satisfied. Explicitly,
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for any configuration n = (n1, n2, n3, . . . , nN ) the follow-
ing equality has to hold,

Xn1f2n3f4X
′
f2n3f4n5

· · ·X ′fNn1f2n3

= Xf1n2f3n4
X ′n2f3n4f5 · · ·X ′nNf1n2f3 , (31)

where we have used the notation fi = f(ni−1, ni, ni+1),
as introduced in (4). Before solving the system of equa-
tions, we put all the components corresponding to config-
urations n with pairs of consecutive 1s to 0 by requiring
the following

X
(′)
11n1n2

= X
(′)
n111n2

= X
(′)
n1n211

= 0. (32)

We are free to fix the normalization and therefore choose
to set X0000X

′
0000 = 1, which together with (31) implies

X0101X
′
1010 = X1010X

′
0101 = X0000X

′
0000 = 1. (33)

Additionally, we observe that the values X
(′)
n1n2n3n4 are

determined up to the following gauge transformation

Xn1n2n3n4
7→ αn1n2n3

Xn1n2n3n4
α′ −1n2n3n4

,

X ′n1n2n3n4
7→ α′n1n2n3

X ′n1n2n3n4
α−1n2n3n4

,
(34)

which allows us to set X
(′)
0n1n2n3

= 1 for all configurations
of three sites belonging to the sector without pairs of 1s,

X
(′)
0n1n2n3

= (1− δn1+n2,2) (1− δn2+n3,2) . (35)

Combining the restriction to the relevant subspace (32)
together with the choices of normalization (33) and
gauge (35), and requiring stationarity (31) we obtain con-
ditions for the remaining four components,

X1000 = X ′1000 = X1001X
′
1001. (36)

This condition exhibits the following two-parameter fam-
ily of solutions,

X1001 =
ω2

ξ
, X ′1001 =

ξ2

ω
,

X1000 = X ′1000 = ωξ,

(37)

with all the other components either being 0 (as given
by (32)) or 1. The vector p representing the steady state
has to be normalizable, therefore all its components have
to be non-negative, which restricts the values of the pa-
rameters ξ, ω to R+.

At this point the choice of parametrization is arbitrary,
but it can be straightforwardly demonstrated that the pa-
rameters ξ and ω are exponents of the chemical potentials
µ+ and µ− corresponding to the numbers of positively
and negatively moving quasiparticles, respectively. First
we use the gauge freedom to transform the tensors into
an equivalent form,

α000 = 1, α010 = ξ−1,

α001 = α100 = α101 = ω−1,

α′n1n2n3
= αn1n2n3

|ξ↔ω ,
(38)

which by (34) implies

X0001 7→ ξ,

X1000 7→ ξ,

X1001 7→ ω,

X ′0001 7→ ω,

X ′1000 7→ ω,

X ′1001 7→ ξ,

(39)

while the other components either remain 0, cf. (32), or
are mapped into 1. In a given configuration n, the num-
ber of both types of quasiparticles can be determined by
the count of sub-configurations (0, 0, 0, 1), (1, 0, 0, 0) and
(1, 0, 0, 1). Depending on the parity of the site indices
where the sub-configurations are positioned, they corre-
spond either to quasiparticles with positive or negative
velocity, as summarized in (15). Therefore, the new val-

ues of X
(′)
n1n2n3n4 imply that every component pn of the

stationary state p is weighed as

pn ∝ ξQ
+
nωQ

−
n , (40)

where Q±n are the numbers of positive and negative quasi-
particles in a given configuration n.

Since the requirement for stationarity is the invariance
to evolution for two time-steps (29) (i.e., an even and odd
time-step), we can define two versions of state, p and p′,
corresponding to even and odd time-steps respectively,

p′ = MEp, p = MOp
′. (41)

Together with the solution for p, this condition implies
that the odd-time version of the state takes the same form
with the roles of Xn1n2n3n4

and X ′n1n2n3n4
reversed,

p′n ∝ X ′n1n2n3n4
Xn2n3n4n5

X ′n3n4n5n6
· · ·

· · ·XnN−2nN−1nNn1
X ′nN−1nNn1n2

XnNn1n2n3
. (42)

This parametrization of the steady state preserves the
symmetry of the model: shifting the state by one site
(up or down) is the same as evolving it for one time-step
(half of the Floquet period).

C. Matrix product form of stationary states

Equivalently, the stationary states can be recast in the
matrix product form,

p =
1

Z
tr
(
V1V

′
2V3 · · ·VN−1V

′
N

)
, (43)

where V
(′)
i are vectors of matrices, corresponding to the

physical site i, V(′) =
(
V

(′)
0 , V

(′)
1

)T
, and Z is the normal-

ization. Explicitly, the components pn of the stationary
state p read

pn =
1

Z
tr
(
Vn1

V ′n2
Vn3
· · ·VnN−1

V ′nN

)
. (44)

To construct the MPS from the PSA, we introduce an
8-dimensional auxiliary space with each basis element la-
beled by a binary string (m1m2m3) and we define the
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8 × 8 matrices Ṽ
(′)
n with the entries given by the PSA

values as

(Ṽ (′)
n )

m′1m
′
2m
′
3

m1m2m3 = δm′1,m2
δm′2,m3

δm′3,nX
(′)
m1m2m3n, (45)

where the strings in the superscript and the subscript
are the binary representations of the row and column
index, respectively. MPS consisting of these matrices are
equivalent to the PSA steady states as introduced before,

tr
(
Ṽn1

Ṽ ′n2
· · · Ṽ ′nN

)
= Xn1n2n3n4

· · ·X ′nNn1n2n3
. (46)

