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Collision‑enhanced friction 
of a bouncing ball on a rough 
vibrating surface
N. D. Smith, M. R. Swift & M. I. Smith*

We describe experiments and simulations to investigate the dynamics of a ball bouncing on a rough 
vibrating surface. Directly measuring the impulse due to each bounce we find that the frictional 
interaction with the surface is strongly enhanced near to the side wall. The enhanced dissipation arises 
as a consequence of the coupling between the collision, rotation and surface friction. This dissipation, 
which for our experimental conditions was estimated to be up to three times larger than the more 
obvious inelastic collision, can result in an enhanced probability density near boundaries and particle–
particle spatial correlations. Our findings imply that the effective particle collision properties cannot 
be considered independently of the surface’s frictional properties.

There is currently much interest in understanding the statistical properties of systems driven far from 
 equilibrium1. Often such systems exhibit complex collective behaviour; examples include jamming in  colloids2, 
phase separation in active  matter3 and pattern formation in granular  media4,5. A unifying theoretical framework 
akin to equilibrium  thermodynamics6 is still lacking for these driven dissipative systems. In thermodynamic 
equilibrium, mesoscopic modelling relies heavily on the fluctuation-dissipation theorem, which relates mac-
roscopic dissipation to thermal  fluctuations7. A well-known example is Brownian motion, in which thermal 
fluctuations are balanced by viscous drag.

Grains vibrated on a roughened surface have some features in common with molecular  fluids8 while 
also exhibiting non-equilibrium effects, including anomalous velocity  statistics9–11 and long-range spatial 
 correlations12–14. Vibrated grains, under certain conditions, also show features in common with some active 
matter systems, such as an increasing probability density as one approaches  boundaries15–17.

Some common mesoscopic descriptions of driven granular media assume that the interaction between the 
grains and the surface can be modelled by Gaussian  noise18 and a velocity dependent drag or frictional  term14,19. 
The equations of motion reflect the underlying assumption that the motion of particles can be separated into a 
spatially uniform term due to particle–surface interactions (noise and friction) and terms due to particle colli-
sions (other particles and boundaries). Such an approximation can be justified as being the leading order terms 
in a Kramers–Moyal  expansion7 and is found to be adequate for describing dense granular  gases19. Factors such 
as particle rotation are therefore sometimes assumed to be only of secondary  importance20. In quasi-2d experi-
ments it is also generally true that the rotational degrees of freedom of the particle cannot be explicitly measured.

Here we describe experiments using a single sphere vibrated on a roughened surface, confined laterally in a 
small cell (Fig. 1a). Directly measuring the velocity dependent frictional force that occurs during each bounce 
of the ball reveals that it depends strongly upon the distance of the particle from the cell walls. Simulations that 
include particle rotation allow us to explain this behaviour. We find that if rolling and surface friction are com-
bined with a collision (even if elastic) then the frictional loss due to the surface is amplified. This simple mecha-
nism has potential consequences for the density enhancement at boundaries and short range particle–particle 
correlations. Indeed, we illustrate that this combination of elastic collision, particle rotation and surface friction 
may play a more influential role than the collisional losses due to inelasticity. This effect could be an important 
consideration when comparing different experiments and simulations, and in developing mesoscopic models 
of granular media.

A number of studies have made detailed experimental measurements of the collisional properties of 
particles impacting surfaces, from which normal and tangential coefficients of restitution can be accurately 
 measured21,22. Whilst valuable, in a quasi-2d experiment the bounce of a ball is linked to the preceding bounce(s) 
and collision(s), which determine the distribution of incident linear and rotational velocities. This is further com-
plicated by the relative phase of the vertically oscillating surface at which bounces on the surface take  place23,24. 
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The coupling between particle–wall or particle–particle collisions and bounces on the vibrating surface, rather 
than the basic collisional properties of particles, are the focus of this study.

Methods
The experiment consists of a small cell (width 30 mm, depth 20 mm), with an aluminium base covered with 
sand paper (grit size ∼ 201 µ m) and Perspex walls. The cell was vibrated vertically with a sinusoidal motion, 
amplitude A, at a frequency f =50Hz, and a range of dimensionless accelerations Ŵ = A(2π f )2/g . The motion 
of a 10 mm diameter Delrin ball was filmed at 500 fps (Optronis CL600x2). For each surface acceleration Ŵ , we 
collected 3 × 6s movies of the ball’s motion.

