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Abstract An effective and fast hybrid metaheuristic is proposed for solving the

pickup and delivery problem with time windows. The proposed approach combines

local search, large neighbourhood search and guided ejection search in a novel way

to exploit the benefits of each method. The local search component uses a novel

neighbourhood operator. A streamlined implementation of large neighbourhood

search is used to achieve an effective balance between intensification and diversi-

fication. The adaptive ejection chain component perturbs the solution and uses

increased or decreased computation time according to the progress of the search.

While the local search and large neighbourhood search focus on minimising travel

distance, the adaptive ejection chain seeks to reduce the number of routes. The

proposed algorithm design results in an effective and fast solution method that finds

a large number of new best-known solutions on a well-known benchmark dataset.

Experiments are also performed to analyse the benefits of the components and
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heuristics and their combined use to achieve a better understanding of how to better

tackle the subject problem.

Keywords Large neighbourhood � Guided ejection � Vehicle routing

1 Introduction

The pickup and delivery problem (PDP) is a vehicle routing problem in which

customers are paired together and a pair must be serviced by the same vehicle

(Savelsbergh and Sol 1995). In other words, a loadmust be collected fromone location

and delivered to another location by a single vehicle. Clearly there are also ordering or

precedence constraints to ensure that the collection site is visited before the delivery

site. If there are time windows during which the customers must be visited then the

problem is known as pickup and delivery problem with time windows (PDPTW)

(Dumas et al. 1991). The problem commonly arises in real-world logistics and solution

methodologies have significant practical application. As such, a large number of

techniques have been developed for PDPTW. These include approaches based on

exact methods as well as heuristics. The exact based methods have advantages such as

solving to provable optimality or providing bounds. They also tend to perform very

well on smaller and medium sized instances. The significant disadvantage with these

methods though is that they sometimes perform poorly on larger difficult instances.

Heuristic methods on the other hand tend to scale well and are more robust for larger

instances but are easily outperformed on smaller instances. It could also be argued that

some heuristicmethods are easier to develop andmaintain and to adapt to newproblem

requirements. These could be the reasons that the majority of commercial vehicle

routing software packages use heuristic-based methods (Hall and Partyka 2016).

Most of the exact methods proposed for the PDPTW are versions of branch and cut

and/or branch and price (Berbeglia et al. 2007; Parragh et al. 2008).Branch and price is a

branchandboundapproachwhere eachnode in thebranchandbound tree is solvedusing

column generation. For PDPTW, the nodes are linear programming, set partitioning

formulations of the problem and the columns (variables) represent possible routes.

Generating the newcolumns, knownas the pricing problem, could be solved by a variety

of exact and heuristic methods. Most approaches use a dynamic programming method

applied to a shortest path type formulation. Solving the pricing problem efficiently is the

key to a successful approach because this is wheremost of the computation time is used.

Very efficient pricing problem solving can be achieved though through the use of

heuristics and problem structure exploitation. Other significant speed ups and algorithm

improvements can often be achieved through other ideas such as branching strategies,

stabilisation, column management, approximations and other heuristics.

One of the earliest applications of branch and price to PDPTW is given by

Dumas et al. (1991) although it was clearly limited by the computing hardware

available at the time. A branch and price method published later in the decade by

Savelsbergh and Sol (1998) was already able to solve larger instances of the

problem in practical computation times. One of the most recent examples of branch
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and price applied to PDP is from Venkateshan and Mathur (2011) and an example of

a column generation based heuristic applied to PDPTW is given by Xu et al. (2003).

An alternative exact method is branch and cut. Branch and cut differs from

branch and price in that a different formulation is used in which all the variables are

present at the start rather than being dynamically generated. New constraints are

generated at the nodes of the branch and bound tree. These cuts aim to accelerate the

discovery of the optimal integer solution. For PDPTW and other vehicle routing

problems different families of cuts have been proposed. Examples of branch and cut

methods applied to other pickup and delivery problems include (Lu and Dessouky

2004; Ruland and Rodin 1997). A recent paper by Ropke and Cordeau (2009)

presents a branch and cut and price method and test it on one of the most commonly

used sets of benchmark instances by Li and Lim (2003). The results show that

although the smaller instances can be solved to optimality very efficiently, the larger

instances are still out of reach for exact methods.

