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We consider a stochastic SIR (susceptible → infective → recov-
ered) epidemic defined on a configuration model random graph, in
which infective individuals can infect only their neighbours in the
graph during an infectious period which has an arbitrary but speci-
fied distribution. Central limit theorems for the final size (number of
initial susceptibles that become infected) of such an epidemic as the
population size n tends to infinity, with explicit, easy to compute ex-
pressions for the asymptotic variance, are proved assuming that the
degrees are bounded. The results are obtained for both the Molloy-
Reed random graph, in which the degrees of individuals are deter-
ministic, and the Newman-Strogatz-Watts random graph, in which
the degrees are independent and identically distributed. The central
limit theorems cover the cases when the number of initial infectives
either (a) tends to infinity or (b) is held fixed as n → ∞. In (a) it
is assumed that the fraction of the population that is initially in-
fected converges to a limit (which may be 0) as n → ∞, while in
(b) the central limit theorems are conditional upon the occurrence of
a large outbreak (more precisely one of size at least logn). Central
limit theorems for the size of the largest cluster in bond percolation
on Molloy-Reed and Newman-Strogatz-Watts random graphs follow
immediately from our results, as do central limit theorems for the
size of the giant component of those graphs. Corresponding central
limit theorems for site percolation on those graphs are also proved.

1. Introduction. There has been considerable work in the past two
decades on models for the spread of epidemics on random networks; see,
for example, the recent book Kiss et al. (2017). The usual paradigm is that
individuals in a population are represented by nodes in a random graph and
infected individuals are able to transmit infection only to their neighbours
in the graph. The graph is often constructed using the configuration model
(see, for example, van der Hofstad (2016), Chapter 7), which allows for
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2 BALL

an arbitrary but specified degree distribution. The most-studied type of epi-
demic model is the SIR (susceptible → infective → recovered) model. In this
model individuals are classified into three types: susceptibles, infectives and
recovered. If a susceptible individual is contacted by an infective then it too
becomes an infective and remains so for a time, called its infectious period,
that is distributed according to a non-negative random variable I having an
arbitrary but specified distribution. An infective individual recovers at the
end of its infectious period and is then immune to further infection. During
its infectious period, an infective contacts its susceptible neighbours in the
graph independently at the points of Poisson processes having rate λ. The
graph is assumed to be static and the population closed (i.e. there are no
births or deaths), so eventually the epidemic process terminates. The final
size of the epidemic is the number of initial susceptibles that are infected
during its course. The final size is a key epidemic statistic, not only as a
measure of the impact of an epidemic but also in an inferential setting, since
often it can be observed more reliably than the precise temporal spread. The
main aim of this paper is to develop central limit theorems for the final size
of an SIR epidemic on configuration model graphs as the population size
n → ∞.

The configuration model, which was introduced by Bollobás (1980), is a
model for random graphs with a given degree sequence. There are two dis-
tinct approaches for constructing configuration model graphs with a given
degree distribution as n → ∞. In both approaches, individuals are assigned
a number of half-edges, corresponding to their degree, and then these half-
edges are paired uniformly at random. In Molloy and Reed (1995), the de-
grees of individuals are prescribed deterministically whilst in Newman et
al. (2001) they are i.i.d. (independent and identically distributed) copies of
a random variable D, that describes the limiting degree distribution. We
refer to the former as the MR random graph and to the latter as the NSW
random graph. Subject to suitable conditions on the degree sequences in the
MR model and D in the NSW model, law of large number limits for SIR
epidemics on the two graphs are the same. That is not the case for central
limit theorems as, for finite n, there is greater variability in the degrees of
individuals in the NSW model than in the MR model; indeed, in the NSW
model, such variability is of the same order of magnitude as the variabil-
ity in the epidemic. Thus, though the asymptotic means are the same, the
asymptotic variances in the central limit theorems for final size are greater
for the epidemic on the NSW random graph.

There have been numerous studies, some fully rigorous and some heuris-
tic, of SIR epidemics on configuration model networks making various as-
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 3

sumptions concerning the infectious period random variable I. For example,
assuming I is constant, Andersson (1998) derives a law of large numbers
for the final size of an epidemic on an NSW random graph when a strictly
positive fraction of the population is initially infected in the limit as n → ∞
and Britton et al. (2007) obtain a similar result for epidemics on an MR
random graph initiated by a single infective. In the latter case, a large out-
break is possible only if the basic reproduction number R0 > 1; see (2.8)
in Section 2.4. In a highly influential paper, Newman (2002) uses heuristic
percolation arguments to obtain a number of results, including the fraction
of the population infected by a large outbreak, for SIR epidemics on NSW
random graphs with I having an arbitrary but specified distribution. Sev-
eral authors have studied the case when I has an exponential distribution,
so the model becomes Markovian. Decreusefond et al. (2012) obtain a law
of large numbers type result for the epidemic process on an NSW random
graph with a strictly positive fraction initially infected, which yields a rigor-
ous proof of the deterministic approximation of Volz (2008) (see also Miller
(2011) and Miller et al. (2012)). Bohman and Picollelli (2012) obtain law of
large numbers results for both the process and final size of an epidemic with
one initial infective on an MR random graph with bounded degrees. Janson
et al. (2014) obtain similar results under weaker conditions on the degree
sequences considering the cases when the fraction initially infected, in the
limit as n → ∞, is either strictly positive or zero (assuming of course there
is at least one initial infective). In the latter case, the limiting “determin-
istic” process involves a random time translation reflecting the time taken
for the number of infectives to reach order n; a similar result is obtained
by Barbour and Reinert (2013) assuming a bounded degree sequence and
an arbitrary but specified distribution for I.

There has been very little work to date on central limit theorems for SIR
epidemics on configuration model networks. A functional central limit the-
orem for the SI epidemic (in which P(I = ∞) = 1, so infectives remain
infectious forever) on an MR random graph with unbounded degrees is ob-
tained by KhudaBukhsh et al. (2017), who note that their method is not
straightforward to extend to an SIR model. Assuming that I follows an expo-
nential distribution and bounded degrees, Ball et al. (2019) use an effective
degree approach (Ball and Neal (2008)) and density dependent population
processes (Ethier and Kurtz (1986), Chapter 11) to obtain functional cen-
tral limit theorems for SIR epidemics on MR and NSW random graphs, in
which susceptible individuals can also drop their edges to infective neigh-
bours. They also conjecture central limit theorems for the final size of such
epidemics (and hence as a special case for the final size of standard SIR
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epidemics, without dropping of edges), assuming either a strictly positive
fraction or a constant number of initial infectives (in which case the central
limit theorem is conditional on the occurrence of a large outbreak). However,
the arguments are not fully rigorous and the result for a constant number
of initial infectives is based purely on the existence of equivalent results
for other (non-network) SIR epidemic models. Another limitation of Ball
et al. (2019) is the assumption that I is exponentially distributed, which is
unrealistic for most real-life diseases.

