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Abstract—This study is the second in investigating the use of
necrosis based filtration as a method of steering evolutionary
algorithms to create evolved art. We use a technique inspired
by the danger theory of immune system activation - a method
employed in Artificial Immune Systems. An earlier study tested
two types of filters used to augment the evolution of apoptotic
cellular automata, shape and state diversity, applying one as
a soft filter and the other as a crisp filter. This study tests
both shape and state diversity filters in both soft and crisp
modes and also mixes the filters, applying two filters in a single
evolutionary algorithm. Soft and crisp version of the same filter
are found to have substantially different behavior. The stacking
of filters is found to work simply and transparently, effectively
excluding undesirable parts of the fitness landscape.

I. INTRODUCTION

Fig. 1. An example of an evolved apoptotic cellular automata steered toward
diverse color use by necrotic filters.

This study continues work from [5] on using a techniques
from Artificial Immune Systems[16] to modify the behavior
of an evolutionary algorithm, restricting the type of optima
that the algorithm can locate. The target of the study are
apoptotic cellular automata [7], a type of self-delimiting
image that is an example of evolved art [6]. An example
of this type of cellular automata appears in Figure 1. In the
earlier study, two types of restrictions were applied to the
evolution of apoptotic cellular automata, a soft restriction
on the shape of the rendered picture, and a crisp restriction
of the entropy of the distribution of colors that appeared
in the images. The restrictions were applied using what is
termed a ‘necrosis technique’ derived from the concept of

Daniel Ashlock is with the Department of Mathematics and Statistics at
the University of Guelph, in Guelph, Canada email: dashlock@uoguelph.ca

Julie Greensmith is with the School of Computer Science at the University
of Nottingham, UK, email: Julie.Greensmith@nottingham.ac.uk

The authors thank the Universities of Guelph and Nottingham for their
support of this work

the danger theory employed by Artificial Immune Systems
[13]. The choice of soft and crisp applications of the necrosis
filter was initially arbitrary in [5] and it was noted as an
extension to the research that multiple necrosis filters could
be applied simultaneously. This study examines both crisp
and soft versions of necrotic filtering for shape and entropy
restrictions and experiments with applying multiple necrosis
filters in a single collection of evolutionary runs.

With the advent of Artificial Immune Systems as computa-
tional intelligence techniques, a number of methods inspired
by natural immune systems have been added to the array
of available methods for nature inspired computation. This
study and the one it builds on apply the immune-system
inspired concepts of the danger theory[19]. This is the body’s
ability to discriminate between two types of cell death:
necrosis and apoptosis. Apoptosis is planned and controlled
cell death, used to regulate tissue growth. Necrosis is the
violent disruption of a cell caused by some form of stress,
leading to its recognition by the immune system as being
associated with foreign material as part of the detection
of non-self entities. In this process the infected cell itself
gives off biochemical signals representing danger or damage
to tissue cells. In a departure from the conventional use
of danger signals in dendritic cell based Artificial Immune
Systems[15], in this immune system-inspired metaphor pop-
ulation members emit danger signals upon reaching a set
criteria for necrosis. In this research, necrosis is used to cre-
ate a novel computational intelligence technique by adding a
necrotic step as a filter to an existing evolutionary algorithm.
Necrosis zeros out the fitness of population members with
undesirable properties. This is presented as an alternative
to trying to write complex fitness function that bake in
constraints into a single feature of the algorithm, as was done
in [8].

Cellular automata are a type of discrete model of compu-
tation. A cellular automata has three parts,

1) A collection of cells divided into neighborhoods of
each cell. In this study the cells form a linear array
of cells. Neighborhoods consist of a cell and its four
nearest neighbors.

2) A set of states that can be taken on by cells . In this
study we use the numbers 0-7 as states.

3) A rule that maps the set of possible cell states of a
neighborhood to a new state for the neighborhood.
This rule is described subsequently and is the target
of evolution.

Cellular automata (CA) can be described as discrete dy-
namical systems that exhibit self-organizing behaviour. The
cells states evolve according to local transition rules. The up-



dating according to the transition rules may be synchronous
or asynchronous with apoptotic cellular automata using syn-
chronous updating. Cellular automata can be used as models
of complex natural systems that contain large numbers of
identical components experiencing local interactions [26],
[23].