For simulations, the ball was modelled as a sphere with both translational and rotational degrees of freedom. 
It is confined to move and rotate in 2d and bounces on a surface which is created from small particles, spaced 
at regular intervals. In the simulation the 10 mm diameter ball was confined in the x direction by two walls 
30 mm apart, as per the experiment. The end walls in the simulation have no loss and any influence of the front 
and back faces present in the experiment was ignored. The model of the ball has collisional dynamics controlled 
by a number of parameters: the normal coefficient of restitution e, the coefficient of tangential sliding friction 
µ , the mean radii of the surface particles and the width of their size distribution (full details are given in sup-
plementary information).

The motion, rotation and bounces of the ball, together with the surface motion, were tracked throughout 
each experiment, Fig. 1a,b (also supplementary information and movie 1). The rotations of the ball were tracked 
using black ink dots on the ball’s surface. From these measurements we calculated the velocity distributions (sup-
plementary Fig. 2) and the correlation between translational, vx , and rotational, ωz , motion vx/Rωz (Fig. 1c). For 
convenience, we define a clockwise rotation of the ball as positive. Using this sign convention, when vx/Rωz = 1 
the translational motion of the ball matches its rotation as it would when rolling. Whilst this is the most prob-
able value there is a significant distribution, indicating that the ball’s rotation can become out of sync with its 
translation.

Whilst we can measure the horizontal velocity immediately before ( vx ) and after ( v′x ) each bounce, it is not 
possible to determine the time the ball is in contact with the surface. This is due to both time resolution and the 
difficulty of defining ‘in contact’ visually. We therefore measure �vx = v′x − vx rather than the force applied to 
the ball.

Results and discussion
Figure 2a shows an example dataset for a ball bouncing on a surface with dimensionless acceleration Ŵ of 3.25. 
For any given horizontal velocity, vx , there are a large range of possible changes in velocity, �vx . However, as 
the horizontal velocity of the ball prior to a bounce becomes increasingly positive, the change in velocity is 
on average increasingly negative. The gradient of a linear fit to d�vx/dvx characterises the average fractional 
change, which is proportional to the frictional impulse. The blue dots shown in Fig. 2a occur when the ball is in 
the central region of the cell. In all experiments we observed a negative gradient d�vx/dvx ≈ −0.08 . However, 

Figure 1.  Bouncing ball experiment. (a) The position of the surface (blue) and ball (green) are tracked. The 
rotation of the ball is also measured by tracking the motion of black dots (red) on the ball surface. (b) The 
location of a bounce is identified when dy/dt changes from negative to positive. (c) Histogram of vx/Rωz . The 
rolling condition occurs when vx/Rωz = 1 .  (Figure prepared using Veusz https ://veusz .githu b.io).

https://veusz.github.io


3

Vol.:(0123456789)

Scientific Reports |          (2021) 11:442  | https://doi.org/10.1038/s41598-020-80067-w

www.nature.com/scientificreports/

separating out the data that is obtained when the ball is within 1 mm of the two end walls resulted in a much 
larger negative gradient ∼ −1 . Indeed Fig. 2b, which shows the bounce data binned by distance from each end 
wall, indicates that the gradient is substantially affected a few millimetres from the end wall. It is well known 
that there are collisional losses due to boundaries that introduce spatial variations in the velocity  distribution15. 
However, we emphasise that the behaviour reported here is very different. In these experiments the velocities 
are extracted immediately before and after each bounce on the horizontal surface. The measured value of �vx is 
not therefore due to collisional losses with the end walls.

Whilst this finding is intriguing, there are a number of inherent limitations with the experiment. Firstly, the 
strong confinement of the particle in the z direction means part of the measured frictional interaction may arise 
from the ball glancing off the front or rear faces of the  cell20. Secondly, the ball’s velocity or angular velocity vector 
may not be always solely in x or z. We would therefore measure a reduced velocity component vx when the ball 
moves in the z direction (see discussion supplementary information). Thirdly, it is possible that collisions with 
the moving sidewall could modify the distribution of vertical velocities relative to the surface. Since the relative 
impact velocity sets the normal contact force it could modify the friction. It is not clear that either of the first two 
mechanisms should correlate with the x position of the ball and measurements of the relative vertical velocity 
of the ball showed no significant changes near to the sidewalls. However, in order to understand the enhanced 
friction and rule out such experimental contributions, we performed simulations of the bouncing  ball25,26.

