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Abstract 

In this study, a systematic calibration methodology is proposed for enhancing the accuracy of 

urban airflow simulations using computational fluid dynamics (CFD) models based on the 

Reynolds-averaged Navier-Stokes (RANS) equations. In the calibration process, high-quality data 

from different sources are used to define the validation metrics, which are then utilized as the 

objective function in a stochastic optimization solver to find optimal values for closure coefficients 

of the RANS turbulence model. The proposed calibration method is applied to three different 

urban case studies, including an unstable atmospheric boundary layer (ABL) around a high-rise 

building, a sheltered cross-ventilated low-rise building, and a group of low-rise buildings located 

in a highly packed urban area. 

The significant advantage of using the obtained calibrated coefficients is observed over the 

existing coefficients embedded in CFD tools as well as the ones recommended by other 

calibration methods in literature. Thus, this study proves the necessity of finding a group of 

customized optimum closure coefficients for RANS turbulence models suitable for a wide range 

of urban flow problems. 
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1. Introduction 

Increasing  applications of computational fluid dynamics (CFD) in the urban studies reflects 

on its importance in research and practical engineering applications (Blocken, 2014; Jiru and 

Bitsuamlak, 2010). Different aspects of airflow in urban environment, including pedestrian level 

wind comfort (Blocken et al., 2016; Fadl and Karadelis, 2013; Iqbal and Chan, 2016; Mirzaei and 

Haghighat, 2011; Serteser and Karadag, 2018; Tsang et al., 2012; Wang et al., 2019; Yoshie et 

al., 2007), building energy (Allegrini et al., 2015; Charisi et al., 2019; Cook et al., 2008; Fan and 

Ito, 2012; Malys et al., 2015; Mochida et al., 2006b; Zhai et al., 2002; Zhang et al., 2018), pollution 

dispersion (Abbassi et al., 2019; Gonzalez Olivardia et al., 2019; Haghighat and Mirzaei, 2011; 

Longo et al., 2019; Luo et al., 2016; Tominaga and Stathopoulos, 2011, 2010; Yoshie et al., 2011), 

and urban heat island (Allegrini et al., 2015; Hien et al., 2012; Kawamoto, 2016; Mirzaei et al., 

2015; Priyadarsini, 2009) are the main subject areas tackled by CFD models. 

CFD modeling based on large eddy simulation (LES) is one of the advanced approaches for 

such applications, in which the Navier-Stokes equations are resolved in time and space, and it is 

gaining a high popularity in research studies related to wind engineering and urban airflow 

simulation (Ikegaya et al., 2019). In the LES approach, small scale turbulent eddies are filtered 

and modeled using sub-grid turbulence models while large scale eddies are resolved. The higher 

accuracy of LES models in comparison with RANS models makes them more favorable for 

scientific research, but their significantly higher computational cost and data storage requirement 

place them as an impractical approach for many engineering problems. For example, the runtime 

of conducting a LES using a coarse mesh setting over an urban scale model of Michel-Stadt case 

was about 35 days by utilization of 100 CPU’s (Tolias et al., 2018); this intensive computational 

cost was only used to resolve about 160 seconds of the transient flow field. For a simple case of 

an isolated high-rise building, conducting LES by (Liu and Niu, 2016) took 120 hours using a 6-

core PC. As another example, a total number of 32 nodes with 8×2 cores were utilized by (Okaze 

et al., 2017) in order to reproduce an accurate three dimensional (3D) LES model of the 

approaching inflow boundary condition over roughness blocks and spires of an atmospheric wind 

tunnel. In general, considering the fact that, for practical design stages, several calculation cases 

for multiple wind directions are required, the limitations of LES become even more evident (Yoshie 

et al., 2007).  

Due to the above-mentioned limitations of LES, most of CFD models adapted to engineering 

applications are developed based on discretization of the Reynolds-averaged Navier-Stokes 

equations under either steady (SRANS) or unsteady (URANS) conditions. In general, RANS 
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models have lower computational costs of about an order of magnitude in comparison with LES 

(Blocken, 2018), which makes them more suitable tools for design and analysis purposes. While 

the distribution of mean airflow can be obtained by RANS models, various turbulence model 

families are developed for them to replicate the airflow fluctuations as well. Most commonly 

adapted turbulence model families in urban airflow studies are two-equation turbulence models, 

including the standard 𝑘 − 𝜀  (Launder and Spalding, 1974), RNG 𝑘 − 𝜀  (Yakhot and Orszag, 

1986), Realizable 𝑘 − 𝜀 (Shih et al., 1995), and 𝑘 − 𝜔 SST (Menter, 1994). For these models well 

documented guidelines (Franke et al., 2007; Tominaga et al., 2008b) are available for urban 

airflow simulations, inherently being developed based on the comparison of RANS model results 

with wind tunnel experiments. Hence, with respect to CPU time and availability of these practical 

guidelines, RANS models are preferred for many applications such as building energy simulation, 

where mean flow quantities are required. However, it is worthy to note that, in some applications 

like those involving dispersion of toxic agent, estimation of mean-flow quantities are not sufficient 

and transient fluctuations of flow parameters are required (Dejoan et al., 2007).      

One drawback of the RANS models is the low accuracy of two-equation turbulence models in 

prediction of mean-flow quantities in weak wind regions around and behind buildings (Mochida et 

al., 2002; Murakami et al., 1996; Shirasawa et al., 2006; Tominaga, 2015). In general, inaccuracy 

of two-equation turbulence models is resulted from the simplifications in the turbulent-viscosity 

hypothesis and derived equations for the dissipation rate (𝜀) of the turbulent kinetic energy (TKE) 

(Pope, 2001). The turbulent viscosity hypothesis has been developed with the assumption of a 

direct relationship between the Reynolds-stress anisotropy and the mean velocity gradient 

adapted from an analogy to the molecular viscous stress in Newtonian fluids. Nevertheless, as 

discussed in (Pope, 2001), the physics of turbulence is completely different from the molecular 

process, which was utilized to reach the Newtonian viscous stress law. On the other hand, it is 

impossible to solve the exact transport equation of 𝜀  as it requires further modeling and 

developing empirical equations (Wilcox, 1998).  

