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Dynamics of Cayley Forms
Kirill Krasnov

Abstract: The most natural first-order PDE’s to be imposed on a
Cayley 4-form in eight dimensions is the condition that it is closed.
As is well-known, this implies integrability of the Spin(7)-structure
defined by the Cayley form, as well as Ricci-flatness of the associ-
ated metric. We address the question as to what the most natural
second-order in derivatives set of conditions is. We start at the
linearised level, and construct the most general diffeomorphism-
invariant second order in derivatives Lagrangian that is quadratic
in the perturbations of the Cayley form. We find that there is
a two-parameter family of such Lagrangians. We then describe a
non-linear completion of the linear story. We parametrise the in-
trinsic torsion of a Spin(7)-structure by a 3-form, and show that
this 3-form is completely determined by the exterior derivative
of the Cayley form. The space of 3-forms splits into two Spin(7)
irreducible components, and so there is a two-parameter family
of diffeomorphism-invariant Lagrangians that are quadratic in the
torsion, matching the linearised story. We then describe a first-
order in derivatives version of the action functional, which depends
on the Cayley 4-form and auxiliary 3-form as independent vari-
ables. There is a unique functional whose Euler-Lagrange equation
for the auxiliary 3-form states that it is equal to the torsion 3-
form. For any member of our family of theories, the Euler-Lagrange
equations are written only using the operator of exterior differen-
tiation of forms, and do not require the knowledge of the metric-
compatible Levi-Civita connection. Geometrically, there is a pre-
ferred member in the family of Lagrangians, and we propose that
its Euler-Lagrange equations are the most natural second-order
equations to be satisfied by Cayley forms. Our construction also
leads to a natural geometric flow in the space of Cayley forms, de-
fined as the gradient flow of our action functional.

1. Introduction

A Spin(7)-structure on an 8-dimensional manifold is defined to be a 4-form
of a special algebraic type. Such a 4-form is known as a Cayley form, and its
GL(8,R) stabiliser is Spin(7). An 8-manifold admits a Spin(7)-structure if it
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is spin. However, since most of the considerations in this paper are local, we
do not need to concern ourselves with assumptions about M .

As is well-known since [1], a Spin(7)-structure is integrable if and only if
the associated Cayley 4-form Φ is closed dΦ = 0. This in turn implies that
the metric determined by Φ is Ricci-flat. It is clear that dΦ = 0 gives the
most geometrically motivated set of first-order PDE’s on the Cayley form.
In this paper we address the question of what the most natural second-order
PDE’s are. We describe a certain construction, inspired by the Plebanski
formalism [2], see also [3] for a recent description most closely aligned with
the motivations of the present paper. The result of the construction is a unique
action functional for Φ, whose Euler-Lagrange equations are a set of second-
order PDE’s on it. As it will have become clear from the construction and
the equations it results in, these equations possess some desirable properties.
In particular, they are constructed solely from the operator of the exterior
differentiation on forms, so one never needs to know the covariant derivative
of the metric determined by Φ to write them down.

The main outcome of our construction is the action

S[Φ, C] =
∫
M

Φ ∧ (dC − 6C ∧Φ C) + λ

6 vΦ + constr.(1)

Here Φ ∈ Λ4(M) is a Cayley form, and we have included in the action a set
of constraint terms whose purpose is to guarantee that Φ is of the correct
algebraic type. These depend solely on Φ as well as some necessary Lagrange
multipliers variation with respect to which imposes the constraints. An easy
comparison between the dimension of the space of 4-forms dim(Λ4) = 70 and
the dimension of the orbit dim(GL(8,R)/Spin(7)) = 43 shows that there are
27 independent constraints to be satisfied. We will never need to specify these
constraints explicitly, as only the variation of these terms with respect to Φ
matters for the Euler-Lagrange equations, and this can be determined by a
different argument, see below. The object C ∈ Λ3(M) is what we refer to
as the auxiliary 3-form. The Euler-Lagrange equations for C are algebraic,
and determine C in terms of the exterior derivative of Φ, see below. After
this solution is substituted back into the action, one gets a second order in
derivatives action for Φ only. The term λvΦ is a ’cosmological constant’ term,
with λ ∈ R being a parameter and vΦ being the volume form for Φ, which
can be taken to be vΦ = (1/14)Φ∧Φ. Finally, C ∧ΦC is a 4-form constructed
from two copies of C, as well as the (inverse) metric gab determined by Φ. In
index notation that we will be using in this article, it is given by

(C ∧Φ C)abcd := CabpCcdqg
pq.(2)
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Even though (1) is the most natural action for Cayley forms for reasons to
become clear below, there are two independent scalars, quadratic in C ∈ Λ3

that can be constructed, which follows from the fact that there are precisely
two Spin(7)-irreducible representations in the decomposition of Λ3, see (27)
and (28). A particular combination of these two independent invariants of
C appears in (1). We can, however, consider a more general family of La-
grangians given by

Sκ[Φ, C] =
∫
M

Φ ∧ (dC − 6C ∧Φ C) + κ

6 (C)2vΦ + λ

6 vΦ + constr.(3)

Our analysis of the linearised theory below will show that there is a two-
parameter family of diffeomorphism-invariant Lagrangians that are second
order in derivatives and quadratic in perturbations of the Cayley form. One of
these parameters can always be absorbed into the perturbation of the Cayley
form, resulting in one significant parameter. We will verify that the lineari-
sation of (3) reproduces the one-parameter family of linearised Lagrangians,
thus showing that (3) gives the non-linear completion of the most general
diffeomorphism-invariant linear Lagrangian. However, for reasons to be ex-
plained now, the κ = 0 action functional (1) is the geometrically preferred
one. The argument that fixes this action proceeds through a series of propo-
sitions.

The fact that the dimension of the space where the intrinsic torsion of
a Spin(7)-structure lies is equal to the dimension of the space of 3-form is
known. However, the paper [4], which was an important precursor to our
construction, uses a different parametrisation. The analog of Lemma 2.10 of
[4] in our parametrisation is the following statement:

Proposition 1.1. The intrinsic torsion of a Spin(7)-structure, measured by
∇iΦabcd, where ∇ is the covariant derivative with respect to the Levi-Civita
connection for the metric defined by Φ, lies in Λ1 ⊗ Λ4

7. For the notation
explaining Λ4

7 and the decomposition of the space of forms into irreducible
components see below. The intrinsic torsion can be parametrised by an object
T ∈ Λ3 so that

∇iΦabcd = 4Ti[apΦ|p|bcd].(4)

Here the index p of Taip is raised with the metric determined by Φ.

We remark that the only metric that is used in this paper is the one
defined by Φ.

It turns out that the torsion 3-form is completely determined by the
exterior derivative dΦ. This is the content of the following proposition:
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Proposition 1.2. The Hodge dual of the projection of (4) to the space of
5-forms can be written as

?dΦ = 2
5J3(T ),(5)

where J3 is a certain operator J3 : Λ3 → Λ3 defined by Φ, see (25). The
operator J3 is invertible, and so T is completely determined by dΦ.

We now have the proposition linking the action (1) and the relation (5)
between the torsion 3-form and the exterior derivative of the Cayley form:

Proposition 1.3. The Euler-Lagrange equation arising from (1) by extrem-
ising it with respect to C is C = T .

One can rephrase this by saying that (1) is precisely the first-order ac-
tion dependent on both Φ, C that leads to C = T as the C field equation.
Importantly, there is no ambiguity in the construction of the action once we
demand that C = T is to follow. In contrast, the critical value of C for the
more general κ 6= 0 action (3) is not T , but rather only related to T by a
certain non-trivial transformation. We get, instead

C = 6T + κJ3(T )
6− (5 + κ)κ .(6)

The property of the action (1) that the value of C as determined by its
corresponding Euler-Lagrange equation is the intrinsic torsion C = T makes
this action a precise analogue of the 4D Plebanski action, see [3]. In this sense,
it is a preferred member in the more general family (3).

The next proposition describes the Euler-Lagrange equations resulting by
varying (1) with respect to Φ:

Proposition 1.4. The Euler-Lagrange equations resulting from extremisation
of (1) with respect to Φ can be written as:

∂[aTbcd] −
3
2T[ab

pTcd]p −
1
8(TT )[a|e|Φe

bcd] + λ

84Φabcd = Ψ[ab
pqΦ|pq|cd],(7)

where Ψabcd is an arbitrary matrix in Sym2
0(Λ2

7), which is the space of sym-
metric tracefree matrices, with the trace defined as Tr(Ψ) = Ψab

ab, and

(TT )ab := ΦijklTijaTklb −
1
7gabΦ

ijklTij
pTklp(8)
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is a symmetric matrix quadratic in the torsion. We note that the factor of 1/7
here is not a typo. We can also write the Euler-Lagrange equations in form
notation as

dΦ− 6T ∧Φ T −
1
16K(TT ) + λ

42Φ = ΨΦ.(9)

Here K is the map from the space of symmetric tensors to Λ4 described in
(50). It is shown later in the text, see Section 2.9, that a general 4-form in
Λ4

27 can be parametrised as ΨΦ, and so the right-hand side of both (7) and
(9) is a general element of Λ4

27.

Proposition 1.5. An alternative way of writing the field equations is to
project both sides on the Λ4

1+7+35 component in Λ4. This gives the following
set of equations

1
4Φb

pqr∇aTpqr −
3
4Φb

pqr∇rTapq −
3
2Φb

pqrTap
sTqrs(10)

−3
4ΦpqrsTapqTbrs + 1

2gab
(
λ+ 3

8ΦpqrsTpq
pTrsp

)
= 0.

The equations here are written in terms of ∇, but they have the same form
with ∇ replaced by the partial derivative operator ∂. We note that the left-hand
side is not automatically ab symmetric, and the anti-symmetric part of these
equations are non-trivial. The anti-symmetric part can be shown to lie in Λ2

7,
and so the total number of independent second-order differential equations is
36 + 7 = 43, the dimension of the space of Cayley forms.

We can also characterise what the field equations imply for the Riemann
curvature of the metric defined by Φ. This is done in the main text. We will
see that the metrics defined by Φ that are the critical points of the action
functional (3) are not in general Einstein, irrespective of value of κ.

