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Dynamics of Cayley Forms

KIriLL KRASNOV

Abstract: The most natural first-order PDE’s to be imposed on a
Cayley 4-form in eight dimensions is the condition that it is closed.
As is well-known, this implies integrability of the Spin(7)-structure
defined by the Cayley form, as well as Ricci-flatness of the associ-
ated metric. We address the question as to what the most natural
second-order in derivatives set of conditions is. We start at the
linearised level, and construct the most general diffeomorphism-
invariant second order in derivatives Lagrangian that is quadratic
in the perturbations of the Cayley form. We find that there is
a two-parameter family of such Lagrangians. We then describe a
non-linear completion of the linear story. We parametrise the in-
trinsic torsion of a Spin(7)-structure by a 3-form, and show that
this 3-form is completely determined by the exterior derivative
of the Cayley form. The space of 3-forms splits into two Spin(7)
irreducible components, and so there is a two-parameter family
of diffeomorphism-invariant Lagrangians that are quadratic in the
torsion, matching the linearised story. We then describe a first-
order in derivatives version of the action functional, which depends
on the Cayley 4-form and auxiliary 3-form as independent vari-
ables. There is a unique functional whose Euler-Lagrange equation
for the auxiliary 3-form states that it is equal to the torsion 3-
form. For any member of our family of theories, the Euler-Lagrange
equations are written only using the operator of exterior differen-
tiation of forms, and do not require the knowledge of the metric-
compatible Levi-Civita connection. Geometrically, there is a pre-
ferred member in the family of Lagrangians, and we propose that
its Euler-Lagrange equations are the most natural second-order
equations to be satisfied by Cayley forms. Our construction also
leads to a natural geometric flow in the space of Cayley forms, de-
fined as the gradient flow of our action functional.

1. Introduction

A Spin(7)-structure on an 8-dimensional manifold is defined to be a 4-form
of a special algebraic type. Such a 4-form is known as a Cayley form, and its
GL(8,R) stabiliser is Spin(7). An 8-manifold admits a Spin(7)-structure if it
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is spin. However, since most of the considerations in this paper are local, we
do not need to concern ourselves with assumptions about M.

As is well-known since [1], a Spin(7)-structure is integrable if and only if
the associated Cayley 4-form @ is closed d® = 0. This in turn implies that
the metric determined by @ is Ricci-flat. It is clear that d® = 0 gives the
most geometrically motivated set of first-order PDE’s on the Cayley form.
In this paper we address the question of what the most natural second-order
PDE’s are. We describe a certain construction, inspired by the Plebanski
formalism [2], see also [3] for a recent description most closely aligned with
the motivations of the present paper. The result of the construction is a unique
action functional for ®, whose Euler-Lagrange equations are a set of second-
order PDE’s on it. As it will have become clear from the construction and
the equations it results in, these equations possess some desirable properties.
In particular, they are constructed solely from the operator of the exterior
differentiation on forms, so one never needs to know the covariant derivative
of the metric determined by ® to write them down.

The main outcome of our construction is the action

(1) S[®,C) = / O A (dC —6C Ng C)+%U¢,+c0nstr.
M

Here ® € A*(M) is a Cayley form, and we have included in the action a set
of constraint terms whose purpose is to guarantee that ® is of the correct
algebraic type. These depend solely on ¢ as well as some necessary Lagrange
multipliers variation with respect to which imposes the constraints. An easy
comparison between the dimension of the space of 4-forms dim(A?*) = 70 and
the dimension of the orbit dim(GL(8,R)/Spin(7)) = 43 shows that there are
27 independent constraints to be satisfied. We will never need to specify these
constraints explicitly, as only the variation of these terms with respect to ®
matters for the Euler-Lagrange equations, and this can be determined by a
different argument, see below. The object C' € A3(M) is what we refer to
as the auxiliary 3-form. The Euler-Lagrange equations for C' are algebraic,
and determine C' in terms of the exterior derivative of ®, see below. After
this solution is substituted back into the action, one gets a second order in
derivatives action for ® only. The term Avg is a 'cosmological constant’ term,
with A € R being a parameter and vg being the volume form for ¢, which
can be taken to be vg = (1/14)® A . Finally, C' Ag C' is a 4-form constructed
from two copies of C, as well as the (inverse) metric g% determined by ®. In
index notation that we will be using in this article, it is given by

(2) (C AV C)abcd = Cabpccdquq'
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Even though (1) is the most natural action for Cayley forms for reasons to
become clear below, there are two independent scalars, quadratic in C' € A3
that can be constructed, which follows from the fact that there are precisely
two Spin(7)-irreducible representations in the decomposition of A3, see (27)
and (28). A particular combination of these two independent invariants of
C appears in (1). We can, however, consider a more general family of La-
grangians given by

(3) Sq[@,C] = / DA (dC —6C N C) + g(C)qu, + %U@ + constr.
M

Our analysis of the linearised theory below will show that there is a two-
parameter family of diffeomorphism-invariant Lagrangians that are second
order in derivatives and quadratic in perturbations of the Cayley form. One of
these parameters can always be absorbed into the perturbation of the Cayley
form, resulting in one significant parameter. We will verify that the lineari-
sation of (3) reproduces the one-parameter family of linearised Lagrangians,
thus showing that (3) gives the non-linear completion of the most general
diffeomorphism-invariant linear Lagrangian. However, for reasons to be ex-
plained now, the k = 0 action functional (1) is the geometrically preferred
one. The argument that fixes this action proceeds through a series of propo-
sitions.

The fact that the dimension of the space where the intrinsic torsion of
a Spin(7)-structure lies is equal to the dimension of the space of 3-form is
known. However, the paper [4], which was an important precursor to our
construction, uses a different parametrisation. The analog of Lemma 2.10 of
[4] in our parametrisation is the following statement:

Proposition 1.1. The intrinsic torsion of a Spin(7)-structure, measured by
Vi®aubed, where V is the covariant derivative with respect to the Levi-Civita
connection for the metric defined by ®, lies in A* @ AL, For the notation
explaining A% and the decomposition of the space of forms into irreducible
components see below. The intrinsic torsion can be parametrised by an object
T € A3 so that

(4) Vi®aped = 4Ti[apq)\pwcd]'

Here the index p of T, is raised with the metric determined by ®.

We remark that the only metric that is used in this paper is the one
defined by .

It turns out that the torsion 3-form is completely determined by the
exterior derivative d®. This is the content of the following proposition:
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Proposition 1.2. The Hodge dual of the projection of (4) to the space of
5-forms can be written as

(5) b = 2Jy(T).

where J3 is a certain operator Jz : A3 — A3 defined by ®, see (25). The
operator Js is invertible, and so T is completely determined by d®.

We now have the proposition linking the action (1) and the relation (5)
between the torsion 3-form and the exterior derivative of the Cayley form:

Proposition 1.3. The Euler-Lagrange equation arising from (1) by extrem-
ising it with respect to C is C ="1T.

One can rephrase this by saying that (1) is precisely the first-order ac-
tion dependent on both ®,C that leads to C' = T as the C field equation.
Importantly, there is no ambiguity in the construction of the action once we
demand that C = T is to follow. In contrast, the critical value of C for the
more general k # 0 action (3) is not 7', but rather only related to 7" by a
certain non-trivial transformation. We get, instead

6 N 67 + /iJg (T)
(6) 66— (5t R)KE
The property of the action (1) that the value of C' as determined by its
corresponding Euler-Lagrange equation is the intrinsic torsion C' = T makes
this action a precise analogue of the 4D Plebanski action, see [3]. In this sense,
it is a preferred member in the more general family (3).

The next proposition describes the Euler-Lagrange equations resulting by
varying (1) with respect to ®:

Proposition 1.4. The Euler-Lagrange equations resulting from extremisation
of (1) with respect to ® can be written as:

3 1 A
(7) a[aTbcd] - §ﬂaprcd]p - g(TT)[a|e|(I)ebcd} + @q)abcd = \P[abpq(b\pq\cd]v
where W% s an arbitrary matriz in Sym%(A%), which is the space of sym-

metric tracefree matrices, with the trace defined as Tr(¥) = U4, and

. 1 .
(8) (TT)ap := ST Thay — ;gabé”’“:nj%p
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is a symmetric matriz quadratic in the torsion. We note that the factor of 1/7
here is not a typo. We can also write the Fuler-Lagrange equations in form
notation as

1 A
dd — 6T Ne T — —K(TT)+ —o =Y.
9) 67T No 16 (TT) + B,
Here K is the map from the space of symmetric tensors to A* described in
(50). It is shown later in the text, see Section 2.9, that a general 4-form in
Al can be parametrised as WO, and so the right-hand side of both (7) and
(9) is a general element of A3,.

Proposition 1.5. An alternative way of writing the field equations is to
project both sides on the A‘ll+7+35 component in A*. This gives the following
set of equations

1 3 3
(10) Zq)bpqrvanqT _ Z(I)bpqrvrTapq _ §(I)bpquapqum
3 1 3
_iq)quSTaqubrs + §gab (/\ + 8(I)PququPTrsp) =0.