Although there are several examples of exact methods for PDP, the majority of

publications are on heuristic methods and in particular metaheuristics. Many of

these approaches use a variant of neighbourhood search. Due to the pairing and

precedence constraints present in PDP but not present in other variants of vehicle

routing problems, there is less choice of neighbourhood operators available for the

problem. There are, however, three operators which were employed in the earlier

metaheuristics. The first is to simply move a pickup and delivery pair from one route

to another. The second is to swap a pair of pickups and deliveries between two

routes. The third is to move the pickup and delivery within a route. Li and Lim

(2003) and Nanry and Barnes (2000) both present metaheuristics built around these

local search operators. These simpler metaheuristics were later outperformed though

by methods based on large neighbourhood search (LNS). As the name implies, LNS

uses much larger neighbourhoods and searches them using heuristic and/or exact

methods. The motivation is that larger neighbourhoods should provide better local

optima. The disadvantage is that they can be slower to search due to their increased

size. One of the first examples of LNS applied to PDP is from Bent and Van

Hentenryck (2006). They explore large neighbourhoods using a branch and bound

method. Ropke and Pisinger (2006) then published an alternative LNS which uses a

simpler heuristic method for creating and searching large neighbourhoods. Their

heuristic is based on the ‘‘disrupt and repair’’ or ‘‘ruin and recreate’’ heuristics.

Customers are iteratively removed from solution routes using heuristics such as

similarity measures and then re-inserted using heuristics such as regret assignment

or greedy assignment. The parameters for these heuristics are dynamically adapted

based on their success rate. Their LNS produced many new best-known solutions on

the Li and Lim benchmark instances. Another paper that has achieved notable results

on these benchmark instances is the Guided Ejection Search of Nagata and

Kobayashi (2010a). The algorithm only aims to optimise the single objective of

reducing the number of vehicles used but does so very effectively. It is a relatively

simple but effective iterative heuristic that randomly adjusts the solution using

customer swaps and moves. At each iteration, attempts are made to insert

heuristically selected customers from removed routes. They later adapted this

method into an evolutionary approach to again further improve their results with
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respect to the full objective function (Nagata and Kobayashi 2010b). There are also

several publications detailing metaheuristics applied to specific variants of PDP. For

example, PDP with transfers (Masson et al. 2012), PDP with LIFO loading

(Cherkesly et al. 2015), single vehicle PDP (Gendreau et al. 1999; Kammarti

et al.2004) and dynamic PDP (Gendreau et al. 2006). For further reading on PDP

there are also several survey and overview papers (Battarra et al. 2014; Berbeglia

et al. 2007; Parragh et al. 2008; Savelsbergh and Sol 1995).

From the above review of related literature, it is clear that PDPTW is a well-

studied variant of the vehicle routing problem. A variety of exact and heuristic

methods have been proposed and this has helped to advance our knowledge into

how to tackle this difficult combinatorial optimization problem. Nevertheless, it is

also clear that large instances of PDPTW remain a difficult challenge to state-of-the-

art techniques. In this paper, an effective and efficient heuristic method is proposed

which uses several tailored neighbourhood moves within a streamlined version of

adaptive large neighbourhood search (Ropke and Pisinger 2006) also incorporating

guided ejection search (Nagata and Kobayashi 2010a). The proposed technique is

not only competitive with state-of-the-art methods but it produces a number of new

best-known solutions for the well-known Li and Lim benchmark instances (2003).

Moreover, this paper also makes a contribution to increase our understanding of

which combination of search mechanisms can result in a highly effective and fast

hybrid metaheuristic algorithm capable of solving large instances of the PDPTW.

Experimental results also show that each of the components plays an essential role

to make the overall algorithm perform very well over a wide range of problem sizes.

In the next section, we provide the problem definition for the benchmark PDPTW

instances tested on. Section 3 introduces the algorithm and Sect. 4 details the

computational results. Finally we present some conclusions and suggested future

research in Sect. 5.

2 Problem definition

A solution to the pickup and delivery routing problem with time windows or

PDPTW is a set of routes for a fleet of vehicles. Each route is executed by one

vehicle and consists of a sequence of pickups and deliveries at customers’ locations.

Each transportation request is a pickup and delivery pair which must be executed in

that order by the same vehicle while satisfying the vehicle capacity and the given

time windows. The goal is to minimise the number of routes, hence the number of

vehicles needed and to minimise the total travelled distance.

2.1 Parameters

M Set of customers 1…m

L Set of locations 0, 1…m where 0 is the depot and 1…m are the customers

P Set of pickup customers

D Set of delivery customers
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The intersection of P and D is the empty set ðP\D ¼ ;Þ and the union of P and D is

M ðP[D ¼ MÞ: Each pickup pi [ P is associated with he corresponding delivery di
[ D. Let:

tij The travel time between locations i and j

dij The distance between locations i and j

si The service duration for location i

ei The earliest time at which the service at location i can start

li The latest time at which the service at location i it must start

A service duration and service window have been included for the depot to make

the model tidier but in the test instances the service duration for the depot is zero

and the service window for the depot is unbounded. This is done in previously

published models also, for example: (Nagata and Kobayashi 2010a).

