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Abstract
We describe the contribution of diffractive orbits to semiclassical approxima-
tions of Wigner function propagators. These contributions are based on diffrac-
tively scattered rays used in the geometrical theory of diffraction (GTD). They
provide an extension of well-established approximations of Wigner-function
propagators based on rays that propagate by specular reflection and refrac-
tion. The wider aim of this approach is to allow for diffractive mechanisms
to be accounted for in Eulerian approaches to ray-tracing simulations. Such
approaches propagate densities of rays rather than follow rays individually.
They promise to be a more efficient means of performing ray-tracing simu-
lations in complex environments with applications in, for example, planning of
wireless signal coverage for mobile communication networks.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Accounting for diffraction is a vital part of planning radio coverage in large-scale, complex
environments. Scattering of radio waves from building edges, for example, allows radio signals
to enter shadow regions of purely geometrical propagation and is central to the realisation
of usable wireless reception in obstacle-rich, urban environments and in building interiors.
Modelling of radio coverage is best tackled using ray tracing methods [1]: the aim of this paper
is to allow diffractive mechanisms to be more efficiently incorporated into such phase-space
simulations by calculating diffractive contributions to propagators of Wigner functions.
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Diffractive mechanisms are routinely incorporated into ray-tracing simulations of radio
coverage [2] using developments of the geometrical theory of diffraction (GTD) [3] and the
uniform theory of diffraction (UTD) [4]. Their contribution to electromagnetic wave paths
is important to key aspects of the performance of digital communications, such as path loss
[5] and power and delay spread [6]. However, in typical implementations, these require
searches to find orbits beginning and ending at particular locations and their rapid prolifer-
ation with length restricts calculations in practice to a handful of reflections. This is essen-
tially a Lagrangian approach and implies computationally intensive methods. The efficiency
of such approaches can be increased by using parallel implementations of ray tracing [7, 8]
and improved modelling of shadow loss from non-planar geometries [9].

In this paper we provide a means of incorporating diffractive rays into an Eulerian approach,
that is, an approach where the propagation of power is modelled in terms of a phase-space
density rather than by following individual rays. This can lead to efficiency gains in multiple-
scattering scenarios, such as modelling indoor wireless coverage where losses are typically low
and multiple reflections dominate. Numerically implemented Eulerian approaches based on the
propagation of phase-space densities, such as the dynamical energy analysis (DEA) method
[10], offer a promising means of extending ray-tracing simulations to complex, multi-reflection
environments. The ability to include diffractive mechanisms in such approaches is vital in many
potential applications, such as for modern mobile communication networks [11]. The actual
implementation is, however, far from obvious as it requires the inclusion of wavelength-sized
boundary effects in an Eulerian transport equation on phase space.

The direct wave analogue of a phase-space ray density is a field–field correlation func-
tion or, in quantum-mechanical language, a density operator. A direct quantitative comparison
is provided by transforming such correlation functions to Wigner functions [12], which are
pseudo-densities on phase space that may be compared directly to phase-space densities cal-
culated ‘classically’ or by ray tracing. Our interest here is in approximating a propagator for
Wigner functions, which relates the Wigner function characterising the field–field correlation
function in the receiver region to a Wigner function characterising the source (see, for example,
[13–16]). Full electromagnetic wave calculations in multiple scattering environments typically
show strong fluctuations due to the interference between multiple paths of propagation, which
may be approximated by summing over ray pairs satisfying appropriate boundary conditions
[13, 17]. However, implementing such schemes in full in a complex environment is a compu-
tationally challenging task. In extending such calculations to account for diffractive orbits, we
are therefore content in the first instance to focus on averaged quantities, in which multi-path
interference effects are suppressed. In classical ray simulations, such averaged densities may
be approximated by direct ray simulations rather than by pairs of rays.

Even in the context of predicting averaged correlation functions, it is important to account
for interference between diffractive orbits and nearby specular orbits in order to satisfy global
symmetries, such as flux conservation in dissipationless systems. The leading effect of includ-
ing diffractive orbits in a propagation of phase space densities is to add density localised
along a manifold of orbits originating on the diffractive structure (such as an aperture, an
edge or a corner). This added density is positive. In order not to violate energy conserva-
tion, there must be a compensating loss elsewhere in phase space. This occurs along forward
scattering directions where diffractive and specular orbits merge, and treatment of this loss
is accounted for by interference between diffractive and specular orbits. We show that overall
flux conservation is guaranteed, where appropriate, by an optical theorem applied to diffractive
scattering.

In many diffraction problems, the GTD approximation for diffractively scattered waves
breaks down in the forward direction, and must be replaced there by the UTD [4]. The
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previously mentioned analysis of overall flux conservation must therefore be performed in
the context of UTD in the most general setting. In this paper we consider the special case of
diffraction problems where a simpler GTD approximation remains valid in the forward scat-
tering direction. Examples where this is the case include scattering by a small obstacle or
diffraction through a small aperture [18]. This allows us to establish the most important fea-
tures of diffracted phase space densities in the simplest setting. The most general case where
UTD is required in the forward scattering direction will be treated elsewhere.

The paper is organised as follows. In section 2 we establish the background and notation
assumed in the rest of the paper. In particular we summarise the boundary representation used
to write the wave solutions and their phase-space counterparts. We also describe how GTD
is accounted for in this notation. In section 3 we describe how the optical theorem is used
to establish overall flux conservation, where appropriate. In section 4 we present the detailed
calculation of Wigner-function propagators and in particular present coarse-grained approx-
imations that can be incorporated into current approaches to the simulation of phase space
densities. An explicit numerical example is given in section 5 and conclusions are presented
in section 6.

2. Background and notation

In this section we establish the notation and setting assumed in the rest of the paper. We use a
scalar model throughout, even though an important application is to electromagnetic waves, as
this allows us to set out the most important features with the least cumbersome notation. We
also treat propagation through uniform media, although this assumption is easily relaxed. We
thus consider a wavefunction Ψ (x) satisfying the driven Helmholtz equation

−∇2Ψ− k2Ψ = F(x) (1)

in a domain Ω. We assume that Ω is (d + 1)-dimensional so that d denotes the dimension of
its boundaryΣ. Our schematic and numerical illustrations are for d = 1, although the underly-
ing formalism applies also to the more physically relevant case d = 2. The driving term F(x)
is intended to represent internal sources in Ω. Boundary driving is also possible through the
application of inhomogeneous boundary conditions.

We choose to use a boundary representation of both wave and phase space solutions. This
leads to conservation rules being stated in terms of power flux rather than energy density and
provides, we believe, a simpler description of the underlying formalism. In the case of phase
space simulation, representation of solutions as a flux density across surfaces is also the setting
used by methods such as DEA which this paper is intended to augment.

2.1. Boundary representations of ray densities

We begin by setting the stage for a description of the wave problem in terms of an underly-
ing ray dynamics. The corresponding phase space amounts in a boundary representation to the
use of a surface of section, for which we now set out the notation. In much of the discussion
to follow, the surface of section is formed by restricting rays to the boundary Σ of Ω. How-
ever, it is useful to frame the discussion so that surfaces of section may also be formed by
restricting rays to other kinds of section, cutting through the interior of Ω for example: this
more general scenario is used in section 3.1 to fix a coordinate frame around the diffractor
itself.

We let p denote a (d + 1)-dimensional unit vector in the direction of a given plane wave or
associated ray, so that the corresponding wave vector is k = kp, and denote by p the projection
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of p onto the boundary used to define the surface of section. For d = 1 we can simply let
p = sinχ, where χ denotes the angle of incidence of a ray arriving at or leaving the surface.
Let s denote position coordinates on the surface so that ds represents arclength for d = 1 or
surface area for d = 2.

