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ABSTRACT Detecting and classifying driver distractions is crucial in the prevention of road accidents. These
distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can
aid in accident prevention techniques, including transitioning of control to a level 4 semi-autonomous vehicle,
when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance
Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper,
a newmethodology is introduced, using an expert knowledge rule system to predict the severity of distraction
in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC)
Distraction Dataset. Amulti-class distraction system comprises the face orientation, drivers’ activities, hands
and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian
(DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi-class of distractions
into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached
the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s
distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context.

INDEX TERMS Fuzzy logic systems, driver distraction, severity level, ADAS, image processing, dynamic
Bayesian.

Fuzzy logic allows designers to model complex system
controls, thus providing a non-complex way of achiev-
ing a more concrete approach to reducing uncertainty in
knowledge-based systems. Uncertainties in human behavior
are typically measured using fuzzy systems, most especially
in the context of driving behaviour which is highly unpre-
dictable. Abnormal behavior from driver distraction is the
cause of 95% of road accidents [1]. Driver distractions have
varying impact, and measuring the severity of distraction is
crucial to enhancing Advanced Driver Assistance Systems
(ADAS) [1]. Moreover, driver distractions are very difficult
to predict. A system that can enhance the prediction of
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driver distraction to some degree is crucial to preventing road
accidents.

Ohn-Bar et al. 2014 [2] characterized driver activity by
head, eye, and hand cues using aMultiview vision framework
that uses two videos, one observing the driver’s hands and the
other the driver’s head. However, the focus was on a single
activity and a hand control.

Indeed, most in driver distraction research that uses activ-
ity detection and recognition has mainly focused on a sin-
gle activity rather than considering multi-class distractions
simultaneously. This can compromise the prevention of acci-
dents. In a related system, the prediction of vehicle crash
severity using a fuzzy-logic model has been carried out using
acceleration data from vehicle dynamics (vehicle jerk) [4].
However, here we used a system for the detection and classi-
fication of multi-class distractions, including hand position,
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face orientation, distraction activity and previous driver dis-
tractions. The consideration of all of these factors is vital
in improving ADAS. Furthermore, we used a naturalistic
driving study (NDS) as a driving dataset instead of driver-
perceived distraction, because the NDS approach measures
value or activity more precisely.

The multi-class distractions can be classified by severity
level. Safe driving is achieved when the driver can remain
focused, observe weather conditions and road traffic signs,
maneuver with both hands on the wheel, paying attention
to the road ahead, and finally yet most importantly abiding
by the driving laws. Careless or distracted behavior may
consist of using a single hand on the wheel, talking on the
phone, texting, talking to a passenger, or turning the head
sideways and not paying attention to the road. Increasingly,
many drivers can engage in multiple distracted behaviors at
a given time, resulting in distractions that can have a highly
severe impact. Thus, there is a need to classify distractions
into different severity levels. The line between careless and
dangerous driving can be subjective and introduces a lot of
uncertainties.

An NDS video consists of a sequence of images (frames)
and thus can detect continuous distraction in the driver’s
behavior using different metrics. The driving data images we
used to predict the severity of driver’s distraction combined
different metrics using an Image-Based Discrete Dynamic
Bayesian Fuzzy Logic (Fuzzy Logic-DDB). The validation
of our driver distraction severity level model using the afore-
mentioned metric can thus lead to a severity level classi-
fication of driver distraction in a semi-autonomous vehicle
transition situation that could be deployed in ADAS.

Thus, the main contributions of this study are:

• A rule-based detection and classification of driver’s dis-
tractions

• A dynamic Bayesian fuzzy-logic model for severity
classification

• Classification of driver’s distraction into degree of sever-
ity levels such as safe, careless or dangerous driving.

The rest of the sections are organized as follows. Section II
presents a literature review of related work. Section III
introduces the case study and data transformation and then
describes the method to extract the distraction features and
assign a severity classification. Section IV describes the
dynamic Bayesian fuzzy-logic model and provides a com-
prehensive evaluation and metrics. Section V describes the
implementation, and Section VI presents the results and dis-
cussion. Lastly, Section VII draws the conclusion and pro-
poses future work.