2.2 Constraints

A route is a sequence of locations visited by a vehicle. A vehicle must start at a

depot, visit at least two customers (corresponding to a pickup and a delivery) and

return to the depot. A route of length n is therefore denoted by v0; v1. . .vn; vnþ1

where v0 and vn?1 are the depot and visits v1…vn are customers. If a route contains a

pickup pi then it must also contain its corresponding delivery di (and vice versa) and

pi must precede di in the sequence. These are the pairing and precedence constraints,

respectively. Each pickup pi has a nonnegative demand qi and the corresponding

delivery di has the demand - qi.

The current total load cvi carried by a vehicle v at a visit i where i C 1 is

cvi ¼
Xi

j¼1

qvj : ð1Þ

All vehicles have an identical capacity Q and at all visits in a route the total carried

load must not exceed the vehicle capacity,

cvi �Q 8vi 2 1. . .nf g: ð2Þ

The begin time bv for each visit’s service in the route is calculated as

bv0 ¼ 0;

bvi ¼ max bvi�1
þ svi�1

þ tvi�1vi ; evif g 8i 2 1. . .nf g: ð3Þ

In a route the services must begin before or at a location’s latest service start time

bvi � lvi 8vi 2 0. . .nf g: ð4Þ

A solution to this PDPTW described above is set of feasible routes which together

service all customers exactly once according to the conditions established in the

formulation.
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2.3 Objectives

The primary objective is to minimise the number of routes, hence the number of

vehicles, in the solution. To compare solutions which have the same number of

routes, a secondary objective is commonly used. This secondary objective is to

minimise the total distance of all routes where distance of a route of length n is

Xn

i¼0

dvi;viþ1
: ð5Þ

3 Hybrid large neighbourhood search and guided ejection search

As discussed in the introduction, a number of methods have been proposed in the

literature to tackle the PDPTW. The algorithmic design proposed here incorporates

specialised neighbourhood operators to enhance the effectiveness of the local

search, adaptive ejection search to reduce the number of routes and streamlined

large neighbourhood search to enhance the efficiency of the search. The motivation

behind the proposed algorithm design was to identify the essential mechanisms to

reduce the number of routes and the total travelled distance and combine them into a

streamlined yet effective and fast method.

The algorithm proposed here is a combination of three separate methods:

(1) A local search which uses four tailored neighbourhood operators.

(2) A simplified version of the adaptive large neighbourhood search (ALNS) of

Ropke and Pisinger (2006). One of the simplifications is to remove the

adaptive feature so this sub-routine will be referred to as LNS only.

3) A version of the guided ejection search (GES) by Nagata and Kobayashi

(2010a).

An outline of the overall algorithm approach is given in Fig. 1 and each of the

steps is described in detail in the following subsections. The overall strategy is to

perform an effective large neighbourhood search on a solution while exploiting

guided ejection chain to reduce the number of routes or perturbing the current

solution if reducing the number of routes is not possible. This balance between

intensification and diversification results in an effective algorithm as shown by the

experimental results presented later in the paper.

Fig. 1 Overall algorithm outline
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3.1 Local search

The main purpose of the local search is to construct good-quality initial solutions

quickly. To do this it uses four neighbourhood structures and the corresponding

operators perform an exhaustive search until no further improvements can be made

with respect to all neighbourhoods. The first three neighbourhood moves are used in

(Li and Lim 2003; Nanry and Barnes 2000). The neighbourhood moves are:

M1: Insert an un-assigned pickup and delivery (PD) pair into an existing route or

create a new route for the PD pair

M2: Un-assign an assigned PD pair and try and insert it into a different route or

create a new route for the PD pair

M3: Un-assign a PD pair (pd1) from a route (r1), un-assign a PD pair (pd2) from a

route (r2) and then try and insert pd1 into route r2 and pd2 into route r1

M4: Un-assign a PD pair (pd1) from a route (r1), un-assign a PD pair (pd2) from a

route (r2) and then try and insert pd1 into route r2 and pd2 into a third route

r3

Note that in all of the neighbourhoods above, when trying to insert a PD pair into

a route the local search tries every possible position for the pickup and for each

feasible position for the pickup, also tries every possible feasible position for the

drop (position refers to order position in the route). This means that each

neighbourhood is explored exhaustively and the best of all neighbour solutions is

selected. Hence, this is part of the intensification mechanism in the proposed

approach. We are not aware of the move M4 being used for PDPTW previously.

The rationale behind this move is to have another mechanism for transferring PD

pairs between routes. M3 does this while maintaining the same number of PD pairs

in each of the two routes involved. In M4 the transfer ends up with two routes

having a different number of PD pairs after the move.