Hence, the closure equations in RANS family models were mainly hypothesized as completely 

empirical equations, consisting of several unknown coefficients approximated with observation of 

few fundamental flows, including homogenous isotropic decaying turbulence, fully developed 

channel flow, and simple shear flow (Pope, 2001). Nonetheless, there is a marginal similarity 

between these fundamental flows and airflow around buildings in atmospheric boundary layer 

(ABL). Therefore, this led to a series of research to calibrate the closure coefficients of the 𝑘 − 𝜀 

model for ABL flow over a flat terrain (Duynkerke, 1988) and a complex terrain (Detering and 
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Etling, 1985), flow around a high-rise buildings (Iqbal and Chan, 2016; Mittal et al., 2019a, 2019b; 

Shirzadi et al., 2017), and flow inside a street canyon (Glover et al., 2011; Guillas et al., 2014). 

The calibration of the closure coefficients of other turbulence models was also considered for 

prediction of the wind pressure over low-rise buildings using the Spalart–Allmaras and RNG 𝑘 − 𝜀 

models (Gimenez and Bre, 2019) and for prediction of the pollution dispersion around building 

blocks using the 𝑘 − 𝜔 𝑆𝑆𝑇 model (Yu and Thé, 2016).      

Considering the low accuracy of RANS models in addition to their popularity and practicality 

in engineering problems, an improvement in the accuracy of RANS models can be a pivotal step 

to obtain more reliable numerical results with affordable computational resources while avoiding 

complexity and high computational cost of high-resolution CFD models such as LES. To this end, 

the authors proposed a systematic framework for improving the accuracy of RANS turbulence 

models for simulation of urban airflows studies in ABL flows, utilizing a stochastic optimization 

method combined with different statistical analysis and approximation models (Shirzadi et al., 

2018a). In this paper, the applicability of the proposed framework is discussed for several case 

studies while the improved models are compared against some reference cases in the literature 

in the field of urban and building airflow studies. Furthermore, the limitations and future visions of 

the proposed framework is discussed. In section 2, a brief history of the closure coefficients 

calibration is presented. The proposed framework is introduced in section 3 and then the selected 

case studies are described in section 4 while the results are discussed in section 5. In section 6, 

the values of the calibrated closure coefficients are compared with the existing ones in literature. 

Eventually, the possibility to obtain a general trend to calibrate closure coefficients for airflows in 

urban areas is discussed.  

2. A brief history of the closure coefficients calibration for ABL flows  

In this section, a brief review is presented about the values of the closure coefficient used in 

different studies of ABL flows. As explained before, the Reynolds stresses can be related to the 

mean velocity gradients and eddy viscosity (turbulent viscosity) by the gradient diffusion 

hypothesis as follows (Launder and Spalding, 1974): 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗𝜌𝑘 (1) 

where 𝑈𝑖 is the component of the mean velocity in streamwise, lateral, and vertical directions, 𝜌 

is the air density, and 𝜇𝑡 is the eddy viscosity (turbulent viscosity), which can be defined as below: 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
 (2) 
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In the standard 𝑘 − 𝜀 model, values of the turbulent kinetic energy (𝑘) and its dissipation rate 

(𝜀) come directly from their differential transport equations: 

𝜕𝜌𝑈𝑗𝑘

𝜕𝑥𝑗
=

𝜕

𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝑥𝑗
] + 𝑃𝑘 − 𝜌𝜀 + 𝑃𝑘𝑏 

(3) 

𝜕𝜌𝑈𝑗𝜀

𝜕𝑥𝑗
=

𝜕

𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝑥𝑗
] +

𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝜀 + 𝐶𝜀1𝑃𝜀𝑏) 

(4) 

where 𝜇 is the molecular viscosity and 𝑃𝑘 is the production of turbulence due to shear:  

𝑃𝑘 = 𝜇𝑡𝑆2 (5) 

where S = √2𝑆𝑖𝑗𝑆𝑖𝑗  is the magnitude of the mean strain rate. 𝑃𝑘𝑏  and 𝑃𝜀𝑏  are the buoyancy 

turbulence production and dissipation terms, respectively: 

𝑃𝑘𝑏 =
𝜇𝑡

𝜎𝑝
𝛽𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖
 

            (6) 

𝑃𝜀𝑏 = max (0, 𝑃𝑘𝑏)                 (7) 

where 𝑇  and 𝑔𝑖  are respectively the air temperature and gravity vector while 𝜎𝑝 = 0.9  is the 

turbulent Prandtl Number and 𝛽 is the thermal expansion coefficient. 

A disadvantage of the 𝑃𝑘  definition in equation (5) is overprediction of TKE around the 

stagnation point where the shear strain rate is very high (Murakami et al., 1990). Hence, a 

modification on the standard 𝑘 − 𝜀 model, named LK modification, was proposed by (Kato and 

Launder, 1993) in which the magnitude of vorticity rate  (Ω = √2Ω𝑖𝑗Ω𝑖𝑗) is used in 𝑃𝑘 definition: 

𝑃𝑘 = 𝜇𝑡𝑆Ω (8) 

The vorticity tensor Ω𝑖𝑗 is calculated as below:  

Ω𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
) 

(9) 

The transport equation for 𝑘 is directly derived by multiplying the fluctuating components to 

the Navier-Stokes equations and time-averaging the products. It is possible to drive an exact 

equation for 𝜀 using the same procedure and to define 𝜀 as 𝜀 =
𝜇

𝜌

𝜕𝑢𝑖
′

𝜕𝑥𝑘

𝜕𝑢𝑖
′

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅
 (𝑢𝑖

′ is the 𝑖th component 

of the instantaneous velocity vector), but the resulting equation becomes far more complicated 

than the 𝑘 equation and involves many unknowns high-order correlations for fluctuating velocity, 

pressure and velocity gradients, which are not possible to measure experimentally (Wilcox, 1998). 

Hence, the equation for 𝜀  is derived as an entirely empirical equation, which has unknown 

constants named as closure coefficients that should be determined to close the system of 

equations. The values of the closure coefficients appeared in the above equations are found as 

𝐶𝜀1 = 1.44 , 𝐶𝜀2 = 1.92, 𝐶𝜇 = 0.09 , 𝜎𝜀 = 1.3 , 𝜎𝑘 = 1  based on (Launder and Spalding, 1974). 
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These values are used as default values in many commercial CFD software such as ANSYS CFX, 

ANSYS Fluent, PHOENIX, STAR CCM+ in addition to open-source CFD codes such as 

OpenFOAM.  