Cellular automata have been applied to the study of a
diverse range of topics, such as structure formation[11],
heat conduction[12], language recognition[21], traffic
dynamics[18] and cryptography[2], to name a few. CA
have also been used for more aesthetic purposes, such as
image and sound generation. Serquera and Miranda of the
Interdisciplinary Centre for Computer Music Research, UK,
have published on the use of CA for sound synthesis [25],
[1].

CA have been applied to the visual arts, being used to
produce artistic images[9], [20], [8], [14], in the form of
time histories of one-dimensional cellular automata with
states shown as colors. The automata in this study are used
in the same fashion. Two dimensional automata have been
used to produce level maps for games [17], [3], [4]. This
work demonstrated that CA can generate not just a single
map but families of maps with similar properties. Ashlock
and Tsang[9] produced evolved art using 1-dimensional CA
rules. CA rules were evolved using a string representation.
The CA either underwent slow persistent growth, or planned
senescence. The resulting fitness landscapes were rugged
with many local optima. This led to the production of
aesthetically pleasing images. Another common target for
evolved art is fractals [6] and one of the reviewers thought
our CAs were fractals: they are not.

In this study we return to earlier work which demonstrated
that the fitness landscape of even simple encoding of CA used
in this study have a complex fitness landscape [7]. In [8] the
algorithm for finding CA rules was modified to restrict the
shape of the rendered images. This study extends the number
of techniques that employ necrosis to eliminate undesirable
images. Necrosis filters are applied to the rendered images
derived from the CA rules, meaning that the selection criteria
applied by the necrosis filters can be specified in a manner
directly related to the appearance desired by the user. The
selection criteria used are a desired shape for the image and
bounds on the entropy of state usage, both upper and lower.

The rest of this study is structured as follows. In Section
III we give the design of experiments, including the repre-
sentation, fitness functions, and analysis tools. In Section IV
the results are presented and discussed. Section V we draw
conclusions and discuss potential next steps.

II. APOPTOSIS, NECROSIS AND THE DANGER THEORY

Artificial Immune Systems (AIS) emerged in the 1990s
as a novel computational technique[16], centered around
the elegant idea of creating a computer immune system to
detect computer viruses. As these techniques have matured,
different parts of the behaviour of the human immune system
have been incorporated. AIS are a diverse collection of
algorithms, all based on metaphors of different aspects of

the function and behaviours of the immune system. Initial
approaches in AIS focused on the principles of self-nonself,
where the adaptive immune system is used as inspiration
in the development of classical-style supervised learning
paradigms.

As the field evolved, contemporary theories in immunol-
ogy featured more prominently in AIS. One such immuno-
logical phenomena, the danger theory, gained traction in
immunology as a credible mechanism by which the human
immune system decides if and when to mount an immune
response against a pathogen. While still controversial in
immunology, from 2002 the danger theory started to feature
in AIS research. In a departure from the standard self-nonself
based algorithms, AIS incorporating the danger theory used
pre-determined schemas to define data as either ‘safe’ or
‘dangerous’, a mechanism inspired by the ability of the
immune system to discriminate between the two types of
cell death, apoptosis and necrosis.

The danger theory, first proposed in 1994 [19], describes
how the activation of an immune response is controlled by the
detection of danger signals emitted from tissue cells killed
via unplanned cell death i.e. necrosis. The danger theory
states that the detection of nonself proteins, termed antigen,
are insufficient to initiate an immune response by helper T-
cells. The detection of danger signals acts as a necessary
second signal to provide a ‘green light’ for the production
of antibodies by the adaptive immune system. This is based
on the concept that without any damage to the host, there
is no need to mount an immune response. This is thought
to account for phenomena like the presence of so-called
‘friendly bacteria’ forming the gut flora, and goes some way
to account for ‘changing self’ in states including pregnancy.