There is another Lagrangian in the family (3), namely one correspond-
ing to κ = −2, which is special. As a computation shows, the linearised
Lagrangian in this case is just that for a metric perturbation. The other com-
ponent that parametrises the perturbation of Φ, namely one living in Λ2

7,
does not receive any kinetic terms at this value of κ. One can rephrase this
by saying that the linearisation of the κ = −2 Lagrangian is the same as the
linearisation of the Einstein-Hilbert metric Lagrangian. One could then be
led to believe that the non-linear theory for κ = −2 is just that describing
Einstein metrics. This is, however, not the case, as is confirmed by calcula-
tions, see Section 6.10. There are very interesting differences only visible at
the non-linear level, still to be better understood.
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The set of second-order PDE’s (7) is the main result of our construction.
We propose these equations as the most natural set of second-order PDE’s for
a Cayley form to satisfy. There is also a natural geometric flow in the space
of Cayley forms that our construction defines. The gradient of the action
functional (1) with respect to Φ, with C = T , is given by the Hodge dual of
the 4-form on the left-hand-side of (9), projected to the space Λ4

1+7+35, and
this defines a certain Spin(7)-flow whose properties are yet to be understood.

It is through this gradient flow that our work connects to a wider context
of flows of geometric structures [5]. Much work has been done in the context
of such flows for the case of G2-structures, starting with [6] and culminating
in the recent work [7], which was an important predecessor to this paper. A
particular geometric flow that has received attention is the so-called harmonic
flow [8], which is defined as the gradient flow of the squared norm of the
torsion tensor. This flow has been studied in various settings in [9], [10], [11],
[12] and very recently in the case of Spin(7)-structures in [13]. The functional
generating the flow in [13] is

∫
|T |2. In contrast, the functional (1) that we

advocate in this work, after the auxiliary field C is solved for C = T and
substituted into the action, reduces to

S[Φ] ∼
∫
M

Φ ∧ T ∧Φ T ∼
∫
M
vΦΦabcdgefTabeTcdf .(11)

Unlike
∫
|T |2, this functional does not have a definite sign, see (127). But it

is this functional that is analogous to the one that plays the distinguished
role in the case of SU(2) structures in four dimensions, see [3]. In fact, the
constructions of this paper can be described as providing a generalisation of
the Plebanski formalism for 4D General Relativity to eight dimensions.

More work is needed to get better intuition about the properties of the
critical points of both the κ = 0 and κ 6= 0 actions. We hope that this
work will follow. It is worth remarking already at this point, however, that a
construction similar to that described in this paper is possible also for other
G-structures, in various dimensions. It would be particularly interesting to
perform a similar analysis and construct actions for 3-forms in 7-dimensions,
building on the work [7].

Many of the tensor computations in the paper are performed using sym-
bolic manipulation with xAct Mathematica package [14]. For the convenience
of the interested reader, we have placed a Mathematica notebook containing
all the definitions and some example calculations in a GitHub repository [15].
The stated representation theoretic facts are obtained using the Mathematica
package LieART [16].
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2. Decomposition of the spaces of forms

Our index (anti-) symmetrisation conventions are as follows. Square brackets
denote anti-symmetrisation, and are defined by

[a1 . . . ak] = 1
k!
∑
p

(−1)pp(a1 . . . ak),(12)

where the sum is taken over all permutations p and (−1)p is plus or minus
identity depending on whether the permutation is even or odd. Symmetri-
sation is denoted by round brackets, and is defined similarly, apart from the
absence of the minus signs. A vertical line around an index (or a set of indices)
denotes the fact that this set of indices is not involved in (anti-) symmetrisa-
tion.

2.1. Basic algebra

Similar to [6] and [4], we use the index notation, which is very useful for
encoding various relations satisfied by the Cayley form. The basic algebraic
relation satisfied by the 4-form Φabcd is

ΦijkpΦabcp =(13)
giagjbgkc + gibgjcgka + gicgjagkb − giagjcgkb − gicgjbgka − gibgjagkc

−giaΦjkbc − gjaΦkibc − gkaΦijbc

−gibΦjkca − gjbΦkica − gkbΦijca

−gicΦjkab − gjcΦkiab − gkcΦijab.

This identity, together with identities related to self-duality of Φ, are sufficient
for most of the calculations one needs to do with Φ. A Mathematical notebook
that can be used for algebraic computations with Φ based on this identity is
available via [15].

One more contraction of the above identity gives

ΦijpqΦabpq = 6giagjb − 6gibgja − 4Φijab.(14)

Yet one more contraction gives

ΦipqrΦapqr = 42gia.(15)
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The 4-form Φ is self-dual

1
4!εijkl

abcdΦabcd = Φijkl.(16)

Useful consequences of self-duality are

εaijklpqrΦbpqr = 30δ[a
b Φijkl],(17)

and

εijklmnpqΦabpq = 60δ[i
a δ

j
bΦklmn],(18)

and

εijklmnprΦabcr = 210δ[i
a δ

j
bδ
k
cΦlmnp].(19)

2.2. Identity

The following non-trivial identity

−2Φ[ijk
[aΦl]

bcd] − 3Φ[ij
[abΦkl]

cd] + 42Φ[ij
[abδckδ

d]
l] + ΦijklΦabcd = 0(20)

can be checked by multiplying with δia and using the identity (13) to check
that the result is zero. Another useful check is to contract the left-hand side
with Φijkl, again producing zero. This identity does not seem to have appeared
in the literature before. One can derive this identity as follows. An argument
detailed in Section 2.5 below suggests that there must exist an identity of
this sort. One can then take an arbitrary combination of the first three terms
and equate this to the last term. Requiring the contraction with δia and with
Φijkl to give correct identities leads to the unique choice of the coefficients
as above. This computation is spelled out in [15]. Another possibility is to
look for an arbitrary linear combination of the first three terms that is self-
dual with respect to both abcd and ijkl. Again, this uniquely determines the
coefficients as above.

2.3. Decomposition of Λ2

The following material is standard, see e.g. [4]. Our notation for the opera-
tors introduced is different from that in [4], but, we hope, is systematic and
convenient.
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We introduce the following operator on 2-forms

J2 : Λ2 → Λ2, J2(β)ij = 1
2Φij

abβab.(21)

Using (14) we see that

(J2)2 = 3I− 2J2.(22)

This means that the eigenvalues of J2 are −3, 1. The eigenspace of eigenvalue
−3 is Λ2

7, and eigenspace of eigenvalue 1 is Λ2
21. The two projectors are

π7 = 1
4(I− J2), π21 = 1

4(3I + J2).(23)

For later purposes we note that

J−1
2 = 1

3(2I + J2).(24)

2.4. Decomposition of Λ3

We introduce the following operator on 3-forms

J3 : Λ3 → Λ3,(25)

J3(γ)ijk = 1
2(Φij

pqγkpq + Φjk
pqγipq + Φki

pqγjpq) = 3
2Φ[ij

pqγk]pq

A calculation using (13) gives

(J3)2 = 6I− 5J3.(26)

This means that the eigenvalues of J3 are −6, 1. The eigenspace of eigenvalue
−6 is Λ3

8, and eigenspace of eigenvalue 1 is Λ3
48. The elements of the space Λ3

8
are of the form

Λ3
8 = {XpΦpijk, X ∈ TM},(27)

and

Λ3
48 = {γ ∈ Λ3 : γ ∧ Φ = 0}.(28)
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We note that

π48 = 6
7

(
I + 1

6J3

)
, π8 = 1

7 (I− J3) .(29)

We also note that

J−1
3 = 1

6(J3 + 5I).(30)

2.5. Decomposition of Λ4

Unlike [4], which uses a more indirect approach, we decompose Λ4 in a way
completely analogous to what was done in the case Λ2,Λ3. The only aris-
ing difficulty is that the operator that we need in this case satisfies a more
complicated (fourth-order) relation.

We introduce the following operator on 4-forms

J4 : Λ4 → Λ4, J4(σ)ijkl = 3Φ[ij
pqσkl]pq =(31)

1
2(Φij

pqσpqkl + Φki
pqσpqjl + Φil

pqσpqjk + Φkl
pqσpqij + Φjl

pqσpqki + Φjk
pqσpqil).

We remark that this is the map denoted by ΛΦ in [4]. We have the following
relation, also to be found in [4]

(J4)2(σ)ijkl = 1
2(Φij

abΦkl
cd + Φki

abΦjl
cd + Φil

abΦjk
cd)σabcd(32)

+6σijkl − 8J4(σ)ijkl = 3
2Φ[ij

abΦkl]
cdσabcd − 24Φ[ij

abσkl]ab + 6σijkl.

We also have the following result for the cube of this operator

(J4)3(σ)ijkl = −6Φa
[ijkΦbcd

l] σabcd − 15Φ[ij
abΦkl]

cdσabcd(33)
+258Φ[ij

abσkl]ab − 24σijkl.

Using the identity (20) we can rewrite this as

(J4)3(σ)ijkl = −6Φ[ij
abΦkl]

cdσabcd + 132Φ[ij
abσkl]ab(34)

−3ΦijklΦabcdσabcd − 24σijkl.

Finally, for the fourth power of this operator we have

(J4)4(σ)ijkl = 87Φa
[ijkΦbcd

l] σabcd + 345
2 Φ[ij

abΦkl]
cdσabcd(35)
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−2643Φ[ij
abσkl]ab + 9

2ΦijklΦabcdσabcd + 168σijkl.

Using (20) we can rewrite this as

(J4)4(σ)ijkl = 42Φ[ij
abΦkl]

cdσabcd − 816Φ[ij
abσkl]ab(36)

+48ΦijklΦabcdσabcd + 168σijkl.

This shows that

(J4)4 + 16(J4)3 + 36(J4)2 − 144J4 = 0,(37)

or in other words

(J4 + 12I)(J4 + 6I)(J4 − 2I)J4 = 0.(38)

This shows that the operator J4 has eigenvalues −12,−6, 2, 0, see also [4]. It
is clear that the identity (20) is key to make this calculation work. In fact,
this is how the identity (20) was derived in the first place. One knows that
(37) must be true, which shows that an identity of the type (20) must be true.
One then writes a general relation of the sort (20), and fixes the coefficients
in such a way that its contraction gives a true statement. This uniquely fixes
(20).