I. RELATED WORK
Sato and Akamatsu [3] stated that driving task difficulty
is determined by the interaction between driver capacity
and task demand. As the driver’s perception changes with
increased tasks, the driver’s ability decreases temporarily.
In addition, fuzzy logic was used to clarify typical driving

behaviors using perceptions and conditions such as physical
space (feelings of speed, relative distance) and changes in
road and traffic conditions. However, the aftermath of dis-
traction event was considered, rather than ways to improve
ADAS that might limit the impact of distraction.

Aksjonov et al. [4] developed a novel method for the
evaluation of driver distraction while performing a secondary
task. The system involved a development of a fuzzy inference
system based on simple matrix operations. A simulation of
driver’s activity, and performancewas evaluated in the vehicle
measuring the driver’s ability to stay in lane and maintaining
vehicle velocity. The only secondary distraction considered
in the study was text messaging, which is a limitation.

Aksjonov et al. [5] proposed a novel driver performance
model that is adaptive to every driver using a neuro-fuzzy
inference system. The proposed method was performed using
a separate vehicle simulator for each driver. The driver model
proposed has two inputs: road curvature and road speed
limit, which together predict speed error and deviation from
the lane line. The experiment involved 18 participants with
valid driver’s licenses. They applied an Artificial Neural
Network (ANN) with 500 neurons and adaptive neuro-
fuzzy inference system (ANFIS) using a membership func-
tion (MF) with 81 rules generated after training. For each
individual driver, 80,000 nodes were collected. Training and
testing data utilized were 67% and 33% respectively. The
result showed the ANN and ANFIS have similar driver mod-
eling results. The ANN and ANFIS are compared on the
prediction accuracy with the ANN performing better than the
ANFIS model. The input has three Membership Functions
(MFs) and the system has two class inputs and one output,
with nine rules for the fuzzy logic evaluator.

Aksjonov et al. [6] also developed a methodology to detect
normal driving and measuring errors from secondary tasks
and total distraction evaluation. The measures compare nor-
mal driving with secondary task using fuzzy logic algo-
rithms. Driver distraction in the form of talking on a cell
phone was observed, and the ability observe speed limits
and refrain from deviation from the middle lane of the road
were measured. The result showed that 20% of driver distrac-
tion resulted from abnormal driving while engaged in during
phone activity.

Subsequently, Eraqi et al. [7] utilized the first publicly
available dataset, with more distraction postures than existing
alternatives, to identify drivers distractions. The system con-
sisted of a genetically-weighted set of convolutional neural
networks, demonstrating that a weighted set of classifiers
using a genetic algorithm provides greater confidence in clas-
sification. They also researched the effect of different visual
elements on distraction detection through face and hand posi-
tions as well as skin segmentation. Finally, they introduced
an ensemble that can achieve an accuracy of classification of
84.64% in real time.

Finally, Abouelnaga et al. [8] used the distracted driver
dataset for posture estimation by proposing a novel system
that achieves 95.98% accuracy in estimating driving posture
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classification. The adopted Convolutional Neural Network
(CNN) algorithm for posture classification from regions such
as face and hands. However, this study did not consider the
impact of the combination of possible multi-class distraction
that could highly impact the degree of distractions into sever-
ity levels.

Riaz et al 2018 [9] adopted fuzzy logic in driver distraction
evaluation system in road safety from artificial human driver
emotions. Their hypothesis is that emotions overrides drivers
decisionmaking. They proposed an Enabled Cognitive Driver
Assistance Model (ECDAM) which computes the external
factors and distraction level of the driver. The model triggers
when the driver distraction crosses a threshold by sending two
sound alerts to the driver to take appropriate actions.

Munyazikwiye et al 2015 [10], predicted vehicle crash
severity from vehicle data such as acceleration. Fuzzy logic
was used in analysing crash dynamics using the acceleration
signal to generate two inputs car jerk and kinetic energy.
The result shows jerk contributes much to the crash than
the kinetic energy of vehicle. However, reducing the impact
of a vehicle crash by reducing driver distractions that could
impact vehicle dynamics leading to a crash is vital.

Upadhya and Vinothina 2019 [11], adopted the use of
fuzzy logic for analysing possibility of road accident for
different distraction parameters. The factors that was used as a
metric is alcohol consumption, driving speed, drivers age and
infotainment system usage. The findings show that different
distractions plays vital role in accidents. However, a study of
which of the distractions plays a vital role should have been
considered which is a limitation.