We let ρ±(s, p) denote a density on the 2d-dimensional phase space of the surface of section
so that

Jray
± (s) =

∫
ρ±(s, p)dp (2)

represents a local current crossing the boundary at s. Here we label with ± the sense in which
the corresponding rays cross the surface and a total current Jray(s) is then defined so that

Jray(s) = Jray
+ (s) − Jray

− (s). (3)

Phase-space simulations are intended in this work to calculate ρ±(s, p). It is important to distin-
guish them from a density �(x, p) on the full 2(d + 1)-dimensional phase space, which provides
an energy density rather than a current when integrated over momentum coordinates. These are
related by

�(x, p) = δ(|p| − 1)ρσ(s, p) (4)

near a surface of section, where (s, p) are the coordinates on the surface of section of a ray
reaching (x, p) and σ ∈ {+,−} labels the crossing direction defined by p. A straightforward
geometrical integration verifies that the spatial energy density defined by �(x, p) can, when
evaluated on the boundary itself, be related to the surface densities ρ±(s, p) by

I(x) ≡
∫

�(x, p)dp =
∑
±

∫
{p2<1}

ρ±(s, p)
dp√

1 − p2
. (5)

Note that the geometrical factor √(1 − p2) seen in the last integral here is also evident in
boundary representations of the wave solution described in section 2.2.

Denote by

(s, p) = ϕ(s′, p′)

the surface-of-section map which traces a ray leaving the surface of section at (s′, p′) until
it returns to the surface of section at (s, p). In simple cavity problems ϕ carries a ray across
a chord, but we may also allow for scattering from internal obstacles or bending of rays in
inhomogeneous media between surfaces of section, as shown schematically in figure 1. Note
that if there is scattering from obstacles, we intend ϕ here to account only for specular reflec-
tion—diffractively scattered rays are treated separately in later sections. In a typical scenario,
the system may be driven by sources either on the boundary itself or in the interior region
between boundaries and we denote by ρ0 the density returning straight to the boundary from
these sources. Use the label + for a density of rays leaving the surface towards the interior
and − for the density of rays returning to the boundary. Then a steady-state boundary solution
satisfies a consistency equation of the form

ρ− = Lρ+ + ρ0,

where

Lρ(s, p) =
∫

GFP(s, p, s′, p′)ρ(s′, p′)ds′dp′
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Figure 1. Sketch of ray types used to approximate Green functions and transfer oper-
ators. Greek symbols are used to label orbits which cross the domain directly (such as
orbit α) or which bounce specularly from internal obstacles (such as orbit β). Roman
letters label orbits which scatter diffractively (such as orbit a).

is a Frobenius–Perron operator, defined by the kernel and [10]

GFP(s, p, s′, p′) = δ
(
ϕ−1(s, p) − (s′, p′)

)
Q(s′, p′) (6)

in which Q(s′, p′) accounts for damping (0 � Q(s′, p′) � 1). There is a second relation between
ρ− and ρ+ fixed by the nature of scattering from Σ. For example,

ρ+ = ρ−

when rays are reflected specularly from it, without loss.

2.2. Boundary representations of wave solutions

We will now present the solutions of the full-wave problem in a boundary representation, mir-
roring the setup of section 2.1. Here we follow the formalism established in the context of
semiclassical approximation in [19]. Corresponding exact formulations have been suggested
for general quantum potentials in [20–23] and for cavity problems in [24, 25], but to present
the main conclusions reached in this paper it is sufficient to consider the semiclassical setting
of [19].

We assume that the total wave field Ψ(x) can be decomposed at a boundary into components
approaching and leaving it as follows

Ψ = P̂−1/2
(
ψ− + ψ+

)
. (7)

Here ψ−(s) and ψ+(s) respectively denote boundary functions representing wave components
arriving at and leaving the boundary, and P̂ is an operator corresponding in semiclassical
approximation to the normal component of ray momentum p. This normal momentum oper-
ator P̂ can be defined outside of semiclassical approximation in the approaches of [23, 24],
although these are rather cumbersome for present purposes: it suffices in this paper to assert
that, at leading order in semiclassical approximation, P̂ can be represented by the classical ray
symbol
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P̂ ∼
{√

1 − p2 p2 < 1

i
√

p2 − 1 p2 > 1.

In the propagating region of phase space (p2 < 1), and letting χ denote the angle of incidence
of a ray hitting the boundary, we can also write

P̂ ∼ cosχ.

Note that this geometrical factor has previously appeared in (5) relating flux to energy density.
There is a corresponding relation between the intensities defined by Ψ and by ψ±. The

current crossing the boundary at s is defined here as

Jwave(s) =
1

2ik

(
Ψ∗ ∂Ψ

∂n
−Ψ

∂Ψ∗

∂n

)
,

where ∂/∂n denotes a normal derivative. This current is scaled so that it can be approximated
at leading order, and neglecting evanescent contributions, as

Jwave(s) ≈ |ψ+(s)|2 − |ψ−(s)|2 ≡ Jwave
+ (s) − Jwave

− (s). (8)

This provides a wave analogue of (2) and (3) and note that the normalisation of each of the
incoming and outgoing wave components

〈ψ±|ψ±〉 ≡
∫
Σ

|ψ±(s)|2ds =
∫
Σ

Jwave
± (s)ds (9)

then defines a total flux (approaching or leaving the boundary) rather than the more conven-
tional total energy obtained by normalising Ψ.

In quantum-mechanical notation, we identify the density operator

ρ̂± = 〈|ψ±〉〈ψ±|〉 (10)

as being the wave analogue of the boundary densities ρ±(s, p), whereas

�̂ = 〈|Ψ〉〈Ψ|〉 (11)

is the wave analogue of the full density �(x, p), where the outer angular brackets allow for
averaging in the case of incoherent wave fields. Concretely, we will work with the two-point
correlation functions defined by

Γ±(s1, s2) = 〈s1|ρ̂±|s2〉 =
〈
ψ±(s1)ψ∗

±(s2)
〉
.

Note that such field–field correlation functions are an entirely natural way of measuring and
characterising emissions from noisy EM sources [26, 27] and in the characterization of the
propagation channel between large multi-antenna systems, which is important to the design
of optimal massive multiple-input-multiple-output (MIMO) systems [28]. The propagation
of such correlation functions is treated at a fundamental level in [29], for example, and is
extended by using the correspondence with phase space densities to arbitrary multi-reflective
environments.
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2.3. Transfer operators and semiclassical propagation of field amplitudes

Semiclassical propagation of field amplitudes in terms of specular and diffractively scattered
rays is well established. Here we set out the main features and notation assumed, in preparation
for extending their use to propagate correlation functions and Wigner functions in the rest of
the paper.

The basis for all semiclassical approximation in this paper is a representation of the Green
function connecting points x′ and x, defined here so that

(−∇2 − k2)G(x, x′) = δ(x − x′).

It is approximated semiclassically as a sum over orbits starting at x′ and ending at x, of the
form [19, 30–32]

G(x, x′) ≈
∑
γ

Aγ(x, x′)eikLγ (x,x′) ≡
∑
γ

Gγ(x, x′), (12)

where γ labels topologically distinct paths from x′ to x, Lγ(x, x′) is the corresponding optical
path length and the amplitudes Aγ(x, x′) are determined by local stability properties of each
path. The paths γ may be accounted for entirely by specular reflection or can include diffrac-
tively scattered segments: further details about how these are respectively treated are given in
section 2.4.