The equations here are written in terms of V, but they have the same form
with V replaced by the partial derivative operator 0. We note that the left-hand
side is not automatically ab symmetric, and the anti-symmetric part of these
equations are non-trivial. The anti-symmetric part can be shown to lie in A2,
and so the total number of independent second-order differential equations is
36 + 7 = 43, the dimension of the space of Cayley forms.

We can also characterise what the field equations imply for the Riemann
curvature of the metric defined by ®. This is done in the main text. We will
see that the metrics defined by ® that are the critical points of the action
functional (3) are not in general Einstein, irrespective of value of &.

There is another Lagrangian in the family (3), namely one correspond-
ing to kK = —2, which is special. As a computation shows, the linearised
Lagrangian in this case is just that for a metric perturbation. The other com-
ponent that parametrises the perturbation of ®, namely one living in A2,
does not receive any kinetic terms at this value of k. One can rephrase this
by saying that the linearisation of the x = —2 Lagrangian is the same as the
linearisation of the Einstein-Hilbert metric Lagrangian. One could then be
led to believe that the non-linear theory for x = —2 is just that describing
Einstein metrics. This is, however, not the case, as is confirmed by calcula-
tions, see Section 6.10. There are very interesting differences only visible at
the non-linear level, still to be better understood.
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The set of second-order PDE’s (7) is the main result of our construction.
We propose these equations as the most natural set of second-order PDE’s for
a Cayley form to satisfy. There is also a natural geometric flow in the space
of Cayley forms that our construction defines. The gradient of the action
functional (1) with respect to ®, with C' = T, is given by the Hodge dual of
the 4-form on the left-hand-side of (9), projected to the space A, 7,5, and
this defines a certain Spin(7)-flow whose properties are yet to be understood.

It is through this gradient flow that our work connects to a wider context
of flows of geometric structures [5]. Much work has been done in the context
of such flows for the case of Gg-structures, starting with [6] and culminating
in the recent work [7], which was an important predecessor to this paper. A
particular geometric flow that has received attention is the so-called harmonic
flow [8], which is defined as the gradient flow of the squared norm of the
torsion tensor. This flow has been studied in various settings in [9], [10], [11],
[12] and very recently in the case of Spin(7)-structures in [13]. The functional
generating the flow in [13] is [|T'|?. In contrast, the functional (1) that we
advocate in this work, after the auxiliary field C' is solved for C' = T and
substituted into the action, reduces to

(11) S[®] ~ /M OAT N T ~ /M V@G Ty Ty

Unlike [ |T'|?, this functional does not have a definite sign, see (127). But it
is this functional that is analogous to the one that plays the distinguished
role in the case of SU(2) structures in four dimensions, see [3]. In fact, the
constructions of this paper can be described as providing a generalisation of
the Plebanski formalism for 4D General Relativity to eight dimensions.

More work is needed to get better intuition about the properties of the
critical points of both the x = 0 and x # 0 actions. We hope that this
work will follow. It is worth remarking already at this point, however, that a
construction similar to that described in this paper is possible also for other
G-structures, in various dimensions. It would be particularly interesting to
perform a similar analysis and construct actions for 3-forms in 7-dimensions,
building on the work [7].

Many of the tensor computations in the paper are performed using sym-
bolic manipulation with xAct Mathematica package [14]. For the convenience
of the interested reader, we have placed a Mathematica notebook containing
all the definitions and some example calculations in a GitHub repository [15].
The stated representation theoretic facts are obtained using the Mathematica
package LieART [16].
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2. Decomposition of the spaces of forms

Our index (anti-) symmetrisation conventions are as follows. Square brackets
denote anti-symmetrisation, and are defined by

(12) a1 .. ax] = %Z(—l)pp(al ),

where the sum is taken over all permutations p and (—1)? is plus or minus
identity depending on whether the permutation is even or odd. Symmetri-
sation is denoted by round brackets, and is defined similarly, apart from the
absence of the minus signs. A vertical line around an index (or a set of indices)
denotes the fact that this set of indices is not involved in (anti-) symmetrisa-
tion.

2.1. Basic algebra

Similar to [6] and [4], we use the index notation, which is very useful for
encoding various relations satisfied by the Cayley form. The basic algebraic
relation satisfied by the 4-form @444 is

(13) P@ijrpPabep =
Giagjvke T GibGjc9ka + GicGjagkb — Giagjckb — GicGjb9ka — JibJjaTke
—9iaPjrve — JjaPrive — IraPijbe

—9ibPjkca — JjpPrica — JrvPijea

_gicq)jkab - gjcq)kiab - gkccbijah

This identity, together with identities related to self-duality of ®, are sufficient
for most of the calculations one needs to do with ®. A Mathematical notebook
that can be used for algebraic computations with ® based on this identity is
available via [15].

One more contraction of the above identity gives

(14) (I)iqu(babpq = 6giagjb - 69ibgja - 4q)ijab~
Yet one more contraction gives

(15) (I)ipqrq)apqr = 42gia~
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The 4-form & is self-dual

1
(16) Efijkladeq)abcd = Dy

Useful consequences of self-duality are

(17) TPy = 300, DU,
and

(18) TRmmPag 0 = 60SY o] DR,
and

(19) ¢aktmnpry = 21061 5] ok plmnel,

2.2. Identity
The following non-trivial identity
(20) _Q(I)[ijk[aq)l]b(:d] _ Sq)[ij[abq)kl](:d] 4 42(1)[” [abézéaﬂ + (I)ijqu)ade -0

can be checked by multiplying with §% and using the identity (13) to check
that the result is zero. Another useful check is to contract the left-hand side
with ®* again producing zero. This identity does not seem to have appeared
in the literature before. One can derive this identity as follows. An argument
detailed in Section 2.5 below suggests that there must exist an identity of
this sort. One can then take an arbitrary combination of the first three terms
and equate this to the last term. Requiring the contraction with §% and with
Pkl to give correct identities leads to the unique choice of the coefficients
as above. This computation is spelled out in [15]. Another possibility is to
look for an arbitrary linear combination of the first three terms that is self-
dual with respect to both abed and ijkl. Again, this uniquely determines the
coefficients as above.

2.3. Decomposition of A2
The following material is standard, see e.g. [4]. Our notation for the opera-

tors introduced is different from that in [4], but, we hope, is systematic and
convenient.
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We introduce the following operator on 2-forms
1
(21) JQ : A2 — A2, Jg(ﬂ)” = §(I)Z‘jabﬁab.
Using (14) we see that
(22) (Jo)% = 31 — 2.J5.

This means that the eigenvalues of J are —3, 1. The eigenspace of eigenvalue
—3 is A2, and eigenspace of eigenvalue 1 is A3;. The two projectors are

1 1
(23) 7['721(]1—(]2), 7T21:1(3H+J2).
For later purposes we note that
11
(24) Jy ' = 5(211 + Jo).
2.4. Decomposition of A3

We introduce the following operator on 3-forms
(25) Jg o A3 — A3,
J3(V)ijr = %(%’p “ipg + Pk Vipg + PriVjpg) = g‘b[z‘jp Ykjpg
A calculation using (13) gives
(26) (J3)* = 61 — 5.J5.
This means that the eigenvalues of J3 are —6, 1. The eigenspace of eigenvalue
—6 is A, and eigenspace of eigenvalue 1 is Ajg. The elements of the space A3
are of the form
(27) A = {XPD, X € TM},
and

(28) Ads={y €N yAND =0}
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We note that

6 1 1
(29) 7T48=7(]I+6J3>, 7T8=*(H—J3).

We also note that

1
(30) Jit = 6((]3 + 5I).
2.5. Decomposition of A%

Unlike [4], which uses a more indirect approach, we decompose A* in a way
completely analogous to what was done in the case A2, A3. The only aris-
ing difficulty is that the operator that we need in this case satisfies a more
complicated (fourth-order) relation.

We introduce the following operator on 4-forms

(31) Jot At = AL Ja(0)ir = 3P0 0k =
1
5 (@i opgkt + Cri*opgji + L™ opgik + PuaOpgij + P ki + Lk 0pgir)-

We remark that this is the map denoted by Ag in [4]. We have the following
relation, also to be found in [4]

1
(32) (J1)2*(0)ijr = §(q)ijabq)k10d + 005 + Dy D 1Y) T apea
+60i51 — 8J4(0)iju = §¢[ijab®kl]6d0abcd — 249,010 + 60451

We also have the following result for the cube of this operator
(33) (J1)*(0)ijir = =69, P10 abed — 15D Ppo)“ Oabed

+258P(;; " 010 — 2405k
Using the identity (20) we can rewrite this as

(34) (J)*(0)ijin = =6 Ppy ““Tapea + 13213 opan

bed
=3P P 0abed — 240451

Finally, for the fourth power of this operator we have

345
(35) (J) (0)iji = 8TPL ;4 P Oabea + 7‘1)[ijab¢k110d0abcd
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9
_2643q)[ijab0kl]ab + §¢ijqu)ab0d0abcd + 16801

Using (20) we can rewrite this as

(36) (Ja) (0)ighr = 42D13;* Py Oabea — 816P1s;* T
+48(I)ijqu>ab0do'abcd + 1680ijkl'

This shows that

(37) (J)* +16(J4)? + 36(J4)% — 14404 = 0,
or in other words

(38) (Jy + 120)(Jy + 6I)(J, — 2I).J5 = 0.

