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22 Abstract

23 Konjac glucomannan (KGM)/zein blend films were successfully prepared by solution 

24 casting at different drying temperatures (40, 50, 60, 70 and 80 °C). The effects of 

25 drying temperature on the films’ structural, thermomechanical, mechanical and water 

26 barrier properties were investigated. Microstructural observations indicated that zein 

27 particles were homogeneously dispersed in KGM continuous matrix, and the blend 

28 film dried at 60 °C showed the most compact and smooth surface. Dynamic 

29 mechanical thermal analysis curves showed that with increasing drying temperature 

30 from 40 to 60 °C, glass transition temperature (Tg) of films increased; however, with 

31 further increase in temperature, the Tg decreased, indicating the compatibility of film 

32 components was the highest when dried at 60 °C. The hydrophobicity of blend film 

33 dried at 60 °C was significantly stronger than that of other blend films, supported by 

34 the highest water contact angle, and the lowest swelling ratio and solubility. 

35 Moreover, the film dried at 60 °C showed the highest tensile strength, elongation at 

36 break, and the lowest water vapor permeability. Therefore 60 °C was preferred for 

37 KGM/zein blend film preparation. This study indicated that intermolecular 

38 interactions among film components were greatly influenced by the drying 

39 temperature, and should be carefully noticed for film preparation.

40

41 Keywords: drying temperature; particles distribution; physical properties
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44 1. Introduction 

45 Edible packaging is a stand-alone sheet of material which can provide a barrier to 

46 mass transfer (moisture, oxygen, and solute movement) within the food itself or 

47 between the food and environment (Bourlieu, Guillard, Vallès-Pamiès, et al., 2009). 

48 The unique advantage of edible packaging is envisioned to simplify packaging system 

49 and to improve stability, safety and quality of food products, representing a better 

50 choice for food packaging in daily life (Janjarasskul et al., 2018). Edible packaging is 

51 developing rapidly by utilizing edible biopolymers as structural matrices. Generally, 

52 they are prepared from natural polysaccharides, proteins, lipids or combinations of 

53 these components (Jia, Fang, & Yao, 2009; Shi, & Dumont, 2014; Wu et al., 2018; 

54 Cheng et al., 2008; Homez-Jara et al., 2018). Among them, konjac glucomannan 

55 (KGM) as one natural water-soluble polysaccharide derived from the konjac tuber has 

56 special nutritional and health promoting functions as well as excellent film-forming 

57 capability, and it has bright application prospect for edible packaging preparation (Li 

58 et al., 2015; Wu et al., 2012; Chen et al., 2008; Lu, Wang, & Xiao, 2008). Zein is the 

59 major storage protein of corn and comprises ≈ 45-50% of the protein in corn (Shukla, 

60 & Cheryan, 2001). It is insoluble in pure water, and has good film-forming ability, 

61 relatively low price and abundant sources (Liang et al., 2015; Bisharat et al., 2018; Gu 

62 et al., 2013). According to our previous research (Wang et al., 2017; Ni et al., 2018), 

63 KGM and zein could form a stable homogeneous dispersion with appropriate mixing 

64 formula, and KGM/zein blend films could be formed by solution casting. KGM/zein 

65 blend films showed better mechanical, thermal, water vapor and oxygen barrier 
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66 properties than pure KGM and zein films. The hydrophobicity of KGM/zein blend 

67 films was significantly stronger than that of pure KGM film (Wang et al., 2017). As 

68 an edible packaging material, KGM/zein blend films have promising prospects for 

69 development. 

70

71 Drying is one of most challenging steps in the production of films, and improper 

72 drying conditions (e.g. high temperature or a long time) may lead to a variety of 

73 drying-induced defects such as blisters, warping, and cracks (Zhou et al., 2018). 