The MPS can be simplified by introducing 4×8 and 8×4
auxiliary space matrices R and Q

R =

1 0
1 1

1 0
0 1 0

 , Q =



1
1

1
0

0 1
0

0
0


, (47)

and noting that for any combination of n1, n2, inserting
QR between two consecutive matrices does not change
the product,

Ṽn1
QRṼ ′n2

= Ṽn1
Ṽ ′n2

. (48)

From here it follows that the MPS (43) composed of 4×4

matrices V
(′)
n , defined as V

(′)
n = RṼ

(′)
n Q, is equivalent

to (46). Explicitly,

V0 =

1 0 0 ξ
0 0 0 0
0 1 0 0
0 0 1 0

 , V1 =

0 0 0 0
ξ 0 1 ω
0 0 0 0
0 0 0 0

 , (49)

while the other pair of matrices is given by the exchange
of parameters ξ ↔ ω,

V ′n(ξ, ω) = Vn(ω, ξ). (50)

The stationarity of the MPS is implied by the equiv-
alence between the two representations. However, the
MPS additionally exhibits an algebraic structure that al-
lows us to explicitly demonstrate the stationarity without

relying on the equivalence with the PSA. Matrices V
(′)
n

satisfy a cubic algebraic relation, analogous to [33],

U2

(
V1V

′
2V3S

)
= V1SV2V

′
3, (51)

which compactly encodes the following component-wise
equalities,

Vn1
V ′f(n1,n2,n3)

Vn3
S = Vn1

S Vn2
V ′n3

. (52)

We introduced the delimiter matrix S, defined as

S =


ξω
ξ2−ω − ω

ξ2−ω 0 ξ2

ξ2−ω
1 0 0 ω
0 0 1 0

− ω
ξ2−ω

ξ
ξ2−ω 0 − ξ

ξ2−ω

 . (53)

The inverse of the delimiter matrix is given by exchanging
the parameters,

S(ξ, ω)−1 = S(ω, ξ), (54)

which immediately implies a dual relation similar to (51),

U2

(
V′1V2V

′
3S
−1
)

= V′1S
−1V′2V3. (55)

Note that in the cases ξ = ω2 or ω = ξ2, the matrices S
and S−1 are not well defined, however the products VnS
and V ′nS

−1 have finite values in the limit ξ → ω2 (or
ω → ξ2). Therefore the following discussion holds for
any value of parameters. When ξ = ω = 1, the stationary
state becomes the maximum entropy state, where each
allowed configuration is equally likely. In this case the
MPS representation can be reduced to 2× 2 matrices, as
is explained in Appendix A.

The odd-time version of the state, p′, has the same
form as p, but the parameters ξ and ω are exchanged (or
equivalently, V′ is replaced by V and vice versa),

p′ =
1

Z
tr
(
V′1V2V

′
3 · · ·V′N−1VN

)
. (56)

The stationarity requirement (41) follows directly from
relations (51) and (55). To prove the first of the station-
arity conditions, we insert SS−1 between the matrices
corresponding to the first and second sites, and apply
the local time evolution operator UN using the 3-site
algebraic relation,

ME tr
(
V1V

′
2V3 · · ·VN−1V

′
N

)
=

N/2∏
i=1

U2i tr
(
VN−1V

′
NV1SS

−1V′2 · · ·VN−3V
′
N−2

)

=

N/2−1∏
i=1

U2i tr
(
V′1S

−1V′2 · · ·VN−3V
′
N−2VN−1SVN

)
.

(57)
We keep applying local time evolution operators UN−2,
UN−4, . . . , one by one, each time moving the matrix S
two sites to the left as described by (51), until we are left
with the following

U2 tr
(
V′1S

−1V′2V3SV4 · · ·V′N−1VN

)
= tr

(
V′1V2V

′
3S
−1SV4 · · ·V′N−1VN

)
,

(58)

where we used the dual relation in Eq. (55) together
with U−1 = U. Thus we proved that the even time evo-
lution operator ME maps the state p into its odd-time
analogue p′. The second stationarity requirement (41)
can be proved analogously.

D. Partition function

As demonstrated in Subsec. III B, the stationary prob-
abilities of configurations pn are distributed according to
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the grand-canonical ensemble,

pn =
1

Z
exp

(
Q+
nµ

+ +Q−nµ
−), (59)

with the chemical potentials corresponding to the num-
bers of positive and negative quasiparticles determined
by the parameters

ξ = eµ
+

, ω = eµ
−
. (60)

The partition function Z can therefore be given in two
equivalent forms. The first one follows directly from the
normalization condition of the MPS representation of the
stationary state p

Z =
∑
{n}

tr
(
Vn1

V ′n2
Vn3
· · ·V ′nN

)
≡ trTN/2, (61)

where we introduced the transfer matrix T as the sum of
all products of matrices on two sites,

