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ABSTRACT 

This paper deals with hub-and-spoke network design in the liner shipping sector. It introduces a capacitated directed cycle hub 

location and cargo routing problem under congestion. The problem involves four decisions: location of hub ports; allocation of 

non-hub ports to hub ports; construction of a directed cyclic route at the hub port network level; and the routing of cargo between 

all origin-destination demand pairs in the network. The objective is to minimize the cost which includes fixed hub opening, feeder 

collection and distribution, inter-hub transportation, cargo handling, and non-linear hub port congestion costs. We present a 

mixed integer linear programming model in which the non-linear congestion costs at the hub ports are approximated through a 

(semi-continuous) piecewise linear function and use this model to calculate lower bounds on the objective function. We also 

develop a Tabu Search algorithm, which employs a hierarchical approach for the different decisions in the hub-and-spoke network 

design problem, with customized procedures for the generation of the initial solution and the selection of the search moves. The 

neighborhood search is diversified by randomly changing the locations of hubs based on their location frequency history in 

previous solutions. Computational experiments, using instances from the literature and problems based on real-world data, 

demonstrate that the algorithm finds high quality solutions in a reasonable time. The experiments show that the network design 

can be highly influenced by scale economies in mainline vs. feeder transportation costs, the port locations and hinterland flows, 

and congestion at the hub ports.  
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1. INTRODUCTION 

Global shipping lines implement various strategies to cope with the increasing demand for containerized maritime transport, to 

remain competitive in the global environment, and to increase their market share (Cariou, 2008). A core strategy in liner shipping 

involves bundling containerized cargo flows through transshipment hub ports. Hub-and-spoke (HS) networks are widespread in 

liner shipping and provide several benefits, including scale economies in shipping costs, higher service quality, and additional 

transshipment volumes. Two important drawbacks of liner HS networks are the cost of extra cargo handling at transshipment 

points and potential congestion created at hubs due to concentration of flows. 

The hub location problem is a network design problem concerned with four decisions: finding locations of the hub facilities, 

assigning non-hub nodes to hubs, establishing links between hubs, and routing the flows within the network. A widely accepted 

assumption in the literature is that the hub-level network forms a complete graph, with arcs connecting each pair of hubs. More 

recent studies relax this assumption because incomplete networks are more realistic and less costly in many transportation 

settings. Campbell et al. (2005a; 2005b), Calik et al. (2009), Alumur et al. (2009), Gelareh and Nickel (2011), Contreras and 

Fernandez (2014), De Camargo et al. (2017), and Martins de Sa et al. (2018) address problems where the hub-level network is not 

limited to any specific topology. Other authors impose a specific topology on the network. Examples include: a star structure 

(Yaman, 2008; Labbé and Yaman, 2008; Yaman, 2009; Yaman and Elloumi, 2012), a tree configuration (Contreras et al., 2009; 

2010; Martins de Sa et al., 2013), a line structure (Martins de Sa et al., 2015a; 2015b), and cycle topologies (Lee et al., 1993; 

Gelareh and Pisinger, 2011; Contreras et al., 2016). 

Despite the widespread use of HS networks in maritime transport, their application in liner shipping has been overlooked in the 

OR literature for many years. Research interest has surged more recently, with several publications focusing on different aspects 

of the industry (Table 1). Aversa et al. (2005), for instance, define a p-hub median problem to locate hubs at South American ports 

and consider the option of road transport between the ports. Takano and Arai (2008) develop a Genetic Algorithm and solve a p-

hub median problem to locate hubs among 18 major global container ports. Gelareh et al. (2010) study HS network design in a 

competitive environment. They define a problem in which an entrant shipping company aims to maximize its market share in a 

region where an existing company has already established its HS network. Chou (2010) argue that shipping lines consider not only 

quantitative but also qualitative factors when choosing hub ports. He identifies five groups of factors and develops a fuzzy multiple 

criteria decision-making model. Gelareh and Pisinger (2011) consider profit maximization and their study is the only liner shipping 

application in which a directed cyclic topology is imposed on the hub-level network. Gelareh and Nickel (2011) argue that complete 

hub-level networks are rarely applicable in maritime transportation and also relax the complete hub-level network assumption. 

The impact of maritime cabotage on the liner shipping networks with transit time constraints is analyzed by Zheng et al. (2014). 

The authors propose a two-phase mathematical programming model in which hub locations and feeder allocations are determined 

first, and ship routes and fleet deployment in the second phase. A similar decomposition of the problem is proposed by Zheng et 

al. (2015) to design a HS network, route ships, and assign container flows. Because many studies of liner shipping network design 

focus on existing ports and network structures, Sun and Zheng (2016) claim that their results have limited applicability. To imitate 

the actual planning process of a liner service design, they model potential routes and hub locations on Arctic waterways. Finally, 

Zheng et al. (2018) study hub ports in a global shipping network. They propose a two-stage optimization method which first 

partitions the ports into communities, and then finds optimal hub locations and node allocations in each community. 

Although HS networks are often preferred by the leading shipping companies, research on HS network design in liner shipping has 

attracted less attention from the hub location community compared with other industries such as aviation or postal delivery. 

Furthermore, hub congestion is an important disadvantage in HS networks. While consolidation of flows on the hub-level network 

brings scale economies, over-accumulating traffic in hubs leads to congestion. Networks designed by ignoring congestion are likely 

to be unrealistic and inefficient, but most existing studies have not addressed congestion at the hub ports 
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Table 1:Liner shipping applications in the hub location literature 

Study Main features of the research Solution methodology 

Aversa et al. (2005) Transshipment and port costs 

Alternative road transport option 

Mixed integer linear 

programming 

Takano and Arai (2008) Transshipment cost Genetic algorithm 

Gelareh et al. (2010) Competitive environment 

Origin-destination paths include more 

than one hub-level arc 

Direct non-hub port connections 

Lagrangean relaxation 

Chou (2010) Qualitative port choice criteria: port 

location, hinterland economy, physical 

factors, port efficiency, cost, and 

others. 

Fuzzy multiple criteria 

decision making 

Gelareh and Pisinger 

(2011) 

Network design and fleet deployment 

Transshipment cost 

Directed cyclic hub-level network 

Benders decomposition 

Gelareh and Nickel (2011) Incomplete hub-level network 

Fixed cost of establishing hub-level arcs 

Benders decomposition 

Greedy neighborhood search 

Zheng et al. (2014) Maritime cabotage  

Two-phase model of hub location and 

ship route design and fleet deployment  

Transit time constraints 

Lagrangean relaxation 

Zheng et al. (2015) Hub location, fleet deployment, and 

ship route design 

Transit time constraints 

Direct non-hub port connections 

Transshipment cost 

Genetic algorithm 

Sun and Zheng (2016) Potential hubs on Arctic waterways Branch-and-bound 

Zheng et al. (2018) Two-stage optimization 

Communities of hub and feeder ports 

Community detection 

algorithm 

This study Hub port congestion cost 

Congestion cost approximation 

Directed cyclic hub-level network 

Transshipment cost 

Tabu Search with local search 

 

In the hub location literature, there are two prevalent approaches to modelling hub congestion. The first is to formulate congestion 

cost based on a power-law cost function in which the congestion cost of a hub changes proportionally with the total flow according 

to a constant exponent. An example of this approach is the study by Elhedhli and Hu (2005), who linearize the cost function with 

piecewise linear tangent hyperplanes and solve the resulting MILP model with a Lagrangean heuristic. In (De Camargo et al. 2011) 

and (De Camargo and Miranda 2012), the power-law function is used if the capacity utilization ratio exceeds a specified threshold. 

De Camargo et al. (2011) apply a hybrid of outer approximation and Benders decomposition methods, and De Camargo and 

Miranda (2012) use generalised Benders decomposition. Kian and Kargar (2016) incorporate congestion cost into the single 

allocation p-hub median problem and apply conic quadratic programming., Özgün-Kibiroglu et al. (2019) reformulate three 
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multiple allocation hub location models in which the congestion cost is represented with a penalty cost and develop a particle 

swarm optimization approach to solve the problem. The second approach to modeling congestion costs is by considering the hubs 

and OD flows as a queuing system. Hubs represent servers and OD flows represent customer demand streams. Elhedhli and Wu 

(2010) argue that congestion is more related to the relative difference between hub flow and hub capacity than to hub flow alone. 

They calculate the hub congestion cost based on the ratio of the total flow and the hub’s surplus capacity. An alternative way to 

derive the congestion cost is by viewing hubs as M/M/1 queues and by calculating the system wide average waiting time. The 

authors propose a mixed integer nonlinear programming model; linearize the objective function using a piecewise linear function 

and apply a Lagrangean heuristic. De Camargo et al. (2011) replace the same congestion cost function with a linear function if the 

capacity utilisation exceeds a specified threshold. In (Rodriguez et al. 2007), the waiting times at hubs in a cargo transportation 

network are calculated by considering each hub as an M/M/1 queuing system. The arrival and service times refer to the number 

of trucks assigned to the hub and the maximum number of trucks that can be processed by the hub, respectively. Mohammadi et 

al. (2019) analyze reliable hub-and-spoke networks in a French cargo and passenger transportation network by considering road, 

rail, and air travel. Other studies in the literature rely on other queuing model results, including M/M/c (Mohammadi et al., 2011, 

2016, 2017; Zhalechian et al., 2017; Kahag et al., 2019; Ghodratnama et al., 2019; Khodemani-Yazdi et al., 2019), M/M/c/K (Rahimi 

et al., 2016), M/D/c (Marianov and Serra, 2003), and GI/G/1 (Ishfaq and Sox, 2012). In addition, a few other studies followed 

different approaches. Köksalan and Soylu (2010) used the ratio of the demand to the hub capacity as the main factor of delay in 

service time, and Alumur et al. (2018) discretized congestion by defining sets of handling times at each hub for corresponding 

congestion factors. 

Shipping companies often route their mainline ships on simple directed cyclic networks (Fig.1). In a simple directed cycle, ships 

visit each port in a tour. Empirical data reported by Song and Dong (2013) indicate that more than 40% of the global liner routes 

were simple directed cycles in 2009, which corresponds to 31% of containers carried on these routes. In 2012, 41% of the routes 

of Maersk shipping line were simple cycles (Reinhardt and Pisinger, 2012). Despite its practical relevance in liner shipping, very 

few papers in the literature have investigated HS networks with imposed cycle structure at the hub level. 

The objective in this paper is to address the following gaps in the literature. We introduce the capacitated directed cycle hub 

location and routing problem under congestion (DCHC), which can be viewed as a prototype HS decision problem, where the hub 

level route is cyclic and hub congestion important (as is the case in many liner shipping network problems). Our problem involves 

the strategic planning of liner shipping service network design. As such, the tactical and operational decisions such as ship speed 

and schedules are outside the scope of the problem. The decision maker wants to exploit the scale economies offered by HS 

operations and to design a cost-optimal network. However, he/she is also aware that concentrating too much flow to a few hubs 

can create bottlenecks in the network and lead to congestion. Therefore, the hub port congestion costs are considered at the 

design stage, in which the only available information are origin-destination (OD) demands and cargo handling capacities of hubs.  

Our study is the first to address and quantify hub port congestion in a hub location problem with liner shipping focus. It includes 

other features motivated by the practices in the industry such as the cost of cargo handling at transshipment. We develop a mixed 

integer nonlinear programming model and propose a procedure to approximate the nonlinear congestion cost with a semi-

continuous piecewise linear function based on capacity utilizations. The resulting mixed integer linear programming model is used 

to compute lower bounds for small problem instances. We then design a Tabu Search algorithm to solve the problem, with 

customized components for the different decisions in our problem. We use five sets of instances: set 1 involves small randomly 

generated problems, sets 2 and 3 are based on real world data for liner shipping operations in the Mediterranean Sea, and sets 4 

and 5 involve benchmark instances from the literature for other hub location application areas, but adapted for the liner shipping 

industry. Computational experiments demonstrate that the Tabu Search algorithm finds high quality solutions in a reasonable 

time for benchmark instances (the largest instance consisting of 81 nodes). Experiments also show that the network design can 



5 

 

be highly influenced by factors such as scale economies in mainline vs. feeder transportation costs, the port locations and 

hinterland flows, and congestion at the hub ports. 

 

Figure 1: An example of a directed cyclic hub-and-spoke network (squares (circles) represent (non-)hub ports) 

Our problem bears some similarities to other network design and location problems in the literature with respect to its hub-level 

network topology and routing aspect. For example, the ring star problem (Labbé et al., 2004) seeks to locate a simple cycle through 

a subset of vertices of a graph and assign the remaining vertices to them so as to minimize the sum of cycle setup and assignment 

costs. However, this problem does not consider flow routing costs. Other relevant problems include the median cycle problem 

(Labbé et al., 2005) and the capacitated m-ring star problem (Baldacci et al., 2007). Rapid transit, telecommunication and 

hierarchical logistics networks (Simonetti et al., 2011) are application areas of these problems. The many-to-many (hub) location-

routing problem is another closely related problem type, in which the delivery and collection of cargoes between hubs and non-

hub nodes are done via local multi-stop vehicle routes (Drexl and Schneider, 2015), which may include vehicle capacity or route 

length constraints. The hub-level network can be fully interconnected or subject to a specified network topology with an inter-

hub route (e.g. Lopes et al., 2013). In addition, collection and delivery of cargoes can be done through combined (e.g. Rodriguez-

Martin et al., 2014) or separate routes (e.g. Rieck et al., 2014). With respect to its flow routing aspect, our problem is similar to 

the minimum flow cost Hamiltonian cycle problem introduced by Ortiz-Astorquiza et al. (2015), which aims at finding, for a given 

set of nodes with pairwise flows, an undirected Hamiltonian cycle that minimizes the flow costs on the cycle. 

The remainder of the paper is organized as follows: Section 2 describes the characteristics and assumptions of the capacitated 

directed cycle hub location and routing problem under congestion. The model formulations – as a non-linear mixed integer 

programming model and an approximate mixed integer linear programming model are presented in Section 3. The Tabu Search 

algorithm is explained in Section 4. Section 5 presents benchmark instances and discusses computational experiments. Managerial 

insights are presented in Section 6. Finally, concluding remarks and future research opportunities are provided in Section 7. 

