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ABSTRACT
The thorough, objective, and regular assessment of animal welfare in zoos and aquariums is rapidly becoming an essential task

for these institutions. Traditional welfare assessment methods are, however, difficult to scale to the number of species and

individuals housed in zoos and aquariums. Automation, using artificial intelligence (AI) can provide solutions to these chal-

lenges. This literature review provides an overview of recent advances in this field, with a focus on studies relevant to zoo and

aquarium animal welfare. AI in animal behavior and welfare monitoring, particularly in farm animals, has become increasingly

commonplace in recent years. Recent studies have investigated AI's capability to identify and assess animal behavior in poultry,

pigs, sheep, and cattle, including estrus prediction in cows; classification of animal vocalizations; and detection of potential

welfare concerns, including early signs of lameness in cattle and sheep. In companion animals, AI has been used for facial

recognition, vocalization‐based emotion recognition, and behavioral monitoring. Laboratory animal behavior monitoring

through AI tools has also rapidly increased since 2000. AI is increasingly used in zoos, including the identification of individual

animals; monitoring of their movement within their enclosure; and quantifying behavior, including time spent using enrich-

ment. The rapid increase in AI use in animal welfare shows promise in improving animal management and welfare in zoos and

aquariums, through improved and more efficient monitoring and prediction.

1 | Introduction

Animal welfare underlines everything modern zoos and aqua-
riums do, as their social license to operate relies on ensuring
positive welfare outcomes for their animals. This is reflected in
the exponential growth of zoo animal welfare research in
recent years (Walker et al. 2014; Binding et al. 2020). However,
increasing demands for animal welfare monitoring, including
assessments of physiological and behavioral signs of positive
and negative affective states, have created resource challenges
for these organizations. Traditionally, animal welfare assess-
ments in zoos focused on input or resource assessments, as
these were more practical to achieve, though often provide an
incomplete picture. Assessing output or animal measures using

quantitative data offers better insights, but can be time‐ and
labor‐intensive (Manteca et al. 2016; Jones et al. 2022). This
reliance on manual data collection and analysis potentially
limits the scope and depth of welfare assessments.

Big data approaches offer a more holistic perspective on animal
welfare by integrating multiple metrics for comprehensive
analysis. Zoological institutions have been collecting vast
amounts of rich data on the animals in their care for decades,
including animal husbandry, nutrition, and veterinary records.
For example, the Species360 Zoological Information Manage-
ment System (ZIMS) contains vast datasets on about 10 million
animals of 22,000 species kept in over 1300 zoos and aquariums
(Species360 Zoological Information Management System
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ZIMS 2024). However, the sheer size and complexity of such
data (also called “big data” [Favaretto et al. 2020]) make it
difficult to analyze it effectively using traditional methods.

Artificial intelligence (AI) offers a promising solution to these
challenges. Since the invention of the term in 1956 (Kaul
et al. 2020), AI grew from a vague theoretical concept to tech-
nology commonly utilized in our everyday lives. It is now
present in most smartphones, smart speakers, televisions, and
many other common electronic devices, but it is also utilized in
manufacturing, healthcare, commerce, education, and agricul-
ture (Bini 2018). It has inherent benefits in analyzing large and
complex datasets fast, freeing up human resources. In addition
to more traditional computer data sources, AI is now used to
analyze still and motion pictures; sound, including human
speech; and text. These open opportunities for endless different
applications, from computer vision, speech to text, translation,
or transcription services to more bespoke expert systems to
provide medical diagnoses, financial, or weather forecasting.

It could also support a more holistic approach to animal welfare
assessment, providing an overall analysis of many different mea-
surements, taking a “big data” approach (Liptovszky 2024). AI
assisted data mining (Lakshmi and Raghunandhan 2011) of large
datasets could create new knowledge of zoo animal welfare.

This paper reviews the currently available literature about AI in
animal welfare, with a focus on zoo and aquarium animal
welfare. Research published on AI use on animal welfare in
zoological institutions is growing, though currently tracks
behind farm, companion, and laboratory animal studies. It is,
therefore, important that the zoo and aquarium community
remains up to date with the development of this rapidly evol-
ving field, to utilize the potential benefits of it in the future.