Kim et al 2019 [12], proposed a fuzzy logic systems that
makes decision and prediction of pedestrian intentions from
distance, position, movement direction extracted using com-
puter vision. This resulted in a pedestrian protection systems
leading to a pedestrian’s risk level. However, having a system
that correlates the drivers behaviour in response to pedestrian
behaviour will is crucial.

Salleh et al 2017 [13], proposed an Adaptive neuro-fuzzy
inference system (ANFIS) for estimation model that yields
results approximately with high degree of accuracy in fields
such as transportation, engineering and medicine. However,
a limitation of ANFIS is high computational cost due to
complex structures. They proposed to remove complexity by
removing the fourth layer.

Dobbins and Fairclough 2019 [14], proposed the use
of fuzzy logic Mamdani to estimate different category of
driving context monitoring stress encountered by drivers.
The experiment involved only two contextual inputs speed
and traffic density. However, deducing stress level from
human activity recognition (HAR) and cognitive perspective
using techniques such as computer vision, electroencephalo-
gram (ECG) and Deep learning is ideal. Thus, prevention of
behaviour that can lead to aggressive driving such as over
speeding.

Ondogan and Yavuz 2019 [15], proposed the use of Fuzzy
logic in the development of an Advanced Driver Assistance

Systems (ADAS). The application is the development of a
Lane tracking assist, collision avoidance and Adaptive Cruise
Control (ACC). This method is based on monitoring two key
factors, speed and stress levels of the driver, the problem
with this approach is that driving fast is not necessarily stress
induced and can relate to a number of factors, the driver may
be distracted by ulterior motives such as being on the phone
to potentially get home early or other such emotions that
can be recognized using image recognition that classes these
distractions as a severity level.

In our present study, we have adopted an NDS dataset
which includes activities such as talking to passenger, texting,
phone usage, adjusting radio, etc. We focused on talking
to passenger, texting, and phone usage, which are prevalent
driver distractions. Furthermore, multi-class distraction activ-
ity was considered in this work, since the aforementioned dis-
tractions all have a different impact on the driver depending
on the driving context.

II. CASE STUDY & DATA ANALYSIS
We used a data set from the American University in
Cairo (AUC) Distracted Driver Dataset V2 [16] obtained
from the Machine Intelligence group at the American Uni-
versity in Cairo (MI-AUC). The dataset is the first publicly
available dataset for distracted driver detection. The study
involves 44 participants from seven different countries: Egypt
(37), Germany (2), USA (1), Canada (1), Uganda (1), Pales-
tine (1), and Morocco (1). Out of all participants, 29 were
males and 15 were females. Some drivers participated in
more than one recording session at different times of the day,
in driving conditions, and wearing different clothes. Videos
were shot in five different cars: Proton Gen2, Mitsubishi
Lancer, Nissan Sunny, KIA Carens, and a prototyping car.
We extracted 14,478 frames distributed over the following
classes: safe driving (2,986), phone right (1,256), phone left
(1,320), text right (1,718), text left (1,124), adjusting radio
(1,123), drinking (1,076), hair or makeup (1,044), reaching
behind (1,034), and talking to passenger (1,797).

The sampling is done by inspecting the video files manu-
ally and giving a distraction label for each frame. The transi-
tional actions between each consecutive distraction types are
manually removed. Table 1 shows a sample of three of the ten
classes from the dataset used in this paper. The frame statistics
selected are ones with the driver performing activity such as
Phone right, Text right and talking to passengers sequentially
for a period of time.

A. JUSTIFICATION OF METRICS
1) PASSENGER TALK
According to Hole [17], chatty passengers seem to pose
less danger than mobile phone conversations. The second
passenger becomes the driver’s second pair of eyes, moder-
ating the interaction as road hazards occur. Therefore, when
the driver’s face orientation is on the road while talking to
passengers, we assign less weight. However, in cases where
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TABLE 1. Distraction events classes and frame number.

the driver’s face orientation is off the road and talking to
the passenger, the weight is higher but lower than text and
telephone use as explained above. Ferdinand and Mena-
chemi [18], using empirical articles published between 1968
and 2012, developed a logistic regression model to find the
association between driving performance and engagement
with a secondary task. The result of the analysis shows that
talking to passengers constitutes about 29.2% of driving dis-
tractions [18].