T = (V0 + V1)(V ′0 + V ′1) =

1 0 ξ ω
ξ 1 ω ξω
ω 0 1 ξ
0 1 0 0

 . (62)

The second form of Z is defined as a weighted sum over
the set of quasiparticle numbers,

Z =
∑
{n}

ξQ
+
nωQ

−
n =

∑
{Q}

ΩQξ
Q+

ωQ
−
, (63)

where the entropic term ΩQ, which counts the number
of degenerate configurations with the same number of
quasiparticles, takes the following combinatoric form,

ΩQ =
1

mQ

( 1
2N − 1

3Q
+ − 2

3Q
−

Q+

)( 1
2N − 1

3Q
− − 2

3Q
+

Q−

)
,

(64)
with mQ the time-averaged magnetization density ex-
pressed in terms of the numbers of positive and negative
quasiparticles as

mQ =

(
1
2N − 1

3Q
+ − 2

3Q
−)( 1

2N − 1
3Q
− − 2

3Q
+
)

1
2N
(
3
2N − 2Q+ − 2Q−

) . (65)

A derivation of this is given in Appendix B. The set {Q}
above denotes the set of tuples of numbers of positive and
negative quasiparticles that satisfy both the equality in
Eq. (16), imposed by the even system size and PBC, and
the following inequalities that manifest from the finite
effective size of the quasiparticles,

Q± + 2Q∓ ≤ 3

2
N, (66)

which is implicitly given by
(
n<k
k

)
= 0. To prove that

the expression (64) really represents the entropic contri-
bution, it suffices to show that the two forms of the par-
tition sum (given by Eqs. (61) and (63)) coincide. The
proof of equivalence is provided in Appendix C.

Alternatively, the inequalities of Eq. (66) can be under-
stood directly from the quasiparticle picture. To begin,
we recall that for any given configuration the difference
between the numbers of positive and negative quasipar-
ticles must satisfy Eq. (16), that is, it must be a multiple
of three. This can be interpreted as a physical constraint
on the system which requires the quasiparticles exist as
either positive-negative pairs or positive/negative triples.
The numbers of these pairs and triples, denoted by Q(2)

and Q(3) respectively, are bounded by their effective size
(i.e., the number of sites they occupy within a configu-
ration). Inspecting the relevant cycles in Fig. 6 implies
that these are at least four and eight sites, respectively,
which imposes the following upper bound,

4Q(2) + 8Q(3) ≤ N. (67)

We now express these in terms of the numbers of positive
and negative quasiparticles, where for Q± ≥ Q∓, we have

Q(2) = Q∓, Q(3) =
1

3

(
Q± −Q∓

)
. (68)

A simple substitution then yields the inequalities out-
lined in Eq. (66).

In the limit of large N the expression for the partition
function (63) can be written in terms of an integral over
quasiparticle densities,

ρ± =
Q±

N
, (69)

to read

Z =

∫ 1

0

dρ+dρ− exp
(
NF(ρ+, ρ−)

)
, (70)

where F is (minus) a free energy density with “energetic”
terms, associated with the cost of each soliton species
in terms of their chemical potential, and entropic terms
from the counting of states,

F = µ+ρ+ + µ−ρ− + S(ρ+, ρ−). (71)

The entropy density S is obtained from using the Stirling
approximation in (64). It reads

S =− ρ+ ln ρ+

+

(
1

2
− 1

3
ρ+ − 2

3
ρ−
)

ln

(
1

2
− 1

3
ρ+ − 2

3
ρ−
)

−
(

1

2
− 2

3
ρ− − 4

3
ρ+
)

ln

(
1

2
− 2

3
ρ− − 4

3
ρ+
)

+
(
ρ+ ↔ ρ−

)
,

(72)

and has the form of an entropy density of mixing of the
quasiparticles subject to the constraints (16) and (67).

IV. EXACT STATIONARY STATE FOR
STOCHASTIC BOUNDARY CONDITIONS

The RCA201/Floquet-PXP with PBC is fully deter-
ministic. The integrability of the model implies that
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the dynamics is naturally decomposed into many differ-
ent sectors, which makes the number of steady states
of the closed system highly degenerate. In the absence
of chaos, a way to make the dynamics ergodic is to im-
pose stochastic boundary conditions (SBC) by consider-
ing a finite chain coupled to stochastic reservoirs on both
ends, an approach similar to that of the RCA54, cf. [31–
33]. With SBC the RCA201/Floquet-PXP becomes a
stochastic model, and by ergodic we mean two things.
First, all configurations are dynamically connected, that
is, the relevant subspace is irreducible under the dynam-
ics since quasiparticles can be created and destroyed at
the boundaries. Note that this subspace is slightly larger
than that of a similarly sized system with PBC as with
SBC there is no restriction on the occupation of the first
and last site which are no longer neighbours. The num-
ber of configurations in the subspace of interest is then
the Fibonacci rather than the Lucas number (see Sub-
sec. II B). Second, the relaxation time (i.e., the time to
forget a typical initial condition) is finite.

In this section we find a class of suitable stochastic
boundary propagators to make the system relax to a
unique non-equilibrium steady state (NESS) similar to
the Gibbs state introduced in Sec. III. The starting point
is the MPS form of the Gibbs state of a large system with
periodic boundaries, which is used to express the prob-
ability distribution (i.e., state) of a finite subsection of
the chain in the limit when the system size goes to infin-
ity. The resulting probability distribution can be viewed
as a NESS of the finite chain with the boundaries that
stochastically inject and remove quasiparticles with rates
that are compatible with the chemical potentials, µ+ and
µ−, of the original Gibbs state.