This shows that the operator J; has eigenvalues —12, —6, 2,0, see also [4]. It
is clear that the identity (20) is key to make this calculation work. In fact,
this is how the identity (20) was derived in the first place. One knows that
(37) must be true, which shows that an identity of the type (20) must be true.
One then writes a general relation of the sort (20), and fixes the coefficients
in such a way that its contraction gives a true statement. This uniquely fixes
(20).
The eigenspaces are the irreducible components of the space of 4-forms

(39)A1 = {o € A*: Jy(0) = =120}, A = {o € A*: Jy(0) = 20},
A ={o e A*: Jy(0) = =60}, Ass={oecA*: Jyo) =0}

This will follow after we characterise each of the irreducible components be-
low.

2.6. Projector on A3,

In what follows it will be useful to have the projector on A3, explicitly. It is
clear that it is a multiple of Jy(J4 + 12I)(J4 + 6I). Taking into account the
eigenvalues of J4 on different subspaces, it is not difficult to check that the
required multiple is 1/224. Thus, we have

1 1
(40) ma7 = o Ja(Ja + 121)(Ja + 6I) = ﬂ(((14)3 + 18(J4)? + 72J4).
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Using (34) and (32) we get

3
(41) To7(0) ik = 3 (q)[ijab@szdaabcd — 40 o1g)ap

1
—= it P g + 40@%1) :

We have explicitly checked that this projector kills 4-forms of the form
(42) H[ip(I)jkl]pa H e Al &® Al,

which lie in A}, 35 ;. This characterisation of Af, 45, is subject of the next
two subsections.

For later purposes, we note that I — 797 projects out the A3, component
of any 4-form, and is given by

1
(43) I—myr = 32 (200ijkl — 3@ ;" Pp“oahea
3
+128 ;010 + §¢ijqu>ab6d0abcd)-

We also note that w7 can be understood in a simple way. Indeed, taking
a 4-form o5 € A*, we can interpret this as an object in Sym?(A?), and apply
the projector 77 on the indices ij and on the indices kl. After this the result
can be projected back to A* by antisymmetrising the indices. The result of
this operation is

(‘I’[ijabq)kl]CdUabcd — 4D o0 + 4Uijkl) .

(44)<(7T707T7)‘A4)ijkl - 6%1

This contains almost all the terms in mo7(0). The only term present in (41)
and absent in (7T7U7T7)‘A4 is the third term in (41), whose purpose is to make

the result tracefree. So, we can write
(45) mor(0) = 6(7T707T7)’A4 — trace,

where the last term just removes the trace of the first. This gives a simple
and useful interpretation of the projector mo7.

2.7. An operator from A2 to A‘% and its inverse

Let us introduce the following operator

(46) A? 3 Bij = K(B)ijir = 4Bp P jiy € A*.
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We note that the introduced operator K is the diamond map from [4]. It can
now be checked that

(47) Ko7T21:0, KO7T7:K.

Both of these can be understood by noting that the image K(3) € A? is
precisely the orbit of the basic 4-form ® under the action of the Lie algebra
spin(8). The statement that K omg; = 0 is just the statement that ® is Spin(7)
invariant. This means that Ker(K) = A3, and the image is A2.

To find the inverse of K on A% let us consider

1 1
(48) A4 > Oijkl — K,(U)ij = i(I)iquijqr — §®quraipqr c A2.
We then have
(49) T 0 K =0, K' o K = 9677.

This means that K’ is (a multiple of) the inverse of K on AZ.

The operator K to A* can be generalised and applied to a general tensor
from A' ® A'. In particular, it can be applied to a symmetric tensor h;; €
Sym?(A%)

(50) Sym*(A') 5 hyj = K(h)ije = 4hjyp PP jy € AL

The image of Sym?(A') under the action of K can be seen to be A% @ Ajs.
Restricted to its image, the operator K : Sym? (A') — A% is invertible, with
the inverse being a multiple of

(51) K':A* = Sym*(A"),  K'(0)i; = @7 0))py € Sym*(A1).

2.8. Characterisation of AA1L+35+7

We can apply the map K to a general element H;; € A' @ A

(52) K(H)”kl = 4Hﬁq)]kl]p

We already know that me7(K(H)) = 0, and so the image of this map lies in
Af 435.7- We also know that the map K applied to the symmetric part of H
lies in A} 135, and to the anti-symmetric part in A% A computation gives the
following result

(53) Jo(K(H))ijr = —3(H? — HP[;)Pyjngp — 6Pijp H,P.
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This shows that when H is symmetric tracefree H;; = H;), HyY = 0 we
have Jy(K(H)) = 0. This shows that Ai; is the eigenspace of J; of eigen-
value 0. When H;; is anti-symmetric, we have Jy(K(H)) = —6K(H), and
so A% is eigenspace of eigenvalue —6. When H;; = g;;, we have Jy(K(H)) =
—12K(H), and thus A} is eigenspace of eigenvalue —12. This gives the char-
acterisation described above in (39).

2.9. Characterisation of A‘217

It will be useful to have an explicit parametrisation of a general element of
A3, similar to have we already have a parametrisation of a general element
of the other irreducible subspaces A, 45, 7. We start with a definition

Definition 2.1. We say that a matriz ¥ is an element of the space of sym-
metric tracefree matrices

(54) v € Symj(A7),

if the following requirements are satisfied:

(55) Wabed — latlled] _ gyledfat] U, = 0, S
We can then construct a 4-form that we denote as Vo as

(56) (VD) abed = Viap" Pedppq-

Let us show that the projection of this to Af, 45,7 vanishes. To compute this,
we apply the map K’ : A* — A' ® A'. A calculation gives

1
(57) (WD) ipgr O = 57 (\pqqu B Q\IIWS(I)WS>
AT, 4 Dy WP Ty GO

The first term here is zero because V is tracefree ¥, 9% = 0, and also m; ¥ = ¥
means w1 ¥ = 0, which implies

1
(58) 3Wiikt + §(I)iquq’qul =0.

So, if Uy, % = 0 then also W,,.s®P7"° = 0. On the other hand, if we contract
4l in this expression we get

(59) U LT Dy = —6Wp0".
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The right-hand side is ¢k symmetric, and thus the left-hand side must also be
ik symmetric. This shows that the last two terms in (57) cancel. It remains
to characterise W;,"?. To do this, we compute 0 = o Uy

3 3 1
(60) 0= 3\I/ijkl + i(piqu‘llqul + Q\I[iquq)qul + Z(I)iqu@klmll’pqry

Taking the jl contraction of this we get

(61) 0= 8Wipi + 207 By + 20,7 B
1 1 s
+§gik (q]pqpq - §\qursq)pq ) .

Using Vg, % = 0, Wy s PP = 0 as well as (59) here we see that W;,,P = 0.
All in all, all the terms in (57) are zero and the object (56) is in A3;. This
gives the desired parametrisation of a general element of A3.

3. Linearised theory

In this section we address the question as to what is the most general action
invariant under diffeomorphisms that can be constructed for the fields living
in the representations A}, ;, 45 of the group Spin(7). We use physics terminol-
ogy here, in which a field is a tensor that transforms in some (not necessarily
irreducible) representation of the relevant Lie group. In our case the fields in
Al 35 ~ Sym?(A') encode perturbations hyp of a metric tensor, and A2 ~ A2
is an additional field. It is well-known that there is a unique quadratic in Ay
and second-order in derivatives diffeomorphism invariant action. This holds
true in any dimension, and the argument to this effect will be given below. We
will see that, in contrast, there is no longer a unique diffeomorphism-invariant
action for Sym?(A') and A2 fields. There are two independent possible lin-
earised actions that can be constructed. Non-linear completion of the theories
described here is the subject of the following sections.

3.1. The usual metric only case

This story is standard, and works in exactly the same way in any dimension.
We review it for completeness, and for establishing the main idea of the cal-
culation to follow in the Spin(7) case. For concreteness, we do calculations in
dimension eight, but the story repeats itself with no changes in any dimension.

In the usual gravity case one considers fields transforming with respect to
the Lorentz group SO(8). The metric perturbation contains two irreducible
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representations 1, 35,. The subscript v stands for 'vector’, to distinguish them
from also possible spinor representations. This is a standard notation at least
in some literature. As is also standard, we refer to the irreducible represen-
tations by their dimensions written in bold face. Let us denote the fields in
representations 1,35, by h, b respectively. We use the same letter to refer
to both fields because later it will be convenient to combine them together
into a single symmetric tensor hy,. We are interested in an action that con-
tains two derivatives. It will be useful to think in terms of Fourier transform,
and denote the derivative by its Fourier transform p® at intermediate stages
of the computation. The two most obvious action terms one can construct
are of the type p?h?, pQ(ﬁab)2, where the notations used are p?> = p°p. and
(iNzab)Q = haph®. To analyse the other possible terms we need to decompose
the product of two derivatives into irreducibles, taking into account that they
commute. We have

(62) 8, ®s 8, = 1+ 35,.