74 Presently, the influence of drying conditions on films has received considerable 

75 attention. During the drying period, with solvent evaporation and solute migration, 

76 various phenomena may occur such as molecular assembly and interaction, a 

77 transition from a rubbery to a vitreous phase, a phase separation (thermodynamic 

78 incompatibility), or crystallization (Liu et al., 2015; Denavi et al., 2009). This can be 

79 largely impacted by the drying temperature, as the solvent evaporation efficiency is 

80 mainly affected by temperature. For example, increasing drying temperature (from 30 

81 to 50 °C) improved tensile stress at yield and elastic modulus of the konjac flour 

82 films, while decreasing its thickness, percent elongation at yield and water vapor 

83 permeability (Jomlapeeratikul, Poomsa-Ad, & Wiset, 2016). Liu et al. (2016) found 

84 drying temperature could be used to modulate the relative amount of triple helices and 

85 covalent bonds, and therefore control the physical properties of transglutaminase-

86 modified gelatin films. Moreover, with increased drying temperature, the network 

87 structure of the films became more compact. Homez-Jara et al. (2018) found that the 
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88 properties of chitosan edible film were largely influenced by drying temperature, e.g. 

89 low drying temperature (e.g. 2 and 25 °C) could improve moisture content, solubility, 

90 water vapor permeability, and optical properties; high drying temperature (40 °C) 

91 combined with higher chitosan concentration resulted in enhanced tensile strength, 

92 swelling power, and greenness value of the films, while diminishing their luminosity 

93 and decreasing the melting temperature.

94

95 As a continuation of our previous work on KGM/zein blend films (Wang et al., 2017), 

96 the objective of the current study was to assess the effect of drying temperature on 

97 structural and physicochemical properties of KGM/zein blend films. Films prepared 

98 under different drying conditions were characterized regarding microstructure, 

99 thermal, mechanical and water barrier properties. Aggregation and distribution of zein 

100 in films were observed using scanning electron microscopy (SEM), atomic force 

101 microscopy (AFM) and confocal laser scanning microscopy (CLSM). Thermal 

102 stability of films was analyzed through dynamic mechanical thermal analysis. The 

103 results obtained in this study could be used for function optimization of the films, and 

104 would contribute to a deeper understanding of the molecular interactions among 

105 KGM/zein blend films.

106

107 2. Materials and methods 

108 2.1 Materials 
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109 Konjac glucomannan (KGM, Mw = 9.67 × 105 Da) was purchased from Li Cheng 

110 Biological Technology Co., Ltd. (Hubei, China). Zein (MW = 2.5-4.5 × 104 Da) from 

111 corn was purchased from Beijing J & K Technology Co., Ltd. (Beijing, China). 

112 Glycerol (AR, purity ≧ 99%) and ethanol (AR, purity ≧ 99.5%) were purchased from 

113 Sinopharm (Chemical Reagent Co., Ltd., Shanghai, China). Rhodamine B (AR, purity 

114 ≧ 99%) was purchased from Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, 

115 China). 

116

117 2.2 Blend films preparation 

118 Zein solution was prepared by dissolving 0.1 g zein with glycerol (15% based on total 

119 amount of KGM and zein, w/w) in 20 mL of ethanol/water solvent (80:20, v/v) under 

120 constant stirring at 500 rpm using a magnetic stirrer (ZNCL-S-5D KEER instrument 

121 Co., Ltd., China) for 15 min at 25 °C. KGM solution was prepared by dissolving 0.9 g 

122 KGM in 100 mL water with a continuous stirring electric mixer (OS20-Pro 

123 SCILOGEX Co., Ltd., American) at 600 rpm at 60 °C for 1.5 h. The blend film-

124 forming solutions were prepared by slowly dropping zein solution into KGM solution 

125 at 60 °C for 30 min at stirring speed 1000 rpm. Then the blend solutions were 

126 carefully poured onto a glass plate (14 cm × 14 cm × 1.5 cm), and dried in an oven 

127 (DNG-9031A, Jing Hong Co., Ltd., Shanghai, China) to a moisture content 

128 approximately 9% (w.b.) in order to facilitate peeling films from the glass plate. The 

129 total content of KGM and zein was kept as 1.0 g per casting plate, and KGM/zein 

130 weight ratio was 9/1 (w/w). 
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131

132 The blend solutions were dried at different temperatures (40, 50, 60, 70 and 80 °C) in 

133 an oven, with corresponding drying time (24 h, 18 h, 14 h, 10 h and 7 h) to achieve 

134 approximate 9% moisture content (w.b.). According to drying temperature, the film 