A. State of a finite section of a larger system

We start with the closed system with periodic bound-
ary conditions and length M that is assumed to be the
equilibrium state given by spectral parameters ξ, ω, as
introduced in Sec. III. By definition, the probabilities
of configurations of a smaller section of the chain with
length N are given by summing over the probabilities
corresponding to the configurations (n1, n2 . . . nM ) with
the same first N bits,

p(M)
n1...nN

=
∑

nN+1...nM

Z−1 tr
(
Vn1

V ′n2
· · ·V ′nM

)
. (73)

Note that the superscript (M) refers to the length of the
whole system and not the length of the section. Using T
to denote the transfer matrix, as introduced in Eq. (62),
the probability distribution p(M) can be succinctly ex-
pressed as

p(M) =
tr
(
V1V

′
2 · · ·V′NT (M−N)/2

)
trTM/2

. (74)

We define the state of the subsystem p as the large system
size limit of the distribution p(M),

p = lim
M→∞

p(M) =
〈l|V1V

′
2 · · ·V′N |r〉

λN/2 〈l|r〉 , (75)

where we introduced the parameter λ denoting the lead-
ing eigenvalue of the matrix T , and 〈l| and |r〉 are the
corresponding left and right eigenvectors,

T |r〉 = λ |r〉 , 〈l|T = λ 〈l| . (76)

Explicitly, λ is the largest solution of the following quar-
tic equation,

λ4 − 3λ3 + (3− 2ξω)λ2 − (1− ξω)λ

− (ξ2 − ω)(ω2 − ξ) = 0, (77)

while the leading eigenvectors are implicitly given by pa-
rameters ξ, ω and the eigenvalue λ as

〈l| = ((λ− 1)ξ + ω2)


(λ− 1)ξ + ω2

(λ− 1)2 − ξω
(λ− 1)ω + ξ2

(λ− 1)
(
(λ− 1)2 − ξω

)

T

, (78)

and

|r〉 = ((λ− 1)ω + ξ2)


λ
(
(λ− 1)2 − ξω

)
λ
(
(λ− 1)ξ + ω2

)
λ(λ− 1)ω − ξω2 + ξ2

(λ− 1)ξ + ω2

 , (79)

where the nontrivial normalization prefactor is chosen to
simplify the boundary equations in the next subsection.
Note that the asymptotic form of the probability distri-
bution (75) is valid as long as the leading eigenvalue λ is
not degenerate, which is the case for all ξ, ω > 0. The
odd time-step version of the asymptotic distribution, p′,
takes the same form as p with the exchanged roles of
parameters ξ and ω. Explicitly,

p′ =
〈l′|V′1V2 · · ·VN |r′〉

λN/2 〈l′|r′〉 , (80)

where the vectors 〈l′| and |r′〉 are defined as

〈l′(ξ, ω)| = 〈l(ω, ξ)| , |r′(ξ, ω)〉 = |r(ω, ξ)〉 , (81)

and the leading eigenvalue λ is invariant under the ex-
change ξ ↔ ω.

To avoid the cluttering of notation, we use the sym-
bols p, p′ to denote probability distributions on N
sites, i.e., p(′) are vectors from (R2)⊗N with compo-

nents p
(′)
n1n2n3...nN . When we refer to probabilities of

configurations of different lengths, we will always use the
component-wise notation to avoid ambiguity. Note that

values p
(′)
n1n2...nk take the form similar to (75) and (80)

with N being replaced by k.
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B. Compatible boundaries

The probability distribution of the section of the chain,
p, can be understood as the NESS of a boundary driven
system. We assume the one time-step evolution opera-
tors to be deterministic in the bulk and stochastic at the
boundaries. Explicitly, under the even time-step opera-
tor ME the sites (1, 2, . . . , N−4) change deterministically
according to the time evolution rule (6), while the evo-
lution of sites (N − 3, N − 2, N − 1, N) is given by a
stochastic matrix R,

ME =

N/2−2∏
i=1

U2iRN−3N−2N−1N . (82)

Similarly, in the odd time-step, the evolution of sites
(5, 6, 7, . . . , N) is deterministic and the evolution of the
first four sites (1, 2, 3, 4) is encoded in the stochastic ma-
trix L,

MO = L1234

N/2−1∏
i=2

U2i+1. (83)

For the vectors p and p′ to be understood as stationary
states under the stochastic time evolution, the following
conditions have to be satisfied,

MEp = p′, MOp
′ = p. (84)

The stationarity condition is fulfilled when in addition to
the bulk algebraic relations (51) and (55), the MPS intro-
duced in (75) and (80) satisfies the appropriate boundary
relations. Explicitly, p is mapped into p′ under the even
time-step evolution, when the following boundary equa-
tions hold,

〈l|V1S = Γ 〈l′|V′1,
R1234

(
V1V

′
2V3V

′
4 |r〉

)
= V1SV2V

′
3V4 |r′〉 .