A single neighbour operator is applied exhaustively until no more improving

moves can be made using that operator. The next operator is then similarly applied

exhaustively until no more improving moves are available, and then the next

operator and so on. The order the operators are applied is M1 to M4 as in the list

above. When operator M4 has been exhausted then the local search returns to

operator M1. This process is repeated until there are no available improvements

using any of the operators. For the smaller neighbourhoods defined by operators M1

and M2, when testing a possible insertion, a best improvement strategy is used,

meaning that the insertion is tested on all available routes and the best improvement

move is used. For the larger operators M3 and M4, a first found improvement

strategy is used, meaning that as soon as an improving move is found then it is

accepted. The local search uses the hierarchical objective because it is possible to

reduce the number of routes in the solution using operators M2 and M4.

The intensified local search described above can be completed quickly but the

solutions can often still be significantly improved with respect to the objectives of

minimising the number of routes and minimising total distance. The next step in the

algorithm is to focus on minimising the number of routes used.
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3.2 Guided ejection search

Guided ejection search was originally proposed by Nagata and Braysy (2009) for

the vehicle routing problem with time windows (VRPTW). Nagata and Kobayashi

(2010a) then developed a version for PDPTW. It only focuses on the objective of

minimising the number of routes and their analysis showed that it was very effective

on this single objective. An overview of the procedure is given in Fig. 2.

The method starts by randomly selecting a route and un-assigning all the PD

pairs in it. It then proceeds to try and re-insert the un-assigned pairs over the

remaining routes. When it cannot insert a pair, it un-assigns (ejects) another

pair(s) to allow it to insert it. It then perturbs the partial solution and tries again to

insert an un-assigned pair. This is repeated until either there are no un-assigned

pairs, in which case a route has been successfully removed, or a maximum number

of iterations have been reached. If a route is removed then the procedure is repeated

by selecting another route and un-assigning the pairs within it and then trying to

insert them again over the remaining routes and so on.

The next pair selected for insertion is selected from an un-assigned pairs list on

a last in first out (LIFO) basis. LIFO was also used in (Nagata and Kobayashi

2010a), possibly because it improves the efficacy of the ejection heuristic which

will be described later. When trying to insert the pair each route is tested in a

random order and every possible position for the pair in the route is tested. If a

feasible position for the pair is found then it is inserted. If more than one feasible

position is found then the position for insertion is selected randomly. As with the

local search, testing each possible position means trying each possible position for

the pickup and for each possible position for the pickup also trying each possible

position for the drop.

If the pair cannot be inserted then an attempt is made to insert it by ejecting one

or two pairs from another route. First an attempt is made to insert it by ejecting a

single pair and if this fails then every set of two pairs is tested to see if their ejection

Fig. 2 GES outline
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would allow the insertion. A maximum of two pairs was used for increased speed. If

more than one set of pairs can be ejected to allow the insertion of the pair, then the

set to eject is selected heuristically. Every time an attempt is made to insert a pair, a

counter for that pair is increased by one. The heuristic for choosing which pair to

eject is the pair with the lowest sum of the counter values (i.e. the set that has been

previously attempted to be inserted the least number of times). The motivation

behind the heuristic is that if a pair was previously difficult to insert (i.e. the counter

value is high) then try not to eject it because it may be difficult to insert again.

The perturbation procedure at line 16 of Fig. 2 not only creates the possibility of

later being able to insert pairs but it also reduces the risks of cycling. The

perturbation randomly selects one of two possible move operators (each with 0.5

probability) and then executes the move on the current partial solution. The first

move (PairMove) randomly selects a route and a PD pair within it, then randomly

selects a second route and attempts to move the pair to a feasible position in the

second route. If there is more than one feasible position in the second route then one

is randomly selected. The second move (SwapMove) randomly selects two routes

and a pair within each route. It then un-assigns the pairs and attempts to insert them

into feasible positions in the opposite route. This time it selects the best possible

positions (according to the secondary objective function—minimise total distance)

rather than a random position. The perturbation finishes when ten moves have been

executed.

The implementation in the present work is similar to the original version by

Nagata and Braysy except for two changes. The first difference is at line 14. The

original algorithm examines all sets of pairs for ejection up to a fixed size. The

larger the fixed size, the more sets there are to examine and the longer the algorithm

takes. The approach in this paper only examines sets of length one first. That is, it

tries ejecting a single pair first and then if this fails in allowing the insertion, then it

tries ejecting two pairs. Again the two pairs are selected by minimising the sum of

their previous insertion attempt counters.