These coefficients are obtained based on different experimental measurements and 

numerical analyses using direct numerical simulation (DNS) of fundamental flows. As stated in 

(Pope, 2001; Wilcox, 1998), the values of the closure coefficients were selected based on a 

compromise to achieve an acceptable accuracy and applicability for a wide range of flow 

problems, and not only for airflows in urban and building studies. However, more accurate 

analysis of the standard 𝑘 − 𝜀 model’s closure coefficients, as well as experimental and DNS 

results of fundamental flows, i.e. homogenous isotropic decaying turbulence, log-law region of 

fully developed channel flow, fully developed turbulence channel flow, and simple shear flows, 

reveals noticeable deviations and uncertainties in these values. For instance, results of a fully 

developed channel flow by (Kim et al., 1987) show the value of 𝐶𝜇 to be in a range between 0.06 

to 0.095, while for a temporal mixing layer, a wider range of 0.07 to 0.11 was found using a DNS 

model by (Rogers and Moser, 1994). The proposed value of 𝐶𝜇 in the standard 𝑘 − 𝜀 model is 

0.09, which is very close to the average of these two ranges just for regions far from the solid 

walls. Another example of such variability in the values of the closure coefficients can be found 

by looking at the homogeneous shear flow, which was experimentally studies by (Tavoularis and 

Karnik, 1989). The experimental results showed that the value of 
𝐶𝜀2−1

𝐶𝜀1−1
 is in a range between 1.33 

and 1.75 while this ratio becomes  about 2.09 for the default values of the standard 𝑘 − 𝜀 model. 

As another example, the value of the decay exponent (𝑛 =
1

𝐶𝜀2−1
) of the homogenous isotropic 

decaying turbulence flow, which was measured experimentally, is in a range from 1.15 to 1.45. 

However, for the standard 𝑘 − 𝜀 model, 𝑛 = 1.08, which is clearly outside of the experimental 

range (Pope, 2001). Regarding the simulation of urban airflows, some researchers proposed 

different values for the closure coefficients rather than using the default values in the standard 

𝑘 − 𝜀  model. For instance, (Duynkerke, 1988) showed that more accurate results using the 

standard 𝑘 − 𝜀 model can be obtained for neutral and stable ABLs over flat terrains if the default 

values are replaced with 𝐶𝜇 = 0.033, 𝐶𝜀1 = 1.46, 𝐶𝜀2 = 1.85, and 𝜎𝜀 = 2.38. For a neutral ABL over 

complex terrains, (Detering and Etling, 1985) proposed different closure coefficients of 𝐶𝜀1 = 1.13, 

𝐶𝜀2 = 1.9, 𝜎𝜀 = 1.29, 𝜎𝑘 = 0.74. In the study conducted by (Glover et al., 2011), a Bayesian 

calibration of the closure coefficients was conducted for a street canyon flow to find these values 

as 𝐶𝜀1 = 1, 𝐶𝜀2 = 2.2, 𝐶𝜇 = 0.12, 𝜎𝜀 = 0.42, 𝜎𝑘 = 0.462. In a similar study by (Guillas et al., 2014), 

the same values were reported for an idealized street canyon while (Iqbal and Chan, 2016) 
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obtained very close values for pedestrian wind environment around a group of high-rise cross-

shaped buildings using a simple parametric study.  

3. Framework for RANS turbulence model calibration 

A schematic of the proposed framework for RANS CFD model calibration is shown in Figure 

1. The framework consists of two main steps. Step 1 deals with the case study definition and 

acquiring high-quality data from different sources to be utilized for the calibration process. Step 2 

is the calibration process in which the high-quality data obtained from step 1 are utilized to 

calibrate the RANS turbulence model.  

3.1. Step 1: high-quality data acquisition and validation metrics 

This step includes four sub-steps: 1-1) Case study definition, 1-2) Determination of focused 

output parameters, 1-3) High-quality data acquisition, 1-4) Validation metrics calculation for 

focused output parameters. Through these sub-steps, required data for the closure coefficients 

calibration are organized systematically by conducting a series of CFD simulations, acquiring 

high-quality data from different resources, and performing statistical analyses.   

In sub-step 1-1, after preparation of the CFD model, e.g., geometry generation, boundary 

condition implementation, and applying CFD solver settings in accordance with the guidelines by 

(Franke et al., 2007; Tominaga et al., 2008b), a suitable  zero equation, one-equation, or two-

equation turbulence model will be selected although two-equation models are more popular in 

urban flow simulations. Practical information about the performance of two-equations turbulence 

models can be found in parametric studies conducted by AIJ group (Mochida et al., 2006a, 2002; 

Tominaga et al., 2008a; Yoshie et al., 2007). The 𝑘 − 𝜀 family models, including the standard 𝑘 −

𝜀 (Launder and Spalding, 1974), 𝑅𝑁𝐺 𝑘 − 𝜀 (Yakhot et al., 1992), and Realizable 𝑘 − 𝜀 (Shih et 

al., 1995), was proved to be an acceptable option for many practical engineering problems. 

Furthermore, these models have less number of closure coefficients in comparison with the 𝑘 −

𝜔 SST (Menter, 1994) model, which makes them a better candidate for the closure coefficient 

calibration.  

In sub-step 1-2, after selection of the turbulence model, the focused output parameters of the 

CFD model should be chosen for the calibration purpose. For instance, for pedestrian comfort 

studies, the focused parameters are wind velocity distribution and/or pollution concentration at 

the pedestrian level, or for building energy evaluations, the focused parameters are wind surface 

pressures over building walls and/or crossing airflow rate.  

In sub-step 1-3, high-quality data should be provided to define suitable validation metrics 

required for the turbulence model calibration obtained from Step 2. At this stage, different sources 

can be used depending on the focused output parameters and the aimed level of accuracy. As it 
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can be seen in Figure 1, various options can be considered for obtaining high-quality data, 

including in-situ or field measurement, wind-tunnel measurement, and high-fidelity CFD models. 