The guiding principle of the danger theory is the immune
system’s ability to sense the difference in cell death by
the mechanisms of apoptosis and necrosis. Cells undergo
apoptosis for a number of reasons, for controlling the
morphology of tissues, to maintain homeostasis, or simply
because the cell reaches the end of its lifespan. When a
cell undergoes apoptosis it releases chemical messengers
into the surrounding fluid, indicating to phagocyte cells that
the apoptotic debris requires removal from the tissue. The
apoptosing cell shrinks and is absorbed into for example
a passing macrophage and all trace of the cell death is
absorbed by a process termed phagocytosis. Contrastingly,
necrosis is a much more violent process. This is a form of
unplanned cell death, occurring due to one of four triggers:
extreme heat, extreme cold, lack of oxygen and infection
by a pathogen. The cell’s membrane rapidly degrades and
molecules normally bound behind a cell membrane leak into
the interstitial fluid. Examples of such signals include heat
shock proteins, uric acid and monosodium urate, products
of rapid, uncontrolled decomposition of nuclear materials.
These molecules of rapid cell decomposition are termed
danger signals, more recently formalised as a group of
Danger-Associated Molecular Patterns (or DAMPs) [22].

The cell responsible for processing the signals of necrosis



and apoptosis is the professional antigen presenting cell, the
dendritic cell, which resides in the interstitial fluid of tissues,
traversing the area and detecting the presence and absence of
signals released as a result of cell death. The release of apop-
totic signals initiates the transformation of dendritic cells into
a tolerogenic state, instructing the adaptive immune system to
behave anergencially towards any current pathogens residing
in the tissue. Conversely the detection of the danger signals
produced by tissue cell necrosis tansforms the dendritic cell
into a potent stimulator of the adaptive immune system,
causing helper T-cell activation and subsequent antibody
production against any pathogens in the monitored tissue.
This differentiation of dendritic cells into either a tolerogenic
or activatory state is a key step in controlling immune
system responses, controlled by sensing the balance between
apoptotic and necrotic signals.

The danger theory is used in a variety of different ways
in AIS, but always relies on the encoding of the release
of some sort of danger signal, first proposed in [13]. The
Dendritic Cell Algorithm [15] is most commonly cited when
referring to the use of the danger theory in AIS, although
other danger based approaches exist often incorporating a
second signal into a self-nonself based system as in [24].
In a tissue growth algorithm [10], a ‘pure danger’ approach
was employed, which does not depend on processing by
artificial dendritic cells, nor does it rely on the self-nonself
principles. In this paper and that in [5] a pure danger
approach is also employed, with the focus firmly on abstract
models of the processes of apoptosis and necrosis, without
the explicit use of any form of dendritic cell-based agent.
As per the previous work on incorporating danger theory
into CA’s, differentiation between apopotosis and necrosis
effects the manner by which the automata grows. Filters
are applied to determine if a cell undergoes apoptosis or
necrosis and this is then used to determine the evolution of
the automata. Our implementation of necrotic filters to the
automata controls which type(s) or automata with controlled
growth, are permitted to survive. Akin to the detection of
multiple types of danger signals, in this study we explore
the stacking of necrotic filters in the control of the automata.

III. DESIGN OF EXPERIMENTS

A. Evolutionary Algorithm Design

The evolutionary algorithm in this study, before adding
necrosis, is a standard one. The cellular automata updating
rules are stored as strings of 36 integers with values in the
range 0-7, specifying cell states. Two variation operators are
used: two point crossover of the string and k-point mutation
that replaces the value at at k positions, selected uniformly
at random within the rule. Selection and replacement are ac-
complished with generational size-four tournament selection.
The population is shuffled into groups of four CA-rules. The
two more fit are copied over the two less fit. The copies
are subjected to crossover and mutation. Such an updating is
called a generation. In each experiment, the algorithm is run
for 4000 generations with a population of 200 automata rules.

A collection of 30 replicate evolutionary runs with different
random number seeds is used in each experiment.

The algorithm is modified as follows to implement
necrosis. The entire population is passed, one at a time, to
the necrosis test(s) used in that instance of the algorithm.
If population members fail this test, they are recognized
as emitting danger signals, and their fitness is reduced to
zero. Necrosis is applied immediately after reproduction
and fitness evaluation of new structures. Both old and new
structures are tested for by the necrosis filter. The steps are
shown as Algorithm 1, with the one novel step given in
blue. The necrosis functions used in the various experiments
are given below.