(85)

Analogously, the second stationarity condition implies
the following two boundary relations,

L1234

(
〈l′|V′1V2V

′
3V4

)
= 〈l|V1V

′
2V3V

′
4S
−1,

V′1S
−1 |r′〉 =

1

Γ
V′1 |r〉 ,

(86)

where the scalar factor Γ is determined by the normal-
ization of the MPS as

Γ =
〈l|r〉
〈l′|r′〉 =

(λ− 1)ξ + ω2

(λ− 1)ω + ξ2
. (87)

The boundary propagators R and L are assumed to
stochastically act only on the rightmost and leftmost sites
respectively, while the other three sites change determin-
istically, according to the dynamical rule (6). Equiva-
lently, we can imagine we temporarily introduce an ad-
ditional site to the edge of the chain, in a state that

depends on the configuration of the four sites, and up-
date the site at the edge deterministically, as illustrated
in Fig. 9. Explicitly, the matrix elements of R and L can
be parametrized as

R
n′1n

′
2n
′
3n
′
4

n1n2n3n4=δn′1,n1
δn′2,f2δn′3,n3

1∑
n5=0

δn′4,f4φ
R
n1n2n3n4n5

,

L
n′1n

′
2n
′
3n
′
4

n1n2n3n4=δn′2,n2
δn′3,f3δn′4,n4

1∑
n0=0

δn′1,f1φ
L
n0n1n2n3n4

,

(88)

where φRn1n2n3n4n5
and φLn0n1n2n3n4

can be interpreted
as conditional probabilities of the virtual sites being n5
and n0, respectively, if the configurations at the edge
are (n1n2n3n4). Here we use the shorthand notation fi =
f(ni−1, ni, ni+1), as introduced in (4). Additionally, the
matrix elements in each column of R and L have to sum
to unity, which for any four-site configuration (n1n2n3n4)
implies

1∑
n5=0

φRn1n2n3n4n5
=

1∑
n0=0

φLn0n1n2n3n4
= 1. (89)

n1

n2

n3

n4

n5

n1

n3

f2

f4

n1

n2

n3

n4

n0

n2

n4

f1

f3

R L

i

t

FIG. 9. Right and left boundary propagators. The ac-
tion of R is equivalent to introducing an additional virtual site
on the top (purple (dotted) square), initialize it in the state
that depends on the four sites preceding it, and then evolving
the second and fourth site according to the deterministic rule
201 (blue (solid) arrows). Similarly, the left boundary prop-
agator L can be reproduced by introducing a virtual site at
the bottom, and then applying deterministic evolution.

Applying the dynamical rule (6) to the ansatz (88)
while taking into account the normalization condi-
tion (89), it immediately follows that for any combination
of n1, n2, n3, n4 the following holds

Rn1n21n4
n1n21n4

= Ln11n3n4
n11n3n4

= 1. (90)

Furthermore, we note that the steady state is restricted
to the subspace without pairs of 1s, therefore we can
without loss of generality set

R1100
1100 = R1101

1101 = L0011
0011 = L1011

1011 = 1. (91)

After reducing the number of parameters, we are left with
3 non-deterministic 2 × 2 blocks per boundary propaga-
tor, each one of them given by two parameters, either
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(φRn1n2n301, φ
R
n1n2n311) or (φL10n1n2n3

, φL11n1n2n3
), with the

fixed configuration (n1, n2, n3). Plugging the ansatz into
boundary equations (85) reduces the number of parame-
ters to one per block. Explicitly,

φR00001 =
ω
(
(λ− 1)ω + ξ2

)
λ
(
(λ− 1)ξ + ω2

) + θR1 ,

φR00011 =
(λ− 1)ξ + ω2

ξ
(
(λ− 1)2 − ξω

)θR1 ,
φR01001 =

ξ
(

(λ− 1)ω + ξ2
)

λ(λ− 1)
(
(λ− 1)2 − ξω

) + θR2 ,

φR01011 = (λ− 1)θR2 ,

φR10001 =
ω
(
(λ− 1)ω + ξ2

)
λ
(
(λ− 1)ξ + ω2

) + θR3 ,

φR10011 =
ξ
(

(λ− 1)ξ + ω2
)

ω
(

(λ− 1)2 − ξω
)θR3 ,

(92)

where θR1,2,3 are the free parameters corresponding to the
three non-deterministic blocks. Analogously, introducing
the left-boundary coefficients θL1,2,3, the solution to (86)
is given by,

φL10000 =
ξ
(
(λ− 1)ξ + ω2

)
λ
(
(λ− 1)ω + ξ2

) + θL1 ,

φL11000 =
(λ− 1)ω + ξ2

ω
(
(λ− 1)2 − ξω

)θL1 ,
φL10010 =

ω
(

(λ− 1)ξ + ω2
)

λ(λ− 1)
(
(λ− 1)2 − ξω

) + θL2 ,

φL11010 = (λ− 1)θL2 ,

φL10001 =
ξ
(
(λ− 1)ξ + ω2

)
λ
(
(λ− 1)ω + ξ2

) + θL3 ,

φL11001 =
ω
(

(λ− 1)ω + ξ2
)

ξ
(

(λ− 1)2 − ξω
) θL3 .