As a general consideration for selection of the measurement and sampling points, locations where 

the RANS models are known to be inaccurate, such as wake regions behind buildings, separated 

flow areas over side walls and roof, and airflow around openings, are generally favorable. As 

another consideration, when a high-fidelity CFD model is selected for the calibration, the similarity 

between the RANS and high-fidelity models is very important. It can be defined in terms of 

morphological parameters such as urban planar and frontal area ratios, and flow conditions such 

as Reynolds number. 

After obtaining required high-quality data, in sub-step 1-4, validation metrics should be 

employed to quantitatively investigate the level of agreement between the CFD and high-quality 

datasets. The most common validation metrics for environmental and urban flow studies are those 

proposed by (Schatzmann, 2010), including the hit rate 𝑞, fraction of the predictions within a factor 

of 2 of the observations (𝐹𝐴𝐶2), fractional bias (𝐹𝐵), and normalized mean square error (𝑁𝑀𝑆𝐸): 

𝑞 =
1

𝑁
∑ 𝑛𝑖

𝑁

𝑖=1

     𝑖𝑓  |
𝑃𝑖 − 𝑄𝑖

𝑄𝑖
| ≤ 𝐷𝑞    𝑜𝑟 |𝑃𝑖 − 𝑄𝑖| ≤ 𝑊𝑞   𝑛𝑖 = 1  𝑒𝑙𝑠𝑒  𝑛𝑖 = 0  

(10) 

𝐹𝐵 =
[𝑄] − [𝑃]

0.5([𝑄] + [𝑃])
 

 

(11) 

𝑁𝑀𝑆𝐸 =
[(𝑄𝑖 − 𝑃𝑖)2]

[𝑄][𝑃]
 

(12) 

𝐹𝐴𝐶2 =
1

𝑁
∑ 𝑛𝑖

𝑁

𝑖=1

    𝑛𝑖 = 1      𝑖𝑓   0.5 ≤
𝑃𝑖

𝑄𝑖
≤ 2     𝑒𝑙𝑠𝑒      𝑛𝑖 = 0       

(13) 

where 𝑂𝑖  and 𝑃𝑖  are the measured and computed values of a given variable for sample 𝑖 , 

respectively. 𝑁 is the number of data points used in the calibration process. The ideal value of the 

validation metrics for a complete agreement between two data series is 1 for 𝑞 and 𝐹𝐴𝐶2, and 0 

for 𝐹𝐵 and 𝑁𝑀𝑆𝐸. 
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Figure 1 Framework of RANS CFD models calibration 

3.2. Step-2: calibration of closure coefficients  

The second step of the proposed framework includes six sub-steps: 2-1) Calculation of 

probability density function (PDF) of closure coefficients, 2-2) Sensitivity study, 2-3) Design of the 

experiment (DOE), 2-4) CFD simulations, 2-5) Calculation of PDF of validation metrics, 2-6) 

Optimization campaign. In this step, closure coefficients of the selected turbulence model are 

considered as variables in an optimization process to find the best agreement between the CFD 

and the acquired high-quality datasets. Hence, the optimization variables are the closure 

coefficients while the objective function is defined based on a combination of the selected 

validation metrics. 

In sub-step 2-1, PDFs of all the closure coefficients are obtained according to available 

information about the history of model development and experimental data in literature. As a 

general consideration, uniform PDF is a suitable choice as there is not enough statistical 

information about the closure coefficients of RANS turbulence models.  

After calculating the PDF of the closure coefficients, in sub-step 2-2, a sensitivity analysis is 

required to identify the most effective closure coefficients on the CFD accuracy. Sensitivity 

analysis can be conducted using a simple model such as one-factor-at-a-time method (OFAT) or 

2-6 Optimization

2-5 PDF of validation metrics

2-4 CFD simulation

2-3 Design of experiments (DOE)

2-2 Sensitivity analysis

2-1 PDF of closure coefficients

1-1 Case study definition

1-2 Determination of focused output parameters 

Wind tunnel experiment

1-3 High-quality data acquisition  Field measurement

High-fidelity CFD models 

1-4 Validation metrics calculation for focused output 
parameters

Step 1 

Step 2 
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a complex one such as Latin Hypercube sampling (Montgomery et al., 2009). If the CFD accuracy 

is insensitive to a certain closure coefficient, it can be removed from the calibration parameters to 

minimize the associated computational cost and complexity of the optimization process.  

In sub-step 2-3, a suitable design of experiment (DOE) method, e.g. Monte Carlo Sampling 

(MS), is utilized to generate a database for CFD samples according to the PDF of the closure 

coefficients. Then, the CFD samples are solved in sub-step 2-4, and in sub-step 2-5, CFD results 

are post-processed to obtain the PDF of the selected validation metrics as well as their mean 

value and standard deviation. 

Finally, in sub-step 2-6, an optimization solver is used to find the best set of the closure 

coefficients according the calculated validation metrics of the CFD database. An appropriate 

objective function is defined to minimize the deviation of the validation metrics and their ideal 

values. For more reliable calibration, stochastic optimization (reliability-based) algorithms can be 

used in which the objective function involves two terms to minimize (1) the deviation between the 

mean value of the validation metrics and ideal values, and (2) the standard deviation of the 

validation metrics. The second term enhances the reliability of the calibration process via reducing 

the uncertainty of the validation metrics caused by the uncertainty of the closure coefficients. More 

details about the stochastic optimization are provided in the next section. 

If enough CFD samples are generated during the database generation step, approximation 

models (Beta models) based on an artificial neural network (ANN) or response surface model 

(RSM) can be created and coupled to the optimization solver. Otherwise, the CFD solver should 

be coupled directly to the optimization solver. After reaching a suitable level of convergence for 

the optimization process, the optimal values of the closure coefficients can be found.  

Number of CFD simulations required for a successful calibration process depends on the 

complexity of the reference CFD model, the number of the measurement points used during the 

optimization process, and the convergence level of the CFD and optimization solvers. One option 

to reduce the computational cost is to utilize a coarse mesh setting for the CFD model in the 

database generation and optimization (sub-steps 2-3 to 2-5 in Figure 1). The effectiveness of the 

calibration process using a coarse mesh may be checked during the optimization process by 

applying the calibrated coefficients into the reference case using a finer mesh setting.  