 

2. PROBLEM DEFINITION  

The problem under investigation is defined by a set of container ports/terminals that have containerized cargo demands between 

each other, also called origin-destination (OD) pairs. Each port has a known cargo handling capacity. The network is to be designed 

as a HS structure such that all ports in the network have a path between each other. Some ports (or nodes) are to be designated 
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as hub ports, and the remaining non-hub ports are allocated to these hubs. Hubs ports perform the transshipment function to 

route the cargo flows in the network. Because shipping companies often route their cargoes in mainline ships on simple directed 

cyclic networks (Song and Dong (2013), Reinhardt and Pisinger, (2012)), a directed cycle is imposed on the hub-level network level 

only. In Figure 1, the squares represent hub ports, the circles denote non-hub ports, the dashed arrows represent inter-hub arcs, 

and the double arrows represent access arcs. In this network, containerized cargo from an origin port to a destination port is 

transported as follows: first, cargo from the origin port is collected by a feeder ship and transported to its allocated hub port on 

access arcs that connect non-hub and hub nodes. Here, the cargo is transshipped onto a mainline ship and sent on the inter-hub 

arcs in the cyclic hub-level network to the hub to which the destination port is allocated. Finally, the cargo is transshipped onto 

another feeder ship at the discharge hub port to be sent to the destination port. If origin and/or destination is a hub port, then 

collection and/or distribution by feeder ships is unnecessary. If both feeder ports are assigned to the same hub, then collection 

and distribution is done by feeder ships only. The mainline ship typically has a larger carriage capacity than the feeder ship, which 

leads to a lower unit transportation cost.  

In the capacitated directed cycle hub location problem under congestion, the task is to design a liner shipping HS network which 

contains a directed cyclic hub-level network connecting all ports in the network so as to minimize the total network cost. Four 

decisions are to be made to solve the problem: the number and locations of hub ports, allocation of non-hub ports to hubs, 

establishing the inter-hub arcs (or hub-level route) to construct the hub-level network, and routing of the cargo flows in the HS 

network. The total network cost comprises five components: the cost of the container cargo collection and distribution between 

non-hub ports and hub ports by the feeder ships, the inter-hub cargo transfer by the mainline ships, cargo handling at 

transshipment, hub port congestion costs, and fixed hub opening costs. To represent the cost of a single handling of a container, 

terminal handling charges (THC) reported by the port/terminal operators are used. THC are the fees charged by the port for lifting 

the containers from the port quay onto the container ship’s board and vice versa.  

The assumptions underlying this problem are listed below: 

1. Flows must be routed through the hubs. 

2. Arcs in the network do not have a setup cost. 

3. A subset of the ports in the network is considered as the candidate hub set.  

4. The cargo handling capacity of the hubs is limited.  

5. Non-hub ports can be allocated to a single hub only. 

6. The structure of the hub-level network is a directed cycle.  

7. THC at any hub port are the same for feeder or mainline ship handling. They are assumed to be the same for incoming and 

outgoing cargo at a port. Other port costs (e.g. pilotage fees) are omitted. 

8. All containerized cargo transportation is made in standard twenty feet equivalent (TEU) containers. Unit cost and flow 

parameters are determined on this basis. 

9. There are no physical restrictions apart from the port’s handling capacity at potential hub ports to handle mainline ships. 

10. A single planning horizon, for example one year, is considered in the problem. 

Two common assumptions in the hub location literature, namely that the paths between any OD pair visit at most two hubs and 

that the hub-level network forms a complete graph, are not retained in our problem statement. Whereas a direct connection 

between any two pairs of hubs is possible in other transport networks such as airlines or postal delivery, ships in a liner service 

are set to follow a predefined route consisting of a sequence of ports. Therefore, the path of a cargo flow may include more than 

two hubs depending on the hub-level route. To illustrate the OD path of a cargo flow in a cyclic liner route, we refer to Figure 2. 

The containers originating from non-hub port 6 and destined to non-hub port 7 are first collected by a feeder ship from non-hub 

port 6 to hub port 1. At hub port 1, the containers are transshipped from the feeder to a mainline ship. The mainline ship transfers 
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the containers on the inter-hub arcs (1,2), (2,3), (3,4), and (4,5). The second transshipment takes place at hub port 5 from the 

mainline to another feeder ship. Finally, the containers are delivered to non-hub port 7 by the feeder ship. Thus, the cargo flow 

from 6 to 7 (𝑤67) is carried on arcs (6,1), (1,2), (2,3), (3,4), (4,5), and (5,7) where all arcs apart from the first and last belong to the 

hub-level route. Had there been a direct connection between 1 and 5, then 𝑤67 could be carried on the inter-hub arc (1,5). 

Therefore, the routing of the cargo flows and the cost of inter-hub cargo transfer are affected by how the hub ports sequenced 

on the hub-level cycle. 

 
Figure 2: The OD path of the cargo flow from node 6 to 7 

 

3. MODEL FORMULATIONS 

We present two flow-based formulations to model our problem, using the following notation:  

Sets  

𝑁 Set of ports, 𝑁 = {1,2, … , 𝑛} 

𝐻  Set of hub candidate ports, 𝐻 = {1,2, … , ℎ}, 𝐻 ⊆ 𝑁 

Parameters   

𝑛  Number of ports 

ℎ  Number of hub candidate ports, ℎ ≤ 𝑛 

𝑤𝑖𝑗   Flow from origin port i to destination port j in TEU, 𝑖, 𝑗 ∈ 𝑁 

𝑜𝑖   Total flow emanating from port i in TEU, 𝑜𝑖 = ∑ 𝑤𝑖𝑗𝑗∈𝑁 , 𝑖, 𝑗 ∈ 𝑁 

𝑑𝑖   Total flow destined to port i in TEU, 𝑑𝑖 = ∑ 𝑤𝑗𝑖𝑗∈𝑁 , 𝑖, 𝑗 ∈ 𝑁 

𝑠𝑑𝑖𝑘   Sea distance between non-hub port i and hub port k in nautical miles (nm), 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻 

𝑐𝑎𝑝𝑘   Cargo handling capacity of hub candidate port k in TEU, 𝑘 ∈ 𝐻 

𝑡𝑐𝑓  Unit feeder ship transportation cost in USD/TEU-nm,  

𝑡𝑐𝑚  Unit mainline ship transportation cost in USD/TEU-nm,  

1 

2 

5 4 

6 

3 

7 

Inter-hub arcs on the path of the cargo flow from 6 to 7 

Access arcs on the path of the cargo flow from 6 to 7 
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𝑝𝑐𝑓  Feeder ship port cost in USD for the given planning horizon (e.g. annual) 

𝑝𝑐𝑚  Mainline ship port cost in USD for the given planning horizon (e.g. annual) 

𝑡ℎ𝑐𝑘  Unit terminal handling charges at hub candidate port k in USD/TEU, 𝑘 ∈ 𝐻 

𝑓𝑐𝑘   Hub opening cost at hub candidate port k in USD, 𝑘 ∈ 𝐻 

𝑐𝑜𝑛𝑘  Congestion cost at hub k, USD, 𝑘 ∈ 𝐻 

𝜌𝑘   Capacity utilization of hub k, 𝑘 ∈ 𝐻, 𝜌𝑘 ∈ [0,1] 

𝛼  Discount factor on inter-hub arcs, 𝛼 = 𝑡𝑐𝑚 𝑡𝑐𝑓⁄   

  

Decision variables  

𝑍𝑖𝑘   1 if port i is allocated to hub port k, 0 otherwise, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻 

𝑍𝑘𝑘   1 if a hub is located at k, 0 otherwise, 𝑘 ∈ 𝐻 

𝑇𝑖𝑗𝑘   1 if ports i and j are allocated to hub port k, 0 otherwise, 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 

𝑋𝑘𝑙  1 if hub l is visited after hub k on the hub-level route, 0 otherwise, 𝑘, 𝑙 ∈ 𝐻 

𝐹𝑘  Total flow through hub node k in TEU, 𝑘 ∈ 𝐻. 

𝑌𝑘𝑙
𝑖   Amount of cargo flow from i that is routed through hub-level arc (k,l), TEU, 𝑖 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻  

 

The model formulation is based on the 3-index hub location model of Ernst and Krishnamoorthy (1999). The following decision 

variables are defined. Binary variables Zik indicating whether or not port i is allocated to hub port k; binary variables Zkk denoting 

whether or not a hub is located at port k; binary variables Tijk indicating if two ports are allocated to the same hub (Mohammadi 

et al., 2011); binary variables Xkl indicating whether or not a hub arc exists between hubs k and l.  In addition, Fk are continuous 

variables defined as the total flow at hub k; and Yi
kl are continuous variables to measure the total flow originated from i and routed 

on inter-hub arc (k,l). 

An important aspect in hub location problems is the scale economy achieved by consolidating OD flows through the hubs 

(Contreras, 2015). We model scale economies through a constant discount factor 𝛼 ∈ [0,1], corresponding to the ratio of the 

mainline ship transportation unit cost and the feeder ship transportation unit cost: 

𝛼 = 𝑡𝑐𝑚
𝑡𝑐𝑓⁄  (1) 

The discount factor  shows how much the transportation cost on inter-hub arcs is reduced compared to the transportation cost 

on arcs between non-hub nodes and hubs. The closer α is to zero, the more scale economies exist on inter-hub arcs. 

Besides scale economies, it is also important to consider the trade-off between the benefits gained from flow consolidation and 

the cost of hub congestion. Not considering congestion may cause models to concentrate too much flow on a small number of 

hubs and hub arcs (De Camargo and Miranda, 2012). Rather than considering detailed port operations and queuing aspects, we 

look at ports from a macro perspective and we follow the approach of Elhedhli and Wu (2010) to model congestion cost. Elhedhli 

and Wu (2010) argue that congestion is closely related to the relative difference between hub capacity and the flows originating 

from the hub, and calculate the congestion cost of a hub k as follows: 

𝑐𝑜𝑛𝑘 = 𝑡0
𝐹𝑘

𝑐𝑎𝑝𝑘 − 𝐹𝑘

= 𝑡0
∑ ∑ 𝑤𝑖𝑗𝑍𝑖𝑘

𝑛
𝑗=1

𝑛
𝑖=1

𝑐𝑎𝑝𝑘 − ∑ ∑ 𝑤𝑖𝑗𝑍𝑖𝑘
𝑛
𝑗=1

𝑛
𝑖=1

 (2) 

In Eq. (2), the term ∑ ∑ 𝑤𝑖𝑗𝑍𝑖𝑘
𝑛
𝑗=1

𝑛
𝑖=1  denotes the total flow emanating from hub k, capk is the hub capacity and t0 is the unit cost 

of congestion. Elhedhli and Wu (2010) assume that only the flows that are sent from a hub create congestion. In many real-world 

ports, feeder and mainline ships share cargo handling and loading equipment (e.g. quay cranes) at the hub port and both loading 

and discharging operations are done at the same berth. Accordingly, all the cargo flows that are loaded and discharged at a hub 
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port are assumed to contribute to congestion. (In a M/M/1 queue perspective, the hub port is a single server and all in- and 

outgoing cargoes are assumed to join a single queue.) The total cargo flow to a hub k is the sum of four flow streams: 

1. Incoming cargoes from non-hub ports that are allocated to hub k (Feeder discharge): This stream encompasses all cargo flows 

originating from the non-hub ports of k. They are carried by feeder ships and discharged at the hub to be loaded onto feeder 

or mainline ships depending on their destination.  

2. Incoming cargoes from other hubs (Mainline discharge). These are the cargo flows that originate from all other ports in the 

network and destined to hub k and its non-hub ports. They are carried by mainline ships and discharged at the hub port to be 

distributed to their destinations by feeder ships.  

3. Outgoing cargoes from hub k that are destined to the non-hub ports allocated to k (Feeder load). This stream refers to all 

cargo flows destined to the non-hub ports of k. They are loaded onto feeder ships and distributed to their destinations.  

4. Outgoing cargoes from hub k that are destined to other ports in the network (Mainline load). The cargo flows originating from 

hub k and its non-hub ports and destined to other ports in the network are loaded onto the mainline ships and carried on the 

hub-level network. 

As an illustrative example, we refer to the HS network presented in Figure 3 where there are two hubs with flows in both directions. 

There are six ports and two of them, 3 and 4, are designated as hubs. Suppose that cargo flow between each port is as shown in 

the flow matrix below: 

Nodes 1 2 3 4 5 6 𝑜𝑖  

1 0 300 700 400 1,000 500 2,900 

2 1,000 0 200 400 900 1,000 3,500 

3 900 100 0 900 200 100 2,200 

4 400 400 800 0 900 600 3,100 

5 100 700 900 600 0 700 3,000 

6 1,000 600 100 500 200 0 2,400 

𝑑𝑖  3,400 2,100 2,700 2,800 3,200 2,900  

 

The cargo flows carried by feeder ships on access arcs (dotted arrows) and by mainline ships on inter-hub arcs (dashed arrows) 

are shown on the network. From Figure 3, the total flow F3 carried by feeder and mainline ships to be loaded or discharged at hub 

3 is calculated as follows: 

𝐹3 = 3,400 + 2,100 + 2,900 + 3,500 + 5,400 + 5,000 = 22,300 
  

The breakdown of the four flow streams at hub 3 are shown below:  

𝐹3 = 𝐹𝑒𝑒𝑑𝑒𝑟 𝑙𝑜𝑎𝑑 + 𝐹𝑒𝑒𝑑𝑒𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑙𝑜𝑎𝑑 + 𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  

 

𝐹𝑒𝑒𝑑𝑒𝑟 𝑙𝑜𝑎𝑑 = 𝑤21 + 𝑤31 + 𝑤41 + 𝑤51 + 𝑤61 + 𝑤12 + 𝑤32 + 𝑤42 + 𝑤52 + 𝑤62  

 

𝐹𝑒𝑒𝑑𝑒𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑤12 + 𝑤13 + 𝑤14 + 𝑤15 + 𝑤16 + 𝑤21 + 𝑤23 + 𝑤24 + 𝑤25 + 𝑤26  

 

 

𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑙𝑜𝑎𝑑 = 𝑤14 + 𝑤15 + 𝑤16 + 𝑤24 + 𝑤25 + 𝑤26 + 𝑤34 + 𝑤35 + 𝑤36  

Mainline flows 
sent from port 2 

Mainline flows sent 
from hub port 3 

Mainline flows 
sent from port 1 

Flows sent from port 2 Flows sent from port 1 

Flows destined to port 2 Flows destined to port 1 
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𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑤41 + 𝑤51 + 𝑤61 + 𝑤42 + 𝑤52 + 𝑤62 + 𝑤43 + 𝑤53 + 𝑤63  

 

Figure 3: An example of a hub-and-spoke network with two hubs 

The flows loaded onto and discharged from feeder ships include all flows originating from and destined to non-hub ports 1 and 2. 