(93)

Equations (92) and (93) provide the most general form
of the boundary propagators R and L, for which the
asymptotic state introduced in the previous subsection is

the fixed point. Note that the parameters θ
R/L
1,2,3 are not

completely arbitrary, since all the matrix elements of the
stochastic boundary matrices should be between 0 and 1.

A particularly convenient choice of parametrization is

to set θ
R/L
1,2,3 = 0. In this case the stochastic blocks can

be summarized by

φRn1n2n3n4n5
=
pn1n2n3n4n50 + pn1n2n3n4n51

pn1n2n3n4

,

φLn0n1n2n3n4
=
p′0n0n1n2n3n4

+ p′1n0n1n2n3n4

p′n1n2n3n4

.

(94)

This is reminiscent of the situation observed in RCA54
(see e.g. [39]): if the 4 spins at the edge are in the config-
uration (n1n2n3n4), the probability of finding the virtual
site to the right (or left) in the state n5 (or n0) is the same
as the conditional Gibbs probability of observing the 5-
site configuration, given the knowledge of the state of the
first 4 sites. The construction proves that the equilibrium
distribution of finite configurations can be equivalently
understood as a steady state of a boundary-driven sys-
tem. Note that this does not apply to dynamics. Starting
with a configuration on a finite subsection of the periodic
lattice, while assuming a random distribution elsewhere
(as described in Subsec. IV A), evolving it in time and at
the end averaging over all the sites outside of the finite
subsection we started with, will give us a different distri-
bution compared to taking the same initial configuration
and evolving it with the stochastic boundaries.

The construction in this section represents a class of
non-trivial boundary propagators, for which the NESS is
particularly simple. Generalizing boundary vectors to en-
code the information about the sites close to the bound-
ary (similar to the situation considered in [33, 34]), might
provide a richer family of stochastic boundary propaga-
tors with nontrivial NESS. However, this is beyond the
scope of this paper and the full classification of all possi-
ble solvable (or integrable) boundaries remains an open
question.

V. CONCLUSIONS

In this paper we have studied in detail the dynamics
of the RCA201/Floquet-PXP model, a classical deter-
ministic reversible cellular automaton. This model is to
the classical PXP model (or one-dimensional two-spin
facilitated FA model) what the RCA54 is to the classi-
cal stochastic FA model: a deterministic lattice system
with periodic circuit-dynamics with the same kinetic con-
straint of the corresponding KCM. The study of these
RCAs thus allows us to extend our understanding of the
consequences of constraints to dynamics.

We have shown that the RCA201/Floquet-PXP model
is integrable. Its dynamics is fully determined by con-
served quasiparticles that propagate ballistically and in-
teract via collisions. As usual, integrability implies that
many properties of the model can be investigated ex-
actly. Most notably, we have calculated the exact non-
equilibrium stationary state, which takes the form of
a low bond dimension MPS, under both periodic and
stochastic boundary conditions. The methods we ap-
plied are similar to those employed to solve the RCA54
model. Note, however, that the RCA201 is a slightly
more complicated model. In particular, the stricter ki-
netic constraint forces the dynamics to be always strictly
out of equilibrium due to the underlying period three cy-
cling of its three-fold vacua (which implies the existence
of probability currents under all conditions).

Our work here opens the door for obtaining sev-
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eral other exact results for the dynamics of the
RCA201/Floquet-PXP model, just like it was done re-
cently for the RCA54. We anticipate the following: (i)
the exact large deviation statistics of trajectory observ-
ables, cf. [34]; (ii) the exact MPS form of the “time state”,
that is, the probability vector that encodes all time-
correlators that are local in space, cf. [39]; (iii) construc-
tion of the MPS representation for the time-evolution of
local observables and the explicit solutions of the dynam-
ical correlation functions and quench dynamics, cf. [38];
(iv) the properties of the dual system to the RCA201
where propagation is in the space rather than time direc-
tion, and the consequences of this duality, cf. [27]. We

hope to report on some of these in the near future.
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Appendix A: MPS for maximum entropy state

When ξ = ω = 1 the MPS representation simplifies.
In particular, it can be equivalently expressed as

tr(V1V
′
2 · · ·V′N )|ξ,ω→1 = tr(W1W2 · · ·WN ), (A1)

where W0 and W1 are the following 2× 2 matrices

W0 =

[
1 1
0 0

]
, W1 =

[
0 0
1 0

]
. (A2)

To see that the two representations are equivalent, we
first introduce 4× 2 and 2× 4 matrices Q and R

Q =

[
1 0 1 1
0 1 0 0

]
, R =

 1 0
0 1
1 0
−1 0

 , (A3)

that map V
(′)
n into a set of 2× 2 matrices {Wn}n=0,1,

Wn = QVnR|ξ,ω→1 = QV ′nR|ξ,ω→1 . (A4)

Therefore, to prove the equivalence, we have to show that
the matrix product RQ can be inserted between every
pair of matrices on the left-hand side of (A1). This fol-
lows from the following two relations that hold for any
three-site configuration (n1, n2, n3),

Vn1
V ′n2

RQVn3

∣∣
ξ,ω→1

= Vn1
V ′n2

Vn3

∣∣
ξ,ω→1

,

Vn1
RQV ′n2

RQVn3

∣∣
ξ,ω→1

= Vn1
RQV ′n2

Vn3

∣∣
ξ,ω→1

,
(A5)

and the cyclic property of trace.
The stationarity of the right-hand side of Eq. (A1) can

be directly demonstrated by an analogue of the three-site
algebraic relation (51), which in this case trivializes,

U (W1W2W3) = W1W2W3. (A6)

The reduced MPS can be understood as the maximum
entropy state in the restricted sector: every configura-
tion is equally likely, as long as there are no pairs of
consecutive 1s.