The trivial representation here corresponds to p?, and the other representation
is papy With the trace removed. The p? terms were already taken into account,
so we only need to consider the possible couplings between p,pp and the two
other factors of either h or h. There is no term with p,p, and two factors of
h. There is clearly a mixed term hp®pPhay. To determine possible terms with
two factors of h we need

(63) 35, ®g 35, = 1+ 35, + 294, + 300.

There is only a single occurrence of 35, here, which means that there is only
a single term that does not reduce to p?(hap)?, and this is (p®hqp)?.

All in all, there are just 4 possible terms in the action that one can write.
We now go back to the notation that uses the derivative operators, and write
the linear combination of the above four terms with arbitrary coefficients

(64) L= %Bbcaaaaﬁbc + %haaaah + Bh D hay +7(0%hap)?.

A note is in order about our notations here. The notation (tal,.,ak)g, where
la,. a, 1s an arbitrary tensor, means ¢4, o, t*' . This explains the last term,
and similar type Lagrangian terms that will be written below. We have chosen
the coefficient in front of the first term to be 1/2, which we can always do by
changing an overall coefficient in front of the Lagrangian hgp,. At this stage it
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will be more convenient to introduce the fields
~ 1
(65) hab = hab + gnabhy

so that ﬁab is the tracefree part of hy, and h = n“bhab. It is clear that the
Lagrangian retains the same general form, except that the coefficients change.
We will give the new coefficients the same name, hoping it will not lead to
any confusion. The Lagrangian in terms of A,y is

(0}

66) L= %(&thc)z 4 2(0uh)? — B0 Dy — (O )

We now demand diffeomorphism invariance of the action, with the field trans-
formation properties being

(67) hab = Oaép)-

Note that this encapsulates transformation properties of both h, hgp. In par-
ticular §h = 0°,.

We now perform the variation, and set coefficients in front of independent
terms to zero, allowing integration by parts. This results in the following set
of coefficients

(68) y=p=1, a=-1.

Thus, the unique (modulo field rescaling) Lagrangian that is diffeomorphism-
invariant reads

1 1
(69) Lor = 5(aahbc)2 — 5(aah)2 — hd*hay — (0%hap)?,
which is the standard result.
3.2. Gauge-fixing

Let us also derive the standard gauge-fixed form of the Lagrangian. Complet-
ing the square in the (0%hg)? part, we can rewrite the Lagrangian as

1 1 1
(70) Ler = i(aah66)2 - 1((%11)2 — (0“(hap — 577abh))2'

If we gauge-fix the diffeomorphisms by setting

1
(71) 8a(hab — inabh) = O,
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we get a simple linear combination of the terms containing 00, only.
3.3. The case of Spin(7)-structures

Let us now consider 3 fields in irreducible representations of Spin(7) given
by 1,7,35. These are precisely the representations appearing in a tangent
vector to the GL(8) orbit of Cayley forms. We will refer to these fields as
h,§&, h respectively. The decomposition into irreducibles is now dictated by
the Spin(7) representation theory. There are again terms involving p?, which
are p2h?, p2€2, p?h?. To determine other possible terms we need to consider
the (symmetric) product of two derivatives. We have

(72) 8 ®g8=1+35,

which is unchanged from the Spin(8) case. The trivial representation here
corresponds to p?, and so we only need to consider the 35 representation.
This must couple to the product of two fields from the list A, &, h. The non-
trivial such decompositions are

(73) 7T®RsT=1+27,
7® 35 =21+ 35 + 189,
35 ®5 35 = 1 + 27 + 35 + 105 + 168 + 294.

We are looking for every occurrence of the representation 35 here. We already
know that the terms Ap®p°hap, (joaﬁab)2 are possible. The second line above
shows that there is a new term of the type p®pP&h. It is easy to write down
this term by noting that the representation 7 appears in the anti-symmetric
part of the tensor product

(74) 35®,4 35 =7+ 21 + 35 + 189 + 378.

We already know that the best way to describe a field in representation 7 is
by using a field in AZ. Thus, let us introduce an object

(75) gab S A%

We can then construct the term coupling &, ﬁab as Paphepé®.

Going back to the notation that involves partial derivatives, it is now
clear that there are just two terms that can be constructed from &,;,. These
can be written as £%°9°0.&,, and abhbaacgca. Note that we can also write the
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second term as OphP*0°,,, because the trace part of hg, does not couple to
Eap- As before, we now write a general linear combination of all the possible
terms, with arbitrary coefficients:

(76) L= g(&lhbc)Q + %(aah)Q — B Oy — (0 hap)?
Y
+§(aa§bc)2 - Nabhbaacfca-

As before the notation (tal...ak)2 for any tensor means the complete contrac-
tion of two copies of this tensor. It will be convenient to put an arbitrary
coefficient p also in front of the first term. This will allow us to write the
general diffeomorphism-invariant Lagrangian as a linear combination of two
separately invariant Lagrangians.

3.4. Some identities

Let us now explain why the term (9%4)? is not added to the Lagrangian
(76). The representation theory tells us that there is no representation 35 in
the decomposition 7 ®g 7, and so this term must be a multiple of £%°0%0,&p...
Let us confirm that. Using the fact that £ € A2 we have

(77) fab = _é@abpquqa
and so
1
(78) gbafca = % <_28§ba€ca + 8960(61111)2) .

From this we get

1
(79) &Jafca = ggbc(gpq)Q'
This explains why the term (99,)? is already contained in the £%¢9%0,&.
term in the Lagrangian (76) and does not need to be added as a separate
term.

3.5. Gauge-fixing

We note that there is a gauge in which the general Lagrangian is given by a
sum of terms only involving the Laplacians. Indeed, for v # 0 we can rewrite
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the Lagrangian as

80) L= Loum)+ (j + ) (0,0 + (; " 3‘;» (u6)?

" B I 2
V(a (hab 2,}/77abh + 2ry£ab)) .

3.6. The transformation properties under diffeomorphisms

To determine the diffeomorphism transformation rules for all the fields we
recall that hg, and &, appear from a certain projection of the perturbation
of the 4-form. If we call this perturbation ¢ € A%, the fact that this 4-form is
a tangent vector to the orbit of Cayley 4-forms means that ¢ € A{, 7 s5. Let
us define the fields hgp, b as

~ 1 , 1 .
(81) hap = ﬂ(gb(apq Cbb)pqr - g"’/ab(bpq S(I)pqrs)7
1 r 1 rs
gab = ﬂgb[apq (I)b]pqra h = @Qﬁpq cI);qus-

We emphasise that here and till the end of this section ® is the background,
which is assumed to be constant, and ¢ is the perturbation. A calculation
shows that the inverse of this map is the following parametrisation of @gpcq

1
(82) Pabed = _4(h[ap + Zf[ap)q)bcd]py

and this formula explains the choice of prefactors in (81). We note that
(83) L oy = By + 2 + 15,
96 aoc a 4 4 aos

where it is used that &, € AZ2.
Under diffeomorphisms

(84) 56 = ied® + dig.

We assume that the background 4-form & is closed (in fact constant), so that
there is only the second term. Then

(85) 5¢abcd = _4a[a§pq)bcd]p7
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and so (1/4)0&a = m7(014&y) giving

1
(86) Shar = Oabtys Oar = Dy — 5Par By

3.7. Determining the diffeomorphism-invariant Lagrangian
The variation of the Lagrangian (76), modulo surface terms, is given by

(87) 6L =(p =7 = 5)0hasd®€" + (=5 +7 = £)0"6"han(0)
(o + B)O*h(DE) + (4\ — g)aagabaz’gb.

Here 02 = 090, and (9¢) = 0%¢,. We have used the fact that & is in A2,
and so (1/2)@uP9€,, = —3&.. Setting to zero the coefficients in front of the
independent parts we get a system of equations. The solution depends on two
of the parameters, for which we can take p, u. Then

H H
(88) a=—ptp, B=p—p y=p-5, A=g
It is clear that the resulting diffeomorphism-invariant Lagrangian is the sum

of two separately invariant terms
(89) L =pLar+pLl',

where

1 1 1
(90)[:, = §(aah)2 + haaabhab + §(aahab)2 + E(acgab)Q - abhbaacfca-

We thus observe that the linearised action in the case of Spin(7)-structures is
not unique. There are two linearly independent such actions, and the general
action is given by their linear combination. One of the parameters can always
be absorbed into the perturbation of the 4-form field, but the other parameter
remains.

It is interesting to remark that the story we described parallels precisely
the story one finds in the case of SU(2) structures in four dimensions, see
[3] section 6. In four dimensions there are also two diffeomorphism-invariant
terms that can be written down for perturbations of an SU(2) structure. The
main difference with four dimensions is that in that case there is an additional
symmetry that can be invoked, namely SU(2) gauge transformations, that



22 Kirill Krasnov

allows to eliminate one of the two independent terms. In the case of four
dimensions the origins of this extra symmetry are in the fact that so(4) splits
as 50(4) = g@g*, and gt is also a Lie algebra. It is the requirement of gauge
invariance with respect to g that eliminates one of the two possible terms
in the case of 4D. In the present case of eight dimensions g is not a Lie
algebra, and no similar requirement of gauge invariance is possible. However,
it is not impossible that for some special value of the ratio p/p an extra gauge
symmetry arises in the theory described by (89), and this selects a preferred
member of the family of theories. At the moment of writing this remark we do
not know whether this is the case, but this possibility is under investigation.