In the present paper, we address these shortcomings and derive fully rig-
orous central limit theorems for the final size of SIR epidemics on MR and
NSW random graphs having bounded degrees, when the infectious period I
follows an arbitrary but specified distribution. We consider the cases when
the limiting fraction of the population is (i) strictly positive and (ii) zero.
For the latter we treat the situations where the number of initial infectives
either (i) is held fixed independent of n or (ii) tends to ∞ as n → ∞. The
mean parameter ρ in the central limit theorems, which coincides with the
corresponding law of large numbers limit, depends on the solution z of a
non-linear equation (see (2.2) and (2.9) in Section 2.4). Given z, the vari-
ance parameter in the central limit theorems is fully explicit and hence easy
to compute.

If I is constant, say P(I = 1) = 1 then the above SIR model is essentially
bond percolation with probability π = 1 − e−λ and if P(I = ∞) = π =
1 − P(I = 0) then it is closely related to site percolation with probability
π; see, for example, Durrett (2007), page 15, and Janson (2009a). Central
limit theorems for the size of the giant component (largest cluster) of bond
percolation on the MR and NSW random graphs follow immediately from
our results. (Corresponding theorems for site percolation are also obtained
using our methodology.) Further, setting π = 1 yields central limit theorems
for the giant component of those graphs (Remark 2.6); cf. Barbour and
Röllin (2019) who obtain a central limit theorem for the giant component
of the MR random graph, and Ball and Neal (2017) and Janson (2018)
who derive respectively the asymptotic variance and a central limit theorem
for the giant component of MR and NSW random graphs, all allowing for
unbounded degrees.

The proofs involve constructing the random graph and epidemic on it
simultaneously, modifying the infection mechanism so that when a suscep-
tible is infected it decides which of its half-edges it will try to infect along
(its remaining half-edges become recovered half-edges), with the times of
those infection attempts (relative to the time of infection of the susceptible)
being realisations of i.i.d. exponential random variables. The distribution of
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 5

the final outcome of the epidemic, and hence also its final size, is invariant
to this modification. The process describing the evolution of the numbers
of susceptibles of different degrees, infective half-edges and recovered half-
edges is an asymptotically density dependent population process (Ethier and
Kurtz (1986), Chapter 11, and Pollett (1990)). The asymptotic distribution
of the final outcome of the epidemic is studied by considering a boundary
crossing problem for a random time-scale transformation of that process.
The proofs extend, at least in principle, to SIR epidemics and percolation
on extensions of the configuration model that include fully-connected cliques
(Trapman (2007), Gleeson (2009), Ball et al. (2010) and Coupechoux and
Lelarge (2014)), though explicit calculation of the asymptotic variances may
be difficult.

The remainder of the paper is organised as follows. The MR and NSW
random graphs are defined in Section 2.1 and the SIR epidemic model is
described in Section 2.2. The main central limit theorems (Theorems 2.1-2.3
for SIR epidemics and Theorem 2.7 for percolation) are stated in Section 2.4,
together with some remarks giving comparisons of their variance parame-
ters and applications to giant components indicated above. Some numerical
illustrations, which show that the central limit theorems can yield good ap-
proximations even for relatively small graphs, are given in Section 3. The
proofs are given in Section 5. They make extensive use of asymptotically
density dependent population processes and in particular require a version
of the functional central limit theorem for such processes to include asymp-
totically random initial conditions. For ease of reference, the required results
for such processes are collected together in Section 4. Some brief concluding
comments are given in Section 6. Calculation of the asymptotic variances
for the central limit theorems is lengthy, though straightforward, so this and
a few other details are deferred to an appendix.

1.1. Notation. All vectors are row vectors and ⊤ denotes transpose. With
the dimension being obvious from the context, I denotes an identity matrix
and 0 and 1 denotes vectors all of whose elements are 0 and 1, respectively.
For x ∈ R, the usual floor and ceiling functions are denoted by bxc and dxe,
respectively. Thus bxc is the greatest integer ≤ x and dxe is the smallest
integer ≥ x. For a positive integer k, the kth derivative of a real-valued
function f is denoted by f (k). The cardinality of a set A is denoted by |A|.
Sums are zero if vacuous. We use

p−→,
a.s.−→ and

D−→ to denote convergence
in probability, convergence almost sure and convergence in distribution, re-
spectively.

Further, U(0, 1) denotes a uniform random variable on (0, 1); Exp(1) de-
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notes an exponential random variable with mean 1; N(0, σ2) denotes a uni-
variate normal random variable with mean 0 and variance σ2; and N(0,Σ)
denotes a multivariate normal random variable with mean vector 0 and vari-
ance matrix Σ, whose dimension again is obvious from the context. For a pos-
itive integer n and p ∈ [0, 1], Bin(n, p) denotes a binomial random variable
with n trials and success probability p. Also, if I is a non-negative random
variable and λ ∈ (0,∞) then Bin(n, 1−e−λI) denotes a mixed-Binomial ran-
dom variable obtained by first sampling I1 from the distribution of I and
then, given I1, sampling independently from Bin(n, 1 − e−λI1). Similarly,
if I is a non-negative random variable and D is a non-negative integer-
valued random variable, then Bin(D, 1 − e−λI) denotes a mixed-Binomial
random variable, where the realisations of D and I are independent. Thus,
if X ∼ Bin(D, 1− e−λI), then

P(X = k) =

∞∑
d=k

P(D = d)E

[(
d

k

)
(1− e−λI)ke−(d−k)λI

]
(k = 0, 1, . . . ).

Note that we allow the possibility D = 0.

2. Model and main results.

2.1. Random graph. Consider a population of n individuals labelled 1, 2, . . . , n.

For i = 1, 2, . . . , n, let D
(n)
i denote the degree of individual i. We assume

that 0 ≤ D
(n)
i ≤ dmax for all i, i.e. that there is a maximum degree dmax. In

the MR random graph the degrees are prescribed, while in the NSW random

graph D
(n)
1 , D

(n)
2 , . . . , D

(n)
n are i.i.d. copies of a random variable D having

probability mass function given by P(D = i) = pi (i = 0, 1, . . . , dmax).
Under both models, the network (random graph) is formed by attaching

D
(n)
i half-edges to individual i, for i = 1, 2, . . . , n, and then pairing up

the D
(n)
1 + D

(n)
2 + · · · + D

(n)
n half-edges uniformly at random to give the

edges in the random graph, which we denote by G(n). In the NSW model, if

D
(n)
1 + D

(n)
2 + · · · + D

(n)
n is odd there is a left-over stub, which is ignored.