Appendix B: Derivation of the time-averaged
magnetization density

For systems of finite size, the PBC ensure that the
trajectories are periodic, that is, they can be written as
distinct time-ordered subsets of configurations, referred
to as orbits. We can therefore generally define the time-
averaged magnetization density of a trajectory as the
space- and time-averaged sum over the sites of its orbit,

m =
1

Nl

N∑
i=1

l−1∑
t=0

n2ti , (B1)
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where l denotes the cardinality of the orbit (i.e., the pe-
riodic length of the trajectory). It can be easily verified
that in this form the time-averaged magnetization den-
sity depends explicitly on the microscopic properties of
the configurations due to its dependence on the length
of the trajectory. To formulate an expression for m of
the form given in (65) therefore requires we derive some
trajectory-invariant or characteristic length, denoted by
lQ, that is dependent only on the system size and num-
bers of positive and negative quasiparticles.

With a little work, it can be demonstrated that the or-
bits of the system can be partitioned into distinct subsets
characterized by their numbers of positive and negative
quasiparticles. The sizes of the orbits of these subsets are
compactly detailed in the following table,

Q(2) Q(3) F = 0 F 6= 0

0 0 3 −
0 k 4 3

2N
j 0 2 3

2N − 2Q+ − 2Q−

j k 1
2N

1
2N
(
3
2N − 2Q+ − 2Q−

) , (B2)

where j, k > 0 are arbitrary positive integers. Here, we
introduce the quasiparticle filling factor F , defined by

F = 4Q(2) + 8Q(3) (mod N), (B3)

with Q(2) and Q(3) the numbers of pairs and triples of
quasiparticles, respectively, as defined in (68). Based on
these observations we postulate the following form for the
trajectory-invariant length,

lQ =
1

2
N

(
3

2
N − 2Q+ − 2Q−

)
, (B4)

which depends explicitly on the macroscopic properties
of the model but also divides the size of every class of
orbit detailed in (B2). This then allows us to write the
time-averaged magnetization density as

mQ =
1

NlQ

N∑
i=1

lQ−1∑
t=0

n2ti . (B5)

We briefly remark here that the values in (B2) are the
maximum sizes of the orbits as spatial symmetries of
the configurations (e.g. translational symmetries explic-
itly dependent on the positions of the quasiparticles or
sites) facilitate orbits of fractional sizes. This is, however,
irrelevant as the sizes of these orbits will also be divisors
of the length lQ.

We now separate the NlQ sites in (B5) into three
distinct parts associated to the vacua, free quasiparti-
cles and interactions. Here, by “ free quasiparticles”
and “interactions” we are explicitly referring to the sites
in Fig. 5 colored green/red (mid/dark gray) and yellow
(light gray), respectively, with the vacua corresponding
to the sites colored white. Specifically, we have

NlQ = Nv +Nq +Ni, (B6)

where Nv, Nq, and Ni denote the number of vacua, free
quasiparticle, and interaction sites, respectively. Consid-
ering first the sites associated to interactions, it follows
directly from the properties of the trajectory-invariant
length that there are exactly NQ+Q− interactions, that
is, for a trajectory of length lQ every positive quasipar-
ticle interacts with every negative quasiparticle N times.
Noting that the interactions between quasiparticles oc-
cupy three sites of the lattice then yields

Ni = 3NQ+Q−. (B7)

Focusing now on the free quasiparticles, it follows triv-
ially from the conservation laws that at each time-step
there are Q+ positive and Q− negative quasiparticles,
respectively. Given that each occupies two sites of the
lattice, we have

Nq = 2lQQ
+ + 2lQQ

− − 4NQ+Q−, (B8)

where the final term prevents the double counting of in-
teracting quasiparticles. Finally, we consider the vacua
which is simply composed of the remaining sites,

Nv = NlQ − 2lQQ
+ − 2lQQ

− +NQ+Q−. (B9)

We now map these sites to an effective vacuum de-
scription, similar to that pictured in the middle diagram
of Fig. 8, that is characterised by staggered vacuum con-
figurations. By “staggered vacuum configurations”, we
refer to sets of N sites staggered over adjacent time-steps
that are exactly the configurations of the vacuum trajec-
tory detailed in Eq. (13), as illustrated in Fig. 10. In this
new representation, the sites can again be separated into
three parts,

NlQ = N ′v +N ′q +N ′i , (B10)

where N ′v denotes the number of sites associated to the
staggered vacua configurations whilst N ′q and N ′i denote
the number of remaining sites that effectively correspond
to free quasiparticles and interactions, respectively, as
shown in Fig. 10. Considering first the number of effec-
tive quasiparticle sites, it is trivial to see that this is given
by,

N ′q =
2

3
lQQ

+ +
2

3
lQQ

− − 4

3
NQ+Q−. (B11)

Similarly, the number of effective interacting quasiparti-
cle sites can easily be demonstrated to be

N ′i = 4NQ+Q−. (B12)