Using the Green function to propagate the solution through the interior of Ω leads to self-
consistency conditions on the boundary Σ in the form of a boundary integral equation. This is
written here in the form of a transfer operator relating the wave ψ+ leaving the boundary to
the wave ψ− returning to it and is of the form

ψ−(s) =
∫
Σ

T(s, s′)ψ+(s′)ds′ + f0(s), (13)

where f0(s) represents a wave component arriving directly at the boundary from a source term
derived from the forcing on the right-hand side of (1). Neglecting evanescent contributions,
that is, assuming all rays included have p2 < 1, the kernel T(s, s′) is approximated using the
following modification of (12)

T(s, s′) ≈ −2ik
∑
γ

√
cosχγGγ(x(s), x(s′))

√
cosχ′

γ , (14)

where χ′
γ is the angle of incidence of orbit γ as it leaves the surface of section and χγ is

its angle of incidence as it returns to it. The cosine factors here arise because of the normal-
momentum prefactor in (7) and result in the transfer operator satisfying unitarity properties
under semiclassical approximation [19, 24].

The unitarity condition is closely linked to flux conservation. Let us write (13) formally as

ψ− = T̂ψ+ + f0.

In a closed, lossless system, and in the absence of internal forcing (so f0(s) = 0), the total flux
leaving a closed boundary Σ must be balanced by the flux returning to it. If expression (8) for
the local current were exact, this would imply that 〈ψ+|ψ+〉 = 〈ψ−|ψ−〉 and therefore that the
operator T̂ is unitary:

T̂T̂† = Î. (15)
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In fact, it is possible to present exact formulations of the transfer operator for which this is
the case (see [23]), but this necessitates a treatment of evanescent components that requires
considerable additional technical details: the basis of boundary functions used to achieve this
is not obvious or intuitive. Since evanescent waves do not play a significant role in the appli-
cations that motivate this work, it is sufficient here to assert that (15) holds semiclassically on
the subspace of boundary functions without evanescent components, as established originally
in [19].

2.4. Specular versus diffractive orbits in the Green function

Let us return to the fundamental semiclassical approximation (12) and state more explicitly
how diffractive orbits are accounted for and what the corresponding approximation for the
transfer operator is.

We label the classical orbits using Greek indices γ = α, β, · · · and diffractive orbits by
Roman indices γ = a, b, · · · as laid out in figure 1. We now split up the corresponding
contributions to the Green function [30–32], using the notation

G(x, x′) ≈
∑
α

Gspec
α (x, x′) +

∑
a

Gdiff
a (x, x′)

≡ Gspec(x, x′) + Gdiff(x, x′). (16)

The explicit form of Gspec(x, x′) is not needed here, see [19]; we will instead specify the
corresponding contribution to the transfer operator in section 2.5.

The form taken by diffractive contributions depends on the nature of the diffractor itself
and its dimension. In order to minimise notational complexity we restrict our attention here
to the case where the diffractor is effectively zero-dimensional (such as scattering by small
obstacles or apertures or the tips of edges or wedges in 2D problems, cones in 3D, etc). We also
focus on orbit contributions going through a single diffractive event. Then the corresponding
contribution to the Green function can be written as [30–32]

Gdiff(x, x′) =
∑

a

Gspec
a (x, xa)D(pout

a , pin
a )Gspec

a (xa, x′), (17)

where xa denotes the position of the diffractor on the path of orbit a andD(pout
a , pin

a ) is a diffrac-
tion coefficient, depending on the direction pin

a of the scattered ray as it arrives at the diffractor
and the direction pout

a as it leaves it. Before and after this diffraction event, the orbit undergoes
specular propagation described by Green function contributions Gspec

a (xa, x′) and Gspec
a (x, xa).

These are of the same form as the first set of summands in (16), but indexed here by the diffrac-
tive orbit label a, which specifies also the specular segments before and after the diffraction
event itself.

2.5. Specular versus diffractive orbits in the transfer operator

There is a corresponding decomposition for the transfer operator as defined in (13), of the form,

T(s, s′) ≈ Tspec(s, s′) + Tdiff(s, s′).

We begin by presenting the purely specular part, which is simpler to specify for the transfer
operator. This of the form [19]

Tspec(s, s′) =
∑
α

Bα(s, s′)eikLα(s,s′), (18)

8
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Figure 2. Illustration of the surfaces of section used to find diffractive contributions to
the transfer operator. Part (a) shows the case of a local scatterer (star) placed on a virtual
surface of section Σ0. In part (b), the case of diffraction through an aperture on a surface
Σ0 is shown.

where

Bα =

(
k

2πi

)d/2∣∣∣∣det
∂2Lα

∂s∂s′

∣∣∣∣
1/2

e−iμαπ/2 (19)

and Lα(s, s′) is the path length of an orbit leaving the boundary at position s′ and returning to it at
position s, which is just a chord length in the absence of internal obstacles. The Maslov indexμα

accounts for focusing around the ray path if it encounters internal obstacles: μα = 0 if the path
is a simple chord. This takes a standard Van Vleck form used in semiclassical approximations
of unitary operators [33].

In order to describe Tdiff(s, s′), we begin by placing the diffractor at position sa on a virtual
surface of section Σ0, shown schematically in figure 2; in part (a) of figure 2, Σ0 contains a
scatterer, in the absence of which rays pass directly through it, while in part (b), Σ0 contains
an aperture, without which rays reflect specularly from it. In each case it is useful to define a
product

T̂ (0)
spec = T̂outT̂ in : Σ→ Σ

of operators T̂ in : Σ→ Σ0 mapping Σ to the virtual section Σ0 and T̂out : Σ0 → Σ mapping the
virtual sectionΣ0 back to Σ, following either direct transmission throughΣ0 or specular reflec-
tion from it, as appropriate. Note that each of T̂ in and T̂out can be approximated using a kernel
of the form (18), albeit including additional reflection phases for the scenario in figure 2(b).
Operator T̂ (0)

spec then collects all the contributions to the kernel T spec(s, s′) from orbits that collide
with Σ0 exactly once: the superscript (0) is used to distinguish it from the complete transfer
operator, which may include orbits that that undergo more than one collision with Σ0 before
returning to Σ or that return to Σ without colliding with Σ0 at all.

Rewriting (17) in terms of the transfer operator formalism using (14) results in the kernel

Tdiff(s, s′) =
∑

a

Tout
a (s, sa)

{
i

2k
D(pout

a , pin
a )√

cosχout
a cosχin

a

}
T in

a (sa, s′), (20)

whereχin
a andχout

a are, respectively, the angles of arrival and departure inΣ0 of the diffractively
scattered ray a. The factors T in

a (sa, s′) and Tout
a (s, sa), respectively, denote the contributions to

the kernels of operators T̂ in and T̂out of the specular components of diffractive orbit a before
and after the diffractive event.
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Figure 3. Sketch of the geometry and coordinates assumed for renormalisation of the
diffractive transfer operator. Here the boundary Σ is further decomposed into planar
components Σ1 and Σ2 on either side of the diffractor.

3. Renormalised transfer operators, unitarity and the optical theorem

Although most applications of diffractive wave propagation are lossy in practice, it is useful to
establish formally the symmetries that arise from power conservation in the lossless case. In
this section we convert the optical theorem [34] to the notation used by us to describe diffraction
in transfer operators: this will be important to us in interpreting diffracted Wigner functions in
later sections.

The transfer operator formalism, and the intended application of the final results in this
paper to ray-tracing simulations, can be adapted for arbitrary surfaces of section. However,
although the semiclassical calculations underlying these results are quite general, the details
of quantisation used in the full-wave calculations depend on features such as the topology
of Σ: for example, if Σ is closed then momentum p is discretely quantised. In order to min-
imise notational complexity, we set out the formal structure in this section while assuming
that Σ is of infinite extent, so that Σ is replaced by R

d (or multiple copies of R
d, as in

figure 3). This also greatly simplifies the discussion of Wigner–Weyl representation in later
sections.