(Of course in the MR model the prescribed degrees can be chosen so that

D
(n)
1 +D

(n)
2 + · · ·+D

(n)
n is even.)

We are interested in asymptotic results as the number of individuals n →
∞. In the MR random graph, for i = 0, 1, . . . , dmax, let v

(n)
i =

∑n
k=1 1{D(n)

k =i}
be the number of individuals having degree i. We assume that

(2.1) lim
n→∞

√
n
(
n−1v

(n)
i − pi

)
= 0 (i = 0, 1, . . . , dmax).
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 7

Note that (2.1) implies limn→∞ n−1v
(n)
i = pi (i = 0, 1, . . . , dmax).

In both models the random graph may have some imperfections, specif-
ically self-loops and multiple edges, but they are sparse in the network as
n → ∞; more precisely, the number of such imperfections converges in dis-
tribution to a Poisson random variable as n → ∞ (Durrett (2007), Theorem
3.1.2, Janson (2009b) and Janson (2014)). It follows that law of large num-
bers results continue to hold if the graph is conditioned on being simple.
However, that is not necessarily the case for convergence in distribution;
see Janson (2010), Remark 1.4, and Barbour and Röllin (2019), Remark
2.5. Very recently, Janson (2019) gives conditions under which a switching
construction can be used to transfer results on convergence in distribution
to graphs conditioned on being simple. In Section 5.7, we outline how they
can be used to show that our central limit theorems continue to hold when
the random graph is conditioned on being simple.

2.2. SIR epidemic. An SIR epidemic, denoted by E(n), is constructed on
the above network as follows. Initially, at time t = 0, a number of individuals
are infective and the remaining individuals are susceptible. (Precise state-
ments concerning the initial infectives are made later.) Distinct infectives
behave independently of each other and of the construction of the network.
Each infective remains infectious for a period of time that is distributed
according to a random variable I, having an arbitrary but specified distri-
bution, after which it becomes recovered. During its infectious period, an
infective contacts its neighbours in the network independently at the points
of Poisson processes each having rate λ. Thus the individual-to-individual
infection rate is λ and the probability that a given neighbour is contacted is
pI = 1 − ϕ(λ), where ϕ(θ) = E[exp(−θI)] (θ ≥ 0) is the Laplace transform
of I. If a contacted individual is susceptible then it becomes an infective,
otherwise nothing happens. The epidemic ends when there is no infective
individual in the population.

For t ≥ 0, let X
(n)
i (t) be the number of degree-i susceptible individuals at

time t (i = 0, 1, . . . , dmax) and let Y (n)(t) be the total number of infectives
at time t. Let τ (n) = inf{t ≥ 0 : Y (n)(t) = 0} be the time of the end of the

epidemic. Then T
(n)
i = X

(n)
i (0)−X

(n)
i (τ (n)) is the total number of degree-i

susceptibles that are infected by the epidemic. Let T (n) =
∑dmax

i=0 T
(n)
i be the

total number of susceptibles infected by the epidemic, i.e. the final size of
the epidemic. We are primarily interested in the asymptotic distribution of
T (n) as n → ∞.

The proofs allow for the possibility that pI = 1, i.e. P(I = ∞) = 1. In
that case the set of individuals that are infected during the epidemic E(n)
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comprises all individuals in the components of G(n) that contain at least
one initial infective. Thus central limit theorems for the size of the giant
component in MR and NSW random graphs follow immediately from our
results; see Remark 2.6 below.

2.3. Bond and site percolation. In bond percolation on G(n), each edge in
G(n) is deleted independently with probability 1−π, while in site percolation
G(n), each vertex (together with all incident edges) is deleted independently
with probability 1−π (Janson (2009a)). Interest is often focused on the size,
C(n) say, of the largest connected component in the resulting graph.

2.4. Main results. For i = 0, 1, . . . , dmax, let a
(n)
i be the number of degree-

i initial infectives in the epidemic E(n) and let a(n) =
∑dmax

i=0 a
(n)
i denote the

total number of initial infectives. In the epidemic on the MR random graph,

we assume that a
(n)
0 , a

(n)
1 , . . . , a

(n)
dmax

are prescribed. In the epidemic on the

NSW random graph, we assume that a(n) is prescribed and that the a(n)

initial infectives are chosen by sampling uniformly at random without re-
placement from the n individuals in the population.

Let ϵ(n) = n−1a(n) and ϵ
(n)
i = n−1a

(n)
i (i = 0, 1, . . . , dmax). Suppose that

ϵ(n) → ϵ as n → ∞ and that limn→∞
√
n(ϵ(n) − ϵ) = 0. For the epidemic

on the MR random graph, suppose further that, for i = 0, 1, . . . , dmax, there

exists ϵi such that limn→∞
√
n(ϵ

(n)
i − ϵi) = 0. For the epidemic on the NSW

random graph, let ϵi = ϵpi (i = 0, 1, . . . , dmax). Let µD = E[D], σ2
D = var(D)

and, for s ∈ [0, 1], fD(s) =
∑dmax

i=0 pis
i and fDϵ(s) =

∑dmax
i=0 (pi − ϵi)s

i. Let
qI = 1 − pI = ϕ(λ) be the probability that an infective fails to contact a

given neighbour and q
(2)
I = ϕ(2λ) be the probability that a given infective

fails to contact two given neighbours.
The first theorem concerns the case ϵ > 0, so in the limit as n → ∞

a strictly positive fraction of the population is initially infective. Let T
(n)
MR

and T
(n)
NSW denote the final size of the epidemic E(n) on the MR and NSW

random graphs, respectively. Let z be the unique solution in [0, 1) of

(2.2) z − qI = µ−1
D pIf

(1)
Dϵ

(z)

and

(2.3) ρ = 1− ϵ− fDϵ(z).