135 samples were coded as 40 °C KZ, 50 °C KZ, 60 °C KZ, 70 °C KZ and 80 °C KZ, 

136 respectively. The impacts of air flow rate and moisture content of inlet air were not 

137 studied as the machine did not have corresponding functions to adjust/monitor them, 

138 and they were considered to be the same for all samples. Both with 15% glycerol 

139 addition based on total solid content, pure KGM film and pure zein film were 

140 prepared by separately drying 100 mL KGM solution (1%, w/v) and 20 mL zein 

141 solution (5%, w/v) on glass plates (14 cm × 14 cm × 1.5 cm) at 60 °C, as the reference 

142 samples. All film samples were conditioned at 25 ± 1 °C, 40 ± 2% relative humidity 

143 for 48 h before testing.

144

145 2.3 Atomic force microscopy

146 The topography of films was obtained using Veeco MultiMode atomic force 

147 microscopy (SPM9700, Shimadzu Co., Ltd., Japan) in tapping mode with silicon 

148 nitride probes. Resonance frequencies of 306-388 KHz were employed, and films 

149 were scanned at speed 1 Hz with resolution 256 × 256 pixels. AFM images with scan 

150 sizes of 5 μm × 5 μm were acquired. The roughness values of films were obtained.

151

152 2.4 Scanning electron microscopy 
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153 Samples were cut into 4 mm × 4 mm pieces for surface observation. The cross-section 

154 of samples was prepared by breaking samples (4 mm × 8 mm) after freezing in liquid 

155 nitrogen. The surface and cross-section of films were coated with gold at 7.5 Pa with 

156 thickness 20 nm, and then observed by Bio-Rad type SC 502 SEM (JEOL, Tokyo, 

157 Japan). The sputtered time was about 90 s and an accelerating voltage was 30KV. 

158 Images with the magnification of 1000 (cross-section) and 100 (surface) were 

159 recorded.

160

161 2.5 Confocal laser scanning microscopy

162 CLSM analysis (Leica TCS SP8) was used to visualize the distribution of zein in 

163 blend films. The zein was stained with rhodamine B (Rogers, Roos, & Goff, 2006). 

164 The dye solution was first prepared by mixing 4 mg of rhodamine B in 1 mL of water. 

165 Then 20 μL of the dye solution was added into 20 mL of zein solution, mixed at 150 

166 rpm for 15 min at 25 °C to ensure that the solution was homogenous, and also to give 

167 time for the dye to bind to the protein. The dyed zein solution was dropped into the 

168 KGM solution and dried to obtain the dyed films. Before placed on the confocal plate 

169 for observation, the dyed films were rinsed with distilled water three times and cut 

170 into small pieces (0.5 cm × 0.5 cm). Film samples were excited by a red laser beam at 

171 638 nm. Image-Pro Plus software (Media Cybernetics Inc., Maryland, America) was 

172 used to evaluate the particle size of zein in KGM/zein blend films based on 6 

173 representative CLSM images. A total of 300 points were counted for each sample. 
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175 2.6 Dynamic mechanical thermal analysis (DMTA)

176 The thermomechanical properties of films were carried out using a dynamic 

177 mechanical thermal analyzer (Diamond DMTA, PerkinElmer Instruments Co., Ltd., 

178 America) by the following methodology. Films were cut into 1 cm × 4 cm size and 

179 clamped in the tensile geometry of the instrument. A temperature sweep test from -25 

180 to 150 °C was performed at a heating rate of 3 °C/min, and fixed deformation 

181 amplitude of 10 μm (within the linear viscoelastic region). The test was performed in 

182 a single frequency mode (1 Hz). The storage modulus (Gˊ) and loss factor (tan δ) of 

183 each film sample were obtained as a function of temperature.