The second main difference is the stopping condition. Instead of finishing after a

certain number of iterations or a fixed time limit, the number of iterations is

extended based on the progress of reducing the number of un-assigned pairs. Every

time a new partial solution with a new smallest number of un-assigned pairs is found

then a counter is reset to zero. The counter is increased by one each time an attempt

is made to perturb the solution by doing either PairMove or SwapMove. The

procedure terminates if the counter reaches a predefined value (one million in our

implementation). The motivation behind this heuristic is to terminate quickly if the

progress suggests that the route will not be removed but to provide more time when

the number of un-assigned pairs is being reduced but more slowly. This modified

guided ejection chain mechanism maintains the intensification ability of the original

approach but it also incorporates an adaptive ability to push the intensification or not

according to the current solution.
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3.3 Large neighbourhood search

After the modified GES, the local search is applied again followed by a large

neighbourhood search. An overview of the LNS is shown in Fig. 3.

The LNS can be described as a ‘‘disrupt and repair’’ heuristic. It repeatedly un-

assigns some PD pairs from a solution and then attempts to heuristically re-assign

them but creating an improved solution. The method is based on the ALNS of

Ropke and Pisinger but with several changes. One of the main changes was to

replace a simulated annealing ? noise acceptance criterion with late acceptance hill

climbing (LAHC) (Burke and Bykov 2016). The main reason for this was to have a

streamlined version by simplifying parameter setting because LAHC has only one

parameter to set. LAHC is very similar to SA in that it accepts non-improving

solutions but it replaces the probability-based acceptance criterion by a time-based

deterministic one. At the start of the algorithm, LAHC may accept many non-

improving solutions and so provide more search diversification whereas at the end

the search intensifies as less and less non-improving solutions are accepted. LAHC

is described by Fig. 4. In the figure, the initial solution is the solution created by the

GES phase followed by the local search and the candidate solutions are the solutions

generated by the removal and re-assignment heuristics. The LHC_LEN parameter

was set as 2000 in all the experiments. A small amount of testing was performed in

selecting this parameter but these initial tests suggested that this parameter did not

have a large impact on the overall performance of the entire algorithm. It is possible

that some additional performance gains could be achieved by tuning this parameter

or more advanced sensitivity analysis (or even dynamically adapting it).

In the LNS, two removal heuristics are used: Shaw removal (1998) and random

removal (Ropke and Pisinger 2006; Shaw 1998). At each iteration, one of the

removal heuristics is randomly selected and applied. The Shaw removal heuristic

aims to select a set of PD pairs that are similar. The idea is that if the pairs are

similar then there is more possibility of re-arranging them in a new and possibly

better way. If the pairs are all very different then they will probably be replaced

exactly where they were originally assigned. The pair characteristics that are used to

measure their similarity are: distance from each other, arrival times and demand.

The formula for calculating the similarity is the same as given in Ropke and

Pisinger (2006). The second heuristic is to simply randomly select a set of pairs. The

probability of selecting the Shaw heuristic is set at 0.6, else the random selection

Fig. 3 LNS outline
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heuristic is used. This creates a slight bias towards using the intelligent Shaw

heuristic over the un-intelligent random heuristic. The number of pairs to remove by

each heuristic is a number randomly selected from the range 4–80. These values

were selected based on the results and guidance from (Ropke and Pisinger 2006).

To re-assign the pairs, the regret assignment heuristic only is used (Ropke and

Pisinger 2006). The regret heuristic tries to improve upon greedy assignment by

incorporating look-ahead. It does so by not only considering the best possible route

for a pair insertion but by also the second, third, fourth… kth best routes. When

selecting which pair to insert next it selects pairs that have less possible positions for

insertion that are low cost relative to their other possible positions. The motivation

is that if that pair is not inserted now there may be regret later if that position is no

longer available due to a previous insertion in the route. The parameter k is

randomly selected from 2, 3, 4, 5, #R, where #R is the number of routes in the

current solution.

Although the GES only uses the objective of minimising the number of routes

and ignores the objective of minimising distance, the LNS uses the full hierarchical

objective. It is possible for the LNS to remove routes if a removal heuristic selects a

set of pairs which includes all the pairs for an entire route and then the assignment

heuristic re-assigns them over other routes. During the testing we did observe the

LNS reducing the number of routes in a solution occasionally but as will be shown,

the GES is far more effective for minimising the total number of routes.

The LNS stops when a minimum number of iterations (800 in this paper) without

improvement have been done or both of the following are satisfied:

Fig. 4 LAHC outline
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(1) There was no improvement in the last 400 iterations.

(2) And a minimum time limit has been reached, set as twice the time taken to

complete the GES phase.

This streamlined LNS maintains the diversification and intensification ability but

at the same time it excludes the adaptive mechanism which was shown to provide

only a few extra percent benefit in performance (Ropke and Pisinger 2006).

3.4 Restarts

After the LNS is completed, the overall algorithm goes to step 3 in Fig. 1 to try

reducing the number of vehicles again in the best solution found so far, using GES.

After, if the number of vehicles was not reduced then the best solution so far is

perturbed using the same perturbation function as in GES. The number of

perturbation moves is set as the instance’s number of PD pairs multiplied by 0.2.