4. Case studies description 

In this section, performance of the proposed calibration framework is investigated using three 

different case studies. A schematic of each case is presented in Figure 2. Case 1 is an isolated 

high-rise building placed in an unstable ABL (Shirzadi et al., 2017). Case 2 is a sheltered building 

model subjected to a cross-ventilation flow through two openings on its windward and leeward 
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façades; All surrounding buildings are arranged in a regular configuration with a planar area ratio 

of 0.25 and are assumed to have no cross-ventilation (Shirzadi et al., 2018a). Case 3 consists of 

a group of 31 low-rise buildings with the same dimensions in a regular arrangement with a planar 

area ratio of 0.4, which represents a highly-dense urban area (Shirzadi et al., 2018b). All buildings 

in Case 3 are considered to be sealed.   

 

 

 

 
(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

 

Figure 2 Schematic of case studies: (a) case 1- an isolated high-rise building, (b) case 2 - a 
sheltered cross-ventilated building, and (c) case 3 - a sheltered low-rise building in a highly-

dense configuration 

CFD and calibration parameters for these cases are shown in Table 1. For all cases, the 

standard 𝑘 − 𝜀 model with LK modification (eq. (8)) was used. It has been reported that the LK 

modification can improve the prediction accuracy of urban airflows (Kurabuchi et al., 2000; Shao 

et al., 2012; Tominaga et al., 2008a; Tsuchiya et al., 1997). For Case 1 and Case 2, a stochastic 

optimization method was utilized. For the selected validation metrics, the mean value (𝜇𝑦𝑖
) and 

the standard deviation (𝜎𝑦𝑖
) was calculated for each set of the closure coefficients. Then, they 

were used to define the objective function, which is a weighted-sum average of 𝜇𝑦𝑖
 and 𝜎𝑦𝑖

, as 

follows (Koch et al., 2004): 

𝐹 = ∑ [
𝑤1𝑖

𝑠1𝑖

(𝜇𝑦𝑖
− 𝑀𝑖)

2
+

𝑤2𝑖

𝑠2𝑖

𝜎𝑦𝑖
2 ]

𝑙

𝑖=1

 (14) 

where 𝑤1𝑖
 and 𝑤2𝑖

 are the weighting factors. 𝑠1𝑖
 and 𝑠2𝑖

 are the scale factors related to each term. 

𝑀𝑖 is the ideal value of 𝑖th validation metric and 𝑙 is the total number of sampling points used in 

the optimization process. The optimization solver is based on the Nonlinear Programing with Non-

Monotone and Distributed Line Search (NLPQLP) method (Schittkowski, 2006). Other 

optimization methods such as those based on the genetic algorithm (GA) can be used, but in 

𝐻 = 0.16 𝑚 
𝐵 = 0.16 𝑚 

𝐷 = 0.24 𝑚 

𝐻 = 0.12 𝑚 

𝑧 
𝑥 

𝑦 

𝐻
=

0
.2

 𝑚
 

𝐷 = 0.1 𝑚 
𝑥 

𝑧 

Wind direction 

𝑇𝑎𝑖𝑟 = 11℃ 

𝑇𝑓𝑙𝑜𝑜𝑟 = 48℃ 

𝑦 

 
Wind direction 

𝑃𝑙𝑎𝑛𝑎𝑟 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜 = 0.4 

𝑈𝐻 = 1.37m/s 

𝑈𝐻 = 4.3 m/s 
𝑈𝐻 = 7.8 m/s 
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general they require more CFD samples to reach an optimal solution. For Case 3, no optimization 

was conducted, and optimal values of the closure coefficients were directly selected based on a 

sensitivity analysis.  

Table 1 Details of CFD and optimization settings for RANS calibration case studies 

 Baseline 
Turbulence 

model 

Focused output 
parameters 

Measurement 
points No. for 
calibration 

High quality 
data source 

Design of 
experiment 

(DOE) 

Number 
of CFD 

samples 

Optimization 
solver 

Case-1 Standard 𝑘 − 𝜀 
with LK 

modification 

𝑈,𝑘, 𝑇at the wake region 
behind the building (wind 

angle 𝜃 = 0°) 

48 Wind tunnel 
experiment 

(Yoshie et al., 
2011) 

Monte Carlo 
Sampling 

450 NLPQLP 
(Schittkowski, 

2006) 

Case-2 Standard 𝑘 − 𝜀 
with LK 

modification 

𝑈 and 𝐾 inside the building, 
and crossing airflow rate 

through the openings (wind 
angle 𝜃 = 0°) 

63 Wind tunnel 
experiment 
(Tominaga 

and Blocken, 
2015) 

Monte Carlo 
Sampling 

250 NLPQLP 
(Schittkowski, 

2006) 

Case-3 Standard 
𝑘 − 𝜀 with 

LK 
modification 

Wind surface pressure over 
building façades (wind angle 

0° ≤ 𝜃 ≤ 90°) 

256 Wind tunnel 
experiment 
(Quan et al., 

2007) 

OFAT 
(Campolongo 
et al., 2007) 

40 Optimal values 
are obtained 
directly from 
DOE results 

 

5. Results  

In this section, results of the calibrated models of three case studies are presented and 

compared with the CFD models using default closure coefficients.  

5.1. Case 1 

In Figure 3, the distribution of TKE around the high-rise building is compared against the 

experimental measurements over a central vertical plane (𝑦/𝐻 = 0) and a horizontal plane near 

the ground (
𝑧

𝐻
= 0.025). The results of the CFD model with the default closure coefficients over 

the vertical and horizontal planes exhibit two well-known deficiency of two-equation turbulence 

models, i.e., a high level of TKE around the windward wall and above the roof, and a significant 

underprediction of TKE and momentum diffusion inside the wake region behind the building 

(Tominaga, 2015). The calibrated model shows significant improvement in prediction of TKE level 

in comparison with the reference model. The TKE level in front of the windward wall is lower than 

the reference model while it is noticeably higher in the wake region behind the building. The 

observed difference in the TKE prediction in the wake region by the calibrated model and the  

experimental results refers to the fact that the steady RANS models are inherently incapable of 

calculating the contribution of TKE due to the large-scale fluctuations behind the building (see 

(Tominaga, 2015)).  
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(a) (b) (c)  

Figure 3 Distribution of TKE around the high-rise building (Case 1) for (a) wind tunnel 
experiment  (Yoshie et al., 2011), (b) default closure coefficients, and (c) calibrated closure 

coefficients 
  

The vertical distribution of the streamwise velocity 
𝑈

𝑈𝐻
 over the vertical central plane is plotted  

in Figure 4(a). Both CFD models predict similar velocity profile over the vertical lines in front of 

the building (
𝑥

𝐻
= −0.625) and above the roof (

𝑥

𝐻
= −0.25). For the reference case with the default 

closure coefficients, the reverse flow in the wake region is overestimated due to the poor 

momentum mixing behind the building while a significant improvement in the prediction accuracy 

of the velocity distribution can be clearly observed for the calibrated model.  