Theorem 2.1. Suppose that ϵ ∈ (0, 1), piϵi > 0 for at least one i > 0
and that p1 − ϵ1 > 0 if pI = 1. Then, as n → ∞,

√
n
(
n−1T

(n)
MR − ρ

)
D−→ N(0, σ2

MR)
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 9

and √
n
(
n−1T

(n)
NSW − ρ

)
D−→ N(0, σ2

NSW),

where

σ2
MR = h(z)2

{[
(pIqI + 2(z − qI)

2
]
µD − p2I

[
f
(1)
Dϵ

(z2) + z2f
(2)
Dϵ

(z2)
]}

(2.4)

+ h(z)
[
2pIzf

(1)
Dϵ

(z2)− (z − qI)µD

]
+ 1− ϵ− ρ− fDϵ(z

2)

+
(
q
(2)
I − q2I

)
h(z)2

[
f
(2)
D (1)− f

(2)
Dϵ

(z)
]
,

with

(2.5) h(z) =
p−1
I (qI − z)

1− pIµ
−1
D f

(2)
Dϵ

(z)
,

and

σ2
NSW =

ρ(1− ϵ− ρ)

1− ϵ
− h(z)(z − qI)

(
1− 2ϵ+

2ϵρ

1− ϵ

)
µD

(2.6)

+ h(z)2
{
[pIqI − 2z(z − qI)]µD + (z − qI)

2

(
σ2
D +

1− 2ϵ

1− ϵ
µ2
D

)}
+
(
q
(2)
I − q2I

)
h(z)2

[
f
(2)
D (1)− (1− ϵ)f

(2)
D (z)

]
,

with

(2.7) h(z) =
p−1
I (qI − z)

1− pIµ
−1
D (1− ϵ)f

(2)
D (z)

.

The second theorem concerns the case when the number of initial infec-
tives is held fixed as n → ∞, so ϵ = 0. More specifically, in the epidemic

on the MR random graph, we assume that a
(n)
i = ai (i = 0, 1, . . . , dmax)

for all n ≥ a =
∑dmax

i=1 ai and in the epidemic on the NSW random graph,
we assume that a(n) = a for all n ≥ a. It is well known that, for large n,
the process of infectives in the early stages of such an epidemic can be ap-
proximated by a Galton-Watson branching process, B say, in which, except
for the initial generation, the offspring distribution is Bin(D̃ − 1, 1− e−λI),
where D̃ and I are independent and D̃ has the size-biased degree distribu-
tion P(D̃ = k) = µ−1

D kpk (k = 1, 2, . . . , dmax); see, for example, Ball and Sirl
(2013). This offspring distribution has mean

(2.8) R0 = µD̃−1pI =
(
µD + µ−1

D σ2
D − 1

)
pI ,
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where µD̃−1 = E[D̃ − 1]. The quantity R0 is called the basic reproduction
number of the epidemic.

For E(n), we say that a major outbreak occurs if and only if the event
G(n) = {T (n) ≥ log n} occurs. Now limn→∞ P(G(n)) = P(B = ∞), where B
is the total progeny (not including the initial generation) of the branching
process B (cf. Theorem 5.1). Thus, in the limit as n → ∞, a major outbreak
occurs with non-zero probability if and only if R0 > 1.

Suppose that that R0 > 1. Now let z be the unique solution in [0, 1) of

(2.9) z − qI = µ−1
D pIf

(1)
D (z)

and ρ = 1−fD(z). Note that if pI ∈ (0, 1), or pI = 1 and p1 > 0, then z > 0.

Theorem 2.2. Suppose that R0 > 1 and, if pI = 1 then p1 > 0. Then,
as n → ∞, √

n
(
n−1T

(n)
MR − ρ

)
|G(n) D−→ N(0, σ̃2

MR)

and √
n
(
n−1T

(n)
NSW − ρ

)
|G(n) D−→ N(0, σ̃2

NSW),

where σ̃2
MR is given by (2.4) and (2.5), with fDϵ replaced by fD, and σ̃2

NSW

is obtained by setting ϵ = 0 in (2.6) and (2.7).

The next theorem concerns the case when ϵ = 0 but the number of initial
infectives a(n) → ∞ as n → ∞.

Theorem 2.3. Suppose that R0 > 1, ϵ = 0,
∑dmax

i=1 a
(n)
i → ∞ as n → ∞

and p1 − ϵ1 > 0 if pI = 1. Then, as n → ∞,

√
n
(
n−1T

(n)
MR − ρ

)
D−→ N(0, σ̃2

MR)

and √
n
(
n−1T

(n)
NSW − ρ

)
D−→ N(0, σ̃2

NSW),

where σ̃2
MR and σ̃2

NSW are as in Theorem 2.2.

Remark 2.4. Note that q
(2)
I = q2I if I is almost surely constant, other-

wise q
(2)
I > q2I by Jensen’s inequality. Also f

(2)
D (1) − f

(2)
Dϵ

(z) > 0, so as one
would expect on intuitive grounds, if pI is held fixed, the asymptotic variance
σ2
MR is smallest when the infectious period is constant. A similar comment

holds for σ2
NSW, σ̃2

MR and σ̃2
NSW.
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Remark 2.5. Although it is not transparent from (2.4) and (2.6), it
is seen easily from the proof that, again as one would expect on intuitive
grounds, σ2

NSW ≥ σ2
MR and σ̃2

NSW ≥ σ̃2
MR, with strict inequalities unless the

support of the degree random variable D is concentrated on a single point
(when the two models are identical); see Appendix B.4.4.

Remark 2.6. In the setting of Theorem 2.2, if a(n) = 1 and pI = 1 then
with probability tending to 1 as n → ∞, the event G(n) occurs if and only
if the initial infective belongs to the giant component of G(n). Thus setting
pI = 1 in Theorem 2.2 yields central limit theorems for giant components of
MR and NSW random graphs.

The final theorem is concerned with percolation. Let R0 be given by (2.8)

with pI = π. Let C
(n)
MR,B and C

(n)
MR,S denote the size of the largest con-

nected component after bond and site percolation, respectively, on an MR

graph; define C
(n)
NSW,B and C

(n)
NSW,S analogously for the NSW graph. Then, if

R0 > 1, for each of these four choices for C(n), there exists ϵ > 0 such that
limn→∞ P(C(n) ≥ ϵn) = 1; see Janson (2009a), Theorems 3.5 and 3.9, which
also give law of large number limits for the C(n) under weaker conditions
than here. The following theorem gives associated central limit theorems.