2 | AI and Related Fields

Despite the term being used for more than six decades, AI
remains challenging to define. There are several different at-
tempts to pinpoint its characteristics, and it is both described
as nonliving agents that act intelligently or rationally (in the
mathematical sense of the word) or nonliving systems which
are comparable to humans in intelligence. They can also be
considered as computer systems, which can not only follow
simple, predefined rules, but also capable of adapting their
operations to changing environments and feedback loops
and maximizing their chances to achieve a task (Russell
et al. 2010).

Machine learning (ML) is a subset of AI, in which a computer
software (or code) is developed in a way which enables the
software to “learn,” and to adapt to achieve increasingly better
outcomes (Appleby and Basran 2022). Some ML algorithms
(also called supervised learning) require “training” data paired
with corresponding labels (i.e., correct identification of the
data), enabling the trained model to extrapolate classification or
predictions to large datasets. In other cases (called non‐
supervised learning), the training data set is not labeled, and
the ML model is designed to extract features from the data. This
can be used to classify or group similar elements of the data
(Jiang et al. 2017).

A further subset of ML, artificial neural networks (ANNs) seem-
ingly mimic the function of the neurons within a biological brain.
Artificial neurons, like synapses in the nervous system, connect to
each other and transmit information through several connections
(Appleby and Basran 2022; Montesinos López et al. 2022). In these
systems, information travels from the input layer towards the
output layer, passing through at least one hidden layer. The power
of these models lies in the large number of simple processing units,
which can operate parallel to each other. Deep learning is the
name of an ANN with multiple hidden layers, in which different
layers might perform different transformations of the data. The
term “deep” in this meaning refers to the depth crated by multiple
layers, rather than some form of deep knowledge (Montesinos
López et al. 2022).

Different AI algorithms are frequently used in applications like
machine vision, speech recognition, or working on medical diag-
noses. Examples of practical applications of these methods are
Google's Translate natural language processing (NLP) and trans-
lation, Apple's Siri or Amazon's Alexa human voice recognition, or
IBM's Watson Health medical AI solutions (Bini 2018).

3 | Current Use Cases of AI in Animal Welfare

3.1 | Farm Animals

There is strong interest in AI in farm management from an
economic perspective, with increasing efficiency and decreasing
costs (including personnel costs) being key drivers. Precision
Livestock Farming (PLF, for a recent overview, see Kleen and
Guatteo [2023]) aims to utilize connected sensors and controls
(also called Internet of Things), big data, and ML algorithms to
automate animal monitoring and management processes. Sen-
sors and data from these can include temperature, humidity, air
quality, and other environmental parameters, still or motion
picture cameras, individual identification of animals (e.g.,
through radio‐frequency identification), accelerometers and
location sensors measuring and controlling animal location,
movement, and space use, as well as other sensors, including
more involved physiological monitoring or output parameters,
like milk production (Yaseer and Chen 2021). Data generated
from many sensors can be analyzed and used for various pur-
poses, including disease monitoring and preventative health,
animal behavior monitoring and linked predictions, or mon-
itoring and predicting animal production. Visual monitoring
can support individual animal identification through facial or
other pattern recognition, or more specific analysis, including

Summary

• Artificial intelligence (AI) describes a computer system
that can adapt to changing environments and feedback
loops.

• The use of AI in animal welfare has increased in
recent years, including in zoos and aquariums.

• AI is rapidly becoming accessible and affordable for
various use cases, including for animal welfare.
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body condition scoring or gait analysis and lameness detection
(Yaseer and Chen 2021). In broiler chickens, complex tasks, like
predicting growth and body weight, presence or absence of
ascites, or separating healthy animals from those showing
clinical signs of avian influenza by AI are already achieved at
exceedingly high (98%–100%) accuracy (meaning the ratio of all
correct (positive and negative) predictions from the total num-
ber of cases examined; further see Hicks et al. (2022) and
Milosevic et al. (2019).