The contours of 
𝑈

𝑈𝐻
 over the horizontal plane at 

𝑧

𝐻
= 0.025 along with the streamlines are 

presented in Figure 4(a),(b),(c). A very long recirculation region behind the building is predicted 

by the 𝑘 − 𝜀 model with the default coefficients, which is noticeably longer than the one predicted 

by the experimental measurements. In contrast, in the calibrated model, the length of the 

recirculating region is considerably shorter and shows a good agreement with the experimental 

data.  

Different sidewall reattachments are predicted by these two models. Whilst in the reference 

model, the separated flow does not reattach over the sidewall, the calibrated model shows a clear 

flow reattachment. A noticeable prediction improvement is obtained by the calibrated model in 

calculation of the reattachment length over the floor (𝑋𝑓). For the default closure coefficients, 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅  𝒌 − 𝜺 𝑪𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒆𝒅  𝒌 − 𝜺 
 

𝑧

𝐻
= 0.025 

𝑥 

𝑧 

Wind  Wind  Wind  

Wind  Wind  Wind  
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𝑋𝑓 = 0.26 𝑚, which is much longer than that of the experiment with the value of 𝑋𝑓 = 0.096 𝑚, a 

value of 𝑋𝑓 = 0.123 𝑚 is calculated by the calibrated model, which is closer to the experiment.  

   
 

(a) 
 

   
 

(b) (c) (d) 

Figure 4 (a) Vertical profiles of the streamwise velocity around the building. Horizontal 

distribution of streamwise velocity and streamlines near the ground (
𝑧

𝐻
= 0.025) obtained by (b) 

experiment (Yoshie et al., 2011), (c) default closure coefficients, and (d) calibrated closure 
coefficients 

5.2. Case 2  

The time-averaged streamlines over a vertical central plane inside the sheltered cross-

ventilated building are plotted in Figure 5 for both the standard and calibrated 𝑘 − 𝜀 models as 

well as the wind tunnel experimental results. The experimental result shows that a large 

counterclockwise recirculation forms inside the building while its center is near the leeward 

opening. For the standard 𝑘 − 𝜀  model with the default closure coefficients, a very large 

counterclockwise recirculating flow is predicted although its center is miscalculated far from the 

leeward opening and is located close to the center of the building. However, the results of the 

calibrated 𝑘 − 𝜀 shows a closer agreement with the experimental result. 

The discrepancies between the standard 𝑘 − 𝜀  model and experimental result are mainly 

originated from the low accuracy of this model in the prediction of the roof 

separation/reattachment and the wake formed behind the upstream building, and also is due to 

their inherent poor accuracy in prediction of the TKE distribution inside the street canyon and 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒌 − 𝜺 𝑪𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒆𝒅 𝒌 − 𝜺 

𝑈

𝑈𝐻

= 1 

𝑈

𝑈𝐻
 

𝑧

𝐻
= 0.025 

𝑥 

𝑧 

𝑥

𝐻
 

𝑧

𝐻
 

𝑥𝑓

𝐻
= 0.6 

𝑥𝑓

𝐻
= 1.63 

𝑥𝑓

𝐻
= 0.78 
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target building as shown in Figure 5(b). In fact, low accuracy of the standard 𝑘 − 𝜀 model with the 

default closure coefficients in prediction of the momentum diffusion in the wake region between 

the upstream and downstream adjacent buildings and TKE distribution around the incoming jet 

result in an inaccurate calculation of the cross-ventilation through the target building. Surprisingly, 

the predicted direction of the airflow through the target building by the standard 𝑘 − 𝜀 model is 

completely inaccurate where it enters the building through the leeward opening and not through 

the windward one as observed in the experiment and calculated by the calibrated model (see 

Figure 5(a) and (c)). 

 
 

 

 
(a) (b) (c)  

    

 
(d) 

Figure 5 Distribution of TKE and streamlines over the central vertical plane obtained by (a) 
experiment, (b) standard 𝑘 − 𝜀, and (c) calibrated 𝑘 − 𝜀. (d) Distribution of the streamwise 

velocity over a vertical central plane inside the building 

The vertical profiles of the streamwise velocity over a central vertical plane inside the building 

model is shown in Figure 5(d). As it can be seen from the experimental results, a clear windward 

jet is formed at 
𝑥

𝐻
= 0.16 and at 

𝑧

𝐻
= 0.4 with a velocity of 

𝑈

𝑈𝐻
= 0.1. In contrast, for the standard  

   

 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒌 − 𝜺 𝑪𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒆𝒅 𝒌 − 𝜺 

Wind 

𝑈

𝑈𝐻

= 0.2 

𝑥 

𝑧 

𝑥

𝐻
 

𝑧

𝐻
 

Wind Wind 

Wind 
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𝑘 − 𝜀 model, the streamwise velocity is almost zero over the vertical line at 
𝑥

𝐻
= 0.16 and the 

model fails to reproduce the windward jet, which is the main feature of the cross-ventilation. The 

calibrated model successfully predicts the windward jet with a velocity of  
𝑈

𝑈𝐻
= 0.12 at 

𝑥

𝐻
= 0.16 

and 
𝑧

𝐻
= 0.4, which is close to the experimental result. Furthermore, the vertical profiles of the 

streamwise velocity over the vertical plane far from the windward opening and near the ground 

show a better agreement between experiments and the calibrated model. Nevertheless, the 

streamwise velocity at the upper part of the target building is underestimated by the both models. 

It should be noted that the relative deviation between the airflow rate prediction by the standard 

𝑘 − 𝜀 model and the experiment is about 100%, while it noticeable decreases to 8% using the 

calibrated model.  