184

185 2.7 Mechanical properties

186 Measurement of film samples was done according to ASTM D882-09 standard 

187 method (ASTM, 2009). The tensile strength (TS) and elongation at break (EAB) of 

188 films were tested by a Texture Analyzer (TA. XT Plus, Stable Micro Systems Co., 

189 Ltd., UK). Films were cut into strips of 10 mm × 50 mm size for the measurement and 

190 clamped between grips. An initial grip length was 50 mm and cross-head speed was 

191 set at 0.5 mm/s. The curves of force (N) as a function of deformation（mm）were 

192 recorded using Texture Expert software. Film thickness (μm) was measured by a 

193 micrometer (Shanghai Liu-ling Instrument Company, Shanghai, China). TS (MPa) 

194 and EAB (%) were calculated using the following equations (1) and (2):

195
TS =

F
T × W       (1)

196 Where F is the maximum force, T is the thickness of the film, W is the width of the 
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197 film.

198
EAB =

L − L0

L0
× 100%1

(2)               

199 Where L0 is the starting length of the film, L is the length after stretching of the film. 

200

201 2.8 Water contact angle 

202 The wettability of films was evaluated by water contact angle measured by a contact 

203 angle meter (DSA25, Krüss Co., Ltd., Germany) equipped with a CCD camera and an 

204 image analysis software. A droplet of distilled water (2.0 μL) was deposited on the air 

205 side surface of the film (2.0 cm × 2.0 cm) with a precision syringe, and the drop 

206 image was recorded by a camera. The contact angle was measured after stabilizing for 

207 30 s.

208

209 2.9 Swelling and solubility in water 

210 Film sample (2 cm × 2 cm) was immersed in 30 mL deionized water at 25 °C for 5 h, 

211 then the wet sample was taken out and wiped with filter paper to remove excess liquid 

212 and weighed. Swelling ratio was calculated by the following formula:

213

Swelling (%) =
m2 − m1

m1
× 100

 (3)

214 Where m1 (mg) is the dry weight of the sample before immersion in water, m2 (mg) is 

215 the sample weight after immersion in water for 5 h.

216

217 Film sample (3 cm × 3 cm) was immersed in 100 mL deionized water at 25 °C for 24 
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218 h, then the sample was taken out and dried at 105 °C for 1 h. The water solubility of 

219 the film can be calculated by the following formula:

220

Water solubility (%) =
w2 − w1

w2
× 100

(4)

221 Where W2 (mg) is the dry weight of the sample before immersion in water, W1 (mg) is 

222 the dry weight of the sample after immersion in water. 

223

224 2.10 Water vapor permeability (WVP)

225 The water vapor permeability (WVP; 10-13·g·cm/(cm2·s·Pa)) of films was determined 

226 by water vapor permeability tester (PERME W3/031, Labthink international, China). 

227 The testing principle was according to Chinese National Standard GB/T 1037-1988. A 

228 sheet-cup (25 mm × 65 mm) was filled with deionized water (20 mL) before sealed 

229 with the film samples, and then put in the test chamber. The temperature and relative 

230 humidity of the test chamber were controlled at 25 °C and 90%, respectively. 

231

232 2.11 Statistical analysis

233 All experiments were performed at least in triplicate for each sample. Origin 2017 

234 (Originlab Corporation, Northampton MA) and Adobe Photoshop CS 6 (Adobe 

235 Systems, San Jose, CA) were used for statistical analysis and figure drawing. One-

236 way analysis of variance (ANOVA) was performed at p < 0.05 by the Tukey's 

237 multiple range test using SPSS (version 19, Endicott, NY, USA). 

238
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239 3. Results and discussion

240 3.1 Microstructure of films and zein particles distribution 

241 Significant surface topography differences were observed among different film 

242 samples (Fig. 1) by AFM, and the roughness parameters (Ra, average roughness; Rq, 

243 root-mean-square roughness) of films are shown in Table 1. Both pure KGM film 

244 (Ra=8.69 nm, Rq=12.99 nm) and zein film (Ra=4.46 nm, Rq=5.77 nm) had more 

245 smooth and homogenous surfaces compared with the blend films. For the blend films, 

246 with increased drying temperature, their Ra and Rq values showed a V-shape 

247 changing trend (Table 1). 40 °C KZ had the highest Ra（36.11 nm） and Rq (44.59 

248 nm), and 60 °C KZ had the lowest Ra (20.22 nm) and Rq (26.78 nm). This indicated 

249 that the blend film dried at 60 °C had more uniform and compact surface than other 

250 blend samples. 