Theorem 2.7. Suppose that π ∈ (0, 1) and R0 > 1. Let z be the unique
solution in (0, 1) of

(2.10) z − 1 + π = µ−1
D πf

(1)
D (z)

and ρ = 1− fD(z). Then, as n → ∞,

(2.11)
√
n
(
n−1C

(n)
MR,B − ρ

)
D−→ N(0, σ2

MR,B),

(2.12)
√
n
(
n−1C

(n)
NSW,B − ρ

)
D−→ N(0, σ2

NSW,B),

(2.13)
√
n
(
n−1C

(n)
MR,S − πρ

)
D−→ N(0, σ2

MR,S),

and

(2.14)
√
n
(
n−1C

(n)
NSW,S − πρ

)
D−→ N(0, σ2

NSW,S),
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where

σ2
MR,B = h(z)2

{[
π(1− π) + 2(z − 1 + π)2

]
µD − π2

[
f
(1)
D (z2) + z2f

(2)
D (z2)

]}(2.15)

+ h(z)
[
2πzf

(1)
D (z2)− (z − 1 + π)µD

]
+ 1− ρ− fD(z

2)

and

σ2
NSW,B = ρ(1− ρ)− h(z)(z − 1 + π)µD

(2.16)

+ h(z)2
{
[π(1− π)− 2z(z − 1 + π)]µD + (z − 1 + π)2

(
σ2
D + µ2

D

)}
,

with

h(z) =
π−1(1− π − z)

1− πµ−1
D f

(2)
D (z)

;

σ2
MR,S = π2

{
σ2
MR,B + π(1− π)h(z)2

[
f
(2)
D (1)− f

(2)
D (z)

]}
(2.17)

+ π(1− π)[ρ− 2h(z)(1− z)µD](2.18)

and σ2
NSW,S is given by (2.17), with σ2

MR,B replaced by σ2
NSW,B.

3. Illustrations. In this section, we illustrate the central limit theo-
rems in Section 2.4 by using simulations to explore their applicability to
graphs with finite n. We also investigate briefly the dependence of the limit-
ing variances in the central limit theorems on the degree distribution, graph
type and infectious period distribution. We consider four degree distribu-
tions:

(i) D ≡ d, i.e. D is constant with pd = 1;
(ii) D ∼ Po(µD), i.e. D is Poisson with mean µD;
(iii) D ∼ Geom(p), i.e. pk = (1− p)kp (k = 0, 1, . . . );

(iv) D ∼ Power(α, κ), i.e. pk = ck−αe−
k
κ (k = 1, 2, . . . ), where α, κ ∈

(0,∞) and the normalising constant c = Liα(e
− 1

κ ), with Liα being the
polylogarithm function.

The fourth distribution is a power law with exponential cut-off (see, for
example, Newman (2002)) that has been used extensively in the physics

literature. Note that, with θ = e−
1
κ and β = Liα(θ), fD(s) = β−1Liα(θs),

f
(1)
D (s) = 1

βsLiα−1(θs) and f
(2)
D (s) = 1

βs2
[Liα−2(θs) − Liα−1(θs)], which en-

ables R0 and the asymptotic means and variances in the central limit the-
orems to be calculated. Distributions (ii)-(iv) have unbounded support, so
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 13

do not satisfy the conditions of our theorems. The asymptotic distributions
in this section are calculated under the assumption that the theorems still
apply.

Each simulation consists of first simulating one graph, by simulating

D
(n)
1 , D

(n)
2 , . . . , D

(n)
n and pairing up the half-edges, and then simulating one

epidemic, or percolation process, on it. For an MR graph with (limiting)

degree random variable D on n nodes, the degrees are given by D
(n)
i =

inf{d ∈ Z+ : FD(d) > i/(n + 1)} (i = 1, 2, . . . , n), where FD is the distri-
bution function of D. For heavy-tailed D, in particular, this choice of MR
degrees converges faster with n to the intended D than one based on round-
ing npi (i = 0, 1, . . . ) to nearest integers. Two choices of infectious period
distribution are used in the simulations: (i) I ≡ 1 (i.e. P(I = 1) = 1) and
(ii) I is 0 or ∞, matched to have a common pI . Note that these yield the
minimum and maximum asymptotic variances for fixed pI . The parameters
of the degree distributions are chosen so that µD = 5; hence the choice of
(α, κ) = (1, 13.796) for the power law with exponential cut-off distribution.

We first consider epidemics on an NSW network in which a fraction
ϵ = 0.05 of the population is initially infective. Table 1 shows estimates

of ρn = n−1E[T
(n)
NSW] and σ2

n = n−1var[T
(n)
NSW] for epidemics with pI = 0.3

and various population size n, based on 100,000 simulations for each set of
parameters, together with the corresponding asymptotic (n = ∞) values
given by Theorem 2.1. The table indicates that the asymptotic approxima-
tions are useful for even moderate n. The approximations are better for the
model with I ≡ 1 than that with I = 0 or ∞, as one might expect since there
is less variability in the process with I ≡ 1, and improve with increasing σ2

D.
The approximations are noticeably worse when n = 200 than for the other
values of n. Histograms of the final size of 100,000 simulated epidemics on an
NSW network with n = 200 and D ∼ Geom(1/6), together with the corre-
sponding density of N(nρ, nσ2

NSW) with ρ and σ2
NSW given by Theorem 2.1,

are shown in Figure 1. For the epidemic with I ≡ 1, the asymptotic normal
distribution gives an excellent approximation, even though n is rather small.
The approximation is markedly worse for the model with I = 0 or ∞, owing
to the increased likelihood of small outbreaks. If ϵ is held fixed, the proba-
bility of a small outbreak decreases approximately exponentially with n, as
the number of initial infectives is proportional to n, and the approximation
improves significantly, particularly in the I = 0 or ∞ model.

Turning to Theorem 2.2, Figure 2 shows simulations of the final size of epi-
demics on an NSW network with one initial infective and I constant. Note
that with a single initial infective there is always a non-negligible proba-
bility of a minor outbreak, even if n is large. As n → ∞, the probability
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I ≡ 1 I = 0 or ∞
D n ρn σ2

n ρn σ2
n

200 0.5097 2.6355 0.4259 9.9771
500 0.5284 2.3239 0.4957 9.6846
1000 0.5334 2.2180 0.5200 8.0686

D ≡ 5 2000 0.5360 2.1794 0.5295 7.2082
5000 0.5374 2.1377 0.5351 6.7611
10000 0.5379 2.1177 0.5366 6.6402
∞ 0.5384 2.1187 0.5384 6.5200

200 0.5659 1.3149 0.4624 10.2610
500 0.5761 1.0808 0.5504 6.6926
1000 0.5789 1.0416 0.5708 4.0793

Po(5) 2000 0.5803 1.0204 0.5766 3.5567
5000 0.5811 1.0095 0.5798 3.3708
10000 0.5814 1.0058 0.5807 3.3139
∞ 0.5817 1.0044 0.5817 3.2505

200 0.5160 0.4029 0.4132 8.5412
500 0.5184 0.3698 0.5055 3.0416
1000 0.5189 0.3690 0.5163 1.1780