In particular we assume in bra-ket notation the position basis |s〉 and the momentum basis
|p〉 to be normalised so that

〈s|p〉 =
(

k
2π

)d/2

eikp·s,

which mirrors standard quantum-mechanical notation except that we have replaced �→ 1/k
to emphasise the intended application to classical wave problems.

In the detailed calculations in this section, the surface of section Σ consists of two disjoint
componentsΣ1 andΣ2, on either side of the diffractor, which is itself contained within a surface
of section Σ0, as illustrated in figure 3. We use barred coordinates (̄s′, p̄′) and (̄s, p̄) to locate
where rays arrive on Σ0 from an initial condition (s′, p′) onΣ, or where they leave Σ0 towards a
final location (s, p) on Σ, respectively, as shown in figure 3. Note that these barred coordinates
can also be regarded as a defining a comoving coordinate system on Σ, in which rays stay at
fixed coordinates as Σ1 and Σ2 are moved further from the diffractor. The diffracted Wigner-
function that is the object of interest in this paper is far easier to describe when expressed in
this comoving coordinate system, and this is the approach taken in the rest of the paper. The
formal means of achieving this is set out in section 3.1.

10
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3.1. Renormalisation

The combined transfer operator

T̂ tot = T̂spec + T̂diff

accounts for both specular and diffractive propagation. For the simpler geometry in figure 3,
there are no orbits returning to Σ1 and Σ2 without first colliding with Σ0 and we can therefore
simplify T̂spec ≈ T̂ (0)

spec = T̂outT̂ in in the notation of section 2.5. We then define the rescaled
propagator

T̂†
outT̂ totT̂

†
in ≈ T̂†

out

(
T̂outT̂ in + T̂diff

)
T̂†

in

≈ Î + iD̂ ≡ Ŝ,

where

D̂ ≡ −iT̂†
outT̂diffT̂

†
in (21)

accounts for diffractive propagation in a representation which removes dependence on the
choice of section Σ used to define incoming and outgoing waves. Although exact formula-
tions of the transfer-operator approach are possible, [20–25] the operator D̂ is in practice
only ever calculated within the context of semiclassical approximation in this work and the
identities above are much easier to describe in that context. Then it suffices to establish the
identities above by evaluating operator products within stationary-phase approximation [19].
The resulting approximation for D̂ is motivated next and stated explicitly at the end of this
subsection.

Pre and post multiplication by T̂†
in and T̂†

out in (21) undoes the propagation from Σ to Σ0 and
then back to Σ in (20). However, the resulting kernel

D(̄s, s̄′) = 〈̄s|D̂|̄s′〉

is singular, being strongly localised around s̄ = sa = s̄′, and is therefore awkward to approxi-
mate semiclassically (see appendix A). For this reason we work instead with the momentum
representation

D( p̄, p̄′) = 〈p̄|D̂|p̄′〉.

Evaluation of the operator product in (21) is performed in stationary phase approximation and
making use of the formal unitarity of T̂ in and T̂out, leading to

D( p̄, p̄′) ≈ −i〈p̄|sa〉
{

i
2k

D(pout
a , pin

a )√
cosχout

a cosχin
a

}
〈sa|p̄′〉

=

(
k

2π

)d

e−ik(p̄− p̄′)·sa

{
D(pout

a , pin
a )

2k
√

cosχout
a cosχin

a

}
, (22)

where pin
a and pout

a are respectively the direction vectors of rays arriving at Σ0 with momen-
tum coordinate p̄′ and leaving it with momentum coordinate p̄ (see figure 3). Note that a
detailed derivation of this result uses a stationary-phase approximation in which the diffraction
coefficient D(pout

a , pin
a ) is assumed to be a slow function of its arguments.

11
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3.2. Flux conservation, unitarity and the optical theorem

The renormalised operator

Ŝ = Î + iD̂

is unitary at leading order in semiclassical approximation if overall flux conservation holds
(since conservation of total current implies conservation of boundary norm, according to (8)
and (9)). Thus

ŜŜ† ≈ Î ⇔ D̂D̂† ≈ i(D̂† − D̂)

and

〈p̄|D̂D̂†|p̄〉 ≈ i
(
〈p̄|D̂†|p̄〉 − cc

)
⇒

∫
|D( p̄, p̄′)|2d p̄′ ≈ 2Im D( p̄, p̄).

By using

d p̄′

cosχin
a
= dΩin

in (22), where dΩin denotes solid angle of unit vector pin
a for d = 2 and dΩin = dχin

a for d = 1,
this can alternatively be expressed

kd−1

(2π)d

∫
|D(pout

a , pin
a )|2dΩin = 4Im

(
D(pout

a , pout
a )

)
.

Alternatively, starting from Ŝ†Ŝ ≈ Î would lead to

kd−1

(2π)d

∫
|D(pout

a , pin
a )|2dΩout = 4Im

(
D(pin

a , pin
a )
)

,

where dΩout is defined analogously. Note that these last identities must hold exactly if they are
to begin an asymptotic expansion for the unitarity of Ŝ. We thus recover the optical theorem
[34] for diffractive scattering.

4. Diffractive propagation of density operators and Wigner functions

In this section we assume again the scenario illustrated in figure 3 and work entirely with
the renormalised operator Ŝ = Î + iD̂, expressed in the previous section in terms of comoving
coordinates (̄s, p̄). Because we work exclusively in terms of these comoving coordinates in this
section, we drop the bars on them for notational simplicity as there is no need to distinguish
them from the original coordinates on Σ1 and Σ2.

The aim of this section is to convert the geometric description of diffraction of waves
described in sections 2.4 and 2.5 into an explicit scheme for the propagation of phase-
space densities across diffracting obstacles. To achieve this we construct a corresponding
propagator of Wigner functions [13–16], so that we can formulate a propagator of phase
space densities by averaging it. Note that other representations in phase space of incoherent
wave fields are available, such as the Husimi distribution [35]. However, effective propaga-
tion then requires that we work with higher-dimensional functions, such as, for example,
off-diagonal matrix elements in a coherent-state basis. It is for this reason that a Wigner

12
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representation is used in the propagation step: if desired, other representations such as the
Husimi distribution can be calculated from the Wigner function once the propagation step
is done.

Before describing the technical details behind this, we begin in the next subsection with a
summary of the main results achieved, with justification to follow in later subsections.

4.1. Summary of results derived in this section

An incident field, generally incoherent, is first characterised by converting its two-point cor-
relation function into an incident Wigner function W in(s, p) [14, 16, 17]: a formal definition is
given in section 4.2. The Wigner function of the diffractively scattered field is then separated
into a specular part Wspec(s, p) and a diffractive part Wdiff(s, p), each obtained by applying a
corresponding Wigner-function propagator:

Wspec(diff)(s, p) =
∫

Gspec(diff)(s, p, s′, p′)Win(s′, p′)ds′ dp′. (23)

Using the renormalised conventions in section 3.1, the specular part has the trivial propagator

Gspec(s, p, s′, p′) ≈ δ(s − s′)δ(p− p′)

at leading order (see section 4.3). When unfolded back into the farfield coordinates, this
reproduces the standard ray tracing evolution by the Frobenius–Perron propagator (6) [16].

The principal result derived in this section is that the diffractive part can, in a coarse-grained
approximation that averages interference fringes, be replaced by an averaged kernel in the form

Ḡdiff(s, p, s′, p′) = Ydiff(p, p′)δ(s − sa)δ(sa − s′). (24)

This states that the part of the incident field carried by rays arriving at the diffractor location
sa are scattered so that they re-emerge from the same location but with rearranged direction,
described by the partial kernel Ydiff(p, p′). This partial kernel can in turn be written

Ydiff(p, p′) =

(
2π
k

)d (
|D(p, p′)|2 − 2Im (D(p, p)δ(p− p′)

)
. (25)

The two contributions in brackets here derive respectively from orbit contributions that are
entirely diffractive in nature and from mixed combinations of diffractive and specular orbits.