On the other hand, the mainline load and discharge include flows between ports 1, 2, hub port 3 and hub port 4, ports 5, 6. The 

total flow at hub k, 𝐹𝑘, can be calculated as: 

𝐹𝑘 = ∑ (𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

+ ∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘
𝑛
𝑗=1
𝑗≠𝑖

)𝑛
𝑖=1  𝑘 ∈ 𝐻  (3) 

In Eq. (3), the first term captures the total feeder flows of loading and discharging at hub k. The second term is the mainline flow, 

calculated by subtracting the flows between the hub port and its non-hub ports from the sum of flows of all ports associated with 

k. Eq.(3) can be easily verified for the flow F3 in Figure 3, where Z13 = Z23 =1 in the first term and Z13 = Z23 = Z33 = 1 and T123 = T133 = 

T213 = T313 = T233 = T323 =1 in the second term: 

𝐹3 = (𝑜1 + 𝑑1 + 𝑜2 + 𝑑2) + (𝑜1 + 𝑑1 + 𝑜2 + 𝑑2 + 𝑜3 + 𝑑3 − (𝑤12 + 𝑤21 + 𝑤13 + 𝑤31 + 𝑤21 + 𝑤12 + 𝑤23 + 𝑤32 + 𝑤31 +

𝑤13 + 𝑤32 + 𝑤23))  

𝐹3 = (2,900 + 3,400 + 3,500 + 2,100) + (2,900 + 3,400 + 3,500 + 2,100 + 2,200 + 2,700 − (300 + 1,000 + 700 + 900 +

1,000 + 300 + 200 + 100 + 900 + 700 + 100 + 200))  

𝐹3 = (2,900 + 3,400 + 3,500 + 2,100) + (2,900 + 3,400 + 3,500 + 2,100 + 2,200 + 2,700 − 6,400)  

𝐹3 = 22,300  

Because port costs of feeder and mainline ships differ from each other due to different ship characteristics, feeder and mainline 

flows are treated separately when calculating the congestion cost. Hence, we use the following formula to calculate the total 

congestion cost at hubs: 

𝑐𝑜𝑛𝑘 =

𝑝𝑐𝑓 (∑ (𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

) + 𝑝𝑐𝑚 (∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑇𝑖𝑗𝑘)
𝑛
𝑖=1 )

𝑐𝑎𝑝𝑘 − 𝐹𝑘

 

 (4) 

2,400 

2,900 

3,000 

3,200 

2,100 

3,500 

5,400

  

5,000

  

2,900 

3,400

  

Inter-hub arc 

4 

1 

3 

2 

5 

6 

Access arc 

   

Mainline flows 
destined to port 1 

Mainline flows 
destined to port 2 

Mainline flows 
destined to hub 3 
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In Eq. (4), the total cost of the congestion created by feeder and mainline ships is calculated by multiplying the respective port 

costs with the total flows and dividing the sum by the difference between the hub capacity and the total flow through the hub.  

The cargo handling cost due to transshipment at hubs is calculated similarly to the congestion cost except that the cargo flows 

originating from and destined to the hub itself are omitted as they do not count as extra cargo handling. In the HS network shown 

in Figure 3, the total cargo handled at hub 3 is calculated as: 

𝐶𝑎𝑟𝑔𝑜 𝑙𝑜𝑎𝑑𝑒𝑑 𝑜𝑛𝑡𝑜 𝑓𝑒𝑒𝑑𝑒𝑟 𝑣𝑒𝑠𝑠𝑒𝑙 = 𝑤21 + 𝑤41 + 𝑤51 + 𝑤61 + 𝑤12 + 𝑤42 + 𝑤52 + 𝑤62  

𝐶𝑎𝑟𝑔𝑜 𝑙𝑜𝑎𝑑𝑒𝑑 𝑜𝑛𝑡𝑜 𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑣𝑒𝑠𝑠𝑒𝑙 = 𝑤14 + 𝑤15 + 𝑤16 + 𝑤24 + 𝑤25 + 𝑤26  

𝐶𝑎𝑟𝑔𝑜 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓𝑒𝑒𝑑𝑒𝑟 𝑣𝑒𝑠𝑠𝑒𝑙 = 𝑤12 + 𝑤14 + 𝑤15 + 𝑤16 + 𝑤21 + 𝑤24 + 𝑤25 + 𝑤26  

𝐶𝑎𝑟𝑔𝑜 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑣𝑒𝑠𝑠𝑒𝑙 = 𝑤41 + 𝑤51 + 𝑤61 + 𝑤42 + 𝑤52 + 𝑤62  

The cargo flows between non-hub ports that are allocated to the same hub as well as flows between ports that are allocated to 

different hubs are handled twice. For example, the cargo flow from non-hub port 1 to 2 (w12) is handled once during discharge 

from feeder ship at hub 3, and then again for loading to the feeder ship sailing from hub 3 to non-hub port 2. Accordingly, the 

total cost of cargo handling due to transshipment in the network is calculated by multiplying the cargo handled at each hub with 

the corresponding THC: ∑ 𝑡ℎ𝑐𝑘 ∑ [(2(𝑜𝑖 + 𝑑𝑖 − 𝑤𝑖𝑘 − 𝑤𝑘𝑖)𝑍𝑖𝑘) − (∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘
𝑛
𝑗=1
𝑗≠𝑘,𝑖

)]𝑛
𝑖=1
𝑖≠𝑘

ℎ
𝑘=1 . With the details of congestion 

and cargo handling cost calculations explained, the model formulation for DCHC is as follows: 

 

Mixed integer nonlinear programming model for DCHC 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑐𝑓 (∑ ∑ 𝑠𝑑𝑖𝑘(𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘

ℎ

𝑘=1

𝑛

𝑖=1

) + 𝑡𝑐𝑚 (∑ ∑ ∑𝑠𝑑𝑘𝑙𝑌𝑘𝑙
𝑖

ℎ

𝑙=1

ℎ

𝑘=1

𝑛

𝑖=1

) + ∑ 𝑓𝑐𝑘𝑍𝑘𝑘

ℎ

𝑘=1

+ ∑ 𝑡ℎ𝑐𝑘 ∑

[
 
 
 

(2(𝑜𝑖 + 𝑑𝑖 − 𝑤𝑖𝑘 − 𝑤𝑘𝑖)𝑍𝑖𝑘) − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘

𝑛

𝑗=1
𝑗≠𝑘,𝑖 ]

 
 
 𝑛

𝑖=1
𝑖≠𝑘

ℎ

𝑘=1

+ ∑

𝑝𝑐𝑓 (∑ (𝑜𝑖 + 𝑑𝑖)
𝑛
𝑖=1
𝑖≠𝑘

𝑍𝑖𝑘) + 𝑝𝑐𝑚 (∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑇𝑖𝑗𝑘)𝑛
𝑖=1 )

𝑐𝑎𝑝𝑘 − (∑ (𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

+ ∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑇𝑖𝑗𝑘)
𝑛
𝑖=1 )

ℎ

𝑘=1

 

(5) 

subject to 

∑ 𝑍𝑖𝑘

ℎ

𝑘=1

= 1   ∀ 𝑖 ∈ 𝑁 (6) 

𝑍𝑖𝑘 ≤ 𝑍𝑘𝑘   ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻    (7) 

∑𝑋𝑘𝑙

ℎ

𝑙=1
𝑙≠𝑘

= 𝑍𝑘𝑘    ∀ 𝑘 ∈ 𝐻 (8) 

∑ 𝑋𝑘𝑙

ℎ

𝑘=1
𝑘≠𝑙

= 𝑍𝑙𝑙    ∀ 𝑙 ∈ 𝐻 (9) 

𝑋𝑘𝑘 = 0   ∀ 𝑘 ∈ 𝐻 (10) 
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∑(𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘

𝑛

𝑖=1
𝑖≠𝑘

+ ∑

(

 
 

(𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑(𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

𝑛

𝑖=1

≤ 𝑐𝑎𝑝𝑘    ∀ 𝑘 ∈ 𝐻 (11) 

∑(𝑌𝑘𝑙
𝑖 − 𝑌𝑙𝑘

𝑖 )

ℎ

𝑙=1

= 𝑜𝑖𝑍𝑖𝑘 − ∑𝑤𝑖𝑗𝑍𝑗𝑘

𝑛

𝑗=1

   ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻, 𝑘 ≠ 𝑙 (12) 

𝑌𝑘𝑙
𝑖 ≤ 𝑜𝑖𝑋𝑘𝑙    ∀ 𝑖 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻 (13) 

𝑇𝑖𝑗𝑘 ≤ 𝑍𝑖𝑘 ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 (14) 

𝑇𝑖𝑗𝑘 ≤ 𝑍𝑗𝑘 ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 (15) 

𝑍𝑖𝑘 + 𝑍𝑗𝑘 ≤ 𝑇𝑖𝑗𝑘 + 1 ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻 (16) 

𝑌𝑘𝑙
𝑖 ≥ 0,   ∀ 𝑖 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻 (17) 

𝑋𝑘𝑙 , 𝑍𝑖𝑘 , 𝑇𝑖𝑗𝑘 ∈ {0,1}, ∀ 𝑖, 𝑗 𝑘, 𝑙 ∈ 𝐻 (18) 

 

The objective function given in Eq. (5) minimizes the sum of the following costs: the feeder collection and distribution costs, inter-

hub transfer costs, hub opening costs, cargo handling costs at transshipments, and hub port congestion costs. Constraints (6) are 

the single-allocation constraints. Ports are allocated to hubs only through constraints (7). Constraints (8) and (9) are the directed 

cyclic route constraints and ensure that both tails and heads of inter-hub arcs (𝑋𝑘𝑙) are hubs. Constraints (10) prevent the 

formation of arcs that emanate from and terminate in the same hub. Constraints (11) are the capacity constraints for each hub k. 

The capacity of a hub corresponds to the maximum number of containers that can be loaded or discharged at the hub by also 

considering double handling of containers due to transshipment according to Eq. (3). Hence, we consider both the incoming and 

outgoing flows in our capacity modelling, which is different from most of the capacitated HLPs studied in the literature where only 

the incoming flows were taken into account (e.g. Ernst and Krishnamoorthy, 1999, Boland et al., 2004, Correia et al., 2010).  

Constraints (12) are flow conservation constraints through hubs, which ensure that all hub-level flows are correct. Constraints (13) 

force that the flows are routed only on inter-hub arcs. Constraints (14) to (16) ensure that Tijk is 1 if and only if both Zik and Zjk are 

1, that is, if both node i and j are allocated to hub k. Finally, constraints (17) and (18) are integrality and non-negativity constraints.  

In this model, if none of the OD flows in the network are equal to zero, then constraints (8), (9), (12), and (13) ensure that none 

of the inter-hub arcs form a sub-tour (Ortiz-Astorquiza et al., 2015; Contreras et al., 2016). The flow conservation constraints (12) 

are not violated only if the hub-level network is a single directed cycle without sub-tours. Therefore, with the assumption that the 

hub-level network is required to form a single directed cycle, no additional sub-tour breaking constraints are required in the model.  

DCHC is a difficult problem with a non-linear congestion cost component in the objective function. To ease the computational 

burden, we linearize the objective function and approximate the congestion cost. More specifically, we model the congestion at 

each hub as a semi-continuous piecewise linear function. Let 𝜌𝑘  denote the capacity utilization of hub k, that is, the ratio of the 

total flow through the hub and its capacity:  

𝜌𝑘 =
𝐹𝑘

𝑐𝑎𝑝𝑘
⁄ , 𝜌𝑘 ∈ [0,1] (19) 

 

The congestion cost in Eq. (4) can be expressed in terms of 𝜌𝑘  as follows: 

𝑐𝑜𝑛𝑘 = (
1

1 − 𝜌𝑘

)

[
 
 
 
 
 
 
𝑝𝑐𝑓 (∑ (𝑜𝑖 + 𝑑𝑖)

𝑛
𝑖=1
𝑖≠𝑘

𝑍𝑖𝑘) + 𝑝𝑐𝑚 (∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘
𝑛
𝑗=1
𝑗≠𝑖

)𝑛
𝑖=1 )

𝑐𝑎𝑝𝑘

]
 
 
 
 
 
 

 (20) 



13 

 

 

The first term in Eq. (20), 𝑓(𝜌𝑘) = 1 (1 − 𝜌𝑘)⁄ , is non-linear; the second term in Eq. (20) is linear. In Figure 4, we approximate 

𝑓(𝜌𝑘) in interval [𝑎’, 𝑏’] with 0 ≤  𝑎’ <  𝑏’ <  1 (𝑎’ and 𝑏’ are given lower and upper limits of 𝜌𝑘  ) by a semi-continuous piecewise 

linear function shown in dashed line segments. Each segment operates between two (pre-defined) capacity utilization levels 

[𝑥𝑙 , 𝑥𝑙+1].  Each part of the approximation is tangent to the 𝑓(𝜌𝑘) curve at the first capacity utilization level  𝑥𝑙 , i.e., 𝑓′(𝑥𝑙)(𝜌𝑘 −

𝑥𝑙) + 𝑓(𝑥𝑙). Because 𝑓(𝜌𝑘) is convex, the approximation underestimates 𝑓(𝜌𝑘).  In Appendix I, we propose a non-linear 

optimization model to find the best approximation for a given number of segments by optimizing the position of breakpoints 𝑥𝑙 . 