The eigenspaces are the irreducible components of the space of 4-forms

Λ4
1 = {σ ∈ Λ4 : J4(σ) = −12σ}, Λ4

27 = {σ ∈ Λ4 : J4(σ) = 2σ},(39)
Λ4

7 = {σ ∈ Λ4 : J4(σ) = −6σ}, Λ4
35 = {σ ∈ Λ4 : J4(σ) = 0}.

This will follow after we characterise each of the irreducible components be-
low.

2.6. Projector on Λ4
27

In what follows it will be useful to have the projector on Λ4
27 explicitly. It is

clear that it is a multiple of J4(J4 + 12I)(J4 + 6I). Taking into account the
eigenvalues of J4 on different subspaces, it is not difficult to check that the
required multiple is 1/224. Thus, we have

π27 = 1
224J4(J4 + 12I)(J4 + 6I) = 1

224((J4)3 + 18(J4)2 + 72J4).(40)
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Using (34) and (32) we get

π27(σ)ijkl = 3
32
(
Φ[ij

abΦkl]
cdσabcd − 4Φ[ij

abσkl]ab(41)

−1
7ΦijklΦabcdσabcd + 4σijkl

)
.

We have explicitly checked that this projector kills 4-forms of the form

H[i
pΦjkl]p, H ∈ Λ1 ⊗ Λ1,(42)

which lie in Λ4
1+35+7. This characterisation of Λ4

1+35+7 is subject of the next
two subsections.

For later purposes, we note that I− π27 projects out the Λ4
27 component

of any 4-form, and is given by

I− π27 = 1
32
(
20σijkl − 3Φ[ij

abΦkl]
cdσabcd(43)

+12Φ[ij
abσkl]ab + 3

7ΦijklΦabcdσabcd
)
.

We also note that π27 can be understood in a simple way. Indeed, taking
a 4-form σijkl ∈ Λ4, we can interpret this as an object in Sym2(Λ2), and apply
the projector π7 on the indices ij and on the indices kl. After this the result
can be projected back to Λ4 by antisymmetrising the indices. The result of
this operation is(

(π7σπ7)
∣∣∣
Λ4

)
ijkl

= 1
64
(
Φ[ij

abΦkl]
cdσabcd − 4Φ[ij

abσkl]ab + 4σijkl
)
.(44)

This contains almost all the terms in π27(σ). The only term present in (41)
and absent in (π7σπ7)

∣∣∣
Λ4

is the third term in (41), whose purpose is to make
the result tracefree. So, we can write

π27(σ) = 6(π7σπ7)
∣∣∣
Λ4
− trace,(45)

where the last term just removes the trace of the first. This gives a simple
and useful interpretation of the projector π27.

2.7. An operator from Λ2 to Λ4
7 and its inverse

Let us introduce the following operator

Λ2 3 βij → K(β)ijkl = 4β[i|p|Φp
jkl] ∈ Λ4.(46)
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We note that the introduced operator K is the diamond map from [4]. It can
now be checked that

K ◦ π21 = 0, K ◦ π7 = K.(47)

Both of these can be understood by noting that the image K(β) ∈ Λ4 is
precisely the orbit of the basic 4-form Φ under the action of the Lie algebra
spin(8). The statement thatK◦π21 = 0 is just the statement that Φ is Spin(7)
invariant. This means that Ker(K) = Λ2

21, and the image is Λ4
7.

To find the inverse of K on Λ4
7 let us consider

Λ4 3 σijkl → K ′(σ)ij = 1
2Φi

pqrσjpqr −
1
2Φj

pqrσipqr ∈ Λ2.(48)

We then have

π21 ◦K ′ = 0, K ′ ◦K = 96π7.(49)

This means that K ′ is (a multiple of) the inverse of K on Λ4
7.

The operator K to Λ4 can be generalised and applied to a general tensor
from Λ1 ⊗ Λ1. In particular, it can be applied to a symmetric tensor hij ∈
Sym2(Λ1)

Sym2(Λ1) 3 hij → K(h)ijkl = 4h[i|p|Φp
jkl] ∈ Λ4.(50)

The image of Sym2(Λ1) under the action of K can be seen to be Λ4
1 ⊕ Λ4

35.
Restricted to its image, the operator K : Sym2(Λ1) → Λ4 is invertible, with
the inverse being a multiple of

K ′ : Λ4 → Sym2(Λ1), K ′(σ)ij = Φ(i
pqrσj)pqr ∈ Sym2(Λ1).(51)

2.8. Characterisation of Λ4
1+35+7

We can apply the map K to a general element Hij ∈ Λ1 ⊗ Λ1

K(H)ijkl := 4Hp
[iΦjkl]p.(52)

We already know that π27(K(H)) = 0, and so the image of this map lies in
Λ4

1+35+7. We also know that the map K applied to the symmetric part of H
lies in Λ4

1+35, and to the anti-symmetric part in Λ4
7. A computation gives the

following result

J4(K(H))ijkl = −3(H[i
p −Hp

[i)Φijk]p − 6ΦijklHp
p.(53)
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This shows that when H is symmetric tracefree Hij = H(ij), Hp
p = 0 we

have J4(K(H)) = 0. This shows that Λ4
35 is the eigenspace of J4 of eigen-

value 0. When Hij is anti-symmetric, we have J4(K(H)) = −6K(H), and
so Λ4

7 is eigenspace of eigenvalue −6. When Hij = gij , we have J4(K(H)) =
−12K(H), and thus Λ4

1 is eigenspace of eigenvalue −12. This gives the char-
acterisation described above in (39).

2.9. Characterisation of Λ4
27

It will be useful to have an explicit parametrisation of a general element of
Λ4

27, similar to have we already have a parametrisation of a general element
of the other irreducible subspaces Λ4

1+35+7. We start with a definition

Definition 2.1. We say that a matrix Ψ is an element of the space of sym-
metric tracefree matrices

Ψabcd ∈ Sym2
0(Λ2

7),(54)

if the following requirements are satisfied:

Ψabcd = Ψ[ab][cd] = Ψ[cd][ab], Ψab
ab = 0, π7Ψ = Ψ = Ψπ7.(55)

We can then construct a 4-form that we denote as ΨΦ as

(ΨΦ)abcd := Ψ[ab
pqΦcd]pq.(56)

Let us show that the projection of this to Λ4
1+35+7 vanishes. To compute this,

we apply the map K ′ : Λ4 → Λ1 ⊗ Λ1. A calculation gives

(ΨΦ)ipqrΦapqr = δai

(
Ψqr

qr − 1
2ΨpqrsΦpqrs

)
(57)

+4Ψip
ap + ΦipqrΨapqr −ΨipqrΦapqr.

The first term here is zero because Ψ is tracefree Ψqr
qp = 0, and also π7Ψ = Ψ

means π21Ψ = 0, which implies

3Ψijkl + 1
2Φij

pqΨpqkl = 0.(58)

So, if Ψqr
qp = 0 then also ΨpqrsΦpqrs = 0. On the other hand, if we contract

jl in this expression we get

Ψk
pqrΦipqr = −6Ψipk

p.(59)
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The right-hand side is ik symmetric, and thus the left-hand side must also be
ik symmetric. This shows that the last two terms in (57) cancel. It remains
to characterise Ψip

ap. To do this, we compute 0 = π21Ψπ21

0 = 3Ψijkl + 3
2Φij

pqΨpqkl + 3
2Ψij

pqΦpqkl + 1
4Φij

pqΦkl
rsΨpqrs.(60)

Taking the jl contraction of this we get

0 = 8Ψipk
p + 2Ψk

pqrΦipqr + 2Ψi
pqrΦkpqr(61)

+1
2gik

(
Ψpq

pq − 1
2ΨpqrsΦpqrs

)
.

Using Ψqr
qp = 0,ΨpqrsΦpqrs = 0 as well as (59) here we see that Ψipk

p = 0.
All in all, all the terms in (57) are zero and the object (56) is in Λ4

27. This
gives the desired parametrisation of a general element of Λ4

27.

3. Linearised theory

In this section we address the question as to what is the most general action
invariant under diffeomorphisms that can be constructed for the fields living
in the representations Λ4

1+7+35 of the group Spin(7). We use physics terminol-
ogy here, in which a field is a tensor that transforms in some (not necessarily
irreducible) representation of the relevant Lie group. In our case the fields in
Λ4

1+35 ∼ Sym2(Λ1) encode perturbations hab of a metric tensor, and Λ4
7 ∼ Λ2

7
is an additional field. It is well-known that there is a unique quadratic in hab
and second-order in derivatives diffeomorphism invariant action. This holds
true in any dimension, and the argument to this effect will be given below. We
will see that, in contrast, there is no longer a unique diffeomorphism-invariant
action for Sym2(Λ1) and Λ2

7 fields. There are two independent possible lin-
earised actions that can be constructed. Non-linear completion of the theories
described here is the subject of the following sections.

3.1. The usual metric only case

This story is standard, and works in exactly the same way in any dimension.
We review it for completeness, and for establishing the main idea of the cal-
culation to follow in the Spin(7) case. For concreteness, we do calculations in
dimension eight, but the story repeats itself with no changes in any dimension.

In the usual gravity case one considers fields transforming with respect to
the Lorentz group SO(8). The metric perturbation contains two irreducible
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representations 1,35v. The subscript v stands for ’vector’, to distinguish them
from also possible spinor representations. This is a standard notation at least
in some literature. As is also standard, we refer to the irreducible represen-
tations by their dimensions written in bold face. Let us denote the fields in
representations 1,35v by h, h̃ab respectively. We use the same letter to refer
to both fields because later it will be convenient to combine them together
into a single symmetric tensor hab. We are interested in an action that con-
tains two derivatives. It will be useful to think in terms of Fourier transform,
and denote the derivative by its Fourier transform pa at intermediate stages
of the computation. The two most obvious action terms one can construct
are of the type p2h2, p2(h̃ab)2, where the notations used are p2 = pcpc and
(h̃ab)2 = h̃abh̃

ab. To analyse the other possible terms we need to decompose
the product of two derivatives into irreducibles, taking into account that they
commute. We have

8v ⊗S 8v = 1 + 35v.(62)

The trivial representation here corresponds to p2, and the other representation
is papb with the trace removed. The p2 terms were already taken into account,
so we only need to consider the possible couplings between papb and the two
other factors of either h or h̃. There is no term with papb and two factors of
h. There is clearly a mixed term hpapbh̃ab. To determine possible terms with
two factors of h̃ we need

35v ⊗S 35v = 1 + 35v + 294v + 300.(63)

There is only a single occurrence of 35v here, which means that there is only
a single term that does not reduce to p2(h̃ab)2, and this is (pah̃ab)2.