In addition, Foss and Goodwin [19] conducted research on
driving distractions among adolescents by collecting vehi-
cle kinematics data from 52 high schools using unobtru-
sive event-triggered data recorders obtaining 20 seconds of
audio, video and vehicle kinematic information when trig-
gered. The findings show that electronic devices constitute
6.7% of the single source of distraction, with 6.2% from
adjusting the vehicle and 3.8% from grooming [19]. Further-
more, they deduced the driver distractions using the statistical
approach of detecting and counting the number of occur-
rences of the distractions.

It can be argued the root of driver distraction comes from
three inputs: physical (i.e., hands), cognitive activities, and
visual. Physical activities constitute activities such as tex-
ting, phone usage, and adjusting infotainment. In contrast,
detection of distractions that can impact cognitive abilities,
thus reducing effective decision making, is critical. Such
distraction may include texting, which can also be classified
as a visual activity.

Moreover, driving itself is both a visual and cognitive activ-
ity. However, the visual aspect of driving takes precedence
over cognition as used in decisionmaking or perception. Cog-
nitive distractionmay include talking to a passenger or talking
on the phone, which can be severely impacted by the nature
of the conversation. Multi-level distraction involving all the
three inputs may occur, which could increase the severity
level (and degree) of the distraction. For example, texting
involves all distraction inputs concurrently, which may have
a serious impact on the nature of the individual driving. The
degree of distraction can also be measured over the course of
a trip, using a time series method to measure the duration and
frequency of the distraction as well as the level of engagement
with the source of distraction.

2) TEXTING
According to National Highway Traffic Safety Administra-
tion (NHTSA), texting is the most severe type of distraction
with respect to accidents on the road. A test case from the

NHTSA shows that texting for a period of 5 seconds is
equivalent to driving at 55 miles per hour (mph) across an
entire length of a football field with one’s eyes closed [20].
Salleh et al. [13] and Dobbins and Fairclough [14], stated that
28% of teens admitted to using their mobile devices while
driving and that this adversely reduced their driving ability.
Their report further stated that 52% said texting at wheel
is less common but that they talked on a cell phone while
driving. The survey findings show that teens also admitted
texting while driving which means taking their eyes off the
road. and that it is not safe to text or talk while driving.

3) PHONE USAGE
Hole [17] proved that using phone hands-free is equally as
distracting as holding the mobile device because conversa-
tions cause the driver to visually imagine what is discussed.
Hole further stated that the type of discussion at the other end
of the phone has a significant impact not just on the mental
processing but also on the facial expression that could further
increase the distraction level. The duration of use (time),
discussion type, and frequency of use during the journey
were used as metrics in the research. In addition, talking in
person involves non-verbal cues that make the conversation
less mentally demanding than a phone conversation. A phone
conversation is much more demanding because visual imagi-
nation creates competition for the brain’s processing capacity,
thus drivers miss vital road hazards.

Drews et al. [23] examined the difference between cell
phone conversation while driving and conversing with pas-
sengers. They compared how drivers were able to deal with
the demands of driving when conversing on a cell phone,
with a passenger, and when driving without any distraction.
The results showed that there was a higher driving error with
cell phone usage than with passenger conversation. During a
phone conversation, the driver’s ability and speech coordina-
tion decreased in response to an increase in the demand of
the traffic. The results indicated that passenger conversations
differ from cell phone conversations not only because the
surrounding traffic becomes a topic of the conversation, thus
helping both driver and passenger to share awareness, but also
because the driving conditions also have a direct influence
on the complexity of the conversation, thereby mitigating the
potential negative effects of a conversation on the driver’s
focus and concentration. In this study, we applied weights to
our data based on the potential risk of the activity, with texting
being the most dangerous activity followed by phoning and
talking to passengers, respectively. However, there could be
an instance when the activity of talking to a passenger in
combination with other distractions will be equivalent to the
danger of texting.

The dataset consists of images that were labeled accord-
ing to the driver’s activities during the driving video, after
deriving the feature extraction based on the class of the
distraction. UsingMATLAB’s 2019b Image Labeler Toolbox
and Graphical User Interface (GUI) editor, the images were
tabulated as ground truth labels and regions of interest (RoI),
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FIGURE 1. Ground truth label of driver activity: talking to passenger, face
orientation off road, both hands on wheel.

FIGURE 2. Ground truth label of driver activity: talking to passenger,
single hand on wheel.

FIGURE 3. Ground truth label of driver activity: talking to passenger, face
orientation, both hands on wheel.