Using the optical theorem guarantees that this combined diffractive propagation contributes
no net flux to the scattered field:∫

Ḡdiff(s, p, s′, p′)ds dp = 0 (26)

(see section 3.2). In other words, flux taken out of the stripe s = sa by the mixed specu-
lar–diffractive contributions (second contribution in brackets in (25)) is redistributed into the
rest of phase space by the purely diffractive contributions (first contribution in brackets in (25)),
so that there is conservation of flux overall.

The discussion in the following subsections can also be used as the basis for a fuller descrip-
tion of the diffractively scattered Wigner function, in which detailed interference fringes are
accounted for. However, the simplified, coarse-grained description above provides the main
ingredients required by the use cases we envisage, in which diffractive redirection of energy
into shadow regions is to be accounted for in ray-tracing simulations.

13
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4.2. Formalities and useful identities

We begin by setting out notation for the formal propagation of density operators and their
representations as Wigner functions. Consider a density operator ρ̂in propagated according to

ρ̂in �→ ρ̂out = Ŝρ̂inŜ†,

with Ŝ = Î + iD̂: this is consistent with the conventions of section 2.2 if we let ρ̂in = T̂ inρ̂+T̂†
in

and ρ̂out = T̂†
outρ̂−T̂out. We can formally write the propagator as a superoperator of the form

Ŝ ≡ Ŝ ⊗ Ŝ† = Î ⊗ Î + iD̂ ⊗ Î − îI ⊗ D̂† + D̂ ⊗ D̂†

≡ Ŝαα + Ŝaα + Ŝαa + Ŝaa. (27)

Each of the contributions here is of the form Û ⊗ V̂†. We now set out how such transforma-
tions of operators (by Û ⊗ V̂†) are represented as propagators of Weyl symbols and Wigner
functions: in subsequent subsections we specialise these results to each of the contributions in
(27) in turn.

We use the formal approach of [17], which is centred on the algebra of operator families
R̂(z) and Ĥ(z), that respectively quantise inversion of phase space through a point z = (s, p) and
translation along a phase space vector z = (s, p). The inversion operator R̂(z) can be defined by
its action on a wave function as follows,

R̂(z) : ψ(x) �→ e2ikp·(x−s)ψ(2s − x),

(where we use x as the argument for the wavefunction to distinguish it from the arguments of
R̂(z)). The Heisenberg operators Ĥ(z) are defined by

Ĥ(z) : ψ(x) �→ e−ikp·s/2+ikp·xψ(x − s).

A range of useful identities that are satisfied by these operators are set out in appendix B. In
the main text we quote only the important identity

R̂(z)R̂(z′) = e2ikΩ(z,z′)Ĥ(2(z − z′)), (28)

where

Ω(z, z′) = s · p′ − s′ · p (29)

denotes the symplectic form defining area in phase space.
Within this formalism, the Weyl symbol of an operator Â can be defined by the relation

WA(z) = 2d Tr
(

R̂(z)Â
)

(30)

where Tr denotes a trace operation. The complementary function

W̃A(z) = Tr(Ĥ†(z)Â) (31)

is related to it by a Fourier transform

WA(z) =

(
k

2π

)d∫
R2d

eikΩ(z,z′ )W̃A(z′)dz′

14
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(see (B.5) and surrounding discussion in appendix B). Note that we regard a Wigner function
as being simply the Weyl symbol of the corresponding density operator.

It is shown in appendix B that the transformation of Wigner functions corresponding to
Û ⊗ V̂† is described by a propagator of the form

G(z, z′) = 22d

(
k

2π

)d

Tr
(
ÛR̂(z′)V̂†R̂(z)

)
. (32)

This representation of G(z, z′) associates the Wigner propagator with cycles on the following
diagram:

(33)

For example, going through the operators inside the trace operation in (32) from right to left,
R̂(z) first maps z1 to z2, the time-reversed operator V̂† then maps z2 to z′2, R̂(z′) maps z′2 to z′1
and finally Û completes the cycle by mapping z′1 back to the starting coordinates z1. Note that
R̂(z) mapping z1 to z2 means that z is a midpoint of z1 and z2 and z′ is similarly a midpoint of
z′1 and z′2: such midpoint conditions are common in calculations of Weyl symbols and Wigner
functions. The form given in (32) is useful because it allows us to go quickly to semiclassical
and other identities using the formalism of trace formulas. These are exploited in the fol-
lowing subsections to evaluate Wigner-function propagators for the individual superoperators
in (27).

4.3. Specular–specular Wigner propagators

It is clear that the propagator for Ŝαα should be

Gαα(z, z′) = δ(z − z′), (34)

but still instructive to see how this emerges from (32) and using the identities in appendix B.
Here, Û = Î = V̂ , so

Gαα(z, z′) = 22d

(
k

2π

)d

Tr
(
R̂(z′)R̂(z)

)

= 22d

(
k

2π

)d

e2ikΩ(z′ ,z) Tr
(
Ĥ(2(z′ − z))

)
from (28). But from (B.9)

(
k

2π

)d

Tr
(
Ĥ(2(z′ − z))

)
= δ(2(z′ − z)) = 2−2dδ(z − z′)

and the result follows after noting that Ω(z, z) = 0.
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4.4. Diffractive–diffractive Wigner propagators: exact identities

The next easiest contribution to treat is from the diffractive–diffractive superoperator Ŝaa,
whose Wigner propagator is of the form

Gaa(z, z′) = 22d

(
k

2π

)d

Tr
(
D̂R̂(z′)D̂†R̂(z)

)
. (35)

In practice we propose to use coarse-graining (see following subsections) to get simply-
implemented realisations of this, but we can also find more detailed information by exploiting
identities in appendix B. For example, using (B.3) we deduce∫

R2d
Gaa(z, z′)dz′ = 22d Tr

(
D̂(2−dÎ)D̂†R̂(z)

)
= 2d Tr(D̂D̂†R̂(z))

= WDD† (z),

where WDD† (z) is the Weyl symbol of D̂D̂†, according to (30). Similarly∫
R2d

Gaa(z, z′)dz = 22d Tr
(
D̂R̂(z′)D̂†(2−dÎ)

)
= 2d Tr(D̂†D̂R̂(z′))

= WD†D(z′),

where WD†D(z′) is the Weyl symbol of D̂†D̂, in initial coordinates z′. Note that a consequence of
the unitarity of Ŝ = Î + iD̂ (which is straightforwardly established within semiclassical approx-
imation [19]) is that D̂D̂† = D̂†D̂ and WD†D and WD†D are then the same function, albeit arising
here with different arguments.

4.5. Diffractive–diffractive Wigner propagators: coarse-grained approximations

Because the operator D̂ is spatially localised (on the manifold Λ according to the discussion in
appendix A), this should be approximable in a coarse-grained sense by an operator of the form

Gaa(z, z′) ≈ Ḡaa(z, z′) ≡ Yaa(p, p′)δ(s − sa)δ(sa − s′).

That is, the propagator Ḡaa(z, z′) approximates the action of Gaa(z, z′) when acting on densities
that vary over scales that are large compared to those of typical interference fringes. The func-
tion Yaa(p, p′) that achieves this is obtained by integrating Gaa(z, z′) over its spatial arguments:

Yaa(p, p′) ≡
∫
Rd

ds
∫
Rd

ds′ Gaa(z, z′).