Geom(1/6) 2000 0.5194 0.3635 0.5180 1.0824
5000 0.5196 0.3635 0.5190 1.0607
10000 0.5196 0.3653 0.5194 1.0438
∞ 0.5197 0.3650 0.5197 1.0381

200 0.4957 0.4826 0.3900 8.8942
500 0.4985 0.4260 0.4828 4.1147
1000 0.4992 0.4237 0.4960 1.8536

Power(1, 13.796) 2000 0.4996 0.4177 0.4981 1.6862
5000 0.4999 0.4164 0.4992 1.6534
10000 0.4999 0.4182 0.4996 1.6483
∞ 0.5000 0.4180 0.5000 1.6372

Table 1
Simulation results against theoretical (asymptotic) calculations for final size of epidemics

with ϵ = 0.05 and pI = 0.3 on NSW networks.
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SIR EPIDEMICS AND PERCOLATION ON RANDOM GRAPHS 15

Fig 1. Histograms of 100,000 simulations of final size for epidemics with n = 200, ϵ =
0.05 and pI = 0.3 on NSW networks with D ∼ Geom(1/6), with asymptotic normal
approximation superimposed.

of a major epidemic converges to the survival probability, pmaj say, of a
branching process; see, for example, Ball and Sirl (2013), Section 2.1.1, and
Theorem 5.1. Moreover, as I is constant, pmaj = ρ; see, for example, Kenah
and Robins (2007). Superimposed on each histogram in Figure 2 is the den-
sity of N(nρ, nσ̃2

NSW) multiplied by pmaj, which approximates the component

of the distribution of T
(n)
NSW corresponding to a major outbreak. Even with

the very small n, the approximation is very good when D ∼ Geom(1/6) or
D ∼ Power(1, 13.796). For both of these degree distributions there is a clear
distinction between major and minor outbreaks. That is not the case for the
other two degree distributions, though the approximation is still useful. The
values of pmaj are broadly similar for the four degree distributions. However,
the power-law and geometric distributions give greater mass to small values
of D than the constant and Poisson distributions; consequently their minor
outbreaks are smaller and better separated from major outbreaks.

The upper panels of Figure 3 shows the dependence of ρ (left panel) and
σ̃2
MR and σ̃2

NSW (right panel) on pI . The latter two are for the model with I
constant. (Recall that, given pI , the scaled asymptotic mean ρ is independent
of the distribution of I.) The asymptotic scaled variances all decrease with
pI and converge to the asymptotic scaled variance of the giant component
on the relevant graph as pI ↑ 1 (cf. Remark 2.6). The asymptotic scaled
variances tend to∞ as pI ↓ pC , where pC = µ−1

D̃−1
is the critical value of pI so

that R0 = 1. Note that σ̃2
NSW ≥ σ̃2

MR for all choices ofD, cf. Remark 2.5. The
lower panels of Figure 3 show plots of (σ̃2

NSW − σ̃2
MR)/σ̃

2
MR against pI . (The

same functions are shown in these two plots but the y-axis is truncated at a
smaller value in the right-hand plot to illustrate more clearly the behaviour
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Fig 2. Histograms of 100,000 simulations of final size for epidemics on NSW networks
with I ≡ 1, pI = 0.3, n = 100 and one initial infective, with a normal approximation
superimposed; see text for details.
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Fig 3. Dependence of asymptotic means and variances on pI ; see text for details.

of the functions when pI is not close to 1.) Note the plots for the Poisson
and geometric degree distributions are both increasing with pI , while that
for the Power(1, 13.796) distribution is unimodal.

The final illustrations are concerned with percolation. Figure 4 shows
plots of estimates σ̂2

n of the scaled variance n−1var(C(n)) of the size of the
largest component, based on nsim = 10, 000 simulations for each choice of
parameters, together with 95% equal-tailed confidence intervals given by
[(nsim − 1)/q2, (nsim − 1)/q1], where q1 and q2 are respectively the 2.5% and
97.5% quantiles of the χ2

nsim−1
distribution. In all cases π = 0.3. The filled

and unfilled markers correspond to percolation on NSW and MR networks,
respectively. The n → ∞ scaled variances, given by Theorem 2.7, are shown
by horizontal dashed and solid lines for NSW and MR networks, respectively.
The figure suggests that the asymptotic approximations are again generally
good, even for moderately-sized networks. For fixed n, the approximation is
better for Power(1, 13.796) distribution than for the Po(5) distribution. The
plot for site percolation when D ∼ Po(5) is a bit odd, as σ̂2

n is not monotonic
in n. This is explored further in Figure 5, which is for percolation on NSW
random graphs with D ∼ Po(5). Note that the distribution of C(n) is clearly
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Fig 4. Plots of scaled variances n−1var(C(n)) of the size of the largest component in bond
and site percolation on configuration model random graphs; see text for details.

bimodal for site percolation with n = 200 and π = 0.3. The lower plots in
Figure 5 demonstrate that increasing n or π alleviates the issue of small
largest components.

Figure 6 shows histograms of the size of the largest component in 100,000
simulated bond and site percolations on an MR random graph with n =
200, π = 0.3 and D ∼ Power(1, 13.796). Two asymptotic normal approxima-
tions are superimposed. The solid lines are the densities of N(nρ, nσ2

MR,B)

(bond percolation) and N(nπρ, nσ2
MR,S) (site percolation), with ρ, σ2

MR,B and

σ2
MR,S obtained by setting D ∼ Power(1, 13.796) in Theorem 2.7. An im-

proved approximation (dashed lines) is obtained by instead setting D to be

the empirical distribution ofD
(n)
1 , D

(n)
2 , . . . , D

(n)
n . The difference between the

approximations is more noticeable for bond percolation. (The support of the
histogram has been truncated slightly to make the difference clearer.) The
difference decreases with n and is appreciably greater with heavy-tailed de-
gree distributions. Observe from Figures 5 and 6 that the asymptotic normal
approximation underestimates the left tail and overestimates the right tail of
the distribution of C(n). This phenomenon is present also in the asymptotic
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Fig 5. Histograms 100,000 simulations of size of largest component in percolation on NSW
random graphs having D ∼ Po(5), with asymptotic normal approximation superimposed.
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Fig 6. Histograms 100,000 simulations of size of largest component in percolation on MR
random graphs having n = 200, π = 0.3 and D ∼ Power(1, 13.796), with two asymptotic
normal approximation superimposed; see text for details.

normal approximation of the epidemic final size T (n).

4. Density dependent population processes. This section collects
together some results for density dependent population processes that are
required in the paper. It is based on Ethier and Kurtz (1986), Chapter
11, and Pollett (1990), though the statement of the functional central limit
theorem is slightly more general than that in those references. The notation
is local to this section.