Our simulation exhibits a similar behaviour to the experiment with a substantial increase in frictional loss 
associated with the wall. The simulation allows us to directly detect the collision with the wall and hence in 
Fig. 2c the red points indicate the bounce immediately following a collision with the wall, thereby enabling a 
much more direct measurement of the effect of the wall than is possible in experiment. Figure 2d shows how the 
mean frictional loss upon bouncing varies with position in the cell. There are quantitative differences between 
simulation and experiment, presumably due to the differences outlined earlier or the simplistic assumption that 
the sandpaper surface can be modelled as a set of spheres. However, it appears that the 2d simulations capture 
the essential features of the experiment and exhibit a similar spatial dependence on the distance to the end wall. 
This is encouraging since although a number of parameters were tuned to achieve the correct ball dynamics in 
the centre of the cell, the changes due to the wall arise naturally with no additional constraints.

To understand the origin of the enhanced loss near the walls, one must include the rotational motion of the 
ball. Consider an idealised case of a ball which bounces across a flat stationary surface with a tangential friction 
coefficient. The ball will experience no frictional losses provided its translational velocity ( vx ) equals its rotational 

Figure 2.  Friction of a bouncing ball. (a) Experimental measurement of bouncing ball ( Ŵ = 3.25). The change in 
velocity at each bounce within 1 mm of the end walls (red) and the centre of the cell (blue). The gradient of the 
line indicates the frictional impulse. (b) The frictional impulse at different distances from the side wall. Ŵ = 2.25 
(blue), 2.75 (yellow), 3.25 (red). (c) Simulation of a bouncing ball. The change in velocity of particles whose last 
collision was with the end wall (red) and those whose last collision was with the base (blue). (d) The frictional 
impulse for simulation at different distances from the side wall. Ŵ = 2.25 (blue), 2.75 (yellow), 3.25 (red). (Figure 
prepared using Veusz https ://veusz .githu b.io).

https://veusz.github.io


4

Vol:.(1234567890)

Scientific Reports |          (2021) 11:442  | https://doi.org/10.1038/s41598-020-80067-w

www.nature.com/scientificreports/

velocity ( ωz ) multiplied by the ball radius (R) (i.e. vx/Rωz = 1 ). This is because the relative contact velocity 
between ball and surface at the point of contact ( vc = vx − Rωz ) is zero. This means the ball and surface do not 
slide past one another, generating friction, but roll during the bounce. If vx/Rωz deviates from 1 the ball experi-
ences a frictional force which either increases vx and decreases Rωz , or vice versa, to push the ball back towards 
the condition for rolling. In the full simulation, in the middle of the cell these deviations in vx/Rωz from rolling 
occur due to the random kicks received from the roughened base. One therefore observes a kind of dynamic 
equilibrium in which the kicks result in deviations from vx/Rωz = 1 (Figs. 1c and 3a) but the nature of a ball 
bouncing on a frictional surface is to tend back towards the condition for rolling.

However, upon reaching the wall there is an additional factor to consider. The collision of the ball with a 
smooth wall reverses the horizontal velocity ( v′x = −vx ) of the ball without changing the sign of its rotational 
velocity ( ω′

z = ωz ). If the ball prior to the collision satisfies the rolling condition vx = Rωz , this would then be 
modified to a value of v′x/Rω′

z ≈ −1 . Figure 3 illustrates how the reflection due to a wall results in a complete 
reversal of the distribution of vx/Rωz . The data in red includes only those points which had hit the side wall 
prior to bouncing. Whilst the magnitude of the frictional force is µN , where N the normal force due to contacts, 
the sign of the frictional force is determined by the relative contact velocity of the point of contact. In this case 
vc = v′x − (Rω′

z) = −2vx . Consequently, the average behaviour results in a large negative frictional impulse.
The introduction of frictional/lossy side walls, as might occur in the experiment, undoubtedly complicates 

this picture but the change in rotation has no a priori reason to be correlated with the reversal of the translational 
velocity. Consequently, when a bounce occurs immediately after a collision with the wall it results in a larger 
subsequent frictional interaction with the surface, which would explain the strong enhancement in measured 
loss in Fig. 2b,d near to the wall. This apparently simple loss mechanism which we refer to as relative contact 
velocity friction has not, to our knowledge, been strongly highlighted in the literature but could have important 
consequences for understanding granular systems.

Our result implies that there is an observed loss due to the wall (even if the collision is elastic) which varies 
with the frictional nature of the vibrating base. In this simplest of non-equilibrium experiments, losses due to 
a perfectly elastic wall result in an increased probability density near to the boundary (see Fig. 3b). That this is 
a consequence of the rotational nature of the particle can be seen through comparison with a system where the 
tangential friction coefficient is set to zero removing the rotational torques on the ball (yellow). In such a situa-
tion the probability density is completely uniform. It is well known that active matter systems result in density 
enhancements at a wall due to a “memory” or  persistence27. Similar effects arise here, where a “memory” of the 
previous bounce and direction of travel arise as a consequence of the persistence of rotation during a collision 
with boundaries.