FIGURE 4. Ground truth label of driver activity: texting, face orientation
on road, single hand on wheel.

FIGURE 5. Ground truth label of driver activity: phoning, face orientation
off road, single hand on wheel.

which were then adopted into fuzzy sets for classification
of the distraction by severity level. Per class, 150 images
were labeled with a minimum of three behaviors observed
(driver activity, face orientation, and number of hands on the
wheel). Figure 1 depicts the ground truth label driver talking
to passenger, implemented on the dataset in which the driver
performed the multi-class activity of talking to a passenger,
face orientation off the road, and both hands on the wheel.
In Figure 2, the dataset entails the driver performing the
multi-class activity of talking to a passenger, face orientation
off-the-road, and single hand on thewheel. Figure 3 shows the
multi-class activity of talking to a passenger, face orientation
on the road, and both hands on the wheel. In Figure 4, the
multi-class activity is texting, face orientation on road, and
single hand on the wheel. In Figure 5, the multi-class activity
is talking on the phone, face orientation off road, and single
hand on the wheel. There were few observed instances of the
driver face orientation off road, both hands off the wheel and
phoning consecutively for a period of 1 second (25 fps).

The dynamic Bayesian model for severity classification is
narrowed down to the distraction of the physiological features
that can be detected by our algorithm and distraction present
in the dataset.

We considered four inputs for the fuzzy set: hands, face
orientation, driver activity, and previous driver activity. The
first frame of change is always where r = 0. When there is
no change in distraction profile from the previous frame, then
r increases. Essentially, the value r is the first occurrence
of the distraction. The distraction severity is computed as
(fn−1. α) where α is the distraction likelihood function which
determines how long the distraction has been repeated. The
likelihood of the first occurrence in a frame is β0, fn−1 is the
prior evidence.

III. DYNAMIC BAYESIAN FUZZY-LOGIC MODEL
To build our distraction severity predictive system using
dynamic Bayesian methodology correctly, we developed a
formalmodel for distraction severity based on two probability
distribution components, namely future distraction likelihood
and prior beliefs/observation of distractions in our dataset.
For the distraction type likelihood function, the probability
of occurrence of the same pattern of distraction types over a
particular number of sequential (contiguous) frames is given
by

αr = β0 +

(
1−

1
r

)
, (1)

where β0 is the likelihood probability of the first occurrence
of some new distraction type and the exponential function(
1− 1

r

)
is the probability of its continuous occurrence in

subsequent frames where r > 0.
For observation of driver distraction features, prior evi-

dence based on ground truth labeling of the belief consti-
tutes the second component of probability for the distraction
severity level classification model. This probability function
is defined as

f (x)← fo1x ⊕ da
2
x ⊕ ha

3
x ⊕ . . .O

n
x . (2)

The distraction severity probability is weighted by the nor-
malizing constant τα , that is, how strongly each element of the
observatory dataset is believed to contribute to the distraction
severity level classification (τα , = number of observable
events).

In this case, face orientation fo1x , driver activity da
2
x , and

hands on wheel ha3x are all normalized between the interval
[0,1] and represent prior evidence for the driver’s distraction
features, namely facial orientation, activity (talking, texting,
or phoning), and hand gestures (single hand or both hands
on the wheel). Finally, the overall distraction severity level
classification prediction is formulated as a discrete dynamic
Bayesian network (dDBN) model:

St (x) =


ft−1(x)αr

/
τα, r ≥ 2

ft (x)β0
/
τα, r = 1

0, at t = 0.

(3)
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FIGURE 6. Mamdani inference model.

We apply this dynamic Bayesian model to generate our test
dataset from the greater Distracted Driver Dataset. At the
first timestamp (i.e. t = 0) in the video frames, we assume
the severity probability is zero. If this is the first occurrence
r = 1 of the distraction feature pattern, then only the
likelihood probability is applied to the computation of the
severity. In subsequent occurrences, the severity probability
is computed applying the dynamic Bayesian network model
described earlier. This transformed test data would form the
basis for evaluation of our novel fuzzy-logic-based inference
system for severity classification of driver activities that result
in the driver being distracted.