 

 

 

Figure 4: An illustration of a semi-continuous piecewise linear approximation 

Let 𝑉 = {1,2,3, … 𝑣} denote the set of capacity utilization intervals for the approximation of 𝑓(𝜌𝑘) with 0 ≤  𝑎’ ≤ 𝜌𝑘 ≤ 𝑏’ <  1. 

Due to the discontinuities at the breakpoints, we consider in total 𝑝 = 2𝑣 points in [𝑎’, 𝑏’] and we define 𝑐𝑚 ∈ 𝑃 = {1,2,3, … 𝑝} 

as the start (when index m is odd) or end capacity utilization level (when index m is even) of each interval. We also define um as 

the approximation value for 𝑓(𝑐𝑚) , i.e., 𝑢𝑚 = 𝑓(𝑐𝑚) when m is odd and 𝑢𝑚 = 𝑓′(𝑐𝑚−1)(𝑐𝑚 − 𝑐𝑚−1) + 𝑓(𝑐𝑚−1) when m is even.  

We introduce auxiliary variables to determine the capacity utilization interval that each 𝜌𝑘  belongs to and its position: 

 

𝐺𝑘𝑞 1 if 𝜌𝑘  belongs to capacity utilization interval q, 0 otherwise, 𝑘 ∈ 𝐻, 𝑞 ∈ 𝑉 

𝜆𝑘𝑚 determines the position of 𝜌𝑘  in a utilization interval, 𝜆𝑘𝑚  ∈ [0,1], 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃  

  

The capacity utilization 𝜌𝑘  can be calculated as  ∑ 𝑐𝑚𝜆𝑘𝑚
𝑝
𝑚=1  and the approximation value for 𝑓(𝜌𝑘) as  ∑ 𝑢𝑚𝜆𝑘𝑚

𝑝
𝑚=1 , with 

additional constraints to restrict 𝜆𝑘𝑚 to the start and end points of a single capacity utilization interval.  The 𝜆𝑘𝑚 variables and 𝑢𝑚 

parameters are incorporated into the congestion cost function in Eq. (21). 

∑

𝑝𝑐𝑓(∑ ∑ (𝑜𝑖+𝑑𝑖)
𝑝
𝑚=1 𝑢𝑚𝜆𝑘𝑚𝑍𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

)+𝑝𝑐𝑚(∑ (∑ (𝑜𝑖+𝑑𝑖)𝑢𝑚𝜆𝑘𝑚𝑍𝑖𝑘
𝑝
𝑚=1 −∑ ∑ (𝑤𝑖𝑗+𝑤𝑗𝑖)

𝑝
𝑚=1 𝑢𝑚𝜆𝑘𝑚𝑇𝑖𝑗𝑘

𝑛
𝑗=1
𝑗≠𝑖

)𝑛
𝑖=1 )

𝑐𝑎𝑝𝑘

ℎ
𝑘=1   (21) 
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Eq. (21) is quadratic due to the product terms 𝜆𝑘𝑚𝑍𝑖𝑘 and 𝜆𝑘𝑚𝑇𝑖𝑗𝑘. We replace each product term 𝜆𝑘𝑚𝑍𝑖𝑘  and 𝜆𝑘𝑚𝑇𝑖𝑗𝑘  by 

continuous variables 𝑍𝑖𝑘𝑚
𝜆  and 𝑇𝑖𝑗𝑘𝑚

𝜆  on which additional constraints are imposed (Bisschop, 2020). The resulting mixed integer 

linear model with approximate congestion cost and additional constraints is presented below.  

 

Mixed integer linear programming model for DCHC with congestion cost approximation 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑐𝑓 (∑ ∑ 𝑠𝑑𝑖𝑘(𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘

ℎ

𝑘=1

𝑛

𝑖=1

) + 𝑡𝑐𝑚 (∑ ∑ ∑𝑠𝑑𝑘𝑙𝑌𝑘𝑙
𝑖

ℎ

𝑙=1

ℎ

𝑘=1

𝑛

𝑖=1

) + ∑ 𝑓𝑐𝑘𝑍𝑘𝑘

ℎ

𝑘=1

+ ∑ 𝑡ℎ𝑐𝑘 ∑

[
 
 
 

(2(𝑜𝑖 + 𝑑𝑖 − 𝑤𝑖𝑘 − 𝑤𝑘𝑖)𝑍𝑖𝑘) − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘

𝑛

𝑗=1
𝑗≠𝑘,𝑖 ]

 
 
 𝑛

𝑖=1
𝑖≠𝑘

ℎ

𝑘=1

+ ∑

𝑝𝑐𝑓 (∑ ∑ (𝑜𝑖 + 𝑑𝑖)𝑢𝑚
𝑝
𝑚=1

𝑛
𝑖=1
𝑖≠𝑘

𝑍𝑖𝑘𝑚
𝜆 ) + 𝑝𝑐𝑚 (∑ (∑ (𝑜𝑖 + 𝑑𝑖)𝑢𝑚𝑍𝑖𝑘𝑚

𝜆𝑝
𝑚=1 − ∑ ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)

𝑝
𝑚=1 𝑢𝑚

𝑛
𝑗=1
𝑗≠𝑖

𝑇𝑖𝑗𝑘𝑚
𝜆 )𝑛

𝑖=1 )

𝑐𝑎𝑝𝑘

ℎ

𝑘=1

 

(22) 

subject to  

(6)-(17)  

∑ 𝐺𝑘𝑞

𝑣

𝑞=1

= 1    ∀ 𝑘 ∈ 𝐻 (23) 

∑ 𝜆𝑘𝑚

𝑝

𝑚=1

= 1    ∀ 𝑘 ∈ 𝐻 (24) 

𝜆𝑘(2𝑞−1) + 𝜆𝑘(2𝑞) ≤ 𝐺𝑘𝑞    ∀ 𝑘 ∈ 𝐻, 𝑞 ∈ 𝑉  (25) 

∑ 𝑐𝑚𝜆𝑘𝑚

𝑝

𝑚=1

=

∑ (𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

+ ∑ ((𝑜𝑖 + 𝑑𝑖)𝑍𝑖𝑘 − ∑ (𝑤𝑖𝑗 + 𝑤𝑗𝑖)𝑇𝑖𝑗𝑘
𝑛
𝑗=1
𝑗≠𝑖

)𝑛
𝑖=1

𝑐𝑎𝑝𝑘

    ∀ 𝑘 ∈ 𝐻 
(26) 

𝑍𝑖𝑘𝑚
𝜆 ≤ 𝑍𝑖𝑘     ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (27) 

𝑍𝑖𝑘𝑚
𝜆 ≤ 𝜆𝑘𝑚     ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (28) 

𝑍𝑖𝑘𝑚
𝜆 + 1 ≥ 𝑍𝑖𝑘 + 𝜆𝑘𝑚    ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (29) 

𝑇𝑖𝑗𝑘𝑚
𝜆 ≤ 𝑇𝑖𝑗𝑘    ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (30) 

𝑇𝑖𝑗𝑘𝑚
𝜆 ≤ 𝜆𝑘𝑚    ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (31) 

𝑇𝑖𝑗𝑘𝑚
𝜆 + 1 ≥ 𝑇𝑖𝑗𝑘 + 𝜆𝑘𝑚    ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (32) 

𝑇𝑖𝑗𝑘𝑚
𝜆 ≤ 𝑍𝑖𝑘𝑚

𝜆     ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (33) 

𝑇𝑖𝑗𝑘𝑚
𝜆 ≤ 𝑍𝑗𝑘𝑚

𝜆     ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (34) 

𝑍𝑖𝑘 , 𝑋𝑘𝑙 , 𝐺𝑘𝑞 ∈ {0,1}    ∀ 𝑖 ∈ 𝑁, 𝑘, 𝑙 ∈ 𝐻, 𝑞 ∈ 𝑉 (35) 

𝑇𝑖𝑗𝑘 , 𝜆𝑘𝑚, 𝑍𝑖𝑘𝑚
𝜆 , 𝑇𝑖𝑗𝑘𝑚

𝜆 ∈ [0,1]     ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐻,𝑚 ∈ 𝑃 (36) 

  

The objective function Eq. (22) is linear and calculates the sum of all cost components in which the hub port congestion cost is 

approximated by a semi-continuous piecewise linear function with 𝑣 segments. The constraints (23)-(36) are interpreted in the 

context of the capacity utilizations of the hubs and the additional decision variables. Each hub candidate’s capacity utilization 

belongs to a single capacity utilization interval through constraints (23). Constraints (24) ensure that the sum of 𝜆𝑘𝑚 variables for 
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each hub candidate is equal to one. Constraints (25) guarantee that only the 𝜆𝑘𝑚 variables that refer to the start and end points 

of the correct capacity utilization interval can take values larger than zero. Constraints (27) - (29) force the value of each 𝑍𝑖𝑘𝑚
𝜆  

variable to 𝜆𝑘𝑚 if and only if 𝑍𝑖𝑘  is 1 and to 0 otherwise. Similarly, constraints (30) – (34) ensure that 𝑇𝑖𝑗𝑘𝑚
𝜆  is equal to 𝜆𝑘𝑚 if and 

only if 𝑇𝑖𝑗𝑘  is 1 and to 0 otherwise. Additionally, they ensure that the value of 𝑇𝑖𝑗𝑘𝑚
𝜆  does not exceed 𝑍𝑖𝑘𝑚

𝜆  and 𝑍𝑗𝑘𝑚
𝜆 . Finally, (35) 

and (36) are integrality and non-negativity constraints. 

The congestion cost approximation leaves some ambiguity in the 𝑓(𝜌𝑘) approximation value when the hub capacity utilization is 

exactly at a breakpoint value. Each breakpoint value is both at the end of an interval and at the start of the next a capacity 

utilization interval, and both have different 𝑢𝑚 values. The cost minimization model will favor the lowest of these values and 

hence set 𝜌𝑘  at the end of a capacity utilization interval (rather than the start of the next interval) in case  𝜌𝑘  is exactly at a 

breakpoint value.   

The linearized mixed integer programming model can be solved to optimality with commercial software such as CPLEX for small 

problem instances only. The optimal solutions from the approximate model provide lower bounds to solutions to the original 

problem. In Section 5 we report on computational experiments with this formulation and we also compare the solution costs with 

those obtained by applying a Tabu Search procedure. Our Tabu Search procedure is described in the next section. 

 

4. TABU SEARCH ALGORITHM 

We developed a Tabu Search algorithm (TSHLP) which employs a hierarchical approach to the decisions in the hub-and-spoke 

network design problem: the number and locations of hubs, the allocations of non-hub ports to hubs, and hub-level routing. The 

algorithm starts with the generation of a feasible initial solution. Tabu Search is used to determine hub locations and non-hub 

port allocations only and involves three neighborhood moves: open a new hub, close an existing hub, and shift the allocation of a 

non-hub port from one hub to another. The procedure includes a probabilistic diversification routine that randomly changes the 

locations of hubs depending on the characteristics of previous solutions. A directed cyclic hub-level network is constructed, and 

local search is applied to improve the tour. Solutions are evaluated with the non-linear objective function (Eq. (5)). 

 

4.1. Initial solution  

The construction of an initial solution starts with locating hubs based on a hub candidate index similar to Chen (2007). In Chen’s 

formula, hub candidate nodes for which the difference between their relative total flow and relative distance from other nodes is 

large have a greater index value. Motivated by the preliminary computational tests, we have modified Chen’s hub candidate index 

as follows:  

𝐼𝑘 = (
(𝑜𝑘 + 𝑑𝑘)

∑ (𝑜𝑘 + 𝑑𝑘)
ℎ
𝑘=1

)(
∑ ∑ 𝑠𝑑𝑘𝑖

𝑛
𝑖=1

ℎ
𝑘=1

∑ 𝑠𝑑𝑘𝑖
𝑛
𝑖=1

) (37) 

  

In Eq. (37), the index is calculated by multiplying relative flows with relative distances (rather than taking the difference as in Chen 

(2007)), and hence the hub candidates that have relatively larger total flow and shorter distance to other ports are favored. 

 

4.1.1. Initial hub locations 

The hub location procedure ranks the candidate hub ports in non-increasing order of 𝐼𝑘. Starting with an empty set, each iteration 

adds the new hub with the highest index. The procedure stops when the total capacity of the selected hubs is larger than or equal 

to the total flow in the network multiplied by volume_factor. The volume_factor is a constant input parameter larger than 1. For 

example, if volume_factor is set to 1.8, then the selected hubs in the initial solution must have enough capacity to handle at least 
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180% of the total flow. As explained in Section 3, the flows carried by feeder and mainline ships to and from the hub ports are 

handled twice. A larger volume_factor ensures that the located hubs have enough capacity to handle the cargo flows and also 

prevents the congestion cost of the initial solution from being too high. 

 

4.1.2. Non-hub port allocations 

The remaining non-hub ports are allocated to the nearest hub using a proximity measure inspired by the work of Abyazi-Sani and 

Ghanbari (2016). While Abyazi-Sani and Ghanbari use only distances to sort the candidate nodes, we apply a modified distance 

measure, which accounts for the flow between a port and the candidate hub port. This modified distance favors ports which have 

more flow interaction with a hub candidate. 

𝑤𝑑𝑖𝑘 = 𝑠𝑑𝑖𝑘 (1 −
𝑤𝑖𝑘 + 𝑤𝑘𝑖

𝑜𝑖 + 𝑑𝑖

),     ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐻 (38) 

  

4.1.3. Hub-level network design 

The last part of the initial solution generation is the hub-level network design. The directed cyclic hub-level network is obtained 

by applying the Nearest-Neighbor heuristic to the selected hubs. The first hub located during the hub location procedure is the 

starting port of the cycle. Then, at each iteration, the hub that has the shortest distance from the last hub is selected to be the 

next hub in the hub-level route. The procedure stops when all selected hubs are sequenced. 