This is larger than the perturbation used within the GES phase where only ten moves

are made. A larger perturbation is performed here to increase the search

diversification, whereas within the GES phase the perturbation is to try and allow

a single PD pair to be inserted. The algorithm then continues by applying the local

search followed by LNS again and so on. The algorithm terminates when a

maximum time limit is reached. Hence, the heuristic approach proposed in this

paper alternates between a random (when no route is removed) and a greedy (when

a route is removed) perturbation to the current solution to then perform an effective

LNS that balances intensification and diversification. All algorithm parameters are

summarised in Table 1.

4 Results

To test the algorithm, the benchmark instances of Li and Lim (2003) are used.1

There are approximately 360 instances categorised into six groups of different sizes

ranging from approximately 50 PD pairs up to 500 PD pairs. Each group is also

subdivided into instances with clustered locations, randomly distributed locations

and randomly clustered locations. Each subgroup is then further split by instances

with short planning horizons and instances with long planning horizons.

Three sets of experiments were performed. The first was to investigate the benefit

of the adaptive heuristic added to the GES. As described earlier, this heuristic

terminates the GES phase more quickly when the progress suggests that an extra

route will not be eliminated but allows more time when the progress suggests it is

getting closer to removing a route. The second set of experiments was to investigate

different configurations of the individual components and their combined benefit.

The third analysis was to simply compare solutions generated with the current best

knowns.

1 Available at http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/.
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For the first two sets of experiments, five different algorithms were applied to all

the test instances. The algorithms tested are the full algorithm and then four other

versions, each with different components removed. The aim was to investigate the

impact of the individual components or whether there was not any benefit in

combining components when given the same computation time, or if combining the

algorithms produces a more effective overall algorithm. The configurations were as

follows:

1. LS ? AGES ? LNS (Algo1): The full algorithm as described and using the

adaptive heuristic for the GES (labelled Adaptive GES).

2. LS ? GES ? LNS (Algo2): The same as 1 but without the adaptive heuristic in

GES.

3. LS ? AGES (Algo3): The same as 1 but without the LNS phase, to see if the

LS alone is sufficient at minimising the distance objective.

4. LS ? LNS (Algo4): The same as 1 but without the AGES phase which aims at

minimising total routes. LS and LNS are both also able to minimise total routes

on their own but this test was to investigate whether they are sufficient on their

own if given the extra time not used by the removed AGES phase.

5. AGES ? LNS (Algo5): The same as 1 but with the LS phase removed.

Previous papers indicated that LNS is much more effective than LS so there

Table 1 Parameters summary

GES

Maximum total perturbs 1,000,000

Perturbation

Max perturbs within GES 10

Max perturbs during Restarts Max [20, m * 0.2]

Probability of selecting

PairMove

0.5

Probability of selecting

SwapMove

0.5

LNS

Stopping conditions Min 800 consecutive iterations without improvement OR (Min 400

without improvement AND Min 29 CPU time used by GES)

LAHC array length

(LHC_LEN)

2000

Min PD pairs removed by

removal heuristic

4

Max PD pairs removed by

removal heuristic

80

Probability of selecting Shaw

heuristic

0.6

Probability of selecting

removal heuristic

0.4
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may be no benefit in including the LS phase, and instead just giving more time

to the LNS phase.

Note that GES will exit sooner than AGES and so LNS in Algo2 will also have

less time than LNS in Algo1 per iteration. However, because all algorithms are

being run for the same fixed time Algo2 will complete more iterations than Algo1

and so the overall CPU time distributed between the different phases will be similar

overall.

On the ‘100’ group of instances, 5 min of computation time was allowed. On the

‘200’ and ‘400’ groups, 15 min. On the ‘600’ group, 30 min and on the ‘800’ and

‘1000’ groups, 60 min. These values were chosen based on similar run times in

other papers (Ropke and Pisinger 2006; Nagata and Kobayashi 2010a). All runs

were performed on an Intel Xeon CPU E5-1620 @ 3.5 GHz utilising a single core

per run. 32 GB RAM was available (although testing showed the algorithm requires

a maximum of 70 MB on the largest instances). The code was written in C#.

Table 2 lists the total number of vehicles used and the total distance for all the

solutions for each group of instances, for each algorithm. These results are further

broken down in Table 3 in which we rank the algorithms by how they performed

against each other. For each group of instances, we record the total number of times

that each algorithm found the best solution, the second best solution, the third best,

fourth best and fifth best out of the five algorithms. Kendall’s non-parametric test is

applied to the rankings to determine if the pairwise comparisons between two

algorithms are statistically significant. The mean values and P values used in the

statistical test are given in Table 4. Pairwise comparisons are made to see if the

differences are statistically significant at the 0.05 level.