5.3. Case 3 

As stated in Table 1, for Case 3, the values of the surface wind pressure are utilized for the 

closure coefficient calibration rather than the flow field data, hence, only results for the surface 

wind pressure are shown here. In Figure 6, the surface-averaged wind pressure coefficient 

difference over the windward and leeward façades (∆𝐶𝑃 = 𝐶𝑃
𝑤𝑖𝑛𝑑𝑤𝑎𝑟𝑑 − 𝐶𝑃

𝑙𝑒𝑒𝑤𝑎𝑟𝑑) is shown for the 

standard 𝑘 − 𝜀 model with the default and calibrated closure coefficients. The experimentally 

measured value of ∆𝐶𝑃 against the wind angles of 0°, 22.5°, 45°, and 67.5° is 0.19, 0.30, 0.28, 

and 0.16, respectively. The results of the standard 𝑘 − 𝜀 model show a noticeable underprediction 

against all the wind angles with ∆𝐶𝑃 equals to 0.04, 0.09, 0.1, 0.07 against the wind angles of 0°, 

22.5°, 45°, and 67.5°. Significant improvement is obtained by the calibrated 𝑘 − 𝜀 model with ∆𝐶𝑃 

values being 0.15, 0.19, 0.18, and 0.11 against the wind angles of 0°, 22.5°, 45°, and 67.5°. 

Despite observed improvement by the calibrated model, the surface-averaged wind pressure 

coefficient differences are still lower than the experimental values against all wind angles.        
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Figure 6 Surface-averaged wind pressure coefficient difference ( ∆𝑪𝑷) over the windward and 

leeward façades against different wind angles for Case 3 

In Figure 7, the profiles of the surface wind pressure coefficient (𝐶𝑃) along a central line over 

windward and leeward façades and roof of the target building are plotted against the 0° wind 

angle. Over the windward and leeward façades, between 0 ≤
𝑧

𝐻
≤ 0.5 , both CFD models 

underestimate 𝐶𝑃  while the calibrated 𝑘 − 𝜀  model calculates more accurate results between 

0.5 ≤
𝑧

𝐻
≤ 1 . In these regions, the standard 𝑘 − 𝜀  model’s predictions are far from the 

experimental results. The superiority of the calibrated 𝑘 − 𝜀 model is more clearly demonstrated 

by looking at the 𝐶𝑃 variation over the roof, where the pressure recovery along the roof is very 

well predicted by the calibrated model and a close agreement is obtained with the experimental 

results. In contrast, a uniform pressure distribution is calculated by the standard 𝑘 − 𝜀 model, 

which is significantly higher than the experimental result.  

  
Figure 7 Variation of the surface wind pressure coefficient over building surfaces against the 

wind angle of 0° for the sheltered building in highly-dense urban configuration (Case 3) 
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6. Discussion 

In the previous section, it was shown that the accuracy of RANS turbulence models can be 

improved for the three case studies by using the proposed calibration framework. In this section, 

the variation of the calibrated closure coefficients for above mentioned case studies are compared 

with similar studies in literature to understand the trend of the suitable closure coefficients for 

environmental and building studies. Only those case studies, which deal with the calibration of 

the 𝑘 − 𝜀 model are considered for comparison study as shown in Table 2. In the works presented 

by (Glover et al., 2011) and (Guillas et al., 2014), a Bayesian calibration method was utilized for 

a street canyon flow to calibrate the standard 𝑘 − 𝜀 model. The high quality data was acquired 

from a wind tunnel experiments by (Kastner-Klein et al., 2001) while distribution of TKE over a 

vertical plane between two blocks was considered as the focused output parameter. A total 

number of 620 and 150 CFD runs were performed in the calibration process by (Glover et al., 

2011) and (Guillas et al., 2014), respectively. In another study by (Iqbal and Chan, 2016), the 

closure coefficients of the standard 𝑘 − 𝜀 model were calibrated for prediction of the pedestrian 

wind environment around a group of high-rise cross-shaped buildings. They conducted two 

parametric studies using wind tunnel measurement and CFD simulation, and slightly retuned the 

coefficients proposed by (Glover et al., 2011) and (Guillas et al., 2014). In a similar studies by 

(Mittal et al., 2019a, 2019b), the wind amplification factor (as the focused output parameter) at 

pedestrian level around high-rise buildings with different shapes and corners geometries was 

studied. They used wind tunnel measurement data and conducted a sensitivity study and showed 

that the calibrated closure coefficients by (Shirzadi et al., 2017) are suitable for prediction of flow 

at the wake region behind the high rise building with different corners geometry and building 

shapes.   
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Table 2 Details of closure coefficients calibration case studies in literature 

Authors Case study 
Calibration 

method 

Focused output 

parameter 

High quality 

data source 

No. samples 

or iterations 

for calibration 

(Glover et 

al., 2011) 

Street canyon flow 

between two blocks 

Bayesian 

calibration 

Vertical profile of 𝑘 

between two buildings 

Wind tunnel 

(Kastner-Klein et 

al., 2001) 

620 

(Guillas et 

al., 2014) 

Street canyon 

flow between two 

blocks 

Bayesian 

calibration 

Vertical profile of 𝑘 

between two buildings 

Wind tunnel 

(Kastner-Klein et 

al., 2001) 

150 

(Iqbal and 

Chan, 2016) 

Pedestrian wind 

around a cross-

shaped high-rise 

building 

Sensitivity 

analysis 

Velocity magnitude 

between buildings at the 

pedestrian height 

Wind tunnel 2 

(Mittal 

et al., 

2019a) 

Pedestrian wind 

around high-rise 

building different 

shapes 

Sensitivity 

analysis 
Amplification factor Wind tunnel 

Same 

coefficients as 

proposed by 

(Shirzadi et al., 

2017) 

(Mittal 

et al., 

2019b) 

Pedestrian wind 

around high-rise 

building with 

different corner 

shapes and 

orientations 

Sensitivity 

analysis 
Amplification factor Wind tunnel 

Same 

coefficients as 

proposed by 

(Shirzadi et al., 

2017) 

 

In Figure 8, the calibrated closure coefficients are shown for different case studies. In general, 

comparison of the calibrated coefficients shows similar trends for all case studies. In specific, 𝐶𝜀2, 

𝐶𝜇, and 𝜎𝜀 are varied in a same direction among all studies. While the default value of 𝐶𝜀2 is 1.92 

for the standard 𝑘 − 𝜀 model, the calibrated values for the street canyon (Glover et al., 2011; 