 

4.2. Neighborhood search moves 

TSHLP starts the neighborhood search based on three move operators. Two of these moves, open_hub and close_hub change the 

set of hub locations, and the third move, shift_allocation makes changes in non-hub port allocations. For all move operators, only 

the moves that do not violate the capacity constraints are considered. The move operators are explained below: 

Open_hub: A new hub is located at each non-hub port iteratively. In the hub-level network, the new hub is inserted in the cycle 

after the hub to which it was originally allocated. 

Close_hub: Each of the currently open hubs is closed iteratively. The ports in the closed hub cluster are allocated to the nearest 

open hub as per the modified distances in Eq. (38). 

Shift_allocation: The allocation of a non-hub port is changed from one open hub to another. Executing this move may take 

considerably more computational time especially for large size problems. Besides, shifting the allocation of a port to hubs that are 

very far from the port hardly ever yields good solutions. Therefore, we set a limit to the neighborhood for each port. This limit, 

denoted by the integer parameter range, is a number less than or equal to the number of candidate hubs. For instance, if range 

is set to five, instead of checking all possible allocation shifts of a non-hub port, only the five nearest (according to the modified 

distance) hub candidate ports are considered. Out of these five candidates, the shift_allocation move is applied to the open hubs 

only.  

Each move has its own Tabu list and Tabu tenure. The Tabu tenures of the moves are static and deterministic. If a solution improves 

the incumbent solution, it is accepted. This is defined as the aspiration criterion of the algorithm. 

 

4.3. Diversification  

The frequency of the hub locations throughout the Tabu Search is recorded in the long-term memory. The frequency of each hub 

candidate node refers to the number of times a hub was located at this node in the previously visited solutions. Diversification is 

triggered when the maximum of the hub location frequencies, denoted by max_freq, reaches a predefined limit, denoted by 

freq_lim. For example, if freq_lim is set to 25, diversification is triggered whenever the frequency reaches 25, 50, 75, and so on. 
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At each diversification moment, Tabu Search starts a new search phase. The logic in the diversification is to close a number of 

hubs among the nodes with higher frequencies (which we refer to as the high frequency region) and to open a number of new 

hubs at nodes with lower frequencies (the low frequency region). The selection of hubs to be closed and opened is done randomly 

within the respective region, using the following parameters: 

high_region: The percentage of max_freq that is used to determine the high frequency region. For instance, if this parameter is 

set to 75% and max_freq is 100, hubs to be closed are selected among the nodes which have frequency higher than or equal to 

75. 

low_region: The percentage of max_freq that is used to determine the low frequency region. For instance, if this parameter is set 

to 25%, and max_freq is 100, new hubs to be opened are selected among the nodes which have frequency less than or equal to 

25. 

close_percentage: indicates what portion of the hubs in the high frequency region specified by high_region is to be closed. For 

instance, if close_percentage is set to 50%, half of the current hubs in the high frequency region are selected randomly and closed.  

open_percentage: indicates how many hubs are to be opened at the nodes in the low frequency region specified by low_region. 

If there are 20 candidate nodes in low frequency region and open_percentage is 25%, then five of them are chosen randomly to 

serve as hubs. 

High_region and low_region are constant input parameters and do not change in the algorithm. On the other hand, 

open_percentage and close_percentage are dynamic and can be modified at the next trigger of the diversification phase, 

depending on the best solution obtained in the search phase that follows the previous diversification. If the best solution in the 

current search phase of the algorithm (Sbest) is worse than the global best solution (Sglobal), the algorithm makes one of the following 

changes depending on the number of hubs located in the two solutions: 

1. If the number of hubs located in Sbest is greater than or equal to that in Sglobal: Decrease open_percentage and increase 

close_percentage by a fixed amount of percentage points, for example 5. 

2. If the number of hubs located in Sbest is less than that in Sglobal: Increase open_percentage and decrease close_percentage by 

a fixed amount of percentage points, for example 5. 

The non-hub ports in the closed hub clusters are allocated to the nearest open hubs without violating the capacity constraints. If 

some of the ports remain unallocated due to insufficient capacities at the open hubs, new hubs are opened at each of these 

unallocated ports. The solution obtained by diversification is taken as the initial solution and the Sbest is reset to the initial solution 

cost. TSHLP terminates after a predefined number of consecutive iterations without improvement, and Sglobal is reported. The 

pseudocode of the algorithm is provided in Appendix II. 

 

4.4. Local search for hub-level cyclic network 

We attempt to improve the hub-level cycle in each iteration of the Tabu Search algorithm if the inter-hub transfer cost of the 

current solution is larger than that of the previous solution. The local improvement algorithm (LISUB) takes the hub-level network 

of the current solution as the initial solution, and the inter-hub transfer cost formula as the evaluation function. A single move 

operator, 2-opt exchange, is defined in the algorithm. The 2-opt exchange move is a well-known heuristic for the travelling 

salesman problem and involves removing two arcs from a tour and reconnecting the two partial routes by two other arcs (Talbi, 

2009). In LISUB, the inter-hub transfer cost is calculated for all single 2-opt exchange moves based on the current solution, and 

the cycle that yields the lowest cost is recorded as the improved hub-level network. The current solution of TSHLP is updated with 

the new hub-level network. 
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5. COMPUTATIONAL EXPERIMENTS 

TSHLP was programmed in C/C++, and all experiments ran on a desktop computer with 8 GB memory and 3.40 GHz processor. We 

first introduce the data sets that are used in the experiments and then present and discuss the results. We benchmark the best 

results obtained by TSHLP for the original non-linear problem against the results obtained by CPLEX for the linear model with 

approximate congestion costs. In addition, we analyze the performance of the algorithm and evaluate the effect of the 

diversification. We recall that the diversification phase of Tabu Search contains random elements, and that the algorithm is 

nondeterministic and may produce different results at each execution. To obtain meaningful results, the algorithm is run 100 

times for each problem instance, and both the best and average solutions are reported. 

 

5.1. Problem instances 

Five data sets are used in computational experiments to assess the effectiveness of the proposed algorithm and to analyze the 

factors that affect the network design. The data sets are labelled RAND10, MED15, MED20, CAB25, and TR81. Five instances with 

different values for the discount factor, 𝛼, are generated in each set. Table 3 summarizes the sources and parameter values for 

the different sets.  

The RAND10 set contains the smallest problem instances. It is a 10-node set with randomly generated parameter values. In order 

to keep the variation in the parameter values limited and to avoid any port being too advantageous for flow concentration or cost 

benefits, we use discrete random uniform distributions for flow, distance, capacity, and THC parameters. A single parameter value 

is used for each hub opening cost, unit feeder transportation cost, and unit feeder/mainline ship port costs. 

The MED15 and MED20 sets involve 15 and 20 major ports in the Mediterranean Sea, respectively (Table 2). The parameter values 

of these data sets are motivated by real world data. The distances, OD flows, and terminal handling charges were obtained from 

external sources. The remaining parameters were either approximated based on real data or they were generated when exact or 

estimated data could not be found. 

Table 2: Ports included in MED15 and MED20 experiment sets. 
Ports with asterisk are only used in MED20 

Country Ports 

France Marseille 

Greece Piraeus, Thessaloniki 

Italy Cagliari, Genova, Gioia Tauro, La Spezia, Livorno*, Trieste, Venezia 

Slovenia Koper* 

Spain Algeciras, Barcelona*, Las Palmas*, Valencia 

Turkey Ambarli, Gemlik*, Izmir, Izmit, Mersin 

 

The CAB25 and TR81 sets have the larger problem instances, and they are based on the CAB and Turkish postal network data sets 

respectively. CAB is a data set of airline passenger flows and distances between 25 major cities in the United States. It was 

introduced in the hub location literature by O’Kelly (1987) and is accessible from the OR-Library (2018). The Turkish data set 

involves postal delivery data of 81 cities in Turkey (Bilkent.edu.tr, 2018). Both data sets are compatible with conventional hub 

location problems only (e.g. p-hub median problem, hub covering problem), and require additional parameters for our problem 

setting such as terminal handling charges and hub opening costs. For the CAB25 instances we generated values for the missing 

parameters, and for the TR81 instances we modified some of the existing parameters and generated the missing parameters 

values. The purpose of these modifications was to make the distance, cost, and flow parameters realistic from the perspective of 

liner shipping. For example, the OD flows in the Turkish postal network data set refer to the annual postal deliveries between the 

cities in Turkey, and these values are extremely large when compared to global containerized cargo flows. 
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Table 3: Input parameters of the experiment sets 

Parameter RAND10 MED15 MED20 CAB25 TR81 

Number of 
nodes (𝑁) 

10 15 20 25 81 

Distances, 
nautical mile 
(𝑠𝑑𝑖𝑘) 

10 to 100 
Real sea-distances compiled from 

https://sea-distances.org/ 

Compiled 
from the 
original 
dataset 

The distances 
of the original 
data set are 
multiplied by 
10. 

OD flows, TEU 
(𝑤𝑖𝑗) 

10 to 100 

Annual containerized cargo movements between ports 
according to customs declarations in 2016. Compiled 

and approximated from EUROSTAT database 
(http://ec.europa.eu/eurostat/data/database) 

Compiled 
from the 
original data 
set 

The flows of 
the original 
data set are 
divided by 5. 

Hub capacities, 
TEU per day 
(𝑐𝑎𝑝𝑘) 

2,500 to 
3,500 

Port’s hinterland flow (𝑜𝑘 + 𝑑𝑘) is multiplied by 4. 

Random assuming the hub 
candidate port’s capacity is 
normally distributed with mean 
3 (TR81) or 4 (CAB25) and 
standard deviation 0.5 times its 
hinterland flow (𝑜𝑘 + 𝑑𝑘) 

Terminal 
handling 
charges, in USD 
per TEU (𝑡ℎ𝑐𝑘) 

5 to 25 
Extracted from the websites of terminal operators and 

shipping companies 
Discrete random values with a 
range of 150 to 250 

Hub opening 
cost, USD (𝑓𝑐𝑘) 

250,000 
Discrete random values ranging 

from 30 to 70 million 
60 million for each 

hub candidate 

75, 100, or 125 million 
depending on the hub 
candidate port’s capacity 

Unit feeder 
transportation 
cost, USD/TEU-
nm (𝑡𝑐𝑓) 

10 
0.0839 

(Calculated based on the running cost estimation of a 600 TEU feeder ship by Baird 
(2006)) 

Unit mainline 
transportation 
cost, USD/TEU-
nm (𝑡𝑐𝑚) 

2, 4, 6, 8, or 
10, 

depending 
on the 

problem 
instance 

 
Calculated based on the running and capital costs of an 18,000 TEU ship. 

0.0168, 0.0336, 0.0503, 0.0671, or 0.0839 depending on the problem instance 
 

Unit feeder ship 
port cost, USD 
(𝑝𝑐𝑓) 

365 
9,233  

(Calculated based on the running cost estimation of a 600 TEU feeder ship by Baird 
(2006)) 

Unit mainline 
ship port cost in 
USD (𝑝𝑐𝑚) 

1,825 
83,890  

(Calculated based on the running and capital costs of an 18000 TEU ship) 

 

For each problem set, five instances are generated with 𝛼 taking values of 0.20, 0.40, 0.60, 0.80, and 1.00. The names of the 

instances are formed by combining the experiment set name with the corresponding 𝛼 value. For example, MED20-0.20 denotes 

the instance of the MED20 set with 𝛼 = 0.20. Recall from Eq. (1) in Section 3 that 𝛼 refers to the ratio of unit mainline ship 

transportation cost, 𝑡𝑐𝑚, and the unit feeder ship transportation cost, 𝑡𝑐𝑓. Assuming that 𝑡𝑐𝑓 remains fixed, 𝛼 changes with 𝑡𝑐𝑚. 

The more containers a mainline ship carries, the less it costs to transport a single container. Therefore, the economies of scale 

gained on the transportation between hubs deteriorates when α increases or when the mainline ship capacity utilization 
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decreases. Through experiments with different problem instances we can investigate the effect of the mainline ship capacity 

utilization on the network design and cost. 

 

5.2. Experiments and results 

Table 4 shows the values of the TSHLP parameters that we used in the experiments. These parameter values were tuned in 

preliminary experiments. 

Table 4: TSHLP input parameter values 

Input parameter Value 

𝑣𝑜𝑙𝑢𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟   ranges between 2-3.5 

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟  100 

Tabu tenure (number of iterations) 5 (RAND10, MED15/20, and CAB25), 10 (TR81) 

𝑓𝑟𝑒𝑞_𝑙𝑖𝑚  25-50 

ℎ𝑖𝑔ℎ_𝑟𝑒𝑔𝑖𝑜𝑛  50 

𝑙𝑜𝑤_𝑟𝑒𝑔𝑖𝑜𝑛  50 

𝑐𝑙𝑜𝑠𝑒_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒*  25 

𝑜𝑝𝑒𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒* 25 

𝑟𝑎𝑛𝑔𝑒  5-25 

𝑖𝑛𝑐𝑟  5 

*initial values only, the parameters are modified by the algorithm 

 

For each problem instance, the initial solution cost, the average solution cost from 100 runs, and the overall best solution cost 

(i.e., the minimum of the 100 runs) obtained with TSHLP are reported in Table 5. For RAND10, MED15, and MED20 instances, the 

optimal solution costs obtained with CPLEX and the MILP with congestion cost approximation and the percentage gap between 

the best TSHLP solution cost and CPLEX solution cost are also presented. Larger instances could not be solved by CPLEX. The 

computation times in seconds with TSHLP (average of 100 runs and for the overall best solution) and with CPLEX are also reported. 