A systematic literature review of AI in animal farming has been
completed recently, identifying significant increase in publica-
tions in this area between 2016 and 2021, compared to the
previous period (Bao and Xie 2022). Animal behavior analysis
and recognition was the most frequent topic of studies, while
pig (38%), cattle (37.5%), and poultry (17%) were most repre-
sented species in the reviewed 131 research papers. Another
study (Benos et al. 2021) reviewing 338 papers between 2018
and 2020 on all agricultural applications found that cattle,
sheep, and goat are currently the most studied animals, fol-
lowed by pig and poultry. In terms of technology, motion cap-
ture sensors were the most studied, followed by visual and
audio sensors, physical and growth characteristics, and weather
data. While there was rapid increase found in the number of
publications over a 3‐year period, livestock management studies
grew slower than studies focusing on crop management.

Many recent studies investigated AI's capability to assess animal
behavior. A key underlying concept to detect and measure
animal behavior from motion pictures is pose detection (for an
overview, see Mathis et al. [2020]). Pose detection refers to the
process of identifying the position of different body parts (i.e.,
head, legs) of an individual animal. Deep learning methods are
well‐suited for this task both for single‐ and multi‐individual
situations (Nath et al. 2019; Fang et al. 2021), therefore, it's not
surprising that pose detection and based on that behavior
detection and measurement received strong attention in
recent years. Recent studies include body, head, and tail posture
in pigs (D'Eath et al. 2018; Ocepek et al. 2022), detection and
classification of different poses and behaviors in sheep, cattle,
and chicken (Rahman et al. 2018; Walton et al. 2018; Fang
et al. 2021), and prediction of estrus and calving day in cattle
based on behavior (Keceli et al. 2020; Wang et al. 2020).

Detection of early lameness in cattle and sheep (Kaler
et al. 2020; Taneja et al. 2020; Warner et al. 2020), or mastitis in
cattle (Hyde et al. 2020), and early prediction of Coccidiosis in
poultry (Borgonovo et al. 2020) are current examples of health
monitoring applications in farm animals.

3.2 | Companion Animals

While companion animal applications of AI are clearly behind
those of production animals, recent developments demon-
strated its use, primarily in dogs. Domestic dog face recognition
is already possible with good reliability. In one study, the sys-
tem was able to identify individual animals from 48 different
dogs with 88% accuracy, based on a single image. The model
was also able to cluster pictures of unknown dogs (Mougeot
et al. 2019). The ability to reliably identify individuals is

important in zoo animal welfare, where we typically work with
a smaller number of individuals per species, compared to free‐
ranging wildlife or farm animals. Being able to identify indi-
vidual differences in behavior, diet consumption, health, or
environment use could enhance our understanding of the
welfare of such individuals and ensure appropriate measures
are taken to maximize that.

Speech‐based emotion recognition in humans is well developed,
and some of the underlying principles seem to be transferable to
other mammalian species. Built on this, classification of dog
barks is another area under development currently. Barks have
context and individual specific features, and an AI model was
able to categorize 6000 barks recorded in six different behav-
ioral situations with 43% and 52% accuracy, respectively
(Molnár et al. 2008). Another study (Hantke et al. 2018) in dogs
focused on context and perceived emotional classification, as
well as perceived emotional intensity using different AI models.
Emotions investigated were aggression, despair, fear, fun, and
happiness. The authors concluded that due to physiological and
psychological similarities, different emotions create similar
acoustic characteristics across different mammal species,
therefore, human speech‐based emotion recognition is a viable
pathway for other mammal species as well. ML models have
also been utilized, considering physical and physiological met-
rics to determine feed estimation to help prevent companion
animal obesity (Ravi and Choi 2022).

Camera and sensor‐based behavioral monitoring systems are
another field where AI is becoming more established in companion
animals, achieving high accuracy levels for both walking (99.5%)
and resting pattern recognition (97%) (Boteju et al. 2020). Breed
recognition in the same study, however, achieved lower accuracy
levels (89% in a two‐way choice). Facial expression recognition has
also been utilized in horses and cats to assess pain (Lencioni
et al. 2021; Feighelstein et al. 2023), a method which is well‐
described for pain scoring using grimace scales (Dalla Costa
et al. 2014; Evangelista et al. 2019).