4. Intrinsic torsion

We now proceed to our construction of the non-linear theories completing
the linear story described above. The purpose of this section is to recall the
definition of the intrinsic torsion of a Spin(7)-structure and establish some
facts that are necessary for the following.

4.1. Characterisation of the intrinsic torsion

We start with the following proposition, whose proof can also be found in [4].

Proposition 4.1. The intrinsic torsion of a Spin(7)-structure, measured by
Vo ®@ijii, where V, is the metric-compatible covariant derivative, takes values
in A'® A‘%. Using the isomorphism A2 ~ A% provided by the operator K,
see (46), the intrinsic torsion can be parametrised by an object in A' @ AZ.
Ezxplicitly,

(91) vaq)ijkl = Ta;ipq)pjkl - a;jp(ppkli + Ta;kpq)plij - a;lpq)pijky
Ta;ij e Al & A%

We remark that we use the same notation for the intrinsic torsion 7g;; as
in [4]. The semi-colon here should not be confused with the symbol denoting
the covariant derivative, which is standard in some physics literature. We
never use this notation for the covariant derivative in this paper, and thus we
hope that no confusion arises.

Proof. The proof of this proposition consists in showing that the projections
of V@i € A ® A* to all other irreducible components of A* apart from A%
vanish. It is given in [4], and similar computations in the case of Gy structures
are spelled out in [7]. We spell out an alternative, completely explicit proof,
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which is made possible by our knowledge of the projections to A3y 41 and the
expression (41) for the projector to Aj;. The projection to A3;,, is obtained
by computing

(92) 2@(iquV|a‘q)j)pqr = Vacbipq’“@qur = 42Vagij =0.

For the projection on A3, the computation is a bit more involved. First, we
need some identities. We have, on one hand

V(@i rpy“ Papea) =

D11 @ apea Vi (i1 ™) + i Ppapea V) (Pr ) + i Pry !V p Pabea =
126,07 V15 Dijjap — 4wtV iy Dijjap + 120565V Praja — 48155V Prajap

+ O IV Papea = 24V, Pt — 8PV 1 Prgjar + Pii; Py UV p Pabed-

On the other hand

(93) V(P Pry ““Pabea) = 28V, i

Thus, we have

(94) D1 Py IV pPabed = AV Pijit + 8PV 1y -
We also have

(95) V(@i Prijan) = 2815, (V1o Pgjas) -

On the other hand,

(96) vp((b[ijabq)kl}ab) = —4V,®;k,
and so
(97) D1 (V1 Prtjan) = —2Vp i,

D0 IV p Paped = — 12V, 0y
Using (41), these identities, as well as @adeVp@abcd = 0, it is easy to see that

(98) 7'(27(qu)1'ij) =0.
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Finally, to establish (91) we just need to recall that a general element of
A% can be parametrised as K(3),3 € A2, where K : A2 — A% is the map
introduced in (46). We thus have

(99) Va®@ijrr = = 4T 1p Pk
where T,.;; € A' @ A2. This is precisely the formula (91). O
4.2. Parametrisation by the torsion 3-form

As is known, see e.g. [18] Example 3.4., the spaces A' ® A2 and A3 are isomor-
phic. We can make this isomorphism explicit, in one direction, by parametris-
ing the intrinsic torsion T5; as follows

1 1

(100) Ta;ij = 7T7<Tm‘j) = *Ta

g eid gq)ijleakla Taij € AP,

An explicit relation in the other direction is

4 9
(101)  Tuy = 3 aij + Hfaiig) + Tiaky oM + §Tk;lmq’klm[z‘9ﬂa~

Using this parametrisation, we can rewrite (91) in terms of the torsion
3-form.

Proposition 4.2. In the parametrisation of the intrinsic torsion by a torsion
3-form, we have

(102) vaq)ijk:l - Taipq)pjkl - Taj q)pkli + Takpq)plij - alpépijka
Taij € A3.

A proof is by explicit verification, substituting (100) into (91). Note that
this is the same formula for the covariant derivative of the basic 4-form, but
now with the torsion 3-form instead of the object T5.; € A ® A2. We would
like to emphasise that the approach of this paper to a large extent depends
on the existence of the formula (102).

4.3. Connection with skew-symmetric torsion

As is known, see [17], [18], any Spin(7)-structure on an 8-dimensional mani-
fold admits a unique connection with totally skew-symmetric torsion. Such a
connection is given by

(103) VoXi = Vo Xi — Toip X,
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It is then clear that the relation (102) can be interpreted as the statement
that the 4-form is parallel with respect to V

(104) Va®iji = 0.

The known existence of a unique connection with totally skew-symmetric
torsion thus gives an alternative justification why the formula (102) must
exist.

4.4. Torsion 3-form from the exterior derivative of the Cayley
form

Proposition 4.3. The torsion 3-form is completely determined by the exte-
rior derivative d®. Explicitly, we have

(105) T = gjgl(*(dcb)L

where J3 is the operator in 3-forms introduced in (25), and *(d®) is the Hodge
dual of d®.

Proof. On one hand, we have
1 aijkl
(106) *(dCD)mn’r = aemnr 8a,(I)ijkl-

On the other hand, substituting here the right-hand-side of (102) we have

1 g 1 y
(107) g 6mnr(uj M a(1®ijkl = aijhl Taip®pjkl .

% Emnr

Now, using (17) we get

(108) 677177uraijklTaip(bpjkl =
6(P e Typg + PP g + Prm™Tipg) = 125(T) s

This means we have
2
(109) *(dP) iy = 5J3(T)mm.

Now, the operator Jj is invertible, with inverse given by (30). This proves the
proposition. O
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5. Riemann curvature identities

Having described the intrinsic torsion and its relation with the covariant and
exterior derivatives of the Cayley form, we can obtain very useful characteri-
sations of (some parts of) the Riemann curvature. This material is standard,
see for example Theorem 2.10 in [13]. The difference in our treatment is that
we use the parametrisation of the torsion by a 3-form.

5.1. Irreducible components of the Riemann tensor

This material is well-known, see e.g. [13]. The Riemann tensor is an object
with values in Sym?(A?), with A* removed. Given that A? = A2 @ A3, it is
easy to compute the decomposition of Sym?(A?) into irreducibles using the
well-known facts about the tensor products of irreducible representations of
Spin(7). We denote representations using the corresponding dimension writ-
ten in bold face. We need the following tensor product decompositions:

(110) TRsT=1® 21,
7921 =10563507,
21 ®521 =127 @ 35 168.

Taking into account that
(111) A =1a73270 35,

we see that Riemann curvature gets decomposed into the following irreducible
components

(112) Riemann =1 ¢ 276 35 ¢ 105 & 168.
Of these the Ricci part is

(113) Ricci = 1 @ 35,

and the Weyl part is

(114) Weyl = 27 @© 105 ¢ 168.

Our next task is to characterise which parts of the Riemann curvature can
be extracted from the intrinsic torsion.
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5.2. Part of Riemann curvature from the torsion

We now take the commutator of two covariant derivatives applied to the basic
4-form to get

(115) AR Pipiiky = 2V Vi Pkt = 8V o (Tfip @7 ki) -
Applying the product rule and using (102) one more time we get

(116) 4R kg = 4Va(Typitp)) PP sy — 4V o (Tagip)) 2P
FATo " Top) @ jrarg — ATo" Tiap) * P jki)q-

This is what is known as the Bianchi identity in the literature, see e.g. [4]
Theorem 4.2.

5.3. Identity for the divergence of the torsion 3-form

Before we proceed any further, a useful consequence of this identity is obtained
by multiplying it with ™% and using (17). On the left-hand side we get
identically zero, by properties of the Riemann curvature. The right-hand side
is non-trivial and so we get

(117) 2V o Tyiim @)™ + VT i @ o,
+2Taiprp[m(I)n] abi _ 2Taqubpq(I)mnab =0.

We would now like to extract from here the divergence VT, of the torsion
3-form in terms of other quantities. Applying to this expression (1/4)(I+ J3),
we get
a 1 abc 1 abc
(118) VT amn = 5@[711 vn]Tabc - §®[m v\a|Tn]bc
- [mabCTn] aprcp .

We can rewrite this in a different form, by applying the projection to A%Z. We
get

1
(119) vaTamn - §(I)mnpqvaTapq =

1 3
5@V Tabe = 5 @™ Vo Togpe = 2P Toja Ther-
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It is useful to rewrite this as the divergence of the original torsion. Using
(102) we have

1
(120) 4vaTa;mn = va,-ramn - iq)mnpqvaTapq - CI)[mabcjﬂn]zzp]ﬂbcp7
and thus

a 1 abc 3 abc
(121) 4V Ta;mn = iq)[m b vn]Tabc - 5(1)[m b v|a|Tn]bc
*?)(I)[TnabC n]aprcp-

5.4. Component of the Riemann curvature

Thinking about Rgpeq as an object in A2 ®g A? (with a copy of A* removed),
and recalling the operator K introduced in (46), we see that the object on
the left-hand side of (116) is valued in A?® A%. We can then apply the inverse
operator K’ to obtain

1
(122) Rapij — §q>iquRabpq = VoTyij — VT

1 1
_§(I)ij8dvaTbcd + §@ij0dvbTacd + Taiprjp - TbipTajp - (I)iquTakabqk'

Both sides of this equality can be checked to be in A2 with respect to indices
ij, by applying the projector to A3, and seeing that the result is identically
zero. This computation makes it obvious that all apart from the 168 part of
the Weyl curvature are determined by the intrinsic torsion. Indeed, all parts
but this one come from A? @ A2, and this is precisely what the part of the
Riemann curvature tensor that the intrinsic torsion determines.