The results presented in Table 5 demonstrate that TSHLP finds good solutions in reasonable computation time. The percentage 

gap between the optimal solution costs for the approximation model and the best solution costs found by TSHLP is below 0.20% 

for all benchmark instances. Furthermore, the asterisk for 15 instances indicates that both TSHLP and CPLEX found the same 

solution, which means the same network design: the number and locations of hub ports, the allocation of the non-hub ports to 

hubs, and the hub port sequence on the cycle.  For all benchmark instances, the same network designs were obtained by CPLEX 

and TSHLP. We note that although the networks obtained with TSHLP and CPLEX may be the same, the network costs are always 

different because an approximated congestion cost formula is used for CPLEX. The % gap is calculated based on the difference in 

the objective function values only (and ignoring the solution network structure). 

Although the instances of the CAB25 and TR81 sets could not be included in the comparison, the results obtained by TSHLP show 

that the algorithm is efficient concerning the computational effort. While it took CPLEX more than 17,000 seconds to find the 

optimal solution for some smaller instances, TSHLP found solutions within 1 second for the instances with up to 25 nodes, and in 

less than 4 seconds for the instances of TR81. The maximum computation time was 6 seconds for the TR81-0.60 instance. We 

analyze the effect of diversification on the solution quality. It is important to find out whether implementing diversification (at the 

expense of more computational effort) yields indeed better solutions. For this purpose, TSHLP was run without diversification, 

and the solution costs were compared to measure the improvement due to diversification. The average percent improvements in 

instances of each set are shown in Figure 5. Diversification clearly improved the best solutions found in all sets. The largest average 

improvement is observed in CAB25 instances with 10.67%, and the smallest improvement is recorded for MED15 instances with 

1.21%. Clearly, TSHLP yields better solutions when diversification is applied. 
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Table 5: Results and statistics 

 Solution costs (in million USD) Computation time (in seconds) 

Experiment 
instance 

TSHLP 
(Initial 

solution) 
TSHLP (Average) TSHLP (Best) CPLEX % GAP TSHLP (Average) 

TSHLP 
(Best) CPLEX 

RAND10-0.20* 3.64 3.29 3.18 3.17 0.17% 0.0133 0.0156 255.03 

RAND10-0.40* 4.64 3.77 3.66 3.65 0.15% 0.0211 0.0157 89.39 

RAND10-0.60* 5.65 4.21 4.04 4.03 0.13% 0.0136 0.0157 61.22 

RAND10-0.80* 5.53 4.61 4.41 4.41 0.12% 0.0119 0.0157 65.75 

RAND10-1.00* 7.66 4.99 4.79 4.78 0.11% 0.0122 0.0157 56.16 

MED15-0.20* 950.67 774.47 769.92 769.64 0.04% 0.0614 0.0781 17,531.28 

MED15-0.40* 968.65 825.41 810.47 810.19 0.03% 0.0533 0.0313 5,539.53 

MED15-0.60* 1,032.02 849.55 849.48 849.27 0.02% 0.0336 0.0469 6,989.73 

MED15-0.80* 904.24 892.18 886.61 886.37 0.03% 0.0364 0.0625 4,073.33 

MED15-1.00* 992.97 908.71 905.17 904.84 0.04% 0.0194 0.0313 2,911.22 

MED20-0.20* 1,474.06 1,060.42 1,047.88 1,047.69 0.02% 0.1042 0.1094 11,143.24 

MED20-0.40* 1,462.11 1,113.83 1,076.04 1,075.86 0.02% 0.1063 0.0781 6,688.56 

MED20-0.60* 1,449.36 1,143.32 1,099.74 1,099.57 0.02% 0.0698 0.0781 6,243.53 

MED20-0.80* 1,151.18 1,123.59 1,123.59 1,123.41 0.02% 0.0369 0.0469 5,638.23 

MED20-1.00* 1,280.82 1,147.44 1,147.44 1,147.26 0.02% 0.0355 0.0313 4,044.58 

CAB25-0.20 3,531.85 3,224.94 3,173.21 - - 0.7078 0.8594 - 

CAB25-0.40 4,187.53 3,653.20 3,400.84 - - 0.4147 0.2969 - 

CAB25-0.60 5,184.46 3,927.99 3,538.87 - - 0.2388 0.2500 - 

CAB25-0.80 5,350.70 3,994.18 3,652.47 - - 0.1381 0.2500 - 

CAB25-1.00 5,440.65 4,089.69 3,744.65 - - 0.1198 0.1094 - 

TR81-0.20 10,179.30 8,351.30 7,901.48 - - 3.7527 5.4196 - 

TR81-0.40 13,852.60 10,437.50 10,073.00 - - 3.3739 4.8282 - 

TR81-0.60 17,157.80 12,439.80 11,244.30 - - 2.8203 6.0001 - 

TR81-0.80 15,186.60 13,460.80 12,414.40 - - 2.2724 3.1095 - 

TR81-1.00 15,255.90 13,606.70 13,213.80 - - 1.3942 3.2031 - 

*Same solutions (i.e. network design) were obtained with CPLEX and TSHLP 

  

 
Figure 5: Average percent improvement by diversification 
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6. MANAGERIAL INSIGHTS 

One of the objectives of our hub location model is to provide insights into the factors that affect liner shipping HS networks. In 

this section, we analyze the effects of the discount factor 𝛼, the ports’ location and hinterland flows, and the hub port congestion 

on the HS network design and costs. 

Firstly, the number of hubs decreases when 𝛼 increases (Fig. 6). This is in line with expectations because when the unit transport 

cost on inter-hub arcs is closer to that of feeder transportation, locating more hubs (at the expense of a longer cyclic hub-level 

network and higher hub opening cost) does not yield any cost advantage. Referring to the relationship between the mainline ship 

capacity utilization and the economies of scale, we can state that a decrease in mainline ship capacity utilization (or a higher 𝛼) 

results in locating fewer hubs. 

 
Figure 6: Number of hubs located in problem instances for different α. 

The decreasing trend in the number of hubs with deteriorating scale economies is visualized for the networks of the MED15-0.20 

and MED15-1.00 instances in Figures 7 and 8. In both figures the squares represent hub ports; circles denote non-hub ports; 

arrows represent the hub-level arcs, and the dotted lines show the node-hub allocations. When the scale economies due to flow 

consolidation disappear, fewer hubs are located. 

 
Figure 7: The HS network of the solution for the MED15-0.20 instance 

(map template source: d-maps.com, https://d-maps.com/carte.php?num_car=3128&lang=en) 
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Figure 8: The HS network of the solution for the MED15-1.00 instance 

(map template source: d-maps.com, https://d-maps.com/carte.php?num_car=3128&lang=en) 

Two other factors worth analyzing are related to the locational attributes of the ports. Centrality and intermediacy are two 

common attributes used to describe locations of ports and cities (Fleming and Hayuth, 1994). In our analysis, we measure the 

centrality of a port as the hinterland flow originating from and destined to that port. Thus, hinterland flow of port k is equal to the 

sum of ok and dk.  

Intermediate locations, on the other hand, are between important origin and destination places, and therefore they are suitable 

for transshipment operations (Fleming and Hayuth, 1994; Rodrigue et al., 2013). Our interpretation of intermediacy refers to the 

closeness of a port to other ports, and it is measured by the sum of the distances from that port to all other ports. Hence, the 

lower the total distance of port i has, the higher its intermediacy. 

The results show that while there is a tendency of locating hubs at ports that have higher hinterland flows and/or are closer to 

other ports, this should not be considered as a rule. Peripheral ports also have a chance of becoming hubs depending on other 

factors. For example, the majority of the hub ports in MED15 and MED20 have a high degree of centrality and/or intermediacy 

(Tables 6 and 7). Piraeus has a total hinterland flow of almost 1 million TEU which constitutes about 17% of the total OD flows 

among the 20 ports of MED20. A hub was located at this port in all instances of MED15 and MED20. The other ports such as Gioia 

Tauro, Genova, and La Spezia where a hub was located in majority of instances also control a considerable portion of hinterland 

flows (Fig. 9). 

The intermediary position of the hubs is also noticeable in Figures 7 and 8. The hubs that are common in both instances lie between 

peripheral ports and are not too far from the other ports. Gioia Tauro, for example, has the lowest total distance to the other 

ports, and it was a hub in all instances of MED15 and MED20. On the other hand, the geographical advantage of a port or its 

hinterland flow intensity are not unique determinants of hub locations. For instance, the port of Venice does not control a very 

high hinterland flow compared to other ports in the region, nor is it located near to other ports. Nevertheless, a hub was opened 

at this port in MED15-0.20 and MED20-0.20 instances. Similarly, in the instances of CAB25 and TR81, some of the hubs were 

located at remote ports which do not have a high degree of centrality and intermediacy. 

Finally, we investigate the impact of omitting congestion in the process of network design and optimization. The problem instances 

of MED15, MED20, and TR81 were selected for this analysis, and the resulting networks and network costs of the original problem 

instances were compared to the instances which were optimized without taking congestion cost into account. First, the solutions 

for each problem instance were obtained by TSHLP by excluding the congestion cost component from the evaluation function of 

the algorithm. Then, the cost of congestion was calculated for the resulting network and added to the solution cost to obtain the 

https://d-maps.com/carte.php?num_car=3128&lang=en
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total network cost, denoted by 𝛩∗. The total network cost of the corresponding original problem instance is denoted by 𝛩. Based 

on these costs, we calculated the percent increase in the total network cost due to omission of the congestion cost, denoted by 

𝛷, as follows: 𝛷 = (
𝛩∗−𝛩

𝛩
) 100%. 

 

Figure 9: Percent share of hinterland flows by the hub ports located in MED15 and MED20 instances 

Table 6: Centrality and intermediacy of ports in MED20 
set (ranked in decreasing order of hinterland flows) 

Port 
Hinterland flow 

(TEU) 
Total distance 

(nm) 

Piraeus* (5) 948,618 15,906 

Gioia Tauro* (5) 884,304 13,388 

Genova* (5) 657,032 15,701 

La Spezia* (5) 496,930 15,479 

Valencia 269,467 18,448 

Trieste* (1) 269,322 20,166 

Thessaloniki 255,344 18,630 

Venice* (1) 248,735 20,175 

Ambarli 226,677 19,318 

Mersin 219,856 24,044 

Cagliari 178,886 14,157 

Marseille 165,654 16,355 

Algeciras 152,122 22,740 

Izmir 126,729 17,533 

Izmit 126,027 19,733 

Livorno 122,898 15,330 

Barcelona 120,989 17,308 

Gemlik 105,036 19,445 

Las Palmas 60,834 34,508 

Koper 48,732 20,148 

* A hub was located at this port in (x) out of 5 instances 
 

Table 7: Centrality and intermediacy of ports in MED15 
set (ranked in decreasing order of hinterland flows) 

Port 
Hinterland flow 

(TEU) 
Total distance 

(nm) 

Piraeus* (5) 862,208 10,476 

Gioia Tauro* (5) 810,654 9,050 

Genova* (5) 609,846 11,246 

La Spezia* (4) 465,100 11,040 

Thessaloniki 244,666 12,317 

Trieste* (4) 241,703 14,091 

Venice* (4) 234,253 14,037 

Valencia 233,642 13,624 

Mersin 212,576 16,159 

Ambarli 205,618 12,927 

Cagliari* (2) 166,233 9,999 

Marseille 137,385 11,786 

Algeciras 134,467 17,079 

Izmir 123,052 11,517 

Izmit 118,727 13,224 

*A hub was located at this port in (x) out of 5 instances 
 

  

The percent increase in the network cost gives an idea about the importance of taking congestion into account for the liner 

shipping HS network design. The results of the analysis are shown in Table 8. In addition to 𝛷, the number of hubs located, the 
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percent contribution of the congestion cost to the total cost, the average capacity utilization rate of the hubs, and the number of 

hubs with utilization rate exceeding 95% were compared. 

Table 8: Comparison of the results with and without considering congestion in optimization 

MED15 0.20  0.40  0.60  0.80  1.00 

𝛷 (%) 1.45  0.00  0.15  0.01  4.85 

Congestion included? YES NO  YES NO  YES NO  YES NO  YES NO 

% contribution of congestion to the total network cost 10 12  10 10  9 9  8 8  7 13 

Average hub capacity utilization (%) 31 28  31 31  33 31  33 33  42 65 

Number of hubs with utilization above 95% 0 0  0 0  0 0  0 0  0 0 

Number of hubs 7 9  7 7  6 7  6 6  3 2 

               

MED20 0.20  0.40  0.60  0.80  1.00 

𝛷 (%) 0.20  2.31  0.00  65.12  62.21 

Congestion included? YES NO  YES NO  YES NO  YES NO  YES NO 

% contribution of congestion to the total network cost 8 9  6 9  6 6  6 43  6 43 

Average hub capacity utilization (%) 37 38  46 38  46 46  46 73  46 73 

Number of hubs with utilization above 95% 0 0  0 0  0 0  0 1  0 1 

Number of hubs 6 6  4 6  4 4  4 2  4 2 

               

TR81 0.20  0.40  0.60  0.80  1.00 

𝛷 (%) 53.33  98.16  95.82  16.86  96.18 

Congestion included? YES NO  YES NO  YES NO  YES NO  YES NO 

% contribution of congestion to the total network cost 6 40  5 53  5 52  4 21  5 53 

Average hub capacity utilization (%) 51 66  63 89  73 97  71 93  84 92 

Number of hubs with utilization above 95% 0 4  0 4  0 6  0 4  0 2 

Number of hubs 17 15  12 7  9 6  6 5  6 5 

 

Table 8 demonstrates that, in general, omitting hub port congestion in network optimization has a negative impact on costs. 