By applying identity (B.6) to each of these spatial integrations we get

Yaa(p, p′) =

(
2π
k

)d

Tr
(
D̂|p′〉〈p′|D̂†|p〉〈p|

)

=

(
2π
k

)d

|D(p, p′)|2.
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Note also that the coarse-grained diffractive–diffractive propagator gives a necessarily positive
contribution to the outgoing density. To maintain overall flux conservation, this must be coun-
terbalanced by the action of mixed (diffractive–specular and specular–diffractive) propagation,
which is considered next.

4.6. Diffractive-specular and specular–diffractive Wigner propagators: exact results

Similarly, the propagator for Ŝaα is

Gaα(z, z′) = i22d

(
k

2π

)d

Tr
(
D̂R̂(z′)R̂(z)

)

= i22d

(
k

2π

)d

e2ikΩ(z′ ,z) Tr
(
D̂Ĥ(2(z′ − z))

)

= i22d

(
k

2π

)d

e−ikΩ(ζ,z′) Tr
(
D̂Ĥ†(ζ)

)
, (36)

where

ζ = 2(z − z′).

Note that we can also express this as

Gaα(z, z′) = i22d

(
k

2π

)d

e−ikΩ(ζ,z′)W̃D(ζ), (37)

where W̃D(ζ) denotes a Fourier transform of the Weyl symbol

WD(z) ≡ 2d Tr
(
R̂(z)D̂

)
of D̂, according to (31).

As with the diffractive–diffractive propagator, this requires some coarse-graining to be eas-
ily implemented in practice, but exact identities are also easy to deduce here. For example,

∫
R2d

Gaα(z, z′)dz = 2−2d

∫
R2d

dζ

{
i22d

(
k

2π

)d

e−ikΩ(ζ,z′ ) Tr
(
D̂Ĥ†(ζ)

)}

= i2d Tr(D̂R̂(z′))

= iWD(z′)

from (B.5) (with −ζ replacing z in the identity) and then using (30) to define the Weyl symbol
of D̂. (Actually, the same result can be obtained by directly integrating the top line of (36) and
invoking (B.3)). Similarly,∫

R2d
Gaα(z, z′)dz′ = iWD(z). (38)

Finally, each of these integrals has been obtained by integrating over ζ while respectively
holding z′ and z fixed. A third alternative is to fix

z̄ =
z + z′

2
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while integrating over ζ and to regard

G(z, z′) ∼ G (̄z, ζ)

as defining a function of z̄ and ζ . Then, since

Ω(ζ, z̄) = Ω(ζ, z) = Ω(ζ, z′),

we can also write

2−2d
∫
R2d

Gaα (̄z, ζ)dζ = 2−2d
∫
R2d

dζ

{
i22d

(
k

2π

)d

e−ikΩ(ζ ,̄z) Tr
(
D̂Ĥ†(ζ)

)}

= i2d Tr(D̂R̂(̄z))

= iWD (̄z).

One further useful identity before embarking on approximations is that the specu-
lar–diffractive propagator is the complex conjugate of its diffractive-specular counterpart,
that is,

Gαa(z, z′) = −i22d

(
k

2π

)d

Tr
(
R̂(z′)D̂†R̂(z)

)

= −i22d

(
k

2π

)d

Tr
(
D̂†R̂(z)R̂(z′)

)
= G∗

aα(z, z′).

Therefore, the combined propagator

Gaα(z, z′) + Gαa(z, z′) = −22d

(
k

2π

)d

× 2Im
[
e−ikΩ(ζ,z′) Tr

(
D̂Ĥ†(ζ)

)]

is real and obtained by just taking an imaginary part of a single trace calculation.
More explicit forms for this propagator can be found in appendix C; see in particular (C.5).

4.7. Diffractive-specular and specular–diffractive Wigner propagators: coarse-grained
results

As for the diffractive–diffractive propagator, we make progress by asserting that Gaα(z, z′) is
approximately given—in a coarse-grained sense—by an operator of the form

Gaα(z, z′) ≈ Ḡaα(z, z′) ≡ Yaα(p, p′)δ(s − sa)δ(sa − s′). (39)

The justification for making this replacement is more subtle than for the diffractive–diffractive
contribution, however, and is discussed in more detail in appendix C.

Once we accept the coarse-grained ansatz above, the function Yaα(p, p′) is once again
obtained by integrating Gaα(z, z′) over its spatial arguments

Yaα(p, p′) =
∫
Rd

ds
∫
Rd

ds′ Gaα(z, z′).
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By applying identity (B.6) twice to the top line of (36) we then deduce that

Yaα(p, p′) = i

(
2π
k

)d

Tr
(
D̂|p′〉〈p′||p〉〈p|

)

= i

(
2π
k

)d

D(p, p)δ(p− p′).

We get an analogous identity

Yαa(p, p′) = −i

(
2π
k

)d

D∗(p, p)δ(p− p′).

for the momentum part of Gαa(z, z′) and we then deduce that

Ḡaα(z, z′) + Ḡαa(z, z′) = −2

(
2π
k

)d

Im(D(p, p))δ(p− p′)δ(s − sa)δ(sa − s′)

is a coarse-grained approximation for the net contribution of mixed diffractive-specular
contributions to the Wigner propagator. Note that this can also be written as

Ḡaα(z, z′) + Ḡαa(z, z′) = −2

(
2π
k

)d

Im(D(p, p))δ(s − sa)δ(z − z′),

so that this part of the propagator can be interpreted as subtracting density from a narrow
column in phase space over sa (assuming Im(D(p, p)) > 0 as implied by the optical theorem)
from the purely specular part of the propagator given in (34).

4.8. Net contribution of diffractive components

Note that combining all diffractive contributions gives a coarse-grained propagator

Ḡaα(z, z′) + Ḡαa(z, z′) + Ḡaa(z, z′) ≡ Ḡdiff(z, z′) = Ydiff(p, p′)δ(s − sa)δ(sa − s′), (40)

where Ydiff(p, p′) has already been defined in (25). This completes the derivation of the coarse-
grained diffractive Wigner function propagator asserted in section 4.1.

The action of Ḡdiff(z, z′) on a density incident on the diffractor is now easy to interpret—and
to implement in practice in the context of the DEA phase-space simulation method [10]. In
DEA a phase space density is represented using a mesh for spatial dependence and a polynomial
basis in momentum. Spatial elements are typically large compared to the local wavelength, so
use of the coarse-grained propagator is appropriate. We then transform the part of the incident
density over the spatial element containing the diffractor, which is a function of momentum
projected onto the polynomial basis in use. The operator with kernel Yaa(p, p′) is then used to
map this incoming function of momentum into an outgoing function of momentum, which is
in turn re-inserted into the outgoing density over the same spatial element. We must project
the kernel Y(p, p′) onto the polynomial basis used for momentum to achieve this, but this is a
reasonably straightforward operation and should be much faster than other typical calculations
necessary for DEA matrix formation.

The explicit form given for Ydiff(p, p′) in (25), and its derivation in this section, assumes
that GTD remains valid for forward scattering. In more general diffraction scenarios, such as
edge or wedge diffraction, specular and diffractive contributions must be treated jointly in the
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forward scattering direction using UTD. This more general case will be the subject of a future
publication. Here we point out that in this more general case the structure given in (40) will
remain valid, except that Ydiff(p, p′) will take a different form than given in (25). Except for
this change in momentum kernel, the essential way in which the method introduces diffrac-
tion to phase pspace propagation, such as described in the previous paragraph, will remain
the same.