3.3 | Laboratory Animals

AI applications for the analysis and measurement of laboratory
animal behavior have been used as early as 2000, when automated
posture classification was proposed using neural networks (Heeren
and Cools 2000). Since then, automated tracking and behavioral
analysis of single and multiple rodents have been resolved,
including measurement of social behavior (Giancardo et al. 2013;
Hong et al. 2015; Bohnslav et al. 2021; Isik and Unal 2023). These
models, including some open‐source (freely available) software, can
have direct relevance to zoo and aquarium settings as well. Multi‐
individual behavioral tracking might be especially important in
aquariums, where large number of individuals can pose logistical
challenges for human observers.

Further to the monitoring of normal behavior, Weber et al.
(2022) provide an example of monitoring the recovery of ro-
dents following neurological disturbance (stroke, in this
instance). The authors suggest their method might also be
useful to monitor other disease processes which impact
locomotion.
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While automated analysis of video sequences is now relatively
common, the real time monitoring of animals, and their
behavior is of great interest for animal welfare purposes. This is
a challenging task, given the computational resources required
by most machine vision systems. Cocoma‐Ortega et al. (2022)
described a system run on inexpensive hardware, capable of
real‐time detection of a rat in an open maze, as well as mon-
itoring of the rat's behavior. In their two‐step process, the sys-
tem first identifies the rat in the image with a precise location,
then a downscaled version of the image is passed on to a
behavior analysis module, therefore decreasing compute
requirements. Ambiguous behaviors were recognized with an
average 60% precision (meaning the ratio of correctly classified
predictions and the total number of cases classified in that
group; further see Hicks et al. [2022]). Multi‐animal pose
tracking has also been proposed, and tested in flies, bees, mice,
and gerbils, achieving real‐time speeds (Pereira et al. 2022).
Another open‐source model tested multi‐animal pose estima-
tion and tracking on the fish species inland silverside (Menidia
beryllina), mice, and common marmosets (Lauer et al. 2022).

Kahnau et al. (2023) provide a review of home cage monitoring
in laboratory rats and mice, which might be of interest to zoo
and aquarium professionals. They found that manual mon-
itoring has been gradually replaced by automated methods
since the 2000s, and currently these automated systems are
mostly used to monitor locomotor activity, feeding, and social
behaviors.

The main limitation of these examples is that laboratory animal
environments, especially under experimental conditions, are
much less complex than typical zoo and aquarium environ-
ments. Therefore, we must be cautious about expectations of
the applicability of these models directly to other species in a
different environment. However, these examples demonstrate
current AI capabilities, as well as provide starting points,
including open‐source software in many instances, for devel-
oping zoo and aquarium specific models.

3.4 | Zoo, Aquarium, and Wild Animals

The use of AI in zoo and wild animals is growing, but primarily
driven by free ranging wild animal applications at this stage (for
recent reviews see Lamba et al. [2019]; Isabelle and Westerlund
[2022]; Tuia et al. [2022]). Processing large volumes of camera
trap data from field surveys pose a significant challenge to scale
up these projects; therefore, it is understandable that these
applications have been prioritized. As outlined above, AI is well
suited for these tasks, including identification of species, in-
dividuals, body positions, and behaviors (Deb et al. 2018;
Schofield et al. 2019; Schütz et al. 2022; Tuia et al. 2022; Bendel
and Yürekkirmaz 2023; Gerdan Koc et al. 2024; Paulet
et al. 2024). Machine vision has also been used to assess pop-
ulation health of whales through body length and condition
measurements (Bierlich et al. 2024).