5.5. Ricci curvature scalar

Before we use the facts above to obtain a formula for the Ricci curvature,
let us note that there are two different ways to extract the Ricci scalar from
here. One is to contract the indices with g*¢%. The other is to contract it
with —(1/6)®%%. Both of these give

(123) R =~ Tyoq + T Tope + O TP Ty

Note that this only depends on the exterior derivative d1" of the torsion 3-
form.



Dynamics of Cayley Forms 29

5.6. Extracting the Ricci curvature

We can extract the Ricci tensor from (122) by multiplying with ®.7 and
applying the Bianchi identity Ry = 0 to get

1 ,
(124) —§<I>Z-ijabpq<I>ch = —6Rye.
Doing the same operations with the right-hand side and we get

1. .. 1 ..
(125) Rapy = =V Ty — §(I)b”kvaTijk + iq)b”kviTajk
AT P Thpg + By * T Ty

This is not explicitly symmetric in ab, and must therefore become symmetric
when T;j; is given by its expression (105). And indeed, the anti-symmetric
part of the right-hand side vanishes in view of (118). Thus, the Ricci curvature
is given by

1 g 1 »
(126) Rap = —§¢(a”’“vb>Tm + §<I>(a”kV\z‘\Tb)jk
AT Topg + (07 TP Tikp.

We have now proven the result known since [1]: when d® = 0 the metric is
Ricci-flat. Indeed, by (105) d® = 0 implies 7' = 0, which in turn gives Ry, = 0
by (126). Note that, unlike the Ricci scalar (123), the Ricci tensor depends
on the full covariant derivative of the torsion 3-form.

6. The action

This section is central to the whole paper. We consider a one-parameter family
of action functionals of the Cayley form & and an auxiliary 3-form C. The
Lagrangians we consider are first-order in derivatives, and the Euler-Lagrange
equations for the auxiliary field C' are algebraic. There is a member in the
family of actions for which the Euler-Lagrange equation for C' equates it with
the intrinsic torsion 7' of the Spin(7)-structure. Once the Euler-Lagrange
equation for C' is solved and C is obtained in terms for the derivative of ®,
this value of C' can be substituted back into the Lagrangian, resulting in a
second-order in derivatives Lagrangian that depends solely on ®. As we will
see, the Lagrangians arising this way are basically a linear combination of
the two invariants that can be constructed from the intrinsic torsion of ®. We
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will analyse the actions arising this way, and derive the arising Euler-Lagrange
equations for ®.

There are some limitations to our construction. First, our motivation is
to mimic what happens in Plebanski formalism that gives an efficient descrip-
tion of 4D General Relativity [3]. Plebanski action is similarly a functional
that depends on an SU(2) structure (encoded into a triple of 2-forms), and
an auxiliary (connection) field. The action is first-order in derivatives and
quadratic in the auxiliary field. After the connection is solved for from its
Euler-Lagrange equations and substituted back into action action, one ob-
tains a second-order action, which is just one of the two possible invariants
that can be built from the intrinsic torsion of the SU(2) structure. Our con-
struction generalises all this to the case of Spin(7) structures. Motivated by
this example of Plebanski formalism, we do not allow more complicated than
quadratic dependence of the action on the auxiliary field C, as we would like
to retain the possibility to solve for C' explicitly. It is clear that more involved
first-order actions depending on ®, C' can be constructed, with more compli-
cated dependence on C' than quadratic, but this is not pursued in the present

paper.
6.1. A one-parameter family of action functionals

The action we want to construct is a functional of ® € A* and C' € A3. It will
contain a term imposing the constraints that guarantee that ® is of algebraic
type of the Cayley form. We will never need to specify what these constraints
are, as we will only need their consequences. Given ®, C there is a natural top
form that can be constructed, which is ® A dC. We take the integral of this
to be our ’kinetic’, i.e. containing derivatives term. Lagrangians of this type
are well-known in the context of topological field theories. Thus, the theory
with the action [® A dC, with no additional terms, is a topological field
theory known as (Abelian) BF theory. Our Lagrangian, however, contains
other terms which render the theory non-topological. Apart from the terms
imposing the constraints on ®, we also want the Lagrangian to contain terms
quadratic in C', such that the variation of the action with respect to C' gives
a set of linear equations for C'.

The representation theoretic fact A> = A3 @ Ajg implies that there are
two linearly independent quadratic invariants that can be constructed from
a 3-form C. A computation gives

1 5 3

(127) 78(C)apeC = = (Cape) 7

7 (I)ade Cabp Ccdp )
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6 3
7748(C)abccabc = ?(Cabc)2 + ﬂq)alwdcabpccdp-
This shows that the two linearly independent quadratic invariants constructed
from C' can be taken to be (Cype)? and @“deCaprCdp. The coefficient in front
of one of these can always be chosen as desired by rescaling the C field. This
leads us to consider the following one-parameter family of action functionals

(128)S[®,C] = /<I> A(dC —6C N C) + g(C)2U¢ + %Uq:. + constr.

The choice of coefficients here will be convenient for what follows. The con-
stant A is a 'cosmological constant’ term that can be set to zero if desired.
The object C Ag C' is the 4-form

1 , .
(129) C N C = E(C Ao O)ijra dz' A dz? A da® A dat,
(C No Cijir = g™ CijpClhiq

and ve = (1/14)® A ® is the volume form. Written in index notation the
action becomes

1 1 .. 3
(130) S[(I)a C] = ? / (Eg]klab6d¢ijkl(aacbcd - §gpqcabpccdq)

+/€(Cabc)21}g + )\vg> dBx.

The constraint terms are omitted for brevity. The object é7*abcd ig the den-
sity weight one totally anti-symmetric tensor. This exists on any orientable
manifold, and does not need a metric for its definition. We emphasise that
giiklabed is independent of any metric, in particular the metric defined by @, to
make it clear that this tensor is not subject to variation when Euler-Lagrange
equations are derived below. Using the self-duality (16) of ® we can see that
the two scalars added to the Lagrangian are indeed (Cype)? and @“deCaprcdp.

6.2. The variation with respect to the 3-form

The variation of the action with respect to C' is given by

1 1
(131)  doS =g [y =550, by - 300C,,!

+2I€Cde) 5Cbcdd8$,
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where v, is the volume form for g, and we used the self-duality of the basic
4-form in the second term. The resulting Euler-Lagrange equation is therefore

1 g
(132) 5§eb0dmﬂ’flaaq>ijkl — 2J3(C)pea + 26Cheq = 0.

When k = 0, comparing to (109), we see that C'= T'. The coefficient in front
of the second term in the action was selected so that this happens. In general
we have

(133) J3(T) = J3(C) — kC.

For a general x this relation can be inverted

67 + kJ5(T')
134 C=——"*
(134) 6—(5+kK)K
which shows that k = 1,—6 are the values when the relation cannot be
inverted. These are of course also the eigenvalues of J3. We are particularly
interested in the case when k = 0, where C' =T, and k = —2 where
1 1
(135) C= §T — 6J3(T).

6.3. Variation of the metric with respect to the 4-form

To vary the action with respect to the 4-form, we need a formula for the
variation of g¥ with respect to the 4-form ®;;. This is standard, see e.g.
[4]. We provide the full derivation in our notations for convenience. The best
way to obtain a relation between the variations is to consider a variation of
the metric, thought of as an GL(8,R) transformation. As we have already
discussed in (50), such a transformation effected by a symmetric 8 x 8 matrix
hi; induces a change in the basic 4-form given by

(136) K(h)ijre = 4hiijp| P juy-

It will be more convenient, however, to consider the variation of ®“* . We
have

(137) 0Pij = 400 g[i | P jpy-
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The coefficient of proportionality « should be fixable by taking the variation
of any of the algebraic relations satisfied by ®. For example we have

(138) (I)abcdcbijklgmgjbgkcgld = 330.

Varying this gives

(139) 200, P 4 - 425g g; = 0,

where we used (15). Using (137) we have

(140) 400 gD TF D1y 4 2 - 426 giag™® = 0.

Using (15) again this becomes

(141) 206gi59"” + 697 gij = 0,

which shows that v = 1/2. Thus, we have

(142) 0Pijry = 2091ip| PP jy)-

As a check of consistency of these expressions, we also compute

(143) 5(@zgkl) — 5(giagjbgkcgld@abcd) —
99" 9" g0 Papea + 4611 g7 ¢ g1 P opea =
259[i|p|q>pjkl] _ 459[i|plq>pjkl] — _Qgg[ilp\qypjkl] — _giagjbgkcgld(gq)abcd_

This is analogous to the relation that we have for the metric
(144) 397 = =4 ¢"0 gap-

We now extract dg;; in terms of d®;;;. To do so we multiply the above
expression by ®%;;;. We get

(145) (5(1)(i|jkl|@a)jkl = 1259111 + 95gpquqgm.