For n = 1, 2, . . . , let {X(n)(t) : t ≥ 0} = {(X(n)
1 (t), X

(n)
2 (t), . . . , X

(n)
p (t)) :

t ≥ 0} be a continuous-time Markov chain with state space H(n) ⊆ Zp and
transition intensities of the form

(4.1) q(n)(i, i+ l) = nβ
(n)
l (n−1i) (i ∈ H(n), l ∈ ∆),

where ∆ is the set of possible jumps from a typical state i = (i1, i2, . . . , ip)

and β
(n)
l : H → R are functions defined on an open set H ⊆ Rp. Let Hn =

H ∩ {n−1i : i ∈ Zp}. (Note that Hn ⊆ {n−1i : i ∈ Zp}, whereas H(n) ⊆ Zp.)

We require that x ∈ Hn and β
(n)
l (x) > 0 imply x+n−1l ∈ Hn. The functions

β
(n)
l (l ∈ ∆) must satisfy β

(n)
l (x) ≥ 0 for all x ∈ H ∩ {n−1i : i ∈ H(n)}. We

assume that ∆ is finite. The theory in Ethier and Kurtz (1986), Chapter
11, and Pollett (1990) allows ∆ to be infinite but only the finite case is
required in our application and the results are easier to state in that setting.

Suppose that βl(x) = limn→∞ β
(n)
l (x) exists for all l ∈ ∆ and all x ∈ H;

the corresponding family of processes is then called asymptotically density
dependent by Pollett (1990). In Ethier and Kurtz (1986), Chapter 11, a
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family of processes which satisfies (4.1) with β
(n)
l replaced by βl is called a

density dependent family, and it is noted that the results usually carry over
with little additional effort to the more general form where

q(n)(i, i+ l) = n
[
βl(n

−1i) +O(n−1)
]

(i ∈ H(n), l ∈ ∆).

The above framework is slightly different from that in Ethier and Kurtz
(1986), which, when extended to asymptotic density dependence, assumes

that (i) Hn = H ∩ {n−1i : i ∈ H(n)} and (ii) the functions β
(n)
l (l ∈ ∆) are

nonnegative. The law of large numbers and functional central limit theorem
in Ethier and Kurtz (1986) have their origins in Kurtz (1970) and Kurtz
(1971), respectively, though the proofs in Ethier and Kurtz (1986) are dif-
ferent. In Pollett (1990), the corresponding theorems do not require (i)
or (ii) above but details of the proofs are omitted as they are similar to
those in Kurtz (1970) and Kurtz (1971). For completeness, proofs of the law
of large numbers and the functional central limit theorem (Theorems 4.1
and 4.2 below) are given in Appendix A. The proofs in Appendix A are based
on and follow closely those in Britton and Pardoux (2019) (see also Brit-
ton and Pardoux (2020)), which are similar to those in Ethier and Kurtz
(1986) but provide appreciably more detail concerning the proof of the func-
tional central limit theorem. The proof of the functional central limit the-
orem in Appendix A uses Skorohod’s theorem, which leads to a simpler
proof than that in Britton and Pardoux (2019). Note that the representa-
tion of {X(n)(t) : t ≥ 0} in terms of independent unit-rate Poisson processes
(see (A.1) in Appendix A), that is fundamental to the proofs in Ethier

and Kurtz (1986), still holds under our conditions, as β
(n)
l (x) ≥ 0 for all

x ∈ H ∩ {n−1i : i ∈ H(n)}, so the proofs in Ethier and Kurtz (1986) con-
tinue to hold after obvious modifications to account for asymptotic density
dependence and asymptotically random initial conditions.

Let

(4.2) F (x) =
∑
l∈∆

lβl(x) (x ∈ H).

Theorem 4.1. Suppose that for each compact K ⊂ H,

(4.3) sup
x∈K

βl(x) < ∞ and lim
n→∞

sup
x∈K

|β(n)
l (x)− βl(x)| = 0 (l ∈ ∆),

and there exists MK > 0 such that

(4.4) |F (x)− F (y)| < MK |x− y| for all x,y ∈ K.
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Suppose also that n−1X(n)(0)
p−→ x0 ∈ H as n → ∞. Let x(t) (t ≥ 0) be

the unique solution of the integral equation

(4.5) x(t) = x0 +

∫ t

0
F (x(u)) du (t ≥ 0)

and suppose that x(t) is finite for all t ≥ 0. Then, for all t ≥ 0,

(4.6) sup
0≤u≤t

|n−1X(n)(u)− x(u)| p−→ 0 as n → ∞.

Write F (x) = (F1(x), F2(x), . . . , Fp(x)) and x = (x1, x2, . . . , xp). Let
∂F (x) and G(x) be the p× p matrix functions defined by

∂F (x) =

[
∂Fi

∂xj
(x)

]
and G(x) =

∑
l∈∆

l⊤lβl(x).

Further, let Φ(t, u) = [ϕij(t, u)] (0 ≤ u ≤ t < ∞) be the solution of the
matrix differential equation

∂

∂t
Φ(t, u) = ∂F (x(t))Φ(t, u), Φ(u, u) = I.

Note that

ϕij(t, u) =
∂xi(t− u)

∂xj(0)
(i, j = 1, 2, . . . , p).

Let ⇒ denote weak convergence in the space of right-continuous functions
f : [0,∞) → Rp having limits from the left (i.e. càdlàg functions), endowed
with the Skorohod metric.

Theorem 4.2. Suppose, in addition to the conditions of Theorem 4.1,
that βl (l ∈ ∆) and ∂F are continuous, and that for each compact K ⊂ H,

(4.7) lim
n→∞

√
n sup

x∈K
|β(n)

l (x)− βl(x)| = 0 (l ∈ ∆).

Suppose also that x0 ∈ H and

(4.8)
√
n
(
n−1X(n)(0)− x0

)
D−→ V (0) as n → ∞,

where V (0) ∼ N(0,Σ0). Then, as n → ∞,

(4.9)
{√

n
(
n−1X(n)(t)− x(t)

)
: t ≥ 0

}
⇒ {V (t) : t ≥ 0},
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where x(t) is given by (4.5) and {V (t) : t ≥ 0} is a zero-mean Gaussian
process with covariance function given, for t1, t2 ≥ 0, by

cov (V (t1),V (t2)) =Φ(t1, 0)Σ0Φ(t2, 0)
⊤(4.10)

+

∫ min(t1,t2)

0
Φ(t1, u)G(x(u))Φ(t2, u)

⊤ du.