The occurrence of secondary distraction within a certain
duration can change the degree of severity of an event from
careless to dangerous. Ideally, there will be the justification
of the minimum threshold required for a distraction to be
classified into ‘‘safe,’’ ‘‘careless,’’ and ‘‘dangerous’’ severity
levels, respectively. For example, detection of an event such
as a hand gesture (seat belt adjustment, wave to passersby,
panel adjustment) for a period of 10 seconds could be classi-
fied to as careless. We proposed different measures for the
driving performance by considering physiological features
such as hands, face orientation, and distraction type (talking,
texting, phoning). Talking, texting, and phoning were con-
sidered due to the cognitive distraction associated with it.
For example, in a multi-class distraction, a measure of how
long the driver has been talking in combination with other
features such as hand and face orientation can increase the
severity of distractions. We deduced the time from the rate
at which the frames were generated at 25 frames per second
(fps). For example, a sequence of frames with the distraction
type ‘‘talking’’ was used to measure the duration in which
the driver was talking. The coding was done such that when
a threshold of 125 consecutive frames is reached (equivalent
to 5 seconds), then a classification decision is made.

IV. IMPLEMENTATION
Our system is based on the Mamdani fuzzy inference model
as shown in Figure 6. The Mamdani approach is commonly
used for expert knowledge acquisition. It helps us to explain
experience more intuitively and in a more human way. The
aforementioned approach is well suited in decision mak-
ing context with uncertainties that requires human expert
knowledge.

The Mamdani is used to imitate the performance of a
real driver and his behavior in a driving vehicle. Each input
is given a specific amount of MFs and a value and then
compared with other inputs. We developed a multi infer-
ence Mamdani fuzzy model that attempts to use multi-class
distraction detection to classify safe, careless and danger-
ous driving. The rule generation process was deduced from
supporting literature. The justification of weights to each
distraction was deduced based on literature from experts on
each distraction type. The feature extraction method involves
labeling of the RoI, which will be integrated with the fuzzy
rules that are created. The distraction training data is made up
of classes with activities such as talking to a passenger, tex-
ting, and phoning. In addition, we further divided the dataset
into subclasses (single hand on wheel, talking to a passenger,
and face orientation off the road), and the same applies for
the testing data, which are then used for validation. The rules
were inserted into the fuzzy inference engine for distraction
detection. The interface engine uses the Mamdani inference
that conforms to our model architecture. Data pre-processing
for extracting was done using MATLAB 2019b ground truth
labeling for feature extraction. Furthermore, MFs, associa-
tions, and rules were associated with each classification. The
rules associated with each classification of driver distraction
was further tested using test datasets.

The distraction severity level is a measure of the degree
of the impact of driver distraction on driving performance.
In addition, classification of the driver’s distraction into
severity levels is vital in determining the readiness of
semi-autonomous vehicle transitioningwhen a certain thresh-
old of distraction is reached. After all these steps, the fuzzifi-
cation process will begin decomposing a system input and/or
output into one or more fuzzy sets. Many types of curves and
tables can be used, but triangular or trapezoidal-shaped MFs
are the most common since they are easier to represent in
embedded controllers. Figure 7 shows a system of fuzzy sets
for input with triangular MFs. Each fuzzy set spans a region
of input (or output) values graphed against membership.
We restricted our scope to activities leading to distractions
in driving behavior: four parameters were used in detecting
severity of the driver distraction, namely face orientation fox ,
driver activity dax , the number of hands on the wheel hax ,
and the previous driver activity Pdax .

A. MULTI-CLASS DRIVER DISTRACTION SEVERITYSCALE
The prevalent approach to the analysis of driver distraction is
through the detection of driver activity. However, the phys-
iological features used in driving do have different levels
of coordination, thus the impacts of their actions are not
equivalent. In addition, our hypothesis depicts that driver
distraction may have a different impacts depending on the
severity level classifications.

We tested our hypothesis that driver distraction has varying
severity levels by deducing, from the literature, the justifica-
tion of metrics for different types of distraction obtainable in
the dataset. The ratings of the severity level of each distraction
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TABLE 2. Driving severity level for membership functions.

are developed on a 3-point scale (Table 2 ) based on the Likert
Scale [17], [18].

The category of the severity level is the output of elements
represented by MFs: safe driving = 0 - 0.25, representing
a safe driving with credible false distraction and acceptable
event such changing gears; careless driving = 0.25 - 0.75
meaning a multi-class distraction or a combination of dis-
tractions may occur; and dangerous driving = 0.75 - 1.0
signifying a highly critical distraction.