One more contraction gives

1 g
(146) 59peg"! = 825¢ijkl@lfkl ,
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and so
1 par _ 3 pars
(147) 0917 = 15 (0%Glpar 2™ = 55 9ii0PparsP*).
Because the variation of the 4-form with all upper indices is given by minus

the variation of the form with the lower indices, and the same is true for the
metric variation, we can also write

1
148 5g = —
(148) 9" =1

, , 3
(5¢(1lpqr\ @J)pqr -5 GIEDPTSD, ),
which is the form of the relation that will be used later.

6.4. Variation of the action with respect to the 4-form

We now derive the other half of the Euler-Lagrange equations. We first rewrite

the action in terms of ®@bcd
1 abed 3 pq
(149) S[(I)v C] - 5 / (’qu) (8ac’bcd - 59 Cabpccdq)

+I€(Cabc)20g + Avg)dsx.
and then vary with respect to ®¢¢. We have

1 3
(150) 50519, T] = / 00 (690, Cot — 5" Caty Coay)

3 1 >
_Cbabcdi(ggmcabpccdq — §5gpquqq>abcd(aacbcd _ §gpq0abpccdq)
1
—§5gpquq(f€(cabc)2 + /\))de.

The terms containing 6¢g”?g,, are from the variation of the volume form. We
now substitute (148). The last term in the first line becomes

1_.. 3 y
(151) <_8(I)Z]kl0ijackleq)ebcd + m(bz]klcijpcklpq)abcd) 5pabed,

Thus, the variation of the action with respect to ®*<? is

3 1_..
(152) Eabed = 9aCred) = 5 Cla”Cearp — g(I)”leij[aC|kle|(I)ebcd]

3 g 1 . 3
+78 98 (I)Z]klcijpcklpq)abcd — 72 : 84(I)abcd (q)”kl(aiCjkl - iCiijklp) + H(Cijk)z + )\> .
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This does not need to be zero, as the action also contains terms imposing
the constraints guaranteeing that @44 is of the correct algebraic type. The
constraint terms produce a variation that is an arbitrary tensor in A3,. So,
we can only deduce that the Aj;,, and A} projection of the above vanishes.
Before we extract these projections, it is worth evaluating the trace of the
field equations. We have

3
(153) (I)adeEabcd = —2)\ — QK(CabC)Q — @“de(aaCbcd — ZCaprcdp).

This is the projection of the field equations onto A}, which must vanish. We
therefore get the following consequence of the field equations

3
(154) @“de(aaCbcd — ZCapr’cdp) + 2\ + QK(CabC)Q =0.
We can use this to simplify Fp.q. We have

(155) OYH(0;Cry — 5Cis" Crip) + R(Cijre)? + X =
3
-\ = K(Cijk)Q — Z(I)”kloijpcklpa

and so we can rewrite

a

3 1
(156)  Eppeg = 91aChed) — §C[abpccd]p - gq)”klcij[aOWle\(bebcd]

1 p 1
+%(I)abcd®”klcijpcklp + m‘ﬁabcd(/\ + Kk(Ciji)?).
The A5, 1,7 projections of this vanish when the Ajs, 7 projections of Egpeq
vanish and vice versa, so E/, ., = 0 gives an equivalent encoding of field
equations.

6.5. Extracting A§5+1+7 projections

To understand the implications of the field equations we extract the Ajs,
and A? projections. This gives

1 3
(157) QP Eppgr = 78 VaCpgr = 58V, Clpg
3 3

3 1
— 58P ClpCirs = 9 CapCors + 79 ()\ + K (Cpgr)? + 4<1>Wscpqpcrsp) .
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Its ab symmetrisation and anti-symmetrisation compute the A3, ; and A7
parts respectively. We wrote the derivatives here as the covariant derivatives,
for the computations to follow.

6.6. Rewriting the x = 0 field equations - antisymmetric part

For k = 0 we have C' = T. Let us understand the arising field equations. We
start with the anti-symmetric part. Taking (twice) the anti-symmetric part
of the field equations (157) we get

1 T 3 T T S
(158) ié[apq Vb]qur - §®[apq V|T\Tb]pq - S(I)[apq Tb}p Tqrs = 0
With the help of the curvature identity (121) we can rewrite this as
(159) vrTr;ab = O:

which is just vanishing of the divergence of the original torsion. This also
makes it manifest that this equation is A% valued. Note also that this equa-
tion does not hold automatically. It is a non-trivial field equation to be im-
posed, and it becomes a second order PDE on the original 4-form. It can
be interpreted as the evolution equation for the A% part of the Cayley form
perturbation, as is confirmed by the linearised analysis below.

6.7. Rewriting the x = 0 field equations - symmetric part

For the analysis of the symmetric part, we take (twice) the symmetric part
of (157), also writing it with the opposite sign

1 3
(160) =52 Vo Tar + 52" Vir Toypg

3 3 -
+3P (" Ty, Tyrs + 5(1)” T LapgTors + ggabq)” M T3P Tap + Agap = 0.

Contract the resulting equation with g% we get (154). Comparing this with
(123) we see that this is not the condition that the Ricci scalar is constant.
Rather, using (123), we can rewrite this equation as

1
(161) R =TT + Z@Gbchaprcdp + 4.
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A computation shows that this can be rewritten as

(162) R=TY(T + éJg(T))abc = g(TfEC)Q + 4\
Here Tys = m4s(T) is the Aig part of the torsion 3-form. We thus see that the
curvature scalar is sourced just by this part of the torsion.

For the complete symmetric part of the equation, comparing this with
(126), we can see that the second order part here does not reduce to that in
Rap. The comparison with (126) suggests that we can rewrite (160) as

(163) 3Ry + (I)(aquvb)qur
3 3 g
*BTaqubpq + §¢qusTaqubrs + ggabéljklnjkalp + )‘gab =0.
We thus see that the field equations do not state that the metric is Einstein.
Instead, there are extra contributions coming from the torsion 3-form, and its
derivatives. Note that the covariant derivative appears in this equation in such
a way that, while both Ry, and ®(,P""Vy,) T, do depend on it, the specific
combination of these terms that appears does not depend on V. This will
become more pronounced once we rewrite the field equations as a condition

that a certain 4-form vanishes.
6.8. Different ways of writing the field equations

We note that we can introduce a symmetric tensor
g 1 g
(164) Hyp = Q9T Ty — §9ab¢”leijkalp-

The 4-form encoding the field equations can then be written very compactly
as

3 1 A
(165)  Elpeq = OaThea) — §T[aprcd]p - éH[a|e|q)ebcd} + 8Z®abcd~
Recall that E/, ., is the tensor encoding the field equations of the theory,
see (156). The field equations are then the statement that this equals to an
arbitrary tensor in Al;, which we know can be parametrised as (56). So, we
get one of the possible ways of writing the field equations

3 1 . A
(16691 Thea) — iT[aprcd]p - gH[a\e@ bed] T 8Z®abcd = V" ®Ppglca),

\I,abcd

where is an arbitrary symmetric tracefree matrix in Symg(A2).
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6.9. Yet another rewriting of the field equations

Yet another way of writing the field equations, potentially useful, is obtained
by computing @abcs(l)qurEépqr, and anti-symmetrising on abcd. This gives a
4-form that is projected onto the A3;,; and A% parts, eliminating the A3;
part of E!, . that does not need to be zero. For a general 4-form we have

1 1
(167) gq)abcsq)quTJdpqr = (H - §J4)(O—)abcd;
explicitly showing that the A3, component is projected away. We now apply
this projector to the 4-form E!, , to get the following 4-form field equations

3 3

(168) v[a,T‘bcd} - Zq)[abpqchd]pq - Eq)[abpqv\mTcd]q

S S0P, T, Lo, poiikiy, T, S by ML T
_5 l[ab Lecdp + Z [ab cd] Lpgr — g [abc dlijLklp — 5 [ab clp| Ldlgr

1 g A
+372(I)abcdq>”klﬂjkalp + E@abcd = 0.
Since the first line here can be rewritten as
1

(169) (- §J4)(V[aTbcd])a

we see that the operator that appears in the field equations is built from the
usual partial derivative, rather than the covariant one.

6.10. Analysis of the kK = —2 field equations

In the general k case, we can rewrite the field equations (157) in terms of the
intrinsic torsion 3-form T, using the relation between C' and T'. However, the
arising general  results are too cumbersome. Using as the motivation the
computation of the linearised action in the last section, we now specialise to
the particularly interesting case K = —2, when the linearised action coincides
with that of General Relativity. Our intention is to see whether the full non-
linear equations of the theory in this case also reduce to the Einstein condition.