5. A numerical example

The calculations are illustrated in this section using a concrete numerical example. We exam-
ine scattering from a circular obstacle in a two-dimensional domain (with Dirichlet boundary
conditions) of a source density corresponding in phase space to

W+(s, p) =

{√
(1 − s2/b2)(1 − p2) if − b < s < b and − 1 < p < 1

0 otherwise,

which is confined to an interval of length L = 2b in s and to the propagating region p2 < 1
of momentum space. Note that in practical terms this source Wigner function is obtained by
solving a wave problem in which the inhomogeneous Dirichlet boundary conditions

lim
(x1,x2)→(s1,s2)

〈Ψ(x1)Ψ∗(x2)〉 = δ(s1 − s2)
√

1 − s2
1/b2 (41)

are imposed on the density operator defined in (11), along the surface-of-section component
Σ1 of the geometry illustrated in figure 3. Filtering out the evanescent components, which
contribute negligibly to far-field scattering, and conjugation by the square root of normal
momentum operator P̂ then leads at leading order to the Wigner function above.

This density is described in terms of regular coordinates on Σ, before the renormalisation
process described in section 3.1: to use the results described in section 4, it will be necessary to
convert from the comoving coordinates assumed there. It is sent towards a circular obstacle of
radius R that is a distance d from the incoming surface of section Σ1 and the forward-scattered
density is recorded as it passes through surface of sectionΣ2 that is distance d from the obstacle
on the other side. In figures 4 and 5, these distances are chosen so that kb = kd = 150 and
kR = 3. Note that in the coarse-grained approximation (24) and (25), kR need not itself be
small as long as R is smaller than the length scale used to resolve the phase space density (mesh
elements are typically many wavelengths wide in DEA) [10]: in this example, the obstacle is
approximately one wavelength in diameter.

This source density (on Σ1) and the corresponding forward-propagated Wigner function
(restricted to Σ2) are shown in figure 4, parts (a) and (b) respectively. The two main fea-
tures are (i) the shearing of the propagated Wigner function that occurs as a natural result
of free-space propagation of classical densities [16] and (ii) the dark gap running through
the lit region. This gap arises from the removal of forwards flux after scattering from the
obstacle and should be explained by (24) and (25), following conversion from comoving
coordinates. Note that the coarse-grained calculation aims to predict the overall weight of
this gap, but does not attempt to recreate the detailed interference fringes that are visible
around it.

To see the diffractive contributions directly, we show in parts (c) and (d) of figure 4 the
backwards scattered Wigner function and the difference in the forwards direction between
the propagated Wigner densities with the obstacle present and with the obstacle removed.
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Figure 4. Part (a) shows the Wigner function W+(s, p) characterising the source. It
shows only the propagating part so is localised in p2 < 1 and is also confined within
a finite interval in physical space. In part (b) is shown the total Wigner function emerg-
ing from the other side of a circular obstacle. Note the dark gap running through the lit
region, which corresponds to forwards flux removed by the obstacle. In parts (c) and (d)
we show diffractive contributions in both the backwards scattering direction (in (c)) and
the forwards scattering direction (in (d)). The latter is net negative (coloured blue) but
is balanced by the positive contribution to the backwards scattering direction, according
to (26).

Figure 5. Evaluation of the diffracted current using (42) (green curves) is compared with
full-wave solutions using boundary conditions (41) (pink, dashed curves). The parame-
ters here are the same as in figure 4 and the case of backward scattering is shown in (a)
with forward scattering illustrated in (b).

On a coarse-grained level, these plots look entirely consistent with (24) and (25), once the
difference in coordinate systems is taken into account: the integrated flux in the forwards
direction is negative (negative values of the Wigner function are plotted in blue), but this
is balanced by the net positive flux in the backwards scattering direction. In both plots, the
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diffractively scattered Wigner function is localised around a manifold of orbits originating from
s = sa on Σ0.

We verify this quantitatively by comparing the predicted current in physical space,
defined as

Jdiff(s) =
∫
Rd

Wdiff(s, p)dp,

where Wdiff(s, p) is defined in analogy with (23). This is seen from (24) and (25), after from
some further manipulation and conversion from comoving coordinates, to take the form

Jdiff(s)ds =
dχout

8πk

∫
K(χout,χin)W+(s′(χin), p′(χin))dχin, (42)

where

K(χout,χin) = |D(χout,χin)|2 − 8πδ(χout − χin)Im D(χout,χin)

and we have specialised the general result to the 2D case where dΩin = dχin
a . The arguments

(s′(χin), p′(χin)) of the source Wigner function denote the initial coordinates of rays arriving
at the scatterer with angle χin. A comparison of this result against a full-wave calculation is
given in figure 5, showing good agreement. As expected the net current is negative near the
forward direction (part (a)) where the mixed terms of section 4.7 contribute. In the backward
scattering direction (part (b)), there is only a contribution from the completely diffractive terms
from section 4.5, which is intrinsically positive.

We conclude this section by exemplifying how corresponding calculations may be exploited
in the context of mobile communication modelling. Multi-antenna techniques are often adopted
in wireless communications at microwave, mmWave, and optics communications. An impor-
tant question in this context is to estimate optimal rates of information exchange between
transmitter and receiver. Answers to this question have been given in terms of coupled phase-
space volumes for communication in free space [36]. In extending such theory to more complex
propagation spaces, reflection, diffraction and diffusion will play a key role in the estimation of
fundamental bounds of MIMO systems. The formalism being developed here will allow inte-
gration of diffraction within DEA simulations of propagation environments hosting arbitrarily
complex transmitting and receiving antennas.

6. Conclusions

We have described how diffractively scattered orbits may be incorporated into Eulerian descrip-
tions of ray propagation, by calculating corresponding contributions to a diffractively scattered
Wigner function. In applications this approach has an advantage over traditional ray-tracing
simulations of bypassing the typically exponential increase of ray number with length, which
is a feature of both specularly and diffractively propagated ray orbits.

Concrete illustrations have been provided in the context of wave scattering from a small
obstacle in two dimensions, but the theoretical results apply also in three dimensions and
the underlying formalism is intended to extend to other diffraction scenarios. The formalism
applies to incident wave fields that are incoherent, characterised by a field–field correlation
function rather than a simple wave amplitude, which provide a natural wave analogue of ray
densities in phase space through the Wigner function. Although the general results given in
section 4 can in principle be used to predict detailed interference fringes in the diffractively
scattered Wigner function, we have emphasised a simpler, coarse-grained propagation rule
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given in (24). This is a key result of the paper. The coarse-grained propagator predicts in broad
terms where diffractively scattered wave energy is sent, without the complication of describing
detailed interference patterns which average to zero—this is in keeping with the underlying
goal of introducing diffractive contributions into ray-tracing simulations based on propagating
phase space densities.

An important feature of this diffractive correction to ray-traced densities is that it conserves
overall flux, where appropriate. Flux conservation is seen as a direct consequence of the optical
theorem applied to the diffraction formalism. It guarantees exact flux conservation even for the
coarse-grained propagator in (24).

A significant limitation of the results presented so far is that they are based on GTD approx-
imations. In more general scenarios, such as edge or corner diffraction, an explicit description
of the forward-diffracted density requires us to use the UTD. This will modify the kernel given
in (25) in the forward direction, where specular and diffractive orbits merge, but the main
qualitative features will persist. Extending the detailed calculations to problems where UTD is
required will be the subject of future work.
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Appendix A. Localisation of the operator D̂ in phase space

The formal expressions given for operator D̂ in momentum representation section 3.1 hide
somewhat the extent of its localisation in phase space. Here it is useful to reinterpret D̂ as
a state |D〉〉 in doubled Hilbert space, using the notation of [17]. Then the matrix elements
D( p̄, p̄′) are interpreted as a projection of this doubled state vector onto a momentum basis, in
the notation

D( p̄, p̄′) = 〈〈p̄, p̄′|D〉〉.

The expressions given for D( p̄, p̄′) in section 3.1 are of a standard WKB form

D( p̄, p̄′) =
√
�( p̄, p̄′)eikS(p̄,̄p′),

where

√
�( p̄, p̄′) =

(
k

2π

)d D(pout, pin)

2k
√

cosχout
a cosχin

a

and

S( p̄, p̄′) = − p̄ · sa + p̄′ · sa.