All in all, there are just 4 possible terms in the action that one can write.
We now go back to the notation that uses the derivative operators, and write
the linear combination of the above four terms with arbitrary coefficients

L = 1
2 h̃

bc∂a∂ah̃bc + α

2 h∂
a∂ah+ βh∂a∂bh̃ab + γ(∂ah̃ab)2.(64)

A note is in order about our notations here. The notation (ta1...ak
)2, where

ta1...ak
is an arbitrary tensor, means ta1...ak

ta1...ak . This explains the last term,
and similar type Lagrangian terms that will be written below. We have chosen
the coefficient in front of the first term to be 1/2, which we can always do by
changing an overall coefficient in front of the Lagrangian h̃ab. At this stage it
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will be more convenient to introduce the fields

hab := h̃ab + 1
8ηabh,(65)

so that h̃ab is the tracefree part of hab and h = ηabhab. It is clear that the
Lagrangian retains the same general form, except that the coefficients change.
We will give the new coefficients the same name, hoping it will not lead to
any confusion. The Lagrangian in terms of hab is

L = 1
2(∂ahbc)2 + α

2 (∂ah)2 − βh∂a∂bhab − γ(∂ahab)2.(66)

We now demand diffeomorphism invariance of the action, with the field trans-
formation properties being

hab = ∂(aξb).(67)

Note that this encapsulates transformation properties of both h, h̃ab. In par-
ticular δh = ∂cξc.

We now perform the variation, and set coefficients in front of independent
terms to zero, allowing integration by parts. This results in the following set
of coefficients

γ = β = 1, α = −1.(68)

Thus, the unique (modulo field rescaling) Lagrangian that is diffeomorphism-
invariant reads

LGR = 1
2(∂ahbc)2 − 1

2(∂ah)2 − h∂a∂bhab − (∂ahab)2,(69)

which is the standard result.

3.2. Gauge-fixing

Let us also derive the standard gauge-fixed form of the Lagrangian. Complet-
ing the square in the (∂ahab)2 part, we can rewrite the Lagrangian as

LGR = 1
2(∂ahbc)2 − 1

4(∂ah)2 − (∂a(hab −
1
2ηabh))2.(70)

If we gauge-fix the diffeomorphisms by setting

∂a(hab −
1
2ηabh) = 0,(71)
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we get a simple linear combination of the terms containing ∂a∂a only.

3.3. The case of Spin(7)-structures

Let us now consider 3 fields in irreducible representations of Spin(7) given
by 1,7,35. These are precisely the representations appearing in a tangent
vector to the GL(8) orbit of Cayley forms. We will refer to these fields as
h, ξ, h̃ respectively. The decomposition into irreducibles is now dictated by
the Spin(7) representation theory. There are again terms involving p2, which
are p2h2, p2ξ2, p2h̃2. To determine other possible terms we need to consider
the (symmetric) product of two derivatives. We have

8⊗S 8 = 1 + 35,(72)

which is unchanged from the Spin(8) case. The trivial representation here
corresponds to p2, and so we only need to consider the 35 representation.
This must couple to the product of two fields from the list h, ξ, h̃. The non-
trivial such decompositions are

7⊗S 7 = 1 + 27,(73)
7⊗ 35 = 21 + 35 + 189,

35⊗S 35 = 1 + 27 + 35 + 105 + 168 + 294.

We are looking for every occurrence of the representation 35 here. We already
know that the terms hpapbh̃ab, (pah̃ab)2 are possible. The second line above
shows that there is a new term of the type papbξh̃. It is easy to write down
this term by noting that the representation 7 appears in the anti-symmetric
part of the tensor product

35⊗A 35 = 7 + 21 + 35 + 189 + 378.(74)

We already know that the best way to describe a field in representation 7 is
by using a field in Λ2

7. Thus, let us introduce an object

ξab ∈ Λ2
7.(75)

We can then construct the term coupling ξab, h̃ab as papchcbξab.
Going back to the notation that involves partial derivatives, it is now

clear that there are just two terms that can be constructed from ξab. These
can be written as ξab∂c∂cξab and ∂bh̃ba∂cξca. Note that we can also write the
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second term as ∂bhba∂cξca, because the trace part of hab does not couple to
ξab. As before, we now write a general linear combination of all the possible
terms, with arbitrary coefficients:

L = ρ

2(∂ahbc)2 + α

2 (∂ah)2 − βh∂a∂bhab − γ(∂ahab)2(76)

+λ

2 (∂aξbc)2 − µ∂bhba∂cξca.

As before the notation (ta1...ak
)2 for any tensor means the complete contrac-

tion of two copies of this tensor. It will be convenient to put an arbitrary
coefficient ρ also in front of the first term. This will allow us to write the
general diffeomorphism-invariant Lagrangian as a linear combination of two
separately invariant Lagrangians.

3.4. Some identities

Let us now explain why the term (∂aξab)2 is not added to the Lagrangian
(76). The representation theory tells us that there is no representation 35 in
the decomposition 7⊗S 7, and so this term must be a multiple of ξbc∂a∂aξbc.
Let us confirm that. Using the fact that ξ ∈ Λ2

7 we have

ξab = −1
6Φab

pqξpq,(77)

and so

ξb
aξca = 1

36
(
−28ξbaξca + 8gbc(ξpq)2

)
.(78)

From this we get

ξb
aξca = 1

8gbc(ξpq)
2.(79)

This explains why the term (∂aξab)2 is already contained in the ξbc∂a∂aξbc
term in the Lagrangian (76) and does not need to be added as a separate
term.

3.5. Gauge-fixing

We note that there is a gauge in which the general Lagrangian is given by a
sum of terms only involving the Laplacians. Indeed, for γ 6= 0 we can rewrite
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the Lagrangian as

L = ρ

2(∂ahbc)2 +
(
α

2 + β2

4γ

)
(∂ah)2 +

(
λ

2 + µ2

32γ

)
(∂aξbc)2(80)

−γ(∂a(hab −
β

2γ ηabh+ µ

2γ ξab))
2.

3.6. The transformation properties under diffeomorphisms

To determine the diffeomorphism transformation rules for all the fields we
recall that hab and ξab appear from a certain projection of the perturbation
of the 4-form. If we call this perturbation φ ∈ Λ4, the fact that this 4-form is
a tangent vector to the orbit of Cayley 4-forms means that φ ∈ Λ4

1+7+35. Let
us define the fields hab, ξab as

h̃ab = 1
24(φ(a

pqrΦb)pqr −
1
8ηabφ

pqrsΦpqrs),(81)

ξab = 1
24φ[a

pqrΦb]pqr, h = 1
168φ

pqrsΦpqrs.

We emphasise that here and till the end of this section Φ is the background,
which is assumed to be constant, and φ is the perturbation. A calculation
shows that the inverse of this map is the following parametrisation of φabcd

φabcd = −4(h[a
p + 1

4ξ[a
p)Φbcd]p,(82)

and this formula explains the choice of prefactors in (81). We note that

1
96φ

abcdφabcd = habhab + 3
4h

2 + 1
4ξ

abξab,(83)

where it is used that ξab ∈ Λ2
7.

Under diffeomorphisms

δφ = iξdΦ + diξΦ.(84)

We assume that the background 4-form Φ is closed (in fact constant), so that
there is only the second term. Then

δφabcd = −4∂[aξ
pΦbcd]p,(85)
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and so (1/4)δξab = π7(∂[aξb]) giving

δhab = ∂(aξb), δξab = ∂[aξb] −
1
2Φab

pq∂pξq.(86)

3.7. Determining the diffeomorphism-invariant Lagrangian

The variation of the Lagrangian (76), modulo surface terms, is given by

δL = (ρ− γ − µ

2 )∂ahab∂2ξb + (−β + γ − µ

2 )∂a∂bhab(∂ξ)(87)

−(α + β)∂2h(∂ξ) + (4λ− µ

2 )∂aξab∂2ξb.

Here ∂2 = ∂a∂a and (∂ξ) = ∂aξa. We have used the fact that ξab is in Λ2
7,

and so (1/2)Φab
pqξpq = −3ξab. Setting to zero the coefficients in front of the

independent parts we get a system of equations. The solution depends on two
of the parameters, for which we can take ρ, µ. Then

α = −ρ+ µ, β = ρ− µ, γ = ρ− µ

2 , λ = µ

8 .(88)

It is clear that the resulting diffeomorphism-invariant Lagrangian is the sum
of two separately invariant terms

L = ρLGR + µL′,(89)

where

L′ = 1
2(∂ah)2 + h∂a∂bhab + 1

2(∂ahab)2 + 1
16(∂cξab)2 − ∂bhba∂cξca.(90)

We thus observe that the linearised action in the case of Spin(7)-structures is
not unique. There are two linearly independent such actions, and the general
action is given by their linear combination. One of the parameters can always
be absorbed into the perturbation of the 4-form field, but the other parameter
remains.

It is interesting to remark that the story we described parallels precisely
the story one finds in the case of SU(2) structures in four dimensions, see
[3] section 6. In four dimensions there are also two diffeomorphism-invariant
terms that can be written down for perturbations of an SU(2) structure. The
main difference with four dimensions is that in that case there is an additional
symmetry that can be invoked, namely SU(2) gauge transformations, that
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allows to eliminate one of the two independent terms. In the case of four
dimensions the origins of this extra symmetry are in the fact that so(4) splits
as so(4) = g⊕ g⊥, and g⊥ is also a Lie algebra. It is the requirement of gauge
invariance with respect to g⊥ that eliminates one of the two possible terms
in the case of 4D. In the present case of eight dimensions g⊥ is not a Lie
algebra, and no similar requirement of gauge invariance is possible. However,
it is not impossible that for some special value of the ratio µ/ρ an extra gauge
symmetry arises in the theory described by (89), and this selects a preferred
member of the family of theories. At the moment of writing this remark we do
not know whether this is the case, but this possibility is under investigation.

4. Intrinsic torsion

We now proceed to our construction of the non-linear theories completing
the linear story described above. The purpose of this section is to recall the
definition of the intrinsic torsion of a Spin(7)-structure and establish some
facts that are necessary for the following.