In fuzzy logic, a rule base is constructed to control the
output variable. A fuzzy rule is a simple IF-THEN rule with a
condition and a conclusion. In Table 2, sample fuzzy rules for
the temperature control system in Figure7 are listed. A sample
of 3 of 16 rules of Mamdani fuzzy logic inference system for
detecting the driver’s distraction severity is as follows:

V. RESULTS AND DISCUSSION
In this section, the outcome of the frame-based rule-based
fuzzy logic for the driver’s distraction severity classification
is discussed. The results of the driver distraction are evaluated
by testing the unseen dataset without the fuzzy rules.

The plot in Figure 8(A) represents a comparison between
face orientation and previous driver activity. In this case,
observation shows a plateau region of yellow color, referring
to a uniform level in the severity of driver distraction. The
steep rise in blue is a result of the face orientation changing at
around 0.4; this indicates that the driver’s face (and therefore
gaze) is moving away from the road, leading to a higher level
of severity. The blue curved region shows driver distraction
with face orientation on the road level prevalent on a scale
of 0 to 0.4, and afterwards a change occurred in drivers
distraction with face orientation off road thus, leading to an
increased distraction severity level. Even if the participant
was familiar with the road, the distraction exhibited dif-

FIGURE 7. Inputs and membership functions.

fered, especially in the context of multi-class distractions: for
example, there was a higher frequency of the driver looking
sideways. In addition, we detected more instances of care-
less driving than dangerous driving. However, we detected a
driver who exhibited talking and face off the road for more
than 5 seconds; this is highly severe and could lead to a fatal
accident.

In Figure 8(B), Face orientation is compared against driver
activity (talking), and distinguished sections can be seen. The
darker blue represents safe driving, but as the driver starts
talking with the passenger, the cyan color appears, reaching
to a high distraction level and potentially leading to careless
driving. Subsequently, it transitions into a dangerous driving
when a higher severity level is reached as driver takes eyes
off the road.

Figure 8(C) plots hand position against face orientation.
The curved blue area signifies a steep rise in severity.
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TABLE 3. Fuzzy rule base.

In addition, the yellow region depicts increased severity level
of distraction, caused by face orientation off road.

Figure 9(A) depicts how driver face orientation impacts
distraction severity when the activity (phoning) occurred with
a long duration. In addition, there was a sharp rise at 0.4 when
the driver’s face orientation turned off the road. Figure 9(B)
shows a steady occurrence of face orientation off the road
while talking on the phone, thus leading to a higher severity
level of distraction. Figure 9(C) depicts face orientation off
road, which persists until 0.4 and changes to face orientation
on road. In addition, there was a momentary occurrence of
single hand on wheel while the activity persisted and there-
after some instances of no hands-on wheel, thus contributing
to a sharp rise in the severity level of the driver distraction.

Figure 10(A) shows that face orientation contributes sig-
nificantly to the severity of the activity of texting. Face ori-
entation off the road and texting together result in a sharp
increase in the severity level of driver distraction. In addition,
Figure 10(B) shows that the driver performed the texting
activity continuously for a period of 2 seconds, which further
increased the severity level. Figure 10(C) depicts instances
of the driver using no hands at 0.3, with face orientation off

FIGURE 8. A,B,C. Surface plots for talking.

FIGURE 9. A,B,C. Surface plots for phoning.

FIGURE 10. A,B,C. Surface plots for texting.

road, and that severely impacts the severity level of driver
distraction, leading to categorization as dangerous driving.

Collectively, the plots show that there is a correlation of
distraction severity level between the activity (talking and
texting) due to the likelihood of the driver’s face orientation
being off the road.

Table 2 defines the input values that are gathered from the
dataset of image labels. These values are exported from the
labels and put into binary values, where 0 = false and 1 =
true. The previous driver activity is determined from calcu-
lating the previous frame.

Tables 5, 6, and 7 depict the multi-level distractions
input test data, the previous frames distraction severity level,
and the defuzzification methods outputs. The defuzzifica-
tion methods we used include Smallest of Maxima (SOM),
in which the defuzzified value is taken as the element with
the lowest membership values. Middle of Maxima (MOM),
in which the defuzzified value is taken as the element with the
medianmembership values. Largest ofMaxima (LOM), is the
element with the largest amongst all membership values.
Centroid defuzzification, which returns the center of area
under the curve, and Bisector, which is the vertical line that
divides the region into two sub-regions of equal area.