We substitute C' in the form (135) to (157) and whenever the derivatives
get applied to the basic 4-form, evaluate them using (102). The resulting field
equations are as follows

1 1 1 1 1
12" VaThgr = SOV Tapg + 5@V T + (VP Tty — §<1>abcdv1f’Tcdp)
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23 9 1 1

_ﬂq)bpquapqurs - ﬂéapqubpqurs - Z(I)pqrsTaqubrs + 6

1 1 g 1 g

_ﬂq)pqrsTaprqrs + Eq)abpqq)”lepqiTjkl - ﬂq)apqrq)zjkquiTrjk
17

1 17 1
+29ab (/\ — 75 (Toar)* + 57 O TP Ty + 2<I>WSVPTW> —0.

Tapq prq

We now use (119) to simplify the first line. We also separate the symmetric
and anti-symmetric parts. We get

1 1
(170) Z(I)(apqrvb)quT - Z(D(apqrvrTb)pq
7 pqr s 1 spars 1 b L & pargpik
_gq)(a Tb)p Tq'rs - Z(I) Taqubrs + 6Ta prq - ﬂq)a (I)b quiTrjk
1 17 17 1
T Gab (A - E(qur)2 + ﬂq)pq Tpg" Trsp + §¢pq VquTS) =0

for the symmetric part and
1 pgr s 1 pqrs 1 cd
(171) —ZCI)[a Ty Tyrs — ﬂcb (Tapp — §<I>Gb Tedap)Tyrs =0
for the anti-symmetric part.
6.11. The trace

It will be useful for the later to compute the trace of the field equations. We
get

11

1 3
(172)  2XA — Z(Tabc)2 - gcbabchabPTcdp + 5<I>“bcdvaTbcd = 0.

Using (123) we can rewrite this as
3 ) 11
(173) SR =2\~ (Tupe)? + — DT P T, g,
2 4 8
6.12. An identity
Contracting (20) with Tp.q77* we get the following identity

1 y
(174) Z@apqrq)bjkquiTTjk =
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1 . 1 1 i
_Q(I)(apqub)pqurs + igabq)wklirijkalp - §(I)pquTaqubrs + E(I)apqrq)bjkqur,-Tijk-

Using this in the symmetric part of the field equations we can transform it to

1 1
(175) —B (P T — <OV, Ty
4 4
b} , | R 1 1 iy
_6(1)(apq Tb)pSTqrs - gq)pq STaqubrs + éTaqubpq - E(I)apq q)bjkqurT’ijk
1 17 3 1
+19ab ()\ — E(qu'r‘)Q + gq)pququ;DTrsp + 2@pgT$vaqrs> = 0.

We can now rewrite this in terms of the Ricci tensor using (126). We get

2 1 4
(176) Ry = _§q> (apqub)pqurs _ g@pqrsTaqubrs + gTaqubpq
1 i 1 17 3 1
_%qDILWq)?kqurnjk + §gab (A - E(qur)Q + gq)pqrsqumep + Qq)pqrsvaqm) :

We can also use (123) to rewrite this as

1 2 1 4
(177)Rab + ZgabR = _qu(apqub)pqurs - gq)qusTaqubrs + gTap qupq

1 i 1 11 7
_%q)“pqrq)zjkTmrTijk + 5 ab (A - E(quT)Q + 8q)pqrsqupTrsp> '
This makes it clear that the x = —2 non-linear equations do not coincide

with Einstein equations. Rather, these are Einstein equations with ’stress-
energy’ tensor sourced by the intrinsic torsion. Better understanding of these
equations requires further work.

6.13. Rewriting the Kk = —2 field equations - antisymmetric part

1 1
(178) BT Tyt S0 (T — 300 Tty Ty = 0.
The expression in brackets contains a multiple of the projector 77, so it is
in AZ. The first term can also be checked to be in A2 by computing the 79
projection and verifying that it is identically zero. Moreover, it can be checked
that the above expression is invariant under the change

(179) Tabc — Tabc + (I)abcdvd7
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for any V¢, which means that it only depends on the Alg part of Typ.. This
means we can write this equation as

(180) D1 P Ty, Tyrs = 0.

where T = myg(T). There is precisely one copy of the 7 representation in the
tensor product 4848, and the field equation (180) states that 77(T'®T") = 0.

7. Linearisation

We now compute the linearisation of the general action (128) and verify that
it gives the most general diffecomorphism-invariant linearised theory (89).

7.1. Linearisation of the non-linear action

We start with the full action without the cosmological constant part, and
without the constraint terms, which we assume to be satisfied

1 1 3 ~17klabe
(181) S[(I), C] = ? / (gq)ijkl(aacbcd - 5gpqC(a,bpcfcdq)6 Jklabed

+K(C¢zbc)2vg) 5

where the volume element d®z is omitted for compactness. We will then lin-
earise around the background given by C' = 0 and a constant ®. Denoting
the variation of ® by ¢ and of C' by ¢ we get for the second variation

1 1 .. 3
(182) 5(2) [¢7C] = g/ (Iel]kladed’ijklaaCbcd - §q>ab6d0abpccdp

+K(Cabc)2> 9
A calculation shows

3
(183) To(aec™ = S0P,

which makes it easy to derive the Euler-Lagrange equation for cgp., which is
given by

1 -
(184) Iebcdm]klaaﬁbijkl = 2J5(¢)bed — 2KCped-
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We can now integrate by parts in (182) in the first term to rewrite it in terms
of the tensor cqp.. We see that it is given by (2J3(¢)ped — 2KCpeq)c?®. This
means that the linearised action written in terms of ¢ only is given by

(185) S@16) = & [ Io(clasec™ — lcune),

where cgp. is given by (184). We note that the linearised action is manifestly
diffeomorphism-invariant. Indeed, the linearised 4-form transforms as (85).
This is clearer in the form notation

(186) 5¢ = dig®, £ €TM.

As before, in this linearised calculation the background & is assumed closed,
and ¢ is the perturbation. Thus, the variation of ¢ under diffeomorphisms is
an exact form. The formula (184) shows that the tensor cgp. is obtained from
the Hodge dual of the exterior derivative of the linearised 4-form, which is
clearly diffeomorphism-invariant. So, any linearised action written in terms
of cape is diffeomorphism-invariant.

7.2. Rewriting of the linearised action

We now rewrite the linearised action explicitly in terms of ¢. The tensors cupe
and the linearised torsion t.,. are linearly related. We need to express cqpe in
terms of t4p.. The linearised torsion 4. is given by

1 3
(187) J3(tabe) = ﬁeabcm]klapqﬁijkk

We also have
1 pijkl g _ 1 par g 3 par g
(188) =]3(@€abc p@bijkl) = 5(1)[0, b¢c]pqr + Zq)[a |p\¢bc]qr-

This means that
1

3 @[apqr aIpl ¢bC]qr'

5 p 1
(189)tabc = @fabcp”klapqsijkl + E(I)[apqrab¢c}pqr +
For completeness, we state the result of computation of the A3 part of the
torsion 3-form. We have

1

1
(190) tabc(l)mabc — 5 (I)adeamQSabcd + Eq)ab(:daagbbcdm-
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A long calculation (using algebraic manipulation) based on (19) gives

) 1
(191) / J3 (tabc)tabc = / %¢ab6d8pap¢abcd + @q)ab(:dd)abpqaeaegécdpq

) 1 . . 1 ‘
+ ﬂ (8a¢abcd)2 + E (I)abcdaz ¢abip 8] chdjp - g (I)abcz (az ar ¢cv‘pq ) d)abpq

This can be simplified by passing to the parametrisation of ¢ by fields A, &.
7.3. Evaluation of the linearised action

We now use the parametrisation (82). In this parametrisation, using (17) gives

1 g
(192) J3(t)ape = ﬁeabcp”klapgﬁijkl =

3

1
_iq)abcpa ( ip gzp) + cbabc a h — (I)[bc K ( ga]l)

2
We have introduced the notation Js(t) for this quantity. We also have
(193) J3(t) = J5(c) — ke,

and so we need to compute J3(t)ap.c?. We have

B 6t + HJg(t)

(194) [k

This means that we can write the linearised action as

(195) S® [ / £3 = T—) / K J3(t) J5(t) + 6.J3(t)t =

m / RJ3(t)Ja(t) + J3(t)(Js + 5T) J5(t).

A computation gives

5k K2 1 K 1 K
1 1— 22— ) 2O = Z(1+ 2)(Bahpe)? — =(1 — 2)(8ah)?
(196) ( . 6>c S )0 — (1= 5)(0uh)
0 h09 0y — 2(0%hay)? + (1 4+ ) (0080 — 2(1+ T)Ahb 0 .
30 2 3 24 T2 30 T2

This is the diffeomorphism-invariant Lagrangian of the type (76) with (88)
and

K 2 K
1 =1+ - =—(1+=).
(197) p +6, i 3(+2>
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This shows that the linearisation of our general action gives the linearisation
of the Einstein-Hilbert Lagrangian for k = —2. We can also write down what
the Lagrangian (80) becomes with this choice of the parameters. We get

(198) L= ”fg%ahbc)? + W@“W
+(H?9(§+2)<aa§bc>2 — 50" (has = T s+ T )

This shows that another interesting point in the theory space is Kk = 2, when
there is no separate kinetic term for the trace of the metric in the linearised
Lagrangian. The value k = —6 is also special. As is clear from (194), for this
value of k the tensor cqp. can no longer be solved for in terms of t45.. All these
special cases need to be studied further to understand their significance.
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