4.1. Characterisation of the intrinsic torsion

We start with the following proposition, whose proof can also be found in [4].

Proposition 4.1. The intrinsic torsion of a Spin(7)-structure, measured by
∇aΦijkl, where ∇a is the metric-compatible covariant derivative, takes values
in Λ1 ⊗ Λ4

7. Using the isomorphism Λ2
7 ∼ Λ4

7 provided by the operator K,
see (46), the intrinsic torsion can be parametrised by an object in Λ1 ⊗ Λ2

7.
Explicitly,

∇aΦijkl = Ta;ipΦp
jkl − Ta;jpΦp

kli + Ta;kpΦp
lij − Ta;lpΦp

ijk,(91)
Ta;ij ∈ Λ1 ⊗ Λ2

7.

We remark that we use the same notation for the intrinsic torsion Ta;ij as
in [4]. The semi-colon here should not be confused with the symbol denoting
the covariant derivative, which is standard in some physics literature. We
never use this notation for the covariant derivative in this paper, and thus we
hope that no confusion arises.

Proof. The proof of this proposition consists in showing that the projections
of ∇aΦijkl ∈ Λ1⊗Λ4 to all other irreducible components of Λ4 apart from Λ4

7
vanish. It is given in [4], and similar computations in the case of G2 structures
are spelled out in [7]. We spell out an alternative, completely explicit proof,
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which is made possible by our knowledge of the projections to Λ4
35+1 and the

expression (41) for the projector to Λ4
27. The projection to Λ4

35+1 is obtained
by computing

2Φ(i
pqr∇|a|Φj)pqr = ∇aΦi

pqrΦjpqr = 42∇agij = 0.(92)

For the projection on Λ4
27 the computation is a bit more involved. First, we

need some identities. We have, on one hand

∇p(Φ[ij
abΦkl]

cdΦabcd) =
Φ[kl

cdΦ|abcd∇p|(Φij]
ab) + Φ[ij

abΦ|abcd∇p|(Φkl]
cd) + Φ[ij

abΦkl]
cd∇pΦabcd =

12δa[kδbl∇|p|Φij]ab − 4Φ[kl
ab∇|p|Φij]ab + 12δa[iδbj∇|p|Φkl]ab − 4Φ[ij

ab∇|p|Φkl]ab

+Φ[ij
abΦkl]

cd∇pΦabcd = 24∇pΦijkl − 8Φ[ij
ab∇|p|Φkl]ab + Φ[ij

abΦkl]
cd∇pΦabcd.

On the other hand

∇p(Φ[ij
abΦkl]

cdΦabcd) = 28∇pΦijkl.(93)

Thus, we have

Φ[ij
abΦkl]

cd∇pΦabcd = 4∇pΦijkl + 8Φ[ij
ab∇|p|Φkl]ab.(94)

We also have

∇p(Φ[ij
abΦkl]ab) = 2Φ[ij

ab(∇|p|Φkl]ab).(95)

On the other hand,

∇p(Φ[ij
abΦkl]ab) = −4∇pΦijkl,(96)

and so

Φ[ij
ab(∇|p|Φkl]ab) = −2∇pΦijkl,(97)

Φ[ij
abΦkl]

cd∇pΦabcd = −12∇pΦijkl.

Using (41), these identities, as well as Φabcd∇pΦabcd = 0, it is easy to see that

π27(∇pΦijkl) = 0.(98)
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Finally, to establish (91) we just need to recall that a general element of
Λ4

7 can be parametrised as K(β), β ∈ Λ2
7, where K : Λ2

7 → Λ4
7 is the map

introduced in (46). We thus have

∇aΦijkl = −4Ta;[i|p|Φjkl]
p,(99)

where Ta;ij ∈ Λ1 ⊗ Λ2
7. This is precisely the formula (91).

4.2. Parametrisation by the torsion 3-form

As is known, see e.g. [18] Example 3.4., the spaces Λ1⊗Λ2
7 and Λ3 are isomor-

phic. We can make this isomorphism explicit, in one direction, by parametris-
ing the intrinsic torsion Ta;ij as follows

Ta;ij = π7(Taij) = 1
4Taij −

1
8Φij

klTakl, Taij ∈ Λ3.(100)

An explicit relation in the other direction is

Taij = 4
3Ta;ij + 4T[a;ij] + T[a;kl]Φij

kl + 2
9Tk;lmΦklm

[igj]a.(101)

Using this parametrisation, we can rewrite (91) in terms of the torsion
3-form.

Proposition 4.2. In the parametrisation of the intrinsic torsion by a torsion
3-form, we have

∇aΦijkl = TaipΦpjkl − TajpΦpkli + TakpΦplij − TalpΦpijk,(102)
Taij ∈ Λ3.

A proof is by explicit verification, substituting (100) into (91). Note that
this is the same formula for the covariant derivative of the basic 4-form, but
now with the torsion 3-form instead of the object Ta;ij ∈ Λ1 ⊗ Λ2

7. We would
like to emphasise that the approach of this paper to a large extent depends
on the existence of the formula (102).

4.3. Connection with skew-symmetric torsion

As is known, see [17], [18], any Spin(7)-structure on an 8-dimensional mani-
fold admits a unique connection with totally skew-symmetric torsion. Such a
connection is given by

∇̃aXi = ∇aXi − TaipXp.(103)
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It is then clear that the relation (102) can be interpreted as the statement
that the 4-form is parallel with respect to ∇̃

∇̃aΦijkl = 0.(104)

The known existence of a unique connection with totally skew-symmetric
torsion thus gives an alternative justification why the formula (102) must
exist.

4.4. Torsion 3-form from the exterior derivative of the Cayley
form

Proposition 4.3. The torsion 3-form is completely determined by the exte-
rior derivative dΦ. Explicitly, we have

T = 5
2J
−1
3 (?(dΦ)),(105)

where J3 is the operator in 3-forms introduced in (25), and ?(dΦ) is the Hodge
dual of dΦ.

Proof. On one hand, we have

?(dΦ)mnr = 1
5!εmnr

aijkl∂aΦijkl.(106)

On the other hand, substituting here the right-hand-side of (102) we have

1
5!εmnr

aijkl∂aΦijkl = 1
30εmnr

aijklTaipΦpjkl.(107)

Now, using (17) we get

εmnr
aijklTaipΦpjkl =(108)

6(Φmn
pqTrpq + Φnr

pqTmpq + Φrm
pqTnpq) = 12J3(T )mnr.

This means we have

?(dΦ)mnr = 2
5J3(T )mnr.(109)

Now, the operator J3 is invertible, with inverse given by (30). This proves the
proposition.
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5. Riemann curvature identities

Having described the intrinsic torsion and its relation with the covariant and
exterior derivatives of the Cayley form, we can obtain very useful characteri-
sations of (some parts of) the Riemann curvature. This material is standard,
see for example Theorem 2.10 in [13]. The difference in our treatment is that
we use the parametrisation of the torsion by a 3-form.

5.1. Irreducible components of the Riemann tensor

This material is well-known, see e.g. [13]. The Riemann tensor is an object
with values in Sym2(Λ2), with Λ4 removed. Given that Λ2 = Λ2

7 ⊕ Λ2
21, it is

easy to compute the decomposition of Sym2(Λ2) into irreducibles using the
well-known facts about the tensor products of irreducible representations of
Spin(7). We denote representations using the corresponding dimension writ-
ten in bold face. We need the following tensor product decompositions:

7⊗S 7 = 1⊕ 27,(110)
7⊗ 21 = 105⊕ 35⊕ 7,

21⊗S 21 = 1⊕ 27⊕ 35⊕ 168.

Taking into account that

Λ4 = 1⊕ 7⊕ 27⊕ 35,(111)

we see that Riemann curvature gets decomposed into the following irreducible
components

Riemann = 1⊕ 27⊕ 35⊕ 105⊕ 168.(112)

Of these the Ricci part is

Ricci = 1⊕ 35,(113)

and the Weyl part is

Weyl = 27⊕ 105⊕ 168.(114)

Our next task is to characterise which parts of the Riemann curvature can
be extracted from the intrinsic torsion.
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5.2. Part of Riemann curvature from the torsion

We now take the commutator of two covariant derivatives applied to the basic
4-form to get

4Rab[ipΦ|p|jkl] = 2∇[a∇b]Φijkl = 8∇[a(Tb][i|p|Φp
jkl]).(115)

Applying the product rule and using (102) one more time we get

4Rab[ipΦ|p|jkl] = 4∇a(Tb[i|p|)Φp
jkl] − 4∇b(Ta[i|p|)Φp

jkl](116)
+4Ta[i

pT|bp|
qΦjkl]q − 4Tb[ipT|ap|qΦjkl]q.

This is what is known as the Bianchi identity in the literature, see e.g. [4]
Theorem 4.2.

5.3. Identity for the divergence of the torsion 3-form

Before we proceed any further, a useful consequence of this identity is obtained
by multiplying it with εmnabijkl, and using (17). On the left-hand side we get
identically zero, by properties of the Riemann curvature. The right-hand side
is non-trivial and so we get

2∇aTbi[mΦn]
abi +∇aTabiΦbi

mn(117)
+2TaipTbp[mΦn]

abi − 2TapqTbpqΦmn
ab = 0.

We would now like to extract from here the divergence ∇aTamn of the torsion
3-form in terms of other quantities. Applying to this expression (1/4)(I+J2),
we get

∇aTamn = 1
2Φ[m

abc∇n]Tabc −
1
2Φ[m

abc∇|a|Tn]bc(118)

−Φ[m
abcTn]a

pTbcp.

We can rewrite this in a different form, by applying the projection to Λ2
7. We

get

∇aTamn −
1
2Φmn

pq∇aTapq =(119)
1
2Φ[m

abc∇n]Tabc −
3
2Φ[m

abc∇|a|Tn]bc − 2Φ[m
abcTn]a

pTbcp.
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It is useful to rewrite this as the divergence of the original torsion. Using
(102) we have

4∇aTa;mn = ∇aTamn −
1
2Φmn

pq∇aTapq − Φ[m
abcTn]a

pTbcp,(120)

and thus

4∇aTa;mn = 1
2Φ[m

abc∇n]Tabc −
3
2Φ[m

abc∇|a|Tn]bc(121)

−3Φ[m
abcTn]a

pTbcp.