In Table 5, the values that are produced correspond to
phoning. These values were analyzed in this scenario, where
centroid and MOM yielded the most accurate result. In terms
of the driving severity level produced, LOM and SOM under-
performed as they only picked extreme cases which would
create an overexaggerated crisp value: LOM produced a very
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TABLE 4. Driving severity levels for the membership functions.

TABLE 5. Driving distraction severity defuzzification crisp output values
for talking, using multiple methods.

TABLE 6. Driving distraction severity defuzzification crisp values for
phoning, using multiple methods.

high value while SOM produced a very low value that did not
match up to the severity levels seen in the weights and MFs.

Table 6 presents similar results from the dataset; this time
the defuzzification crisp values that best matched the weights
were Centroid, Bisector and MOM. This test concluded that
the distraction severity increases as the duration increases.
Referring back to Table 4, we can deduce that the number of
frames that are continuous will affect the next severity level
– as seen in the pda column, these number are progressively
higher, and when the action of that driver stops, the values
decrease as the severity level becomes safer.

TABLE 7. Driving distraction severity defuzzification crisp output values
for texting, using multiple methods.

TABLE 8. Driving distraction severity levels for the membership functions.

Table 7 shows the crisp value output for texting. The values
were similar to phoning and talking; however, this activity
had the most severe level, the most accurate defuzzification
methods were Centroid, Bisector, and MOM.

The root mean square from the dataset of the timeframes
1-47 were calculated and driver distraction severity level
was measured upon calculating the Root Mean Square Error
(RMSE). The RSME was calculated using the previous dis-
traction severity used as the model:

RMSE =

√∑n
i=1

(
Xda,i − Xpda,i)x2

n
, (4)

where da,i is a predicted value of the driver’s activity, pda,i
is the previous driver activity (referring to Tables 5–7), and
n is the number of data. From the observed timeframes, the
predicted value from the output defuzzification method was
Centroid, as it provided the most accurate reading of the
weights assigned to the rules. Table 8 reports the results of
the RMSE value to have achieved the most accurate error
prediction of the previous severity frame and present severity
frame.

The comparison between Sugeno and Mamdani suggests
that the Mamdani approach performed better in this context
in terms of restrictive rules, complexity, modelling structure
and accuracy. A clear advantageMamdani has over Sugeno is
that not all possible rule combination is required to construct
the fuzzy rule base. Thus, Mamdani has ability to relate
inputs and outputs in a non-linear manner through instances
of sharp transitions through from distraction severity ranging
from high to low and low to high value which is captured
by the fuzzy membership functions. The actual outcome is
to change from semi-autonomous take over from the driver
when a certain threshold is reached.
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On the other hand, unsupervised learning using classifica-
tion techniques by using set of rules may be applied to profile
driver according to severity level. The methods for classifica-
tion develop rules by discovering patterns in previous driver’s
data or possible prediction of the driver’s distraction espe-
cially when the driver has to be monitored and profiled over
a period of driving. Furthermore, a possible combination of
a Hybrid Fuzzy-Deep learning techniques such as Convolu-
tional Neural Network (CNN) will be adopted subsequently.

VI. CONCLUSION
This paper presents an evaluation method based on fuzzy
set theory, focusing on driver distractions. We describe a
rule-based fuzzy system deduced from an NDS dataset with
multi-class distraction detected in the sequence of each
image. The combination of driver activity, face orientation,
hand state and previous drivers activity was used to compute
the severity level of the multi-class distraction. The inference
systems we designed classified the severity of a multi-class
distraction using metrics such as distraction type, duration,
and frequency of the activities. The results show that our
fuzzy logic inference system was able to detect and clas-
sify multi-class driver distractions into safe, careless, and
dangerous driving. Such as approach could be integrated
into ADAS to reduce impact or mitigate driving distraction.
Interestingly, the literature shows that driver activities such
as texting and talking on the phone are dangerous and more
serious than careless driving. However, our findings show
that in a multi-class context, talking to a passenger and face
orientation off the road is almost as dangerous as texting and
face orientation off the road. This is due to the fact that it is
common for a driver who is talking to passenger to have their
face orientation off the road. This results in a similar degree
of distraction when the driver is either talking to a passenger
or texting. Finally, this research can be used to determine the
threshold for transitioning control from the driver to a level
4 semi-autonomous vehicle. In future work, we will use a
neural network for the classification of driver distractions.
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