The apparent energy loss of a particle when it collides with the side wall can therefore have two contributions: 
the inelasticity of the collision and the increased friction during the next bounce on the surface. An interesting 
question is: which of these mechanisms is more pronounced? The answer to this question clearly depends on 
the details of the experiment and relative strengths of, for example, the inelasticity of the collision and amount 
of friction. However, we can show that, at least in our experiment, the coupling between elastic collision, rota-
tion and friction is much more significant. Figure 3b shows how the probability density of the particle in the cell 
depends on distance from the wall. The losses of the rotating ball, colliding with an elastic wall can be compared 
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Figure 3.  The effect of the wall. (a) Histograms of vx/Rωz for a simulated bouncing ball immediately after (red) 
or without (blue) a preceding collision with a wall. (b) Probability density plot as a function of the position in 
the cell on a log–log scale. The magenta plot shows the case of a rolling ball which undergoes an elastic collision 
with the cell walls. Both the remaining plots have zero tangential friction coefficient which stops the ball 
rotating. These simulations are done with an elastic (yellow) and inelastic (cyan) wall collision. Rolling results 
in a much larger density enhancement at the wall than inelasticity. The density profile shows a power law like 
dependence. (Figure prepared using Veusz https ://veusz .githu b.io).
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with a non-rotating ball colliding with inelastic side wall (r=0.8). The probability density enhancement is much 
less pronounced due to inelasticity. Density enhancements near walls have been studied for a variety of active 
matter systems. Non-interacting Active Brownian Particles were shown to give rise to an exponential density 
enhancement at the  wall16. Similar effects have also been observed for motile  bacteria17, though in this latter 
case the enhancements are a collective phenomenon. Our data with rotation appears to result in a power law 
dependence of the probability density with distance (see Fig. 3b, inset), with a slope of approximately -0.4. It is 
not clear exactly what controls the exponent in each of our simulations, though the addition of rotation appears 
to increase the value significantly compared to the inelastic case. Power-law correlations are also know to exist 
in one-dimensional particle models without  rotation18,28.

Many experiments focus on regions away from the boundaries to minimise their influence, and simulations 
frequently use periodic boundary conditions. However, it should be realised that the relative contact velocity 
friction loss mechanism is also relevant to inter-particle collisions. If one considers two particles which satisfy 
the rolling condition undergoing a collision, the relative particle velocities would also reverse, without a com-
mensurate reversal in angular velocity. Thus the frictional interaction between a particle and the base should also 
enhance loss in particle–particle collisions and result in post collisional density correlations.

To demonstrate this we performed simulations of two 10 mm diameter balls bouncing on a vibrated surface 
as before. The cell has twice the width of our earlier simulations (60 mm) and has periodic boundary conditions 
as opposed to hard walls. We consider the simplest possible case in which the spheres have a normal coefficient 
of restitution and tangential loss coefficient when interacting with the vibrating surface. We consider the cases 
in which particle–particle collisions are either elastic or inelastic (e = 0.8) . The changes in velocity as a function 
of initial velocity at each bounce of one of the balls are shown in Fig. 4a (compare Fig. 2c). We compare those 
changes immediately following a collision (red) with all other bounces (blue). The mean frictional impulse 
received after a collision is significantly enhanced for a given horizontal velocity. In Fig. 4b we compare the 
probability density of finding particles at a given separation (compare Fig. 3b). The quantity |�x| − 2R = 0 
when the two balls touch. As before, in the absence of a tangential friction component (no rolling), the ball’s 
probability density does not depend on position (yellow). The addition of inelastic collisions (cyan) results in a 
small correlation in the two particle’s positions. However, the addition of relative contact velocity friction (with 
elastic collisions) leads to an enhanced probability density of finding particles close together (magenta). Both 
these results are qualitatively the same as those observed for ball–wall collisions, illustrating that these ideas 
need to be taken into account even in large systems where the effects of the wall can be ignored. Such behaviour 
is similar to that observed in active matter systems in which the persistence of motion can result in motility 
induced  clustering3. This raises interesting questions about to what extent driven granulars and active matter 
systems share an underlying  physics27.