5.4. Component of the Riemann curvature

Thinking about Rabcd as an object in Λ2 ⊗S Λ2 (with a copy of Λ4 removed),
and recalling the operator K introduced in (46), we see that the object on
the left-hand side of (116) is valued in Λ2⊗Λ4

7. We can then apply the inverse
operator K ′ to obtain

Rabij −
1
2Φij

pqRabpq = ∇aTbij −∇bTaij(122)

−1
2Φij

cd∇aTbcd + 1
2Φij

cd∇bTacd + Tai
pTbjp − TbipTajp − Φij

pqTap
kTbqk.

Both sides of this equality can be checked to be in Λ2
7 with respect to indices

ij, by applying the projector to Λ2
21 and seeing that the result is identically

zero. This computation makes it obvious that all apart from the 168 part of
the Weyl curvature are determined by the intrinsic torsion. Indeed, all parts
but this one come from Λ2 ⊗ Λ2

7, and this is precisely what the part of the
Riemann curvature tensor that the intrinsic torsion determines.

5.5. Ricci curvature scalar

Before we use the facts above to obtain a formula for the Ricci curvature,
let us note that there are two different ways to extract the Ricci scalar from
here. One is to contract the indices with gaigbj . The other is to contract it
with −(1/6)Φabij . Both of these give

R = −Φabcd∇aTbcd + T abcTabc + ΦabcdTab
pTcdp.(123)

Note that this only depends on the exterior derivative dT of the torsion 3-
form.
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5.6. Extracting the Ricci curvature

We can extract the Ricci tensor from (122) by multiplying with Φc
bij , and

applying the Bianchi identity Ra[bij] = 0 to get

−1
2Φij

pqRabpqΦc
bij = −6Rac.(124)

Doing the same operations with the right-hand side and we get

Rab = −∇cTabc −
1
2Φb

ijk∇aTijk + 1
2Φb

ijk∇iTajk(125)

+TapqTbpq + Φb
ijkTai

pTjkp.

This is not explicitly symmetric in ab, and must therefore become symmetric
when Tijk is given by its expression (105). And indeed, the anti-symmetric
part of the right-hand side vanishes in view of (118). Thus, the Ricci curvature
is given by

Rab = −1
2Φ(a

ijk∇b)Tijk + 1
2Φ(a

ijk∇|i|Tb)jk(126)

+TapqTbpq + Φ(a
ijkTb)i

pTjkp.

We have now proven the result known since [1]: when dΦ = 0 the metric is
Ricci-flat. Indeed, by (105) dΦ = 0 implies T = 0, which in turn gives Rab = 0
by (126). Note that, unlike the Ricci scalar (123), the Ricci tensor depends
on the full covariant derivative of the torsion 3-form.

6. The action

This section is central to the whole paper. We consider a one-parameter family
of action functionals of the Cayley form Φ and an auxiliary 3-form C. The
Lagrangians we consider are first-order in derivatives, and the Euler-Lagrange
equations for the auxiliary field C are algebraic. There is a member in the
family of actions for which the Euler-Lagrange equation for C equates it with
the intrinsic torsion T of the Spin(7)-structure. Once the Euler-Lagrange
equation for C is solved and C is obtained in terms for the derivative of Φ,
this value of C can be substituted back into the Lagrangian, resulting in a
second-order in derivatives Lagrangian that depends solely on Φ. As we will
see, the Lagrangians arising this way are basically a linear combination of
the two invariants that can be constructed from the intrinsic torsion of Φ. We
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will analyse the actions arising this way, and derive the arising Euler-Lagrange
equations for Φ.

There are some limitations to our construction. First, our motivation is
to mimic what happens in Plebanski formalism that gives an efficient descrip-
tion of 4D General Relativity [3]. Plebanski action is similarly a functional
that depends on an SU(2) structure (encoded into a triple of 2-forms), and
an auxiliary (connection) field. The action is first-order in derivatives and
quadratic in the auxiliary field. After the connection is solved for from its
Euler-Lagrange equations and substituted back into action action, one ob-
tains a second-order action, which is just one of the two possible invariants
that can be built from the intrinsic torsion of the SU(2) structure. Our con-
struction generalises all this to the case of Spin(7) structures. Motivated by
this example of Plebanski formalism, we do not allow more complicated than
quadratic dependence of the action on the auxiliary field C, as we would like
to retain the possibility to solve for C explicitly. It is clear that more involved
first-order actions depending on Φ, C can be constructed, with more compli-
cated dependence on C than quadratic, but this is not pursued in the present
paper.

6.1. A one-parameter family of action functionals

The action we want to construct is a functional of Φ ∈ Λ4 and C ∈ Λ3. It will
contain a term imposing the constraints that guarantee that Φ is of algebraic
type of the Cayley form. We will never need to specify what these constraints
are, as we will only need their consequences. Given Φ, C there is a natural top
form that can be constructed, which is Φ ∧ dC. We take the integral of this
to be our ’kinetic’, i.e. containing derivatives term. Lagrangians of this type
are well-known in the context of topological field theories. Thus, the theory
with the action

∫
Φ ∧ dC, with no additional terms, is a topological field

theory known as (Abelian) BF theory. Our Lagrangian, however, contains
other terms which render the theory non-topological. Apart from the terms
imposing the constraints on Φ, we also want the Lagrangian to contain terms
quadratic in C, such that the variation of the action with respect to C gives
a set of linear equations for C.

The representation theoretic fact Λ3 = Λ3
8 ⊕ Λ3

48 implies that there are
two linearly independent quadratic invariants that can be constructed from
a 3-form C. A computation gives

π8(C)abcCabc = 1
7(Cabc)2 − 3

14ΦabcdCab
pCcdp,(127)
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π48(C)abcCabc = 6
7(Cabc)2 + 3

14ΦabcdCab
pCcdp.

This shows that the two linearly independent quadratic invariants constructed
from C can be taken to be (Cabc)2 and ΦabcdCab

pCcdp. The coefficient in front
of one of these can always be chosen as desired by rescaling the C field. This
leads us to consider the following one-parameter family of action functionals

S[Φ, C] =
∫

Φ ∧ (dC − 6C ∧Φ C) + κ

6 (C)2vΦ + λ

6 vΦ + constr.(128)

The choice of coefficients here will be convenient for what follows. The con-
stant λ is a ’cosmological constant’ term that can be set to zero if desired.
The object C ∧Φ C is the 4-form

C ∧Φ C := 1
4!(C ∧Φ C)ijkl dxi ∧ dxj ∧ dxk ∧ dxl,(129)

(C ∧Φ C)ijkl = gpqCijpCklq

and vΦ = (1/14)Φ ∧ Φ is the volume form. Written in index notation the
action becomes

S[Φ, C] = 1
3!

∫ ( 1
4! ε̃

ijklabcdΦijkl(∂aCbcd −
3
2g

pqCabpCcdq)(130)

+κ(Cabc)2vg + λvg
)
d8x.

The constraint terms are omitted for brevity. The object ε̃ijklabcd is the den-
sity weight one totally anti-symmetric tensor. This exists on any orientable
manifold, and does not need a metric for its definition. We emphasise that
ε̃ijklabcd is independent of any metric, in particular the metric defined by Φ, to
make it clear that this tensor is not subject to variation when Euler-Lagrange
equations are derived below. Using the self-duality (16) of Φ we can see that
the two scalars added to the Lagrangian are indeed (Cabc)2 and ΦabcdCab

pCcdp.

6.2. The variation with respect to the 3-form

The variation of the action with respect to C is given by

δCS = 1
3!

∫
vg
(
− 5 1

5!ε
ijklabcd∂aΦijkl − 3ΦaecdCae

b(131)

+2κCbcd
)
δCbcdd

8x,



32 Kirill Krasnov

where vg is the volume form for g, and we used the self-duality of the basic
4-form in the second term. The resulting Euler-Lagrange equation is therefore

5 1
5!εbcd

aijkl∂aΦijkl − 2J3(C)bcd + 2κCbcd = 0.(132)

When κ = 0, comparing to (109), we see that C = T . The coefficient in front
of the second term in the action was selected so that this happens. In general
we have

J3(T ) = J3(C)− κC.(133)

For a general κ this relation can be inverted

C = 6T + κJ3(T )
6− (5 + κ)κ ,(134)

which shows that κ = 1,−6 are the values when the relation cannot be
inverted. These are of course also the eigenvalues of J3. We are particularly
interested in the case when κ = 0, where C = T , and κ = −2 where

C = 1
2T −

1
6J3(T ).(135)

6.3. Variation of the metric with respect to the 4-form

To vary the action with respect to the 4-form, we need a formula for the
variation of gij with respect to the 4-form Φijkl. This is standard, see e.g.
[4]. We provide the full derivation in our notations for convenience. The best
way to obtain a relation between the variations is to consider a variation of
the metric, thought of as an GL(8,R) transformation. As we have already
discussed in (50), such a transformation effected by a symmetric 8×8 matrix
hij induces a change in the basic 4-form given by

K(h)ijkl = 4h[i|p|Φp
jkl].(136)

It will be more convenient, however, to consider the variation of Φijkl. We
have

δΦijkl = 4αδg[i|p|Φp
jkl].(137)
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The coefficient of proportionality α should be fixable by taking the variation
of any of the algebraic relations satisfied by Φ. For example we have

ΦabcdΦijklg
iagjbgkcgld = 336.(138)

Varying this gives

2δΦijklΦijkl + 4 · 42δgiagia = 0,(139)

where we used (15). Using (137) we have

4αδg[i|p|Φp
jkl]Φijkl + 2 · 42δgiagia = 0.(140)

Using (15) again this becomes

2αδgijgij + δgijgij = 0,(141)

which shows that α = 1/2. Thus, we have

δΦijkl = 2δg[i|p|Φp
jkl].(142)

As a check of consistency of these expressions, we also compute

δ(Φijkl) = δ(giagjbgkcgldΦabcd) =(143)
giagjbgkcgldδΦabcd + 4δ[i|agjbgkcgl]dΦabcd =

2δg[i|p|Φp
jkl] − 4δg[i|p|Φp

jkl] = −2δg[i|p|Φp
jkl] = −giagjbgkcgldδΦabcd.