Finally, the number of staggered vacuum configurations
is given by what remains, namely,

N ′v = NlQ −
2

3
lQQ

+ − 2

3
lQQ

− − 8

3
NQ+Q−. (B13)

From here, we remark that the effective free quasiparticle
sites are always 0, whilst a third of the staggered vacuum
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configuration sites and a quarter of the effective interac-
tion sites are 1. The magnetization MQ = NlQmQ can
therefore be expressed as

MQ =
1

3
NlQ −

2

9
lQQ

+ − 2

9
lQQ

− +
1

9
NQ+Q−. (B14)

Substituting in the characteristic length lQ and dividing
through by NlQ then yields the time-averaged magneti-
zation density, as given in Eq. (65). We can interpret this
result more intuitively be expressing mQ as

mQ =
1

3
− 2

9

Q+ +Q−

N
+

1

9

Q+Q−

lQ
. (B15)

Here, the first term is the time-averaged magnetization
density of the vacuum with the second and third terms
representing the perturbations to this due to the quasi-
particles and their interactions, respectively.

i

t

FIG. 10. Staggered vacuum configurations. A schematic
comparing the vacua representation in Fig. 4 to the effective
description of staggered vacuum configurations. On the bot-
tom, sites of the vacuum are colored as in the scheme shown
above with the remaining sites belonging to the effective free
quasiparticles and the interactions respectively colored white
and black for clarity. As per convention, only the configura-
tions at even t time-steps are shown.

Appendix C: Equivalence of the two forms of the
partition sum

To prove the equivalence of the partition functions in
Eqs. (61) and (63), we first express the product of transfer
matrices as a recursion relation of the form

TK = TTK−1, (C1)

with matrix elements, denoted by TKjk , given by

TKjk =

4∑
i=1

TjiT
K−1
ik , (C2)

where to ease the notation we introduce the parameter
K, defined as 2K = N . Substituting this parametriza-
tion into Eq. (61) admits the following expression for the
partition function,

Z =

4∑
i=1

TKii . (C3)

Before searching for a solution to the system of equa-
tions in (C2), we note that there is significant redundancy
in the components of the transfer matrix which we wish
to eliminate. Indeed, one can show that the elements of
TK can be succinctly written in terms of just four free
recursive parameters,

TK11 = TK22 ,

TK12 = TK12 ,

TK13 = TK32 + ξTK42 ,

TK14 = ξTK32 + ωTK42 ,

TK21 = TK32 + ξTK42 + ωTK12 ,

TK22 = TK22 ,

TK23 = TK12 + ξTK32 + ωTK42 ,

TK24 = ξTK12 + ωTK32 + ξωTK42 ,

TK31 = TK12 + ωTK42 ,

TK32 = TK32 ,

TK33 = TK22 ,

TK34 = ξTK42 + ωTK12 ,

TK41 = TK32 ,

TK42 = TK42 ,

TK43 = TK12 ,

TK44 = TK22 − TK42 ,
(C4)

which reduces (C2) into the remaining four relations,

TK12 = TK−112 + ξTK−132 + ωTK−142 ,

TK22 = ξTK−112 + TK−122 + ωTK−132 + ξωTK−142 ,

TK32 = ωTK−112 + TK−132 + ξTK−142 ,

TK42 = TK−122 .

(C5)

Combining (C4) and (C5) provides an expression for the
partition function in terms of one recursive parameter,

Z = 4TK22 − TK−122 , (C6)

which, using Eq. (C5), can be rewritten as a higher order
recurrence relation,

TK22 = 3TK−122 + (2ξω − 3)TK−222 + (1− ξω)TK−322

+ (ξ3 + ω3 − ξ2ω2 − ξω)TK−422 .
(C7)
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To relate this expression for the partition function to
Eq. (63) it suffices to find a combinatoric form for TK22 ,

TK22 =
∑
{Q}

CKQ ξ
Q+

ωQ
−
, (C8)

where CKQ is some combinatoric factor to be determined

and the set {Q} the set of tuples of positive and neg-
ative quasiparticle numbers satisfying the constraints in
Eqs. (16) and (66). With a little work, one can show that
the combinatoric term is given by

CKQ =

(
K − 1

3Q
+ − 2

3Q
−

Q+

)(
K − 1

3Q
− − 2

3Q
+

Q−

)
. (C9)

The partition function can then be rewritten as

Z =
∑
{Q}

(
4CKQ − CK−1Q

)
ξQ

+

ωQ
−
, (C10)

where to combine summations we have used the property
that the binomial coefficients vanish when Eq. (66) is not
satisfied. Utilising the binomial identity

(
n−1
k

)
= n−k

n

(
n
k

)
,

we can express CK−1Q in terms of CKQ , specifically,

CK−1Q =

(
K − 2

3Q
+ − 4

3Q
−)(K − 2

3Q
− − 4

3Q
+
)(

K − 1
3Q

+ − 2
3Q
−
)(
K − 1

3Q
− − 2

3Q
+
)CKQ .

(C11)
From here, with a simple substitution, we immediately
see that this expression for the partition function is ex-
actly equivalent to that in Eq. (64), where the combina-
torial coefficients follow directly as

4CKQ − CK−1Q =
1

mQ
CKQ = ΩQ. (C12)
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