Although the effect of congestion is modest for MED15 and some of the MED20 instances, the cost increase is high in MED20-

0.80, MED20-1.00, and all TR81 instances where 𝛷 is considerably large. For the instances of TR81-0.40, TR81-0.60, TR81-1.00, 

omitting congestion cost nearly doubled the total cost of the resulting networks. Likewise, the network costs increased by 65% 

and 62% in MED20-0.80 and MED20-1.00, respectively. Furthermore, when the hub port congestion cost was left out of the 

optimization, the network was designed and optimized in such a way that, first, fewer hubs were located, and second, the 

capacities of the located hub ports were utilized almost fully. This resulted in a very high cost of congestion and increased the 

total network costs. In the TR81-0.60 instance for example, all the six hub ports’ capacity utilizations exceed 95%, and the average 

hub capacity utilization is 97%. Consequently, the percent contribution of the cost of hub port congestion to the total network 

cost was larger than 50%. Moreover, in all instances of TR81, as well as in MED15-1.00, MED20-0.80, and MED20-1.00, fewer hubs 

were located when the congestion cost was not considered because locating fewer hubs reduces the hub opening cost and may 

yield a lower cost of inter-hub cargo transfer. These results demonstrate that ignoring hub port congestion cost in the process of 

liner shipping network design may result in costly and inefficient designs. 

 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we studied the design and optimization of liner shipping HS networks. In line with practices of the liner shipping 

industry, we introduced the capacitated directed cycle hub location and routing problem under congestion (DCHC), which features 

hub port congestion, a cyclic hub-level network, and cargo transshipment cost characteristics. The problem was formulated as a 

mixed integer programming model with a nonlinear congestion cost component in the objective function. We formulated a semi-
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continuous piecewise linear approximation for the congestion cost to linearize the objective function and designed a probabilistic 

Tabu Search algorithm. Problem instances with 10 to 81 nodes were generated from five data sets and used in computational 

experiments. Analysis of the solutions obtained through the Tabu Search algorithm and lower bound solutions from the 

approximate congestion cost model solved with CPLEX demonstrates the effectiveness of the Tabu Search algorithm. Finally, we 

derived managerial insights into the effect of the discount factor, centrality and geographical intermediacy of ports, and 

congestion on the HS network design and costs.  

Although DCHC is defined in the context of the liner shipping network design, the model can be applied to other applications. 

Potential areas include the design of public transportation, multimodal transportation, or telecommunications networks, where 

establishment of a fully connected hub-level network is expensive due to infrastructure and maintenance costs or impractical due 

to technological and practical considerations. As mentioned by Contreras et al. (2016), in the case of public transportation 

networks the hub-level network may refer to a circular rapid transit line such as a metro or high-speed train, hubs to metro/train 

stations, access arcs to transportation links by bus or taxi, and non-hub nodes to bus stops or remote districts. Similarly, in an 

intermodal transportation network the hub-level network can be regarded as a high-capacity transport mode (e.g. rail). Hubs refer 

to logistics centers where the modal transfer from a low-capacity transport mode (e.g. trucks) to the high-capacity mode is done. 

Non-hub nodes correspond to regional centers or customer areas. 

Our model could be extended in future research as follows.  We assumed that there are no setup costs for inter-hub or access 

arcs, but there are usually administrative and other costs involved in establishing links between ports. The problem is strictly cost-

oriented; however, the service quality of the network could be analyzed through the incorporation of the hub-level network length 

or total OD transit time constraints.  

There are several other exciting research opportunities worth investigating. Uncertainty is common in many transportation 

networks including liner shipping and may be caused by a wide range of sources such as OD flows, hub opening costs, and other 

network design parameters. Data imprecision is one type of uncertainty encountered in hub location and other network design 

problems and refers to the ambiguity in parameter values due to the decision maker’s lack of knowledge. Uncertainty caused by 

ambiguity can be explored using fuzzy measures in possibilistic programming approaches. Another potential research area relates 

to extending the planning horizon from single to multiple periods. The decisions concerned with HS network design are long-term 

and the design parameters such as demand or unit transportation costs may vary over time. Designing the network with the inputs 

of a single planning period may prove to be short-sighted. Considering multiple periods and taking variations in demand and other 

parameters in the problem can improve the network design in this respect. Finally, the objective function of our problem is cost 

minimization and ignores other requirements of the industry stakeholders such as schedule reliability, delivery flexibility, and 

environmental concerns. These requirements are often in conflict and yet shipping lines must pay attention to all of them to 

attract more customers and comply with maritime regulations. Defining multiple objectives can emphasize the priorities of other 

stakeholders in network design. 
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APPENDICES 

APPENDIX I: SEMI-CONTINUOUS PIECEWISE LINEAR APPROXIMATION FOR THE 

CONGESTION COST 

For the approximation of the hub congestion function 𝑓(𝜌𝑘) = 1/(1 − 𝜌𝑘) in the interval [𝑎’, 𝑏’] with 0 ≤  𝑎’ <  𝑏’ <  1, and 

𝑎’ (𝑏’) a lower (upper) limit on the utilization 𝜌𝑘, we consider an equivalent curve 𝑓(𝑥) = 1/𝑥 in [𝑎, 𝑏] via the transformation: 

𝑥 =  1 − 𝜌𝑘  ; 𝑎 =  1 − 𝑏’; 𝑏 =  1 − 𝑎’. Figure 10 shows 𝑓(𝑥) in [𝑎 =  0.1, 𝑏 =  0.9] and a semi-continuous piecewise linear 

approximation with four segments. The approximation improves when more segments are defined. Our aim is to find the best 

(semi-continuous) piecewise linear approximation for a given number of segments 𝑣, i.e., the approximation that minimizes the 

total area between 𝑓(𝑥) and the approximation, or that maximizes the area of the  𝑣 trapezoids in interval [𝑎, 𝑏]. 

 
Figure 10: An illustration of the semi-continuous piecewise linear approximation 

 

The best approximation through a semi-continuous piecewise linear function with 𝑣 segments is determined by the position of 

the breakpoints  𝑥1, 𝑥2, … , 𝑥𝑣−1, such that the area of the trapezoids, denoted by 𝐺(𝑥1, … , 𝑥𝑣−1) = [(𝑥1 − 𝑎)𝑓(𝑥1) −

(1

2
)(𝑥1 − 𝑎)2𝑓′(𝑥1)] +  [(𝑥2 − 𝑥1)𝑓(𝑥2) − (1

2
)(𝑥2 − 𝑥1)

2𝑓′(𝑥2)] + ⋯ + [(𝑥𝑣−1 − 𝑥𝑣−2)𝑓(𝑥𝑣−1) − (1

2
)(𝑥𝑣−1 −

 𝑥𝑣−2)
2𝑓′(𝑥𝑣−1)] + [(𝑥𝑏 − 𝑥𝑣−1)𝑓(𝑏) − (1

2
)(𝑥𝑏 − 𝑥𝑣−1)

2𝑓′(𝑏)] is maximized, and subject to the constraints:  𝑎 ≤  𝑥1; … ; 𝑥𝑙  ≤

 𝑥𝑙+1; … ; 𝑥𝑣−1  ≤  𝑏. By substituting 𝑓(𝑥𝑙)  =  1/𝑥𝑙   and 𝑓’(𝑥𝑙)  =  −1/𝑥𝑙
2 , we can rewrite the objective function as 

𝐺(𝑥1, … , 𝑥𝑣−1)  =  3𝑣/2 – 2(𝑎/𝑥1  +  𝑥1/𝑥2  +  … + 𝑥𝑣−1/𝑏)  +  ½(𝑎2/𝑥1
2 + 𝑥1

2/𝑥2
2  +  … +  𝑥𝑣−1

2/𝑏2). This is a constrained 

non-linear optimization problem (Bazaraa et al., 2006). The feasible region is bounded (limits a and b) and convex (linear 

constraints). Furthermore, the optimal solution cannot be on the boundary of the feasible region. A boundary solution has at least 

one binding constraint, which means that the positions of at least two breakpoints coincide (and hence the approximation being 

worse compared to when all breakpoints have different positions). Therefore, the optimum solution must be an interior point in 

the feasible region.  

The first order conditions for 𝐺(𝑥1, … , 𝑥𝑣−1)  lead to expressions: 𝑑𝐺/𝑑𝑥1  =  2𝑎/𝑥1
2  −  𝑎2/𝑥1

3  −  2/𝑥2  +  𝑥1/𝑥2
2, … , 𝑑𝐺/

𝑑𝑥𝑙  =  2𝑥𝑙−1/𝑥𝑙
2  −  𝑥𝑙−1

2/𝑥𝑙
3  −  2/𝑥𝑙+1  +  𝑥𝑙/𝑥𝑙+1

2, … , 𝑑𝐺/𝑑𝑥𝑣−1  =  2𝑥𝑣−2/𝑥𝑣−1
2 − 𝑥𝑣−2

2/𝑥𝑣−1
3  −  2/𝑏 + 𝑥𝑣−1/𝑏

2. 

Equating the partial derivatives to zero, leads to quartic polynomial equations: 𝑥1
4 − 2𝑥2𝑥1

3 + 2𝑎𝑥2
2𝑥1 − 𝑎2𝑥2

2 = 0,… , 𝑥𝑙
4 −
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2𝑥𝑙+1𝑥𝑙
3 + 2𝑥𝑙−1𝑥𝑙+1

2𝑥𝑙 − 𝑥𝑙−1
2𝑥𝑙+1

2 = 0,… , 𝑥𝑣−1
4 − 2𝑏𝑥𝑣−1

3 + 2𝑥𝑣−2𝑏
2𝑥𝑣−1 − 𝑥𝑣−2

2𝑏2 = 0. Each equation can be 

factorized, for example, the quartic polynomial equation, 

 𝑥𝑙
4 − 2𝑥𝑙+1𝑥𝑙

3 + 2𝑥𝑙−1𝑥𝑙+1
2𝑥𝑙 − 𝑥𝑙−1

2𝑥𝑙+1
2 = 0 leads to (𝑥𝑙 − (𝑥𝑙−1𝑥𝑙+1)

1/2)(𝑥𝑙 + (𝑥𝑙−1𝑥𝑙+1)
1/2)(𝑥𝑙 − 𝑥𝑙+1 − (𝑥𝑙+1

2 −

𝑥𝑙−1𝑥𝑙+1)
1/2)(𝑥𝑙 − 𝑥𝑙+1 + (𝑥𝑙+1

2 − 𝑥𝑙−1𝑥𝑙+1)
1/2) = 0. It is easy to verify that only the first root, 𝑥𝑙 = (𝑥𝑙−1𝑥𝑙+1)

1/2, is feasible 

(the second root is negative, the third root violates 𝑥𝑙  ≤  𝑥𝑙+1 and the fourth root violates 𝑥𝑙−1  ≤  𝑥𝑙). Therefore, there is only 

one critical point 𝑥∗(𝑥1
∗, … , 𝑥𝑣−1

∗), which is also an interior point in the feasible region, with 𝑥1
∗ = (𝑎𝑥2)

1/2, 𝑥2
∗ = (𝑥1𝑥3)

1/2, 

𝑥𝑙
∗ = (𝑥𝑙−1𝑥𝑙+1)

1/2, 𝑥𝑣−1
∗ = (𝑥𝑣−2𝑏)1/2. After some algebra, it can be shown that:  𝑥𝑙

∗ = (𝑎𝑣−𝑙𝑏𝑙)1/𝑣 ,    for  𝑙 = 1,2, … , 𝑣 − 1.   

To establish that x* is a local maximum of G, we consider the Hessian matrix of – G and show that all principal minors are positive 

in x* (i.e., x* is a local minimum of – G). Local convexity at the unique, critical point x* together with the fact that the optimum 

cannot occur on the boundary, is sufficient to claim that x* is a global minimizer of – G (or that x* is a global maximizer of G). 

The Hessian of – G is: 

𝐻 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4𝑎

𝑥1
3 −

3𝑎2

𝑥1
4 −

1

𝑥2
2       −

2

𝑥2
2 +

2𝑥1

𝑥2
3 0 0 … 0 0 0

−
2

𝑥2
2 +

2𝑥1

𝑥2
3

4𝑥1

𝑥2
3 −

3𝑥1
2

𝑥2
4 −

1

𝑥3
2 −

2

𝑥3
2 +

2𝑥2

𝑥3
3 0 0 0 0

0 −
2

𝑥3
2 +

2𝑥2

𝑥3
3

4𝑥2

𝑥3
3 −

3𝑥2
2

𝑥3
4 −

1

𝑥4
2 −

2

𝑥4
2 +

2𝑥3

𝑥4
3 0 0 0

0 0 −
2

𝑥4
2 +

2𝑥3

𝑥4
3

4𝑥3

𝑥4
3 −

3𝑥3
2

𝑥4
4 −

1

𝑥5
2 0 0 0

… … …

0 0 0
4𝑥𝑣−4

𝑥𝑣−3
3 −

3𝑥𝑣−4
2

𝑥𝑣−3
4 −

1

𝑥𝑣−2
2 −

2

𝑥𝑣−2
2 +

2𝑥𝑣−3

𝑥𝑣−2
3 0

0 0 0 −
2

𝑥𝑣−2
2 +

2𝑥𝑣−3

𝑥𝑣−2
3

4𝑥𝑣−3

𝑥𝑣−2
3 −

3𝑥𝑣−3
2

𝑥𝑣−2
4 −

1

𝑥𝑣−1
2 −

2

𝑥𝑣−1
2 +

2𝑥𝑣−2

𝑥𝑣−1
3

0 0 0 0 … −
2

𝑥𝑣−1
2 +

2𝑥𝑣−2

𝑥𝑣−1
3

4𝑥𝑣−2

𝑥𝑣−1
3 −

3𝑥𝑣−2
2

𝑥𝑣−1
4 −

1

𝑏2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The first principal minors are the diagonal elements of H. Evaluated in x*, these are all positive. For example, the lth diagonal 

element, 
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2 , evaluated with 𝑥𝑙−1

∗ = (𝑎𝑣−𝑙+1𝑏𝑙−1)1/𝑣 , 𝑥𝑙
∗ = (𝑎𝑣−𝑙𝑏𝑙)1/𝑣 and 𝑥𝑙+1

∗ = (𝑎𝑣−𝑙−1𝑏𝑙+1)1/𝑣, yields 

4((
𝑏

𝑎
)

1
𝑣
−1)

(𝑎𝑣−𝑙−1𝑏𝑙+1)
2
𝑣

, which is positive because 𝑏 >  𝑎. We note that the other (non-zero) elements of H (evaluated in x*) are all negative. 