This is analogous to the relation that we have for the metric

δgij = −giagjbδgab.(144)

We now extract δgij in terms of δΦijkl. To do so we multiply the above
expression by Φa

jkl. We get

δΦ(i|jkl|Φa)
jkl = 12δgia + 9δgpqgpqgia.(145)

One more contraction gives

δgpqg
pq = 1

84δΦijklΦijkl,(146)
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and so

δgij = 1
12(δΦ(i|pqr|Φj)

pqr − 3
28gijδΦpqrsΦpqrs).(147)

Because the variation of the 4-form with all upper indices is given by minus
the variation of the form with the lower indices, and the same is true for the
metric variation, we can also write

δgij = 1
12(δΦ(i|pqr|Φj)

pqr −
3
28g

ijδΦpqrsΦpqrs),(148)

which is the form of the relation that will be used later.

6.4. Variation of the action with respect to the 4-form

We now derive the other half of the Euler-Lagrange equations. We first rewrite
the action in terms of Φabcd

S[Φ, C] = 1
3!

∫ (
vgΦabcd(∂aCbcd −

3
2g

pqCabpCcdq)(149)

+κ(Cabc)2vg + λvg
)
d8x.

and then vary with respect to Φabcd. We have

δΦS[Φ, T ] = 1
3!

∫
vg
(
δΦabcd(∂aCbcd −

3
2g

pqCabpCcdq)(150)

−Φabcd 3
2δg

pqCabpCcdq −
1
2δg

pqgpqΦabcd(∂aCbcd −
3
2g

pqCabpCcdq)

−1
2δg

pqgpq(κ(Cabc)2 + λ)
)
d8x.

The terms containing δgpqgpq are from the variation of the volume form. We
now substitute (148). The last term in the first line becomes(

−1
8ΦijklCijaCkleΦe

bcd + 3
8 · 28ΦijklCij

pCklpΦabcd

)
δΦabcd.(151)

Thus, the variation of the action with respect to Φabcd is

Eabcd = ∂[aCbcd] −
3
2C[ab

pCcd]p −
1
8ΦijklCij[aC|kle|Φe

bcd](152)

+ 3
8 · 28ΦijklCij

pCklpΦabcd −
1

2 · 84Φabcd

(
Φijkl(∂iCjkl −

3
2Cij

pCklp) + κ(Cijk)2 + λ

)
.
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This does not need to be zero, as the action also contains terms imposing
the constraints guaranteeing that Φabcd is of the correct algebraic type. The
constraint terms produce a variation that is an arbitrary tensor in Λ4

27. So,
we can only deduce that the Λ4

35+1 and Λ4
7 projection of the above vanishes.

Before we extract these projections, it is worth evaluating the trace of the
field equations. We have

ΦabcdEabcd = −2λ− 2κ(Cabc)2 − Φabcd(∂aCbcd −
3
4Cab

pCcdp).(153)

This is the projection of the field equations onto Λ4
1, which must vanish. We

therefore get the following consequence of the field equations

Φabcd(∂aCbcd −
3
4Cab

pCcdp) + 2λ+ 2κ(Cabc)2 = 0.(154)

We can use this to simplify Eabcd. We have

Φijkl(∂iCjkl −
3
2Cij

pCklp) + κ(Cijk)2 + λ =(155)

−λ− κ(Cijk)2 − 3
4ΦijklCij

pCklp,

and so we can rewrite

E′abcd = ∂[aCbcd] −
3
2C[ab

pCcd]p −
1
8ΦijklCij[aC|kle|Φe

bcd](156)

+ 1
56ΦabcdΦijklCij

pCklp + 1
2 · 84Φabcd(λ+ κ(Cijk)2).

The Λ4
35+1+7 projections of this vanish when the Λ4

35+1+7 projections of Eabcd
vanish and vice versa, so E′abcd = 0 gives an equivalent encoding of field
equations.

6.5. Extracting Λ4
35+1+7 projections

To understand the implications of the field equations we extract the Λ4
35+1

and Λ4
7 projections. This gives

Φb
pqrE′apqr = 1

4Φb
pqr∇aCpqr −

3
4Φb

pqr∇rCapq(157)

−3
2Φb

pqrCap
sCqrs −

3
4ΦpqrsCapqCbrs + 1

4gab
(
λ+ κ(Cpqr)2 + 3

4ΦpqrsCpq
pCrsp

)
.
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Its ab symmetrisation and anti-symmetrisation compute the Λ4
35+1 and Λ4

7
parts respectively. We wrote the derivatives here as the covariant derivatives,
for the computations to follow.

6.6. Rewriting the κ = 0 field equations - antisymmetric part

For κ = 0 we have C = T . Let us understand the arising field equations. We
start with the anti-symmetric part. Taking (twice) the anti-symmetric part
of the field equations (157) we get

1
2Φ[a

pqr∇b]Tpqr −
3
2Φ[a

pqr∇|r|Tb]pq − 3Φ[a
pqrTb]p

sTqrs = 0.(158)

With the help of the curvature identity (121) we can rewrite this as

∇rTr;ab = 0,(159)

which is just vanishing of the divergence of the original torsion. This also
makes it manifest that this equation is Λ2

7 valued. Note also that this equa-
tion does not hold automatically. It is a non-trivial field equation to be im-
posed, and it becomes a second order PDE on the original 4-form. It can
be interpreted as the evolution equation for the Λ4

7 part of the Cayley form
perturbation, as is confirmed by the linearised analysis below.

6.7. Rewriting the κ = 0 field equations - symmetric part

For the analysis of the symmetric part, we take (twice) the symmetric part
of (157), also writing it with the opposite sign

−1
2Φ(a

pqr∇b)Tpqr + 3
2Φ(a

pqr∇|r|Tb)pq(160)

+3Φ(a
pqrTb)p

sTqrs + 3
2ΦpqrsTapqTbrs + 3

8gabΦ
ijklTij

pTklp + λgab = 0.

Contract the resulting equation with gab we get (154). Comparing this with
(123) we see that this is not the condition that the Ricci scalar is constant.
Rather, using (123), we can rewrite this equation as

R = TabcT
abc + 1

4ΦabcdTab
pTcdp + 4λ.(161)
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A computation shows that this can be rewritten as

R = T abc(T + 1
6J3(T ))abc = 7

6(T 48
abc)2 + 4λ.(162)

Here T48 = π48(T ) is the Λ3
48 part of the torsion 3-form. We thus see that the

curvature scalar is sourced just by this part of the torsion.
For the complete symmetric part of the equation, comparing this with

(126), we can see that the second order part here does not reduce to that in
Rab. The comparison with (126) suggests that we can rewrite (160) as

3Rab + Φ(a
pqr∇b)Tpqr(163)

−3TapqTbpq + 3
2ΦpqrsTapqTbrs + 3

8gabΦ
ijklTij

pTklp + λgab = 0.

We thus see that the field equations do not state that the metric is Einstein.
Instead, there are extra contributions coming from the torsion 3-form, and its
derivatives. Note that the covariant derivative appears in this equation in such
a way that, while both Rab and Φ(a

pqr∇b)Tpqr do depend on it, the specific
combination of these terms that appears does not depend on ∇. This will
become more pronounced once we rewrite the field equations as a condition
that a certain 4-form vanishes.

6.8. Different ways of writing the field equations

We note that we can introduce a symmetric tensor

Hab := ΦijklTijaTklb −
1
7gabΦ

ijklTij
pTklp.(164)

The 4-form encoding the field equations can then be written very compactly
as

E′abcd = ∂[aTbcd] −
3
2T[ab

pTcd]p −
1
8H[a|e|Φe

bcd] + λ

84Φabcd.(165)

Recall that E′abcd is the tensor encoding the field equations of the theory,
see (156). The field equations are then the statement that this equals to an
arbitrary tensor in Λ4

27, which we know can be parametrised as (56). So, we
get one of the possible ways of writing the field equations

∂[aTbcd] −
3
2T[ab

pTcd]p −
1
8H[a|e|Φe

bcd] + λ

84Φabcd = Ψ[ab
pqΦ|pq|cd],(166)

where Ψabcd is an arbitrary symmetric tracefree matrix in Sym2
0(Λ2

7).
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6.9. Yet another rewriting of the field equations

Yet another way of writing the field equations, potentially useful, is obtained
by computing Φabc

sΦs
pqrE′dpqr, and anti-symmetrising on abcd. This gives a

4-form that is projected onto the Λ4
35+1 and Λ4

7 parts, eliminating the Λ4
27

part of E′abcd that does not need to be zero. For a general 4-form we have

1
6Φabc

sΦs
pqrσdpqr = (I− 1

2J4)(σ)abcd,(167)

explicitly showing that the Λ4
27 component is projected away. We now apply

this projector to the 4-form E′abcd to get the following 4-form field equations

∇[aTbcd] −
3
4Φ[ab

pq∇cTd]pq −
3
4Φ[ab

pq∇|p|Tcd]q(168)

−3
2T[ab

pTcd]p + 3
4Φ[ab

pqTcd]
rTpqr −

1
8Φ[abc

pΦijklTd]ijTklp −
3
2Φ[ab

pqTc|p|
rTd]qr

+ 1
32ΦabcdΦijklTij

pTklp + λ

12Φabcd = 0.

Since the first line here can be rewritten as

(I− 1
2J4)(∇[aTbcd]),(169)

we see that the operator that appears in the field equations is built from the
usual partial derivative, rather than the covariant one.

6.10. Analysis of the κ = −2 field equations

In the general κ case, we can rewrite the field equations (157) in terms of the
intrinsic torsion 3-form T , using the relation between C and T . However, the
arising general κ results are too cumbersome. Using as the motivation the
computation of the linearised action in the last section, we now specialise to
the particularly interesting case κ = −2, when the linearised action coincides
with that of General Relativity. Our intention is to see whether the full non-
linear equations of the theory in this case also reduce to the Einstein condition.

We substitute C in the form (135) to (157) and whenever the derivatives
get applied to the basic 4-form, evaluate them using (102). The resulting field
equations are as follows

1
4Φb

pqr∇aTpqr −
1
2Φb

pqr∇rTapq + 1
4Φa

pqr∇rTbpq + 1
2(∇pTabp −

1
2Φab

cd∇pTcdp)
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−23
24Φb

pqrTap
sTqrs −

5
24Φa

pqrTbp
sTqrs −

1
4ΦpqrsTapqTbrs + 1

6Ta
pqTbpq

− 1
24ΦpqrsTabpTqrs + 1

48Φab
pqΦijklTpqiTjkl −

1
24Φa

pqrΦijk
b TpqiTrjk

+1
4gab

(
λ− 17

12(Tpqr)2 + 17
24ΦpqrsTpq

pTrsp + 1
2Φpqrs∇pTqrs

)
= 0.