For the pairwise comparisons we define A\B as meaning A has lower rank than

B but the pairwise comparison is not significant. We define A � B as meaning

A has lower rank than B and the pairwise comparison is statistically significant. The

rankings are as follows:

Over all instances we may rank the five algorithms as Algo1\Algo2

� Algo5 � Algo4\Algo3.

On the ‘100’ instances the rank result is Algo2\Algo1

\Algo4\Algo3\Algo5.

On the ‘200’ instances the rank result is Algo2\Algo1 � Algo4

\Algo5\Algo3.

On the ‘400’ instances the rank result is Algo2\Algo1 � Algo5

\Algo3\Algo4.

On the ‘600’ instances the rank result is Algo1\Algo2\Algo5 � Algo3\ -

Algo4. (Algo1 � Algo5).

On the ‘800’ instances the rank result is Algo1\Algo2\Algo5

� Algo3\Algo4.

On the ‘1000’ instances the rank result is Algo1\Algo2\Algo5

� Algo3\Algo4.
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Looking at Table 2 adaptive GES produces solutions with less routes than the

GES (apart from the 100 and 200 instances where they are the same). When we

compare the rankings pairwise, GES is better on the smaller instances but AGES is

better on the larger instances and over all instances. However, the mean rankings are

too similar to say the difference is statistically significant.

Investigating the benefit of including the (A)GES phase, it is clear that it is very

effective. Algo4 (no GES) is always worse than Algo1 and Algo2 (the full

algorithms with AGES or GES) and the pairwise comparisons are statistically

significant. Similarly, it is clear than the LNS is an important component of the

algorithm. When the LNS phase is removed (Algo3), the full algorithms (Algo1 and

Algo2) are significantly better. It is clear than giving extra time and more iterations

to LS and GES is not as effective as including the LNS albeit with less time for each

phase and less iterations. Algo5 is also statistically better than Algo3 showing that

using LNS instead of LS is more effective. Finally, we can conclude that over all

instances, including the LS phase is more effective than not including it (Algo5) but

on the largest instances 800 and 1000, the superiority is still visible in the mean

rankings but is not large enough to be statistically significant. These results show

that combining the three components in this configuration, local search with

specialised moves, streamlined large neighbourhood search and adaptive guided

ejection search, is more effective than using just two of the components. Using all

three components means there is less time available for each method but it still more

effective than just using two of the components even if there is more time available

for each individual phase.

Next, we compare the results against the best-known results in peer-reviewed

publications and the current best knowns that have been verified on the SINTEF

website but have not been published in peer-reviewed outlets and for which no

information is available about computation times and methods used. For comparing

against published methods (Tables 2, 5), we use the results of the adaptive LNS

method of (Ropke and Pisinger 2006) and the GES method of (Nagata and

Kobayashi 2010a). These are the current best-known published results. Comparing

against these results is not simple though. For the best results of (Ropke and Pisinger

2006) we do not know the computation times. For their best results the authors

‘‘report the best solutions obtained in several experiments with our ALNS heuristic

Table 4 Algorithm mean

rankings and P values
Test P value Mean ranks

Algo1 Algo2 Algo3 Algo4 Algo5

All \ 0.01 2.25 2.38 3.69 3.65 3.03

100 \ 0.01 2.72 2.68 3.38 2.80 3.41

200 \ 0.01 2.3 2.21 3.84 3.23 3.42

400 \ 0.01 2.26 2.11 3.76 3.78 3.10

600 \ 0.01 2.04 2.31 3.68 4.11 2.87

800 \ 0.01 2.11 2.46 3.69 3.88 2.87

1000 \ 0.01 2.09 2.57 3.76 4.07 2.51
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and with various parameter settings’’. We do not know how many experiments were

run but we have an indication of computation times which are from 66 s per run on

the smallest instances to 5370 s per run on the largest instances. We also know that

the heuristic was run at least ‘‘5 or 10 times on each instance’’ (not including the

different parameter setting testing) and that a 1.5 GHz Pentium IV processor was

used. Again, comparing against Nagata and Kobayashi is difficult because their

algorithm only minimises the number of vehicles used and we know from our

results that using less vehicles often increases the total distance. They used an

Opteron 2.6 GHz processor. Due to the unknown computation times, the differences

in computing power and the difficulty in comparing summed values for a problem

with hierarchical objectives we cannot have strong conclusions. The GES method

produces solutions with less vehicles in total but the algorithm uses all its time

minimising this objective where as our method only uses a large proportion of its

time also minimising distance. The ALNS uses both objectives but produces

solutions with more vehicles in total. Comparing total distance is not helpful

because often solutions with less vehicles have longer distance. To assist future

researchers and facilitate future comparisons, we have included in this paper in

Table 12. Results for a Single Run of Algo1 Table 12 our results for a single run for

a fixed run time for a single configuration (Algo1).