This last condition confines the state to the Lagrangian plane in doubled phase space
defined by

s̄ = −∂S( p̄, p̄′)
∂ p̄

and s̄′ =
∂S( p̄, p̄′)

∂ p̄′

(note that (̄s, s̄′, p̄,− p̄′) are canonical coordinates for this doubled space) and denoted

Λ = {s̄ = sa = s̄′}.
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In other words, the operator D̂ is thus localised at the position of the diffractor, which is what
we expect intuitively.

We also note that expressing the density as a 2d-form

�( p̄, p̄′)d p̄∧ d p̄′ =

(
k

2π

)2d D(pout, pin)2

4k2
dΩout ∧ dΩin

lets us evaluate it simply in terms of the angles of arrival and departure.

Appendix B. Identities for the evaluation of Wigner functions and their
propagators

In this appendix we list key identities satisfied by the reflection and translation operators
defined in section 4 and used there to derive central results for diffractive Wigner-function
propagators. The use of the algebra of these operators, along with the formalism of doubled
phase space exploited in appendix A, to describe Wigner functions and Weyl symbols, has
previously been described in [17] and is used here with slightly altered notation.

The reflection operator can be formally written

R̂(z) = Ĥ(z)π̂Ĥ†(z), (B.1)

where π̂ : ψ(x) �→ ψ(−x) is the spatial inversion operator, and the Heisenberg operators can be
written

Ĥ(z) = eik(p̂s−sp̂) = eikps/2 e−iksp̂ eikp̂s = e−ikps/2 eikp̂s e−iksp̂. (B.2)

From these formal identities we can deduce (28). We should also note the completeness
relations (

k
2π

)d∫
R2d

R̂(z)dz = 2−dÎ (B.3)

and (
k

2π

)d∫
R2d

Ĥ(z)dz = 2dπ̂, (B.4)

which is a special case of

(
k

2π

)d∫
R2d

eikΩ(z,z′)Ĥ(z)dz = 2dR̂(z′). (B.5)

In fact, (B.3) can be viewed as a short corollary of either of the identities

(
k

2π

)d∫
Rd

R̂(z)ds = 2−d|p〉〈p| (B.6)

or (
k

2π

)d∫
Rd

R̂(z)dp = 2−d|s〉〈s|. (B.7)
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We also have the complementary relations

Tr R̂(z) = Tr π̂ = 2−d (B.8)

and (
k

2π

)d

Tr
(
Ĥ(z)

)
= δ(z). (B.9)

Let us now deduce (32).
This follows from writing the transformation

ρ̂in �→ ρ̂out = Ûρ̂inV̂†

and then computing the corresponding Wigner function

Wout(z) = 2d Tr(R̂(z)ρ̂in)

= 2d Tr(R̂(z)Ûρ̂inV̂†)

= 2d Tr(V̂†R̂(z)Ûρ̂in)

and then using the property of Weyl symbols

Tr(ÂB̂) =

(
k

2π

)d∫
R2d

A(z′)B(z′)dz′

to deduce that

Wout(z) =
∫
R2d

G(z, z′)Win(z′)dz′,

where

G(z, z′) = 2d

(
k

2π

)d

Tr
(
R̂(z′)(2dV̂†R̂(z)Û)

)

= 22d

(
k

2π

)d

Tr
(
ÛR̂(z′)V̂†R̂(z)

)
is here obtained as the Weyl symbol (in z′) of the operator (k/π)dV̂†R̂(z)Û.

Appendix C. Justification of spatial localisation assumed for coarse-grained
propagators

The localisation assumed in (39) is not immediately obvious. Formal identities such as (36)
let us establish easily that Gaα(z, z′) is localised around s = s′, but it is less clear that s and s′

should be localised around sa. In fact we need averaging to achieve this.
To establish these features, it is useful to visualise the trace formula (32) as a diagram, here

for the special case Û = iD̂ and V̂ = Î:
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(C.1)

This diagram shows a cycle z′1 → z1 → z2 = z′2 → z′1 → · · · contributing to a trace formula for
(36), where the leg z′1 → z1 is effected by iD̂ and so constrains s′1 = sa = s1 and the leg z2 → z′2
is effected by Î and so, in particular, constrains s2 = s′2 but not s2 = sa or sa = s′2. Since z and
z′ are respectively the midpoints of (z1, z2) and (z′1, z′2), we then similarly constrain s = s′ but
not s = sa or sa = s′.

To explain the further localisation around s = sa and sa = s′ assumed in (39), we must exam-
ine the trace in (36) in more detail. The action in the periodic orbit above is the area of a
triangular region formed by the vertices (z1, z2 = z′2, z′1), which is easily seen to be of the form

A(z, z′) = 2(p− p′) · (s − sa). (C.2)

This action provides the dominant phase oscillation of Gaα(z, z′). If we perform averaging of
the diffracted fields, Gaα(z, z′) then washes out except near the lines

p = p′ or s = sa

where this action vanishes. This is at the root of the additional delta functions

Ḡaα(z, z′) ∝ δ(s − sa)δ(p− p′)

in the coarse-grained propagator.
We can justify this assertion more explicitly by evaluating the trace in (36) using momentum

representation, to get

e−ikΩ(ζ,z′) Tr
(
D̂Ĥ†(ζ)

)
= e2ik(s′ ·p−p′·s)

∫
Rd

dp′′
∫
Rd

dp′′′ D(p′′, p′′′)
(
〈p′′|Ĥ(ζ)|p′′′〉

)∗
. (C.3)

The Heisenberg operator matrix elements can be shown to take the form

〈p′′|Ĥ(ζ)|p′′′〉 = e2ik(p−p′)·(s−s′)−2ik(s−s′)·p′′δ(p′′ − p′′′ − 2(p− p′))

and following insertion into the integral above, followed by a change of variable, we can
express ∫

Rd
dp′′

∫
Rd

dp′′′ D(p′′, p′′′)
(
〈p′′|Ĥ(ζ)|p′′′〉

)∗
= e−2ik(p−p′)·saΔ(s − s′, p− p′), (C.4)

where

Δ(u, v) ≡
∫
Rd

dw D0(w + v,w − v)e2iku·w
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and D0(p.p′) denotes D(p, p′) with sa → 0. We denote here,

u = s − s′ and v = p− p′

and

s̄ =
s + s′

2
and p̄ =

p+ p′

2

or, combined,

ζ = (2u, 2v) and z̄ =
z + z′

2
.

Note thatΔ(u, v) is a slow function of v = p− p′ and sharply localised around u = 0, or s = s′.
Then

e−ikΩ(ζ,z′) Tr
(
D̂Ĥ†(ζ)

)
= e2ikv·(̄s−sa)

∫
Rd

dw D0(w + v,w − v)e2iku·(w− p̄). (C.5)

We have established that Δ(u, v) is sharply peaked around u = 0, so, in a coarse-grained
approximation, we would replace this expression by the delta function δ(u) = δ(s − s′) with a
weighting that is calculated using

2d

(
k

2π

)d∫
Rd

du e−ikΩ(ζ,z′) Tr
(
D̂Ĥ†(ζ)

)

= e2ik(p−p′)·(̄s−sa)
∫
Rd

dw D0(w + v,w − v)δ(w − p̄)

= e2ik(p−p′)·(̄s−sa)D0( p̄+ v, p̄− v). (C.6)

Combining all this with (36) gives

Gaα(z, z′) ≈ i2d e2ik(p−p′)·(̄s−sa)D0( p̄+ v, p̄− v)δ(s − s′),

where the approximation refers to coarse graining in u = s − s′. Note that the phase factor here
does indeed reproduce the triangle area predicted in (C.2).
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