Guillas et al., 2014), a high-rise building with different shapes and corner geometries (Case 1 and 

(Mittal et al., 2019a, 2019b)), a cross-ventilated building in the sheltered condition (Case 2), and 

low-rise buildings in a highly-dense urban configuration (Case 3) are found to be higher than the 

default values, which are respectively 2.2, 2.2, 2.8, 3.2, and 3.2. For 𝐶𝜇, the same tendency can 

be observed; while the default value is 0.09, the calibrated values for the street canyon flow 

(Glover et al., 2011; Guillas et al., 2014), and Case 1 to Case 3 are 0.12, 0.12, 0.15, 0.14, and 

0.11,  respectively. Moreover, in all studies, the calibrated values of 𝜎𝜀 are significantly lower than 

the default value of 1.3; these values are 0.42, 0.50, 0.38, 0.24, and 0.35 for the street canyon, 

and Case 1 to Case 3, respectively.    
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Figure 8 Comparison of the calibrated closure coefficients for different urban flows 

A more detailed view on the variation of the closure coefficients during the calibration process 

for Case 1, Case 2, and Case 3 is shown in Figure 9(a) and (b). For Case 1 and Case 2, the mean 

value contours of the validation metrics, including FAC2, hit rate, and NMSE for velocity and TKE, 

are shown against different closure coefficients. For both cases, the highest values of FAC2 and 

hit rate are obtained in a range of 𝐶𝜀2 ≥ 2.20  and 𝐶𝜇 ≥ 0.11 while in this range, the NMSE is 

minimum. For Case 3, the contours of the relative error in prediction of the surface-averaged wind 

pressure coefficient over the building walls are shown against different closure coefficients in 

Figure 9(c). The relative error is defined as below: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = |
∆𝐶𝑃

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − ∆𝐶𝑃

𝐶𝐹𝐷

∆𝐶𝑃
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

| × 100 
(15) 

where ∆𝐶𝑃 is the surface pressure difference averaged over the windward and leeward façades. 

Surprisingly, a same trend similar to Case 1 and Case 2 can be observed while the relative error 

is minimum for 𝐶𝜀2 ≥ 2.20  and 𝐶𝜇 ≥ 0.11.     

 

 

 

 

 
 

𝐶𝜀1 𝐶𝜀2 𝐶𝜇 × 10 𝜎𝑘 𝜎𝜀 
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(a)  

 

 

 

 

 

 

 

(b)  

 

 

Figure 9 Contours of validation metrics and relative error during calibration process for (a) 
unsheltered high-rise building, (b) Case 2- sheltered cross-ventilated building, and (c) low-rise 

building in highly-dense urban area 

 

The obtained values for the above-mentioned cases of urban flow can be initially analyzed by 

scrutinizing the transport equations for 𝑘, 𝜀 and the turbulent viscosity equation (equations 2, 3, 

and 4). 𝐶𝜀2  appears in the transport equation for 𝜀  as −𝐶𝜀2𝜌𝜀 , which plays as a sink term 

(dissipation of dissipation) for 𝜀 equation. Increasing 𝐶𝜀2 from its default value decreases 𝜀 and 

consequently increases the turbulent viscosity in the turbulent viscosity equation 𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
.  

Mean 𝐹𝐴𝐶2𝑈 Mean 𝑁𝑀𝑆𝐸𝑘 

|
∆𝐶𝑃

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − ∆𝐶𝑃

𝐶𝐹𝐷

∆𝐶𝑃
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 | × 100 𝐶𝐴 = 0.4 
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In a similar manner, when 𝐶𝜇 increases to higher values than its default one, the turbulent 

viscosity directly increases. Moreover, variation of 𝐶𝜇 indirectly changes the level of TKE through 

the production term in the transport equation for TKE as 𝑃𝑘 = 𝜇𝑡𝑆2 = 𝐶𝜇𝜌
𝑘2

𝜀
𝑆2 in the standard 𝑘 −

𝜀 model and 𝑃𝑘 = 𝜇𝑡𝑆𝛺 = 𝐶𝜇𝜌
𝑘2

𝜀
𝑆𝛺 for the standard 𝑘 − 𝜀 model with LK modification. Hence, 

both closure coefficients cause an increase in the momentum diffusion and level of TKE around 

the building and within the adjacent cavities, which consequently improve the well-known 

momentum diffusion underestimation by SRANS models. 𝜎𝜀 appears in the 𝜀 transport equation 

as the turbulent diffusion term 
𝜕

𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝑥𝑗
], which mathematically ensures a smooth solution of 

the 𝜀 transport equation (Pope, 2001). The calibrated values of this closure coefficient in all case 

studies were obtained using the following relation between different closure coefficients and von 

Kármán constant (𝜅): 

𝜎𝜀 =
𝜅2

𝐶𝜇
1/2(𝐶𝜀2 − 𝐶𝜀1)

 (16) 

This relationship between the model constants satisfies the horizontal homogeneity of the 

ABL profile in the CFD models (Richards and Norris, 2011). Due to the nonlinear relation between 

the calibrated 𝐶𝜀2, 𝐶𝜇, and 𝜎𝜀, it is difficult to realize the contribution of 𝜀 diffusion term on the 

overall 𝜀, and thus turbulent viscosity distributions in the CFD model. Hence, more investigations 

are required for understanding the physical meaning of the calibrated 𝜎𝜀, as explained in section 

2, because 𝜀 equation is completely empirical.      

7. Conclusions 

A framework for calibration of the RANS turbulence models was proposed in this study. The 

applicability of the calibration method was discussed for different urban flow case studies. It was 

shown that the well-known SRANS model underestimation of the turbulent kinetic energy and 

momentum diffusion around the buildings can be improved systematically with calibration of the 

closure coefficients using different sources of high-quality data, including field or wind tunnel 

measurements in addition to high-fidelity numerical models. The obtained values of the calibrated 

coefficients proved the plausibility of seeking optimum closure coefficients for urban flow 

problems. 

Future work will focus on detailed investigation of the calibrated turbulence model in order to 

modify closure coefficients for a wider range of urban flows. Furthermore, application of other 

optimization methods will be investigated to reduce the computational cost of the calibration 

process. 
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