251

252 Compared with that of pure films, the relatively rough film surfaces of blend films 

253 may be explained as follows. Before drying, zein particles were homogeneously 

254 distributed in KGM/zein film-forming solution as reported previously (Ni et al., 

255 2018). During the drying process, the evaporation rate of ethanol was faster than that 

256 of water and increased the hydrophilic character of the solvent, leading to enhanced 

257 hydrophobic interactions between zein molecules and a higher degree of zein 

258 aggregation (Bisharat et al., 2018; Kim, & Xu, 2008). Thus the surfaces of blend films 

259 were relatively rough, and this phenomenon could be affected by drying temperature 

260 due to different solvent evaporation situation. When the drying temperature was 
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261 increased from 40 to 60 °C, the roughness values of blend films had a downward 

262 changing trend. This might due to that film formation time became shorter as a result 

263 of the higher solvent evaporation rate, which reduced the time for zein migration and 

264 aggregation and resulted in smaller zein aggregates. Therefore the film surfaces 

265 became less rough. However, when the drying temperature was further increased from 

266 60 to 80 °C, the blend film surfaces became rougher, indicating increased zein 

267 aggregates. Cabra et al. (2008) reported temperature-dependent behavior of the Z19 α-

268 zein aggregates. They found there were increments in protein aggregation during 

269 heating and this was particularly evident in the 60-80 °C range, where the increment 

270 in high molecular weight aggregates and the decrement in the monomeric form were 

271 higher. Similarly, protein aggregation may be more favored with higher temperature 

272 in the range 60-80 °C, though with shorter evaporation time.

273

274 The microstructures of film surface and cross-section were observed by SEM (Fig. 2). 

275 For pure KGM film and zein film, the surface and cross-section were smooth and 

276 dense, whereas some pores appeared in pure zein film due to residual air. For blend 

277 films, the surface was rougher compared with that of pure films, with particles evenly 

278 distributed and embedded in the films. Among blend films, the surface of 60 °C KZ 

279 was relatively smooth, and the cross section of 40 °C KZ showed the loosest structure 

280 with the largest size of particles.

281

282 To further clarify the impact of drying temperature on zein aggregation in the blend 
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283 films, a CLSM microstructure observation through protein staining (Fig. 3) was 

284 performed to visualize zein association states, and size distribution map of zein 

285 particles was also drawn (Fig. 4). Homogeneous distribution of zein particles in KGM 

286 continuous matrix was observed in all blend films (Fig. 3), and clearly 60 °C KZ 

287 showed the smallest zein particles. In the drying process, protein molecules unfolded 

288 due to heating, and in solvent exposure of hydrophobic residues and sulfhydryl groups 

289 led to the conformational changes and aggregation of protein particles (Broersen et 

290 al., 2006). A wave crest (5-20 μm) was found containing 62%, 64.7%, 80%, 77.3% 

291 and 73.3% of total zein particles in 40 °C KZ, 50 °C KZ, 60 °C KZ, 70 °C KZ and 80 

292 °C KZ, respectively. The size of zein particles decreased with increased drying 

293 temperature from 40 to 60 °C, but increased with drying temperature from 60 to 80 °C. 

294 Thus drying temperature 60 °C g resulted in the most uniform and minimum zein 

295 particles in the films, and was preferred for film preparation. This was in agreement 

296 with previous analysis on AFM results. These results indicate that drying temperature 

297 is an important factor for KGM/zein blend film preparation due to its impact on zein 

298 aggregation.

299

300 3.2 Thermomechanical properties

301 The thermomechanical behavior of films was studied using a dynamic mechanical 

302 thermal analyzer (DMTA). The variation of storage modulus (Gˊ) and loss factor 

303 (tan δ) against temperature for pure KGM film, pure zein film, and the blend films 

304 were shown in Fig. 5. As the testing temperature increased, the Gˊ values of all 
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305 samples decreased, suggesting reduced stiffness and increased segmental motion of 

306 polymers. With increased drying temperature, the Gˊ values of the blend films 

307 decreased first and then increased, and that of 60 °C KZ was the lowest. This 

308 difference can possibly be attributed to the internal microstructure differences.