A systematic review (Diana et al. 2021) examined the use of
technology to support animal welfare assessment in zoo ani-
mals, revealing significant gaps compared to similar research in
livestock. Though this was not specific to AI, the reviewed

papers are relevant for our topic. Of the 19 studies identified,
most focused on individual monitoring using cameras (52.6%)
and wearable sensors (31.6%), primarily measuring behavior
(63.1%) or physical/physiological parameters (31.6%), with
limited attention to environmental factors. By contrast, live-
stock studies (e.g., pigs) often utilized detached sensors for
group‐level monitoring, indicating a technological disparity.
Mammals were disproportionately represented (89.5%), espe-
cially elephants and primates, while reptiles, lower vertebrates,
and invertebrates were largely neglected. Most zoo research
used technology for enrichment rather than continuous, auto-
mated monitoring, the latter of which is common in PLF. The
authors emphasized the need for integrated approaches com-
bining multiple parameters to improve welfare assessment and
highlighted significant potential for advancing automated wel-
fare monitoring in zoos.

Individual identification is a focus area of current research on
AI and technology applications in zoos, as typically, automated
tools need to differentiate between individual animals to enable
meaningful data analysis. Facial recognition software, for
instance, has demonstrated 97% accuracy in identifying indi-
vidual gorillas in zoo environments. Although this approach
requires significant interdisciplinary collaboration and invest-
ment (Brookes et al. 2022), it enables automated tracking of
enrichment device usage. The data reveal individual engage-
ment levels and duration, insights previously obtainable only
through labor‐intensive observations or video analysis. Indi-
vidual identification has also been successfully achieved in all
eight bear species in captivity (Chen et al. 2020; Clapham
et al. 2022).

Zuerl et al. (2022) developed an automated, video‐based
framework for behavioral monitoring in zoos, which sur-
passes traditional observation methods. Their system identifies
individual polar bears with 86.4% reliability and achieves a
localization accuracy of about 20 cm. It analyzes spatio‐
temporal enclosure use, individual activity patterns, social
proximities, and area preferences. The framework is designed to
handle challenges typical in zoo environments, such as large
enclosures, variable camera angles, low resolutions, and
changing lighting conditions, making it adaptable across species
using a generic approach. The authors highlighted that most
existing methods fail to fully automate manual observations, a
gap their framework addresses.

Congdon et al. (2022) presented an AI model originally
designed for humans, adapted for Sumatran orangutans. Using
five 12‐megapixel cameras installed in the orangutan habitat,
the system provided comprehensive coverage and minimal
blind spots. The collected images were used to train a deep
neural network for orangutan identification and behavioral
analysis. The model achieved 95% accuracy in species detection
and 80% in individual recognition from a single image, rising to
92% with 50 images. This technology can support early detec-
tion of health or welfare changes and inform husbandry
improvements. Gammelgård et al. (2024) describe a similar,
albeit less capable model in Bornean orangutans, which per-
formed well in individual identification, but was less capable of
distinguishing between behavioral categories. A proof‐of‐
concept study also demonstrated the ability of ML to analyze
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thermoregulatory behavior on captive Rough‐tail rock agama
(Laudakia vulgaris). While originally this study was developed
to demonstrate AI's potential to streamline ecological mon-
itoring, insights into species' thermal preferences would be
highly relevant in zoo environments as well.

Understanding the welfare impact of zoo activities is central to
improving zoo and aquarium animal welfare. Pertoldi et al.
(2024) compared ML and traditional methods to evaluate visitor
effects on black lemurs (Eulemur macaco) and ring‐tailed le-
murs (Lemur catta). They observed minor differences between
the methods, concluding that ML and traditional observations
can be complementary.

Information on animal behavior, however, can also be acquired
without video monitoring. Jeantet et al. (2018) tested the
effectiveness of accelerometers in identifying sea turtle behav-
iors by attaching sensors to a loggerhead (Caretta caretta), a
hawksbill (Eretmochelys imbricata), and a green turtle (Chelonia
mydas) in a public aquarium setting. Data from the sensors
were matched with video recordings, and two ML methods
were used to classify behaviors. Accuracy reached up to 87%
depending on the method and species, demonstrating the via-
bility of this technology, when other monitoring methods might
be challenging.