Algorithm 1: Necrotic Filtered EA
Initialize Population
Main Loop

Evaluate fitness
Test necrotic filter condition(s)

Zero the fitness of failing chromosomes
Perform fitness based selection
Perform reproduction of selected chromosomes

End Loop

B. Necrosis Filters

Two types of necrosis filters are employed, each in a soft or
a crisp form. The first type is shape controlled. Four shapes
are employed, covering the drawing arena as shown in Figure
3. The are called the middle half, middle quarter, diamond,
and lower gap shapes. The number of live pixels outside
of the gray area during the rendering of the automata are
counted. Crisp necrosis is applied unconditionally if there are
pixels in the white area at all, for soft necrosis the number
of living cells n outside of the shape are totalled and a CA
rule was tested for emitting danger signals by comparing a
uniform random number in the range [0,1] to the function
given in Equation 1.

p(n) =
e(

n
K−r)

e(
n
K−r) + 1

(1)

The value K scales the number of cells, n, that are out of
bounds and r is an offset. The function in Equation 1 is
the probability of necrosis, conditioned on the number of
cells outside of the shape. The value K = 2000 are used
with r = 2 The parameter K controls the sharpness of the
sigmoid probability curve given by Equation 1 while r is an
offset that lowers the chance of necrosis as r increases.

E = −
m∑
i=1

pi · log2(pi) (2)

The second type of necrosis experiment performed was
based on Shannon entropy. The number of each type of living
state appearing in a rendering are compiled an divided by the
total number of living cells to create empirical probabilities
pi of use for each living state i appearing in the rendering.
The Shannon entropy of this distribution, given in Equation



Fig. 2. Shown are renderings of time histories of 100 evolved apoptotic cellular automata.

Shape 0 Shape 1

Shape 2 Shape 3
Fig. 3. These are the four shapes used to define necrotic filters, with filters
applied to the white and grey areas as detailed in Section III-B

2, is used to perform necrosis. Necrosis is not applied to
low fitness (small) rendered automata to prevent necrosis
from operating on automata with a small number of living
cells. The smallness restriction on applying necrosis was
implemented after many runs, with the lowest upper bound
on acceptable entropy values, terminated with all individuals
of zero fitness. In the crisp version of entropy-based necrosis,
an automata rule is found to be emitting danger signals if
their entropy exceeds, or fails to exceed, a given bound. In the
experiments in this study we set a pre-determined smallness
value to avoid necrosis to 200 living cells, i.e. necrosis is not
applied to population members with a fitness, that is number
of living cells, below 201.

p(n) =
e±(E−S)/K−Q

e±(E−S)/K−Q + 1
(3)

The soft version of entropic necrosis was also based on
the Shannon entropy, using the same sigmoid probability me-
chanic as the shape based experiment. The sigmoid function
used is given in Equation 3, where E is the entropy bound, S
is the observed Shannon entropy of the rendered automata,
K controls the sharpness of the sigmoid curve, and Q is an
offset. Preliminary experimentation resulted in a choice of
K = 1.0 and Q = 1.0.

C. Experiments Performed

In the earlier study, the experiments that sought to evolve
automata with a state entropy of no more than E = 0.8.
About two-thirds of the runs ended in automata with sizes
(fitness) below 201, which permitted them to violate the
entropy bound. The entropy necrosis in the earlier study
was crisp and so one of the experiments is to re-run crisp
entropic necrosis seeking entropy below 0.8 and also run
the soft version of entropic necrosis using the same bound.

The earlier study also applied crisp entropic necrosis seeking
entropy above 1.0, 1.2, and 1.4. There were no failures to
reach these entropic lower bounds and the achieved values of
entropy suggested that high entropy values are easy to meet.
This study applied both crisp and soft necrosis with lower
entropy bounds of 1.2, 1.8, and 2.2.

Experiments were run for all four shapes using crisp
necrosis with K = 2000 and r = 2, soft necrosis with these
parameters having been used in the earlier study. Finally an
experiment using the middle half shape with K = 2000 and
r = 2 and entropic necrosis with the goal E > 2.2 were
run using the four possible combinations of hard and soft
necrosis; a control run with no necrosis was also performed
as a baseline. These experiments test the effect of employing
multiple necrosis filters in a single evolutionary run.