309

310 When the temperature rises to the glass transition point (Tg), the molecules enhance 

311 thermal motion due to sufficient thermal energy, and the free volume begins to 

312 expand, changing from freezing stage to moving stage. At this temperature, a sharp 

313 drop in the storage modulus is observed where the polymer changes from a glassy 

314 state to a rubber state. The loss factor (tan δ) is very sensitive to molecular mobility, 

315 thus Tg is usually determined as the temperature corresponding to the maximum of 

316 tan δ peak (α-relaxations) (Qiao, Tang, & Sun, 2011; Motedayen, Khodaiyan, & 

317 Salehi, 2013). Tg of pure KGM film and zein film were 79.8 and 108.1 °C, 

318 respectively. The lower Tg of KGM film in comparison to that of zein film may be 

319 due to more hydrophilic nature and flexibility of polymer chains. Blending zein with 

320 other hydrophilic polymers can often result in the composite films with lower Tg, e.g., 

321 polycaprolactone, whey protein concentrate (Corradini et al., 2004; Ghanbarzadeh, & 

322 Oromiehi, 2009). Similarly, 40 °C KZ, 50 °C KZ, 60 °C KZ, 70 °C KZ and 80 °C KZ 

323 showed Tg at 81.4, 89.7, 103.4, 96.5 and 90.8 °C, respectively (Fig. 5), and all were 

324 lower than the Tg of zein film. Change in Tg can also be an indicator of the 

325 compatibility of polymers. If two polymers are compatible, there is only one Tg in 

326 their mixtures; if they are incompatible, phase separation occurs and two Tg are 

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



327 observed in their mixtures, whose values are close to that of each component 

328 (Motedayen, Khodaiyan, & Salehi, 2013). All blend films had only one α-relaxations 

329 (a single Tg), indicating good miscibility/compatibility between the film components. 

330 With drying temperature from 40 to 60 °C, Tg increased from 81.4 to 103.4 °C. 

331 However, further higher drying temperature (60-80 °C) caused Tg decrease (from 

332 103.4 to 90.8 °C). The shift of the main relaxation to a higher temperature usually 

333 indicates restricted molecular movement (Piyada, Waranyou, & Thawien, 2013). Tg 

334 of 60 °C KZ was the highest, and this may indicate that at this unique drying 

335 temperature, the film components had the highest compatibility and strongest 

336 intermolecular interactions. This can also be supported by previous results. As zein 

337 particles in 60 °C KZ were the smallest, they should have the largest surface area in 

338 the KGM continuous phase, benefiting molecular interactions due to the greater 

339 contact opportunities.

340

341 3.3 Tensile strength (TS) and elongation at break (EAB) 

342 The dependence of the thickness, tensile strength (TS) and elongation at break (EAB) 

343 on drying temperature for the blend films were shown in Fig. 6. The thickness of 

344 blend films decreased with increased drying temperature, and the thickness of 80 °C 

345 KZ was even lower than that of pure KGM film (Fig. 6a). This was explained by that 

346 higher drying temperature may lead to denser film structure, like alginate films 

347 (Bagheri, Radi, & Amiri, 2019), konjac flour films (Jomlapeeratikul, Poomsa-Ad, & 

348 Wiset, 2016) and whey protein films (Alcantara et al., 1998). EAB values of all blend 
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349 films were higher than those of pure KGM film and zein film (Fig. 6b), due to 

350 hydrogen bond interactions and Maillard reactions between KGM and zein molecules 

351 (Wang et al., 2017). This also supported the homogeneous distribution of zein 

352 particles in blend matrix. TS of all blend films was higher than that of pure zein film, 

353 and only TS of 60 °C KZ and 70 °C KZ were higher than that of pure KGM film. 

354 With increased drying temperature, a Λ-shape changing trend was found for TS and 

355 EAB of blend films, and 60 °C drying temperature resulted in the greatest TS and 

356 EAB values. This again supported the strongest interactions and the highest 

357 compatibility between KGM and zein at this drying temperature. 