For example, evaluating the element in row l, column l+1,  −
2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3   in  x* results in: 

−2(1−(
𝑎

𝑏
)

1
𝑣)

(𝑎𝑣−𝑙−1𝑏𝑙+1)
2
𝑣

, which is negative because 

𝑏 >  𝑎. 

There are two different types of second principal minors: those whose matrix (M2,1) has only diagonal elements (retaining two 

rows and corresponding columns which were not adjacent in H), and those with matrix structure M2,2 (retaining two adjacent rows 

l and l+1 and corresponding columns in H): 

𝑀2,2 =

[
 
 
 
 
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2  −

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3

−
2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3         

4𝑥𝑙

𝑥𝑙+1
3 −

3𝑥𝑙
2

𝑥𝑙+1
4 −

1

𝑥𝑙+2
2 ]
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The determinants of the matrices M2,1 with diagonal elements only, evaluated in x*, are positive. A positive determinant in x* for 

the M2,2 matrices corresponds to testing if (
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2 ) (

4𝑥𝑙

𝑥𝑙+1
3 −

3𝑥𝑙
2

𝑥𝑙+1
4 −

1

𝑥𝑙+2
2 ) − ( −

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 )

2

> 0 in x*. It is easily 

verified that this leads to 

12((
𝑏

𝑎
)

1
𝑣
−1)

2

(𝑎2𝑣−2𝑙−3𝑏2𝑙+3)
2
𝑣

, which is positive because 𝑏 >  𝑎, so that all second minors are positive. 

The matrices for the third principal minors come in three different structures: M3,1 with only diagonal elements, M3,2 by retaining 

two adjacent rows and corresponding columns in H; and M3,3 matrices by retaining three adjacent rows and corresponding 

columns in H. 

𝑀3,2 =

[
 
 
 
 
 
 
 
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2  −

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 0

−
2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3

4𝑥𝑙

𝑥𝑙+1
3 −

3𝑥𝑙
2

𝑥𝑙+1
4 −

1

𝑥𝑙+2
2 0

0 0
4𝑥𝑝

𝑥𝑝+1
3 −

3𝑥𝑝
2

𝑥𝑝+1
4 −

1

𝑥𝑝+2
2

]
 
 
 
 
 
 
 

 

 

𝑀3,3 =

[
 
 
 
 
 
 
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2  −

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 0

−
2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3

4𝑥𝑙

𝑥𝑙+1
3 −

3𝑥𝑙
2

𝑥𝑙+1
4 −

1

𝑥𝑙+2
2 −

2

𝑥𝑙+2
2 +

2𝑥𝑙+1

𝑥𝑙+2
3

0 −
2

𝑥𝑙+2
2 +

2𝑥𝑙+1

𝑥𝑙+2
3

4𝑥𝑙+1

𝑥𝑙+2
3 −

3𝑥𝑙+1
2

𝑥𝑙+2
4 −

1

𝑥𝑙+3
2 ]

 
 
 
 
 
 

 

The determinants of the M3,1 matrices are positive in x*.  Expanding the last row of M3,2 shows that detM3,2 = detM2,2*(
4𝑥𝑝

𝑥𝑝+1
3 −

3𝑥𝑝
2

𝑥𝑝+1
4 −

1

𝑥𝑝+2
2 ), and both detM2,2 and the coefficient (

4𝑥𝑝

𝑥𝑝+1
3 −

3𝑥𝑝
2

𝑥𝑝+1
4 −

1

𝑥𝑝+2
2 ) are positive in x*. All M3,3 determinants are also positive: 

expanding the first row yields detM3,3 = detM2,2*(
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2 )- detM2,1*(−

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 ).  Both detM2,2 and detM2,1 are 

positive in in x* with a positive (diagonal element of H) and negative coefficient (non-zero, non-diagonal element of H) respectively. 

Likewise, all higher principal minors are positive in x*: expanding, for example, the first row of an Mk,k matrix (i.e., the matrix by 

retaining k adjacent rows and corresponding columns in H), yields: 

detMk,k = detMk-1,k-1*(
4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2 ) - detMk-1,k-2*(−

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 ).  Because the lower principal minors and (

4𝑥𝑙−1

𝑥𝑙
3 −

3𝑥𝑙−1
2

𝑥𝑙
4 −

1

𝑥𝑙+1
2 ) are positive in x*, and (−

2

𝑥𝑙+1
2 +

2𝑥𝑙

𝑥𝑙+1
3 ) is negative in x*, detMp,p is also positive in x*. 

All principal minors are positive in critical point x*.  Because the optimum cannot be a boundary solution, point x* is also a global 

minimizer of –G (or x* is a global maximizer of G). 

We can measure the quality of the approximation through the percentage difference between the area under 𝑓(𝑥) and the area 

under the approximation in interval [𝑎, 𝑏] (i.e. 𝐺(𝑥∗)):  
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       % 𝑒𝑟𝑟𝑜𝑟 =

(

 
 

1 −

𝑣((
3

2
)−2(

𝑎

𝑏
)

1
𝑣+

1

2
(
𝑎

𝑏
)

2
𝑣)

ln(
𝑏

𝑎
)

)

 
 

∗ 100%     (39) 

  

Table 9 shows the approximation error for values of 𝑣 between 5 and 50 and demonstrates that the approximation improves with 

an increasing number of segments. In our experiments we used 𝑣 = 25 segments, 𝑎 =  0.05 and 𝑏 =  0.90, which corresponds 

to minimum and maximum utilization levels 𝜌𝑘  between 0.1 and 0.95, and a percentage error of 0.41%. (In the experiments with 

the mixed integer programming model, we allowed hubs to operate with utilization rates outside interval [0.1, 0.95]. In case a hub 

had a very low utilization (𝜌𝑘 < 10), 𝑓(𝜌𝑘) was approximated with a line segment that is tangent to 𝑓(𝜌𝑘) at 𝜌𝑘 = 0; in case a 

hub had a very high utilization (𝜌𝑘 > 0.95), 𝑓(𝜌𝑘) was approximated with a line segment that is tangent to 𝑓(𝜌𝑘) at 𝜌𝑘 = 0.95.) 

 

Table 9: Percentage error of the approximation (a=0.05, b=0.90) 

𝑣  5 10 15 20 25 30 35 40 45 50 

% error 7.38 2.25 1.07 0.63 0.41 0.29 0.21 0.16 0.13 0.11 

           
 

To assess the quality of the lower bound solutions using the MILP with congestion cost approximation we solved the MED15-0.20 

instance with CPLEX and varied the number of segments between 5 and 50. The minimum and maximum utilization levels were 

kept at 0.10 and 0.95. The results are presented in Figure 11 where the dots show the MILP lower bound values and the straight 

line represents the best solution cost obtained with TSHLP. A congestion cost approximation with more segments clearly tends to 

produce better bounds although the improvement is not necessarily monotone and some fluctuations may exist. For this instance, 

the lower bound value with v = 30 is slightly worse than the bounds obtained with v = 25 and v = 35, while the actual solution 

structures (i.e., the DCHC network and flows) are exactly the same. This is due to the nature of the approximation and the jumps 

at the utilization breakpoints: the approximation is better (worse) when the hub capacity utilization in a solution is slightly above 

(below) a breakpoint value. Changing v, re-positions the breakpoints and the same solution may produce a slightly better or worse 

lower bound value in the MILP. These fluctuations are small and diminish when v grows larger.   

 

 

 

Figure 11: Improving lower bound solutions with increasing number of line segments in the approximation  
(MED15-0.20 instance) 
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APPENDIX II: PSEUDOCODE OF TSHLP  

Sets  

𝐿  Set of located hubs in the initial solution 

𝐸  Set of unallocated non-hub nodes in the initial solution 

Parameters  

𝑡𝑓 Total flows routed in the network, in TEU, 𝑡𝑓 = ∑ (𝑜𝑖 + 𝑑𝑖)
𝑛
𝑖=1  

𝑡𝑐𝑎𝑝  Total capacity of hub candidates in TEU, 𝑡𝑐𝑎𝑝 = ∑ 𝑐𝑎𝑝𝑘
ℎ
𝑘=1  

𝐼𝑘   Hub candidate index of 𝑘 ∈ 𝐻 

𝑤𝑑𝑖𝑘    The modified distance between node 𝑖 ∈ 𝑁 and hub candidate node 𝑘 ∈ 𝐻 

𝑣𝑜𝑙𝑢𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟    determines the minimum total capacity the hubs located in the initial solution must have, 1 <

𝑣𝑜𝑙𝑢𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 ≤ 𝑡𝑐𝑎𝑝 𝑡𝑓⁄  

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟  Termination iteration counter of TSHLP 

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 TSHLP terminates when 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟 reaches 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

𝑓_𝑜𝑝𝑒𝑛 List of hub location frequencies 

𝑚𝑎𝑥_𝑓𝑟𝑒𝑞 The maximum frequency of 𝑓_𝑜𝑝𝑒𝑛 

𝑓𝑟𝑒𝑞_𝑙𝑖𝑚 Diversification is triggered when 𝑚𝑎𝑥_𝑓𝑟𝑒𝑞 reaches 𝑓𝑟𝑒𝑞_𝑙𝑖𝑚 

𝑆0  The initial feasible solution 

𝑆𝑖𝑡𝑒𝑟   The solution selected in the current iteration 

𝑆𝑏𝑒𝑠𝑡   The best solution of the current run of the algorithm 

𝑆𝑔𝑙𝑜𝑏𝑎𝑙   The global best solution obtained throughout TSHLP 

 

// Initial solution procedure 
Input:   Problem and initial solution generation parameters 
Step 1: Read the input data. 
Step 2: Set 𝐸 to 𝑁, 𝑆0 to ∅. 
Step 3: Calculate 𝐼𝑘  for each hub candidate, 𝑘 ∈ 𝐻. 
Step 4: Rank the hub candidates in non-increasing order of 𝐼𝑘. 
Step 5: Calculate the modified distances 𝑤𝑑𝑖𝑘  for all 𝑖 ∈ 𝑁. 
Step 6: Obtain the initial hub locations 

Start with an empty set of located hubs, 𝐿 = {∅}. 
𝒘𝒉𝒊𝒍𝒆 ∑ 𝑐𝑎𝑝𝑘 < 𝑣𝑜𝑙𝑢𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑡𝑓 𝑘∈𝐿   𝒅𝒐  
  𝑂𝑝𝑒𝑛 𝑎 𝑛𝑒𝑤 ℎ𝑢𝑏 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑙𝑖𝑠𝑡 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑡𝑜 𝐿 
 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 ℎ𝑢𝑏 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝐸 
𝒆𝒏𝒅  

Step 7: Obtain the initial node allocations 
               𝒘𝒉𝒊𝒍𝒆 𝐸 ≠ {∅} 𝒅𝒐   
                         𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ℎ𝑢𝑏 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑤𝑑𝑖𝑘∀ 𝑖 ∈ 𝐸, 𝑘 ∈ 𝐻 
                        𝑅𝑒𝑚𝑜𝑣𝑒 𝑖 𝑓𝑟𝑜𝑚 𝐸  

𝒆𝒏𝒅  
Step 8: Update 𝑆0 with the hub locations and node allocations. 
Step 9: Apply nearest neighbour heuristic to the hubs in 𝑆0 to obtain a cyclic hub-level network 
Step 10: Return 𝑆0. 
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//TSHLP 
Input:   Problem instance and TSHLP parameters 
Step 1: Run initial solution procedure, obtain 𝑆0. 
Step 2: Set 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟 to 0. 
Step 3: Set 𝑆𝑖𝑡𝑒𝑟 , 𝑆𝑏𝑒𝑠𝑡 , 𝑆𝑔𝑙𝑜𝑏𝑎𝑙  to 𝑆0. 

 
𝒘𝒉𝒊𝒍𝒆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 𝐝𝐨  
Step 4: Do neighbourhood search and update 𝑆𝑖𝑡𝑒𝑟  
Step 5: Check if the conditions to run local improvement for hub-level network (LISUB) holds 
  𝒊𝒇(𝐼𝑛𝑡𝑒𝑟ℎ𝑢𝑏 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑆𝑖𝑡𝑒𝑟 > 𝑆𝑏𝑒𝑠𝑡) 𝒕𝒉𝒆𝒏 
   𝒓𝒖𝒏 𝑳𝑰𝑺𝑼𝑩; 
   𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑖𝑡𝑒𝑟; 
  𝒆𝒏𝒅 
Step 6: Update 𝑆𝑏𝑒𝑠𝑡 . 
  𝒊𝒇(𝑆𝑖𝑡𝑒𝑟 < 𝑆𝑏𝑒𝑠𝑡) 𝒕𝒉𝒆𝒏 
   𝑆𝑒𝑡 𝑆𝑏𝑒𝑠𝑡  𝑡𝑜 𝑆𝑖𝑡𝑒𝑟; 
  𝒆𝒏𝒅 
Step 7: Update 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 . 

  𝒊𝒇(𝑆𝑏𝑒𝑠𝑡 < 𝑆𝑔𝑙𝑜𝑏𝑎𝑙) 𝒕𝒉𝒆𝒏 

   𝑆𝑒𝑡 𝑆𝑔𝑙𝑜𝑏𝑎𝑙  𝑡𝑜 𝑆𝑏𝑒𝑠𝑡; 

  𝒆𝒍𝒔𝒆 
   𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑖𝑡𝑒𝑟 + 1; 
  𝒆𝒏𝒅 
Step 8: Update 𝑓_𝑜𝑝𝑒𝑛 and Tabu lists. 
Step 9: Check if the conditions for diversification hold. 
  𝒊𝒇(𝑚𝑎𝑥_𝑓𝑟𝑒𝑞 ≥ 𝑓𝑟𝑒𝑞_𝑙𝑖𝑚) 𝒕𝒉𝒆𝒏 
   𝒓𝒖𝒏 𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 
  𝒆𝒏𝒅  
𝒆𝒏𝒅  
 
Step10: Return 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 . 

 