4 | Future Directions

Through analyzing the currently existing literature on AI in
animal welfare, it is evident that in the future, applications will
become more complex, being able to analyze a multitude of data
sources to provide a better assessment of welfare, compared to
the current focus on more specific, but narrowly focused tech-
nologies, like individual animal recognition based on images.
Big data, primarily based on automatic data collection from a
range of sensors, can provide a huge step forward in the
assessment of animal welfare, compared to the current meth-
odologies (Liptovszky 2024). Real‐time or near real‐time
assessment of the animals' behavior and response to stimuli,
and automated affective state recognition might all become
reality, providing insight animal welfare scientists have not had
before (Neethirajan 2022). Early detection of distress, fear, and
other negative experiences can lead to early interventions from
animal care staff, preventing further negative welfare states,
reduced health, or other impacts requiring veterinary inter-
ventions (Neethirajan 2021). Using AI to measure body length
and condition, where possible for specific species as demon-
strated in a wildlife study, may benefit zoo animal health
monitoring, and inform other welfare‐related factors, such as
the impact of diet on animal growth rates (Bierlich et al. 2024).
Monitoring of animal gait and mobility through AI could ben-
efit animal welfare decisions surrounding quality of life, par-
ticularly in geriatric animals with conditions such as arthritis.

There is great scope in integrating animal behavioral and
physiological data with environmental data. Current applica-
tions commonly focus on a single approach, primarily on the
former, missing the opportunity to create a deeper under-
standing of the interaction between environmental parameters
and animal behavior and welfare (Diana et al. 2021). Precedents

for this approach can be found in farm animals, where a
combination of environmental sensors and automated en-
vironmental controls are commonly used.

Developing and testing technologies for nonmammalian species
also appear to be a priority for the future, given the current
narrow focus on mammals, and even within that, on a few high‐
profile taxa, like elephants and primates (Diana et al. 2021). Zoo
animal welfare research shows a persistent and significant bias
towards mammals, as highlighted by multiple studies. A review
of literature from 2008 to 2017 found that mammals accounted
for 75% of studies, with vertebrates comprising 82%, and great
apes being particularly prominent (Binding et al. 2020). Long‐
term trends are consistent with this, with a bibliometric analysis
(1966–2007) showing 75.92% of experimental studies centered
on mammals (Goulart et al. 2009).

While the current scientific literature is primarily focused on new
ways of data collection, management, and analysis, examples from
other fields, including the business world, are suggestive, that
equally significant changes can be expected in how data are
interpreted, visualized, and translated into reports and other out-
puts. NLP, the technology allowing computers to understand and
create human language (Eisenstein 2019), already allows a signif-
icant shift in how we can interact with large volumes of data.
Rather than using the traditional methods of complex database
queries, formulas, and statistical analysis, NLP can now facilitate
users with minimal to no computer science or statistical knowledge
to ask meaningful questions using their own words. This in turn
can democratize access to the available data collected in zoos on a
daily basis and making that data useful in day‐to‐day operations for
animal care, curatorial, veterinary, and other staff who need access
to quick and uncomplicated answers to guide their decision
making.

AI is also changing how scientific research is carried out. AI‐
enhanced tools to support literature reviews are already avail-
able and will enable reduced time and effort to complete these
(for a review see Fabiano et al. [2024]). Some of these tools are
already capable of searching large volumes of literature and
offer relevant papers, as well as summarizing their content, or
answering plain language questions based on the available
scientific literature.