Relative contact velocity friction represents an additional dissipative mechanism that leads to collective 
behaviour in granular systems. Experimentalists routinely report the size and material of granular particles used 
in an experiment in a bid to allow comparisons with other work to be made. However, our study shows that this 
information, without knowledge of the surface used, leads to an effective uncertainty on the basic collisional 

b

a

 (m
m

s-1
)

Δ 
V

x

−100

−50

0

50

100

Vx (mms-1)
−200 −100 0 100 200

P(
x)

0.05

|Δ x|-2R (mm)
1 10

Figure 4.  Simulations of 2 bouncing balls in a 60 mm wide periodic box. (a) frictional impulse due to a normal 
bounce (blue) and a bounce following a collision with the other ball (red). (b) Separation probability between 
the two particles on a log–log scale. We compare elastic collisions with (magenta) and without (yellow) rolling, 
and an inelastic collision without rolling (cyan). The relative contact velocity friction mechanism provides the 
most significant loss mechanism. (Figure prepared using Veusz https ://veusz .githu b.io).
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properties of particles, thereby severely hampering reproducibility or a quantitative comparison. This may con-
tribute to an explanation for why apparently subtle differences in granular experiments have frequently lead to 
qualitatively different  behaviours29.

Our argument is that if a collision results in the relative velocity of the contact point vc at the next bounce 
being in the opposite direction to vx there will on average be a reduction in the particle velocity due to the tan-
gential sliding friction. Indeed we now proceed to show how the same mechanism is partially responsible for 
the regular frictional interactions of the ball with the vibrating base itself. There are two asymmetries during a 
bounce, which on average produce a backwards relative motion of the contact point, resulting in an enhanced 
frictional force at the next bounce.

Firstly, there is an asymmetry due to the relative motion of the surface and ball. Figure 4 shows a histogram 
of the phase of ball bounces relative to the surface oscillation. The ball mostly collides with the upwards moving 
surface.

The second asymmetry arises from surface geometry, combined with the horizontal velocity of the ball. The 
roughened surface consists of particles of different sizes arranged randomly next to one another. The probability 
of hitting an upward sloping collection of particles relative to downward sloping collection of particles increases 
with vx (see schematic Fig. 5, inset). Since the coefficient of restitution modifies the velocity normal to the surface, 
and the average local surface normal has a horizontal component that opposes vx , the ball will tend to slow down 
(cf rolling friction)30. However, in addition to this collisional loss, there is a frictional mechanism analogous to 
that outlined above in connection with the wall collision. Assuming, on average, a positive surface velocity vs , a 
negative vertical ball velocity vy and a positive local surface slope θ ∼ a/R , an approximate expression for vc is

It is the third term on the RHS of this equation, which is on average negative, that breaks the symmetry of the 
contact velocity. The frictional force which on average acts forwards in this case applies a ‘backspin’ to the ball 
which is larger than experienced on a static surface. This reduction in rotation relative to translation then results 
in enhanced friction when the ball next bounces. As a test of these ideas we have compared simulations with and 
without a tangential loss coefficient (µ = 0) . Without Collisional losses, as experienced in rolling friction, the 
result is a measured value of d�vx/dvx about a factor of 3 smaller than in the case with relative contact velocity 
friction present.

Conclusions
In conclusion, the rotational motion of a ball on a frictional surface has important consequences for the collisions 
between particles and experimental boundaries. Collisions result in changes to the horizontal velocity without 
commensurate changes in the rotation, resulting in a strongly enhanced frictional loss. This implies that the 
ball’s apparent loss during a collision can depend more on the increased frictional interaction with the surface 
than the inelasticity of the wall, or the particle–particle collisions. It was also shown that two asymmetries which 
arise from the phase of the ball bounce relative to the surface motion and the local surface slope lead to a similar 
mechanism, which is partially responsible for surface friction. This has implications for mesoscopic modelling 
approaches but also for the comparison of different  experiments9,10,29,31. The behaviour also highlights a deeper 
connection between shaken granular and active matter  systems27.

(1)vc ≈ vx − ωzR − (vs − vy)
a

R
.

Figure 5.  Histogram of the phase of ball bounces (left) relative to the surface height (right). The probability 
of a collision during the upwards phase of the surface is strongly enhanced. Inset: Schematic showing the 
asymmetry due to surface structure. As vx increases, the relative probability of hitting ‘upwards’ sloping 
collections of particles increases. The contributions to the relative contact velocity of the ball–surface contact 
when components are taken parallel to the local surface geometry. (Figure prepared using Microsoft Publisher 
and Veusz https ://veusz .githu b.io).
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