IV. RESULTS AND DISCUSSION

Figure 4 shows the soft (upper) and crisp (lower) entropic
necrosis experiment seeking entropy values below E = 0.8.
Sixteen of the thirty crisp runs failed to meet the entropy
bound, echoing results of the earlier study. These failures
caused the largest rendered automata have no more than 200
pixels. All of the results using soft necrosis achieved high
fitness optima, but only one of them actually met the entropy
goal. The actual entropy values, sorted into increasing order,
are shown in Figure 5. The purple squares show clearly the
runs that did and did not meet the entropic goal. The earlier
study demonstrated that entropy values below E = 0.8 are
difficult. This is confirmed by the way that the soft entropic
necrosis achieved the bound only once. It is worth noting
that the soft entropic necrosis, while failing to meet the
upper entropy goal, achieved much lower entropy than the
failing runs and much lower entropy than the control runs.
Tightening the soft necrosis function’s sigmoid curve might
allow even lower entropies.

Figure 6 shows the distribution of fitness and entropy
values for the experiments seeking entropy above 1.2, 1.8,
and 2.2 with both crisp and soft entropic necrosis. The fitness
results suggest that all three entropy levels are easy for the
evolutionary algorithm, aided by necrosis, to achieve. The
entropy plots are more informative. Looking at the entropy
values for E > 2.2, the soft results have a much broader
distribution of values. This broadness is not present or less
apparent for entropy values 1.2 and 1.8, suggesting that
values of 2.2 are starting to become difficult. Of the thirty
results for E = 2.2, eleven did not make it to E = 2.2. One
soft result for E = 1.2 achieved an entropy of 0.68, below
the desired value – other than that all runs for E = 1.2 and
E = 1.8 did achieve the bound.

Changing from soft to crisp necrosis when shapes are
being used to drive the necrosis was not too different from
the soft results, except that the fitness values were slightly
(not significantly) lower. Figure 7 shows the four best results



Fig. 4. Shown the 30 evolved apoptotic cellular automata using soft (upper) and crisp (lower) filters for apoptotic CA with state use entropy below 0.8.
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Fig. 5. Shown are the entropy values for all 30 runs using an upper entropy
bound of 0.8 with soft and hard necrosis. A horizontal line denotes the
position of entropy 0.8. Crisp runs above this line are the tiny results from
Figure 4 that failed to break out.

for the lower-gap shape. These automata renderings do not
resemble any appearing in any other run, confirming that the
shape based necrosis does exert substantial control in its crisp
form, as the earlier study showed similarly in its soft form.

In comparison to the earlier study, the greatest change in
the way necrotic filters are applied in this study is in the use
of multiple necrotic filters in a single evolutionary run. The
simplest shape, the middle half (shape 0), was combined with
the somewhat challenging condition E > 2.2 testing all four
combinations of soft and crisp. Entropy of the rendering of
an automata does not directly affect fitness, while the middle
half shape constraint either places out of bounds or makes
less acceptable half of the area that can be used to generate

fitness. Figure 8 shows the distribution of fitness and entropy
values for a control experiment with no necrotic constraint
and the four different stacked shape-entropy experiments.

The most obvious result it that crisp shape constraint
lowers fitness significantly: this is exactly what one would
expect as the crisp necrosis absolutely ‘locks away’ half
the potential fitness. Making the entropic constraint crisp
raised the entropy; the double soft experiment was the only
one with entropy more variable than the control experiment.
The experiments with soft shape necrosis has fitness similar
to the control experiment. These results again indicate the
need to experiment more with the shape of the soft necrosis
probability curve for entropy-based constraints.

These experiments demonstrate that stacking necrotic fil-
ters is practical. While it would be easy to add filters that
would choke evolution, the single filter crisp E < 0.8
half chokes it, it is possible to put filters together without
causing a problem. A necrotic filter either excludes (crisp)
of de-emphasizes (soft) a portion of the fitness landscape.
If filters are stacked, their exclusions of portions of the
fitness landscape are intersected. The several earlier papers
on evolving apoptotic cellular automata indicate there are a
huge number of optima in the search space, leaving lots of
room to carve off pieces of it.