However, it is important to understand the limitations around
these technologies, as well as to acknowledge that biases exist in
these (for reviews pertaining to agriculture and healthcare set-
tings, respectively, see Nazer et al. [2023] and Mayuravaani
et al. [2024]). AI systems are limited by the data they were
trained on and are susceptible for biases stemming from the
training data and process, including the omission or incorrect
identification of data. As an example, machine vision applica-
tions may find it difficult to operate in low‐light, high‐contrast,
or very complex environments (see also the Case Study in this
paper), all of which are common in zoos and aquariums (Zhang
et al. 2024). There is also evidence, that AI‐supported profes-
sionals, especially less experienced ones, are more likely to
make incorrect decisions when provided with an incorrect, but
plausible, AI‐generated suggestion (Dratsch et al. 2023).
Therefore, human expertise and oversight are going to continue
to be key factors.
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5 | Conclusions

Development of AI technology and applications, as well as new,
more powerful algorithms to support these, is fast and accel-
erating (Tang et al. 2020; Jiang et al. 2022). It is likely that AI
will continue to become part of many, if not most, everyday
technologies. It is, however, the zoo and aquarium community's
task to support the development of specific software and
hardware technologies adapted to the tasks required through
day‐to‐day animal care, management, and broader welfare. A
prerequisite for this is a good general understanding of AI by
animal care professionals, veterinarians, animal behavior and
welfare scientists, and others participating in the day‐to‐day
care of animals. Strong organizational support, including sup-
port from internal IT departments and/or external providers, is
also necessary. Conflict due to perceived or real increase of IT
costs, IT security risks, and resource requirements to provide
ongoing support for new technologies can hinder innovation.
Purpose built or customized AI applications can provide ad-
vances in zoo animal welfare, but only with collaboration
between the different experts necessary to develop these tech-
nologies further.

Undoubtedly, AI will become increasingly important and
powerful, and sharing of experiences within the zoo community
could speed up progress and reduce costs associated with
development of different applications and technologies. The
variety of species housed in zoos and the potential to customize
AI for specific species make the sharing of experiences espe-
cially important. So does the potential lack of affordability of
these systems for smaller, less wealthy organizations.

We propose that regional zoo organizations could act as cata-
lyzers in this, providing platforms to share experiences and
actual working solutions accumulated by their membership.
Like working groups or specialist advisory groups exist for
many areas within the zoo community, including for veterinary,
conservation education, research, or field conservation, it would
be wise to consider if technology or innovation focused groups
could be introduced to provide support and knowledge sharing
opportunities in this field. An example of this is the Association
of Zoos and Aquariums Technology Scientific Advisory Group,
but similar groups in other regions are currently missing, to the
authors' knowledge.

6 | Case Study

The authors deployed an AI system built on Microsoft's Azure
Machine Learning Studio to analyze close circuit television
(CCTV) footage of a meerkat enclosure. The enclosure was
equipped with five high‐resolution cameras monitoring the
environment constantly, generating 120 h of video footage
a day. Analyzing this amount of data in the traditional way,
with staff or volunteers reviewing the footage, was not a viable
option due to resource limitations.

The system employed both off the shelf and bespoke software
components achieving a purpose‐built ML pipeline. Video
footage downloaded from the CCTV system was utilized as
input with frame rate reduced and still images analyzed

through different available computer vision modules. Meerkat
detections were recorded, including their location within the
frame and estimated reliability of the detection. These data were
processed further within the pipeline to identify animals'
proximity to each other (recorded as “interaction”), or to pre‐
defined objects within the enclosure. Data was then visualized
and presented in the format of a dashboard, utilizing the
commercially available Microsoft PowerBI software's capabili-
ties. The dashboard included heat map visualization of data
overlayed on the field of view of the CCTV cameras.

The system could detect meerkats within the enclosure, though
detection reliability depended on the used ML algorithm. A pre‐
programmed animal classifier failed to identify meerkats when
the animals were not in the species typical upright sentry
position, showing a bias in the training data set utilized by this
algorithm. A more generic computer vision model, Mega-
Detector, however, achieved high reliability in recognizing an-
imals within the picture, whether moving or stationary, both in
a sentry and quadrupedal position.

The development of the system took about 3 months using an
agile software development methodology. Collaboration
between the zoo's animal behavior and welfare staff, IT pro-
fessionals providing general support to the zoo, as well as the
software platform provider and software developers was key.
The generated data allowed heatmap visualization of enclosure
use, including the use of predefined enclosure furnishing, as
well as 24/7 assessment of behavior, neither of which were
previously feasible through keeper observations.
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