We now use (119) to simplify the first line. We also separate the symmetric
and anti-symmetric parts. We get

1
4Φ(a

pqr∇b)Tpqr −
1
4Φ(a

pqr∇rTb)pq(170)

−7
6Φ(a

pqrTb)p
sTqrs −

1
4ΦpqrsTapqTbrs + 1

6Ta
pqTbpq −

1
24Φa

pqrΦijk
b TpqiTrjk

+1
4gab

(
λ− 17

12(Tpqr)2 + 17
24ΦpqrsTpq

pTrsp + 1
2Φpqrs∇pTqrs

)
= 0

for the symmetric part and

−1
4Φ[a

pqrTb]p
sTqrs −

1
24Φpqrs(Tabp −

1
2Φab

cdTcdp)Tqrs = 0(171)

for the anti-symmetric part.

6.11. The trace

It will be useful for the later to compute the trace of the field equations. We
get

2λ− 11
4 (Tabc)2 − 1

8ΦabcdTab
pTcdp + 3

2Φabcd∇aTbcd = 0.(172)

Using (123) we can rewrite this as

3
2R = 2λ− 5

4(Tabc)2 + 11
8 ΦabcdTab

pTcdp.(173)

6.12. An identity

Contracting (20) with TbcdT jkl we get the following identity

1
4Φa

pqrΦijk
b TpqiTrjk =(174)
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−2Φ(a
pqrTb)p

sTqrs + 1
2gabΦ

ijklTij
pTklp −

1
2ΦpqrsTapqTbrs + 1

12Φa
pqrΦijk

b TpqrTijk.

Using this in the symmetric part of the field equations we can transform it to

1
4Φ(a

pqr∇b)Tpqr −
1
4Φ(a

pqr∇rTb)pq(175)

−5
6Φ(a

pqrTb)p
sTqrs −

1
6ΦpqrsTapqTbrs + 1

6Ta
pqTbpq −

1
72Φa

pqrΦijk
b TpqrTijk

+1
4gab

(
λ− 17

12(Tpqr)2 + 3
8ΦpqrsTpq

pTrsp + 1
2Φpqrs∇pTqrs

)
= 0.

We can now rewrite this in terms of the Ricci tensor using (126). We get

Rab = −2
3Φ(a

pqrTb)p
sTqrs −

1
3ΦpqrsTapqTbrs + 4

3Ta
pqTbpq(176)

− 1
36Φa

pqrΦijk
b TpqrTijk + 1

2gab
(
λ− 17

12(Tpqr)2 + 3
8ΦpqrsTpq

pTrsp + 1
2Φpqrs∇pTqrs

)
.

We can also use (123) to rewrite this as

Rab + 1
4gabR = −2

3Φ(a
pqrTb)p

sTqrs −
1
3ΦpqrsTapqTbrs + 4

3Ta
pqTbpq(177)

− 1
36Φa

pqrΦijk
b TpqrTijk + 1

2gab
(
λ− 11

12(Tpqr)2 + 7
8ΦpqrsTpq

pTrsp

)
.

This makes it clear that the κ = −2 non-linear equations do not coincide
with Einstein equations. Rather, these are Einstein equations with ’stress-
energy’ tensor sourced by the intrinsic torsion. Better understanding of these
equations requires further work.

6.13. Rewriting the κ = −2 field equations - antisymmetric part

Φ[a
pqrTb]p

sTqrs + 1
6Φpqrs(Tabp −

1
2Φab

cdTcdp)Tqrs = 0.(178)

The expression in brackets contains a multiple of the projector π7, so it is
in Λ2

7. The first term can also be checked to be in Λ2
7 by computing the π21

projection and verifying that it is identically zero. Moreover, it can be checked
that the above expression is invariant under the change

Tabc → Tabc + ΦabcdV
d,(179)
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for any V a, which means that it only depends on the Λ3
48 part of Tabc. This

means we can write this equation as

Φ[a
pqrT̃b]p

sT̃qrs = 0.(180)

where T̃ = π48(T ). There is precisely one copy of the 7 representation in the
tensor product 48⊗48, and the field equation (180) states that π7(T̃⊗T̃ ) = 0.

7. Linearisation

We now compute the linearisation of the general action (128) and verify that
it gives the most general diffeomorphism-invariant linearised theory (89).

7.1. Linearisation of the non-linear action

We start with the full action without the cosmological constant part, and
without the constraint terms, which we assume to be satisfied

S[Φ, C] = 1
3!

∫ ( 1
4!Φijkl(∂aCbcd −

3
2g

pqCabpCcdq)ε̃ijklabcd(181)

+κ(Cabc)2vg
)
,

where the volume element d8x is omitted for compactness. We will then lin-
earise around the background given by C = 0 and a constant Φ. Denoting
the variation of Φ by φ and of C by c we get for the second variation

S(2)[φ, c] = 1
3!

∫ ( 1
4!ε

ijklabcdφijkl∂acbcd −
3
2Φabcdcab

pccdp(182)

+κ(cabc)2
)
,

A calculation shows

J3(c)abccabc = 3
2Φabcdcab

pccdp,(183)

which makes it easy to derive the Euler-Lagrange equation for cabc, which is
given by

1
4!εbcd

aijkl∂aφijkl = 2J3(c)bcd − 2κcbcd.(184)
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We can now integrate by parts in (182) in the first term to rewrite it in terms
of the tensor cabc. We see that it is given by (2J3(c)bcd − 2κcbcd)cbcd. This
means that the linearised action written in terms of φ only is given by

S(2)[φ] = 1
6

∫
J3(c)abccabc − κ(cabc)2,(185)

where cabc is given by (184). We note that the linearised action is manifestly
diffeomorphism-invariant. Indeed, the linearised 4-form transforms as (85).
This is clearer in the form notation

δφ = diξΦ, ξ ∈ TM.(186)

As before, in this linearised calculation the background Φ is assumed closed,
and φ is the perturbation. Thus, the variation of φ under diffeomorphisms is
an exact form. The formula (184) shows that the tensor cabc is obtained from
the Hodge dual of the exterior derivative of the linearised 4-form, which is
clearly diffeomorphism-invariant. So, any linearised action written in terms
of cabc is diffeomorphism-invariant.

7.2. Rewriting of the linearised action

We now rewrite the linearised action explicitly in terms of φ. The tensors cabc
and the linearised torsion tabc are linearly related. We need to express cabc in
terms of tabc. The linearised torsion tabc is given by

J3(tabc) = 1
48εabc

pijkl∂pφijkl.(187)

We also have

J3( 1
48εabc

pijkl∂pφijkl) = 1
2Φ[a

pqr∂bφc]pqr + 3
4Φ[a

pqr∂|p|φbc]qr.(188)

This means that

tabc = 5
288εabc

pijkl∂pφijkl + 1
12Φ[a

pqr∂bφc]pqr + 1
8Φ[a

pqr∂|p|φbc]qr.(189)

For completeness, we state the result of computation of the Λ3
8 part of the

torsion 3-form. We have

tabcΦmabc = 1
48Φabcd∂mφabcd + 1

12Φabcd∂aφbcd
m.(190)
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A long calculation (using algebraic manipulation) based on (19) gives∫
J3(tabc)tabc =

∫ 5
96φ

abcd∂p∂pφabcd + 1
32Φabcdφab

pq∂e∂eφcdpq(191)

+ 5
24(∂aφabcd)2 + 1

16Φabcd∂iφabip∂
jφcdj

p − 1
8Φabci(∂i∂rφcrpq)φabpq.

This can be simplified by passing to the parametrisation of φ by fields h, ξ.

7.3. Evaluation of the linearised action

We now use the parametrisation (82). In this parametrisation, using (17) gives

J3(t)abc := 1
48εabc

pijkl∂pφijkl =(192)

−1
2Φabc

p∂i(hip −
1
4ξip) + 1

2Φabc
i∂ih−

3
2Φ[bc

ip∂p(ha]i −
1
4ξa]i).

We have introduced the notation J3(t) for this quantity. We also have

J3(t) = J3(c)− κc,(193)

and so we need to compute J3(t)abccabc. We have

c = 6t+ κJ3(t)
6− 5κ− κ2 .(194)

This means that we can write the linearised action as

S(2)[φ] =
∫
L(2) = 1

6(6− 5κ− κ2)

∫
κJ3(t)J3(t) + 6J3(t)t =(195)

1
6(6− 5κ− κ2)

∫
κJ3(t)J3(t) + J3(t)(J3 + 5I)J3(t).

A computation gives(
1− 5κ

6 −
κ2

6

)
L(2) = 1

2(1 + κ

6 )(∂ahbc)2 − 1
6(1− κ

2 )(∂ah)2(196)

−1
3(1− κ

2 )h∂a∂bhab −
2
3(∂ahab)2 + 1

24(1 + κ

2 )(∂aξbc)2 − 2
3(1 + κ

2 )∂bhba∂cξca.

This is the diffeomorphism-invariant Lagrangian of the type (76) with (88)
and

ρ = 1 + κ

6 , µ = 2
3

(
1 + κ

2

)
.(197)
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This shows that the linearisation of our general action gives the linearisation
of the Einstein-Hilbert Lagrangian for κ = −2. We can also write down what
the Lagrangian (80) becomes with this choice of the parameters. We get

L = κ+ 6
12 (∂ahbc)2 + (κ+ 6)(κ− 2)

96 (∂ah)2(198)

+(κ+ 6)(κ+ 2)
192 (∂aξbc)2 − 2

3(∂a(hab −
2− κ

8 ηabh+ 2 + κ

4 ξab))2.

This shows that another interesting point in the theory space is κ = 2, when
there is no separate kinetic term for the trace of the metric in the linearised
Lagrangian. The value κ = −6 is also special. As is clear from (194), for this
value of κ the tensor cabc can no longer be solved for in terms of tabc. All these
special cases need to be studied further to understand their significance.
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