358

359 3.4 Surface hydrophobicity and water vapor permeability (WVP) 

360 Water contact angle was determined to evaluate the surface hydrophobicity of films. 

361 Generally, films with larger contact angle values have higher surface hydrophobicity 

362 and lower surface wettability (Gu, Wang, & Zhou, 2013). Pure KGM film, pure zein 

363 film, and blend films exhibited significant differences in water contact angle (Fig. 7a). 

364 Pure KGM film and zein film showed the lowest and highest surface hydrophobicity. 

365 For the blend films, water contact angle values increased first and then decreased with 

366 increased drying temperature. The largest contact angle value was observed in 60 °C 

367 KZ and 70 °C KZ, indicating 60 °C KZ and 70 °C KZ had the highest surface 

368 hydrophobicity among blend films. This result was probably ascribed to the stronger 

369 intermolecular interactions between KGM and zein at this drying temperature (60, 70 

370 °C), as well as the lower surface roughness of films.

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003



371

372 Water vapor permeability (WVP) is an important property of packaging materials and 

373 is influenced by the hydrophobic or hydrophilic nature of the material and the 

374 presence of void spaces (Wang, & Padua, 2005). During water transmission through 

375 the films, the absorbed water could plasticize the film matrix, leading to a less dense 

376 structure where the chain ends had greater mobility, and thus increased the 

377 permeability of films (Gu, Wang, & Zhou, 2013). Pure KGM film had the highest 

378 WVP value due to its high hydrophilic nature, pure zein film had the lowest WVP 

379 because of its high hydrophobicity, and WVP values of the blend films were in the 

380 middle (Fig. 7b). Among blend films, the WVP values of 40 °C KZ, and 50 °C KZ 

381 were higher than that of 60 °C KZ, 70 °C KZ and 80 °C KZ. This was ascribed to that 

382 the distribution of large zein particles in 40 °C KZ and 50 °C KZ shortened the water 

383 diffusion path, as well as 40 °C KZ and 50 °C KZ had higher hydrophilicity. In many 

384 studies, the decrease in the WVP of a nanocomposite film was explained by an 

385 extended diffusive trajectory (Oymaci, & Altinkaya, 2016). Ozcalik and Tihminlioglu 

386 (2013) reported when layered silicates effectively distributed in the polymer film and 

387 created impermeable obstacles to permeating water vapor molecules, the effective 

388 path that a permeating water molecule must travel increased and the water vapor 

389 permeability decreased. 

390

391 3.5 Swelling and solubility properties

392 The swelling and solubility of films in water were measured to assess the water 

393 resistance properties of films (Fig. 8), demonstrating the hydrophobicity from another 
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394 aspect. Pure KGM film could not be tested as it was quickly dissolved. Pure zein film 

395 showed the lowest swelling and solubility, indicating the greatest hydrophobicity. 

396 Both swelling and solubility curves had a clear V-shape changing trend in the blend 

397 films. Increased drying temperature (40-60 °C) led to a rapid decrease in both 

398 swelling and solubility, followed by an increase at 60-80 °C. Therefore 60 °C KZ 

399 showed the highest hydrophobicity indicated by the highest water resistance 

400 properties, in agreement with the results of water contact angle of films. This may 

401 result from the changes in film microstructure and intermolecular forces. 

402

403 4. Conclusion

404 The zein particles were evenly dispersed in KGM/zein blend films, and the particle 

405 size was significantly affected by drying temperature. Compared with other drying 

406 temperatures, 60 °C was found to confer the blend film with the superior properties, 

407 such as the highest tensile strength, elongation at break, water contact angle, the 

408 lowest water vapor permeability, swelling and solubility. Either higher or lower 

409 drying temperature led to weakened film properties. These phenomena were 

410 explained by that drying temperature 60 °C may contribute to the strongest 

411 intermolecular interactions between KGM and zein in the films, as the most uniform 

412 and smooth film surface, minimum size of zein aggregates in the film were observed 

413 with this drying temperature. Also at this drying temperature, the two components 

414 may reach the highest compatibility, as Tg was the highest at this temperature. The 

415 results indicated that drying temperature was of great importance for film preparation, 
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416 as they significantly impacted the intermolecular interactions among film 

417 components, and it may be used to modulate the physical properties of the film for 

418 future applications.
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