For the next comparison, we compare against best knowns from published and

unpublished methods. Tables 5, 6, 7, 8, 9 list the solutions found after applying the

LS ? AGES ? LNS algorithm on all instances. The algorithm was allowed 1 h

computation but the best reported may be the best from several tests with different

random seeds. Each table lists the solutions for each set of instances grouped by the

number of locations. The tables also list the previous best-known solutions for each

instance, and the date it was found. The information is taken from SINTEF’s

website which is regularly updated.2 Solutions in italics are equal to previous best

knowns and solutions in bold italics are new best knowns.

The results show that the algorithm was able to find a large number of new best-

known solutions. On the 100 site instances the algorithm equalled the best knowns

Table 5 Comparing against other methods

Instances LNS GES LS ? AGES ? LNS

Veh. Dist. t (s) Veh. Dist. t (s) Veh. Dist. t (s)

100 402 56,060 – – – 402 58,163.22 300

200 606 180,419 – 601 – 3000 601 186,158.57 900

400 1157 420,396 – 1139 – 3000 1142 447,627.39 900

600 1664 860,898 – 1636 – 3000 1643 935,948.36 1800

800 2181 1,423,063 – 2135 – 3000 2146 1,551,495.35 3600

1000 2646 2,122,922 – 2613 – 3000 2634 2,310,830.27 3600

2 Retrieved from http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/ on 25-Feb-2016.
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on all instances. On the 200 site instances 35 best knowns were equalled and seven

new best knowns were found (out of 60). Of the seven new best knowns 3 were

improvements in terms of the number of vehicles. For example, on the instance

LR2_2_6, the new best known has a solution of three vehicles, whereas the previous

had four vehicles. This was an impressive result because the previous best known

had stood for 15 years. On the 400 site instances there are 19 equal best knowns and

22 new best knowns (out of 60). On the 600 site instances there are six equal best

knowns and 33 new best knowns (out of 60). On the 800 site instances there are five

equal best knowns and 45 new best knowns (out of 60). On the 1000 site instances

there are four equal best knowns and 35 new best knowns (out of 58). For many of

the new best knowns the primary objective of reducing the number of vehicles is

improved. This is particularly noticeable on the larger instances where the number

of vehicles is reduced by more than one vehicle. For example, on instance

LRC1_10_5, the previous best known required 76 vehicles, whereas the new best

known has only 72 vehicles. This demonstrates the benefit of using the AGES

within the algorithm specifically for reducing the number of vehicles.

5 Conclusion

This paper proposes an effective and fast hybrid metaheuristic algorithm to tackle

the pickup and delivery problem with time windows (PDPTW). The approach

performs a large neighbourhood search (LNS) that incorporates mechanisms for

intensification and diversification. The approach also incorporates mechanisms to

perturb the current solution. Such perturbation can be greedy by removing a full

route from the solution through guided ejection search, or random when such

removal is not successful. Then, alternating the LNS with guided ejection search

and local search has resulted in a relatively simple but demonstrably effective

framework. The guided ejection search is specifically designed for minimising the

number of routes within solutions. An adaptive heuristic is developed for the guided

ejection search phase which provides more time to the heuristic when its progress

suggests it is close to removing a route. The local search and large neighbourhood

search are more focused on minimising travel distances. The aim is to combine

these strengths into an overall robust and successful method. A new search

neighbourhood operator was added to the local search method and the LNS was

streamlined and simplified without loss of efficacy.

The results show that when any one of the components is removed the results are

significantly worse. In other words, two components given more time is not as

effective as the three components but with less time for each component. The

adaptive heuristic for the GES phase is particularly effective on the larger instances.

Including the local search phase benefits the smaller instances and including the

LNS phase is better for all instance sizes. When tested on a large and well used

benchmark dataset, the algorithm is able to find 142 (out of 354 instances) new best-

known solutions, confirming its efficacy. The many new best-known solutions

obtained with the LS ? AGES ? LNS heuristic algorithm proposed here have been

already verified and hence published in the SINTEF’s website.
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Although a large amount of research, development and testing was required to

develop this algorithm, there are still possibilities for further research. The Li and

Lim benchmark instances are a very useful resource that have stimulated and

enabled innovative research within a competitive and verifiable environment.

Although that research forms the basis for many commercial vehicle routing

problem solvers (Hall and Partyka 2016) it could be argued that more realistic

benchmark instances could lead to even more effective methods for real-world

problems. Datasets that contain requirements, such as driver break rules, maximum

driving hours, working time constraints, and soft time windows, could have

significant practical benefit. We believe that the algorithm presented could be

adapted to handle these requirements but there would undoubtedly be new research

required for such new challenges within benchmark datasets.
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