Figure 9 shows renderings of the automata from the control
experiments and the four stacked necrotic filter experiments.
The strongest visual effect is the one that also appears in
the fitness distributions, the second and fourth panel of the
figure are smaller. The entropy enhancements for the crisp
entropic runs are visible, but only to close observation. The
fifth panel is the double soft experiment is shown in the last
panel. Two renderings have large, solid blue areas, indicating
very low entropy. These are the most extreme example of
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Fig. 6. Shown are the fitness and entropy distributions of the experiment
seeking high state entropy using both soft and crisp entropic necrosis.

leakage through the soft filter.

V. CONCLUSIONS AND NEXT STEPS

This study demonstrated the practicality of using soft
and crisp versions of both the shape and entropic necrotic
constraints. It also showed that stacking filters is works well.
Experiments established that E = 2.2 is a high enough lower
bound on entropy to be a difficult problem. It is also clear
that more experimentation with the control parameters for
soft entropic necrotic filters is a good idea. In the limit, the
K parameter can transform the soft necrosis into the crisp
necrosis. So far only one soft value has been carefully tested.

A significant implication of the research is that we can use
necrotic filters to pare away parts of the fitness landscape,
effectively excluding undesirable parts of the fitness land-
scape. While care must be exercised to avoid paring away
the entire fitness landscape, necrotic filters can decompose
and so enormously simplify the design of fitness functions for
evolutionary algorithms. Any detectable flaw can be excluded
or discouraged by crisp or soft necrotic constraints. The
huge diversity of optima in the space of apoptotic cellular
automata makes them a natural test-bed for experimenting
with necrotic control of evolution, but it is clear the technique
needs to be tested in much broader domains.

Fig. 7. Example of rendered automata arising from crisp necrosis employing
the lower gap shape.

The demonstration that using entropic necrotic filtration
to require high state-entropy values established, by the com-
parison of soft and crisp control results, these techniques
could be used to detect the point at which the entropic
constraints were becoming hard to satisfy. This suggests that
soft-crisp contrasts can be used as stress tests to determine
when a constraint excludes a high fraction of the fitness
landscape. This also suggests that an interesting question of
how large is the intersection of different constraints. This
topic could be treated in part by examining other constraints
like restriction to a desired band of fitness values or top-
bottom color contrasts for renderings of apoptotic cellular
automata.

An early priority for additional work is to start applying
necrotic control to other evolutionary algorithms. It may
be possible to have adaptive filters that learn optima of an
optimization problem as they are located and act to exclude
them in subsequent runs. Another natural target is generative
algorithms, where interactions between different commands
for constructing solutions often have unexpected effects,
making necrotic filtration a natural choice. A broad variety
of possible avenues are available for expanding this work.

A. Dynamic Necrotic Control

Figure 4 highlights the very different impact of soft and
crisp necrotic control. This is the current best example of
crisp necrotic control strangling evolution to some degree.
In contrast, soft necrotic control only produced the desired
result one time in thirty. Stacking both these filters would be
frivolous – they effect of the crisp filter dominates the effect
of the soft one. An alternative to this is to shift between two
or more filters over the course of evolution. This would cause
the shape of the admissible fitness landscape to change over
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Fig. 8. Shown are the fitness and entropy distributions of the control
experiment and experiments with stacked necrotic filters for entropy e ≥ 2.8
and the middle half shape using both crisp and soft necrosis.

the course of evolution, in effect allowing dynamic necrotic
control of evolution.

This notion has the potential to allow better control of
evolution, but it also is the standard disaster of evolutionary
computation: another tuneable aspect. It may be that soft
control followed by crisp control would work well; or the
opposite might produce better performance. There is also the
question of the time of hand-off from one filter to another.
The good value for order, filtration strength, and hand-off
times will almost certainly be problem dependent. There
are certainly an array of novel avenues to explore with
this technique both in terms of understanding the stacking
of filters and indeed in the breadth of potential application
domains.
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