We also require the following theorem concerned with the first exit of
{X(n)(t) : t ≥ 0} from a region of its state space. The theorem is Ethier
and Kurtz (1986), Theorem 11.4.1, expressed now for asymptotically density
dependent processes having random initial conditions.

Theorem 4.3. Suppose that the conditions of Theorem 4.2 are satisfied.
Let φ : H → R be continuously differentiable. Suppose that φ(x0) > 0. Let
τ (n) = inf{t ≥ 0 : φ(n−1X(n)(t)) ≤ 0} and τ = inf{t ≥ 0 : φ(x(t)) ≤ 0}.
Suppose that τ < ∞ and ∇φ(x(τ)) · F (x(τ)) < 0, where · denotes inner
vector product. Then, as n → ∞,

(4.11)
√
n
(
τ (n) − τ

)
D−→ − ∇φ(x(τ) · V (τ)

∇φ(x(τ) · F (x(τ))

and
√
n
(
n−1X(n)(τ (n))− x(τ)

)
D−→ V (τ)− ∇φ(x(τ) · V (τ)

∇φ(x(τ) · F (x(τ))
F (x(τ)).

Note that (4.11) implies τ (n)
p−→ τ as n → ∞.

Corollary 4.1. Suppose that the conditions of Theorem 4.3 are satis-
fied. Let

B = I − (F (x(τ)))⊤∇φ(x(τ))

∇φ(x(τ)) · F (x(τ))
,

Then,
√
n
(
n−1X(n)(τ (n))− x(τ)

)
D−→ N(0, BΣ(τ)B⊤) as n → ∞,

where

Σ(τ) = Φ(τ, 0)Σ0Φ(τ, 0)
⊤ +

∫ τ

0
Φ(τ, u)G(x(u))Φ(τ, u)⊤ du.

Proof. Corollary 4.1 follows immediately from Theorems 4.2 and 4.3 on
noting that

V (τ)− ∇φ(x(τ) · V (τ)

∇φ(x(τ) · F (x(τ))
F (x(τ)) = V (τ)B⊤.
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5. Proofs.

5.1. Alternative construction of final size T (n). We describe first the
well-known construction of the final outcome of the epidemic E(n) using
a random directed graph. We then use that construction to show that the
distribution of T (n), the final size of E(n), can be obtained using the location
of the first exit of an asymptotically density dependent population process
from a given region.

Given a realisation of G(n), construct a directed random graph G̃(n), hav-
ing vertex set N(n) = {1, 2, . . . , n}, as follows. For each i = 1, 2, . . . , n, by
sampling from its infectious period distribution I and then the relevant Pois-
son processes, draw up a list of individuals i would make contact with if i
were to become infected. Then, for each ordered pair of individuals, (i, j)
say, a directed edge from i to j is present in G̃(n) if and only if j is in i’s list.
Let I(n) denote the set of initial infectives in E(n). For distinct i, j ∈ N(n),
write i ; j if and only if there is a chain of directed edges from i to j in
G̃(n). Let T(n) = {j ∈ N(n) \ I(n) : i ; j for some i ∈ I(n)} be the set of
initial susceptibles that are infected in E(n), so T (n) = |T(n)|.

Note that T(n) is determined purely by the presence/absence of directed
edges in G̃(n) and does not depend on the times of the corresponding infec-
tions in E(n). (This implies that the distribution of T(n), and hence also T (n)

is invariant to the introduction of a latent/exposed period into the model,
i.e. the time elapsing after infection of an individual before it is able to infect
other individuals.) It follows that the final outcome T(n) has the same distri-
bution as that of a related epidemic Ẽ(n), with set of initial infectives I(n), in
which for any infective, i say, it is determined upon infection which, if any, of
its neighbours i will contact and those contacts take place at the first points
of independent Poisson processes, each having rate 1. More precisely, sup-
pose i is infected at time t0 and i has d neighbours, i1, i2, . . . , id say. Let Ii be
a realisation of I and, given Ii, let χi1, χi2, . . . , χid be i.i.d. Bernoulli random
variables with success probability 1 − exp(−λIi). Let Wi1,Wi2, . . . ,Wid be
an independent set of i.i.d. unit-mean exponential random random variables.
Then i contacts ij if and only if χij = 1, and in that case the contact occurs
at time t0 + Wij . Of course, the I and W random variables for any set of
distinct infectives are mutually independent.

Given the degrees D
(n)
1 , D

(n)
2 , . . . , D

(n)
n and the set of initial infectives

I(n), the random graph G(n) and the epidemic on it Ẽ(n) can be constructed
simultaneously as follows (cf. Ball and Neal (2008)). The process starts with
no half-edge paired and all half-edges susceptible. The individuals in I(n)

become infected at time t = 0 and all other individuals are susceptible.
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When an individual is infected, it determines immediately which, if any,
of its unpaired half-edges it will transmit infection along and when it will
make those contacts, according to the probabilistic law described above; the
half-edges that the individual will infect along and not infect along then
become infective and recovered half-edges, respectively. When infection is
transmitted along a half-edge that half-edge is paired with a half-edge chosen
uniformly at random from all unpaired half-edges, forming an edge in the
network, and the two half edges become recovered. If the chosen half-edge
is attached to a susceptible individual then that individual is infected and
determines immediately along which, if any, of its unpaired half-edges it
will transmit infection. If the chosen half-edge is infective or recovered then
nothing further happens. The process continues until there is no infective

half-edge remaining. (In the epidemic on the NSW random graph, if D
(n)
1 +

D
(n)
2 + · · · +D

(n)
n is odd then it is possible for the process to end with one

unpaired half-edge, which is infective, but we can ignore that possibility
because under the conditions of the theorems its probability tends to 0 as
n → ∞.)

Note that as we are interested only in the final outcome of the epidemic,
it is not necessary to keep track of the degrees of individuals to which in-
fective and unpaired recovered half-edges are attached; we need to know

just the total numbers of such half-edges. For t ≥ 0, let X
(n)
i (t) be the

number of degree-i susceptible individuals at time t (i = 0, 1, . . . , dmax),

and let Y
(n)
E (t) and Z

(n)
E (t) be the number of infective half-edges (which by

definition are unpaired) and the number of unpaired recovered half-edges,
respectively, at time t. Let {W (n)(t)} = {W (n)(t) : t ≥ 0}, where W (n)(t) =

(X(n)(t), Y
(n)
E (t), Z

(n)
E (t)) and X(n)(t) = (X

(n)
0 (t), X

(n)
1 (t), . . . , X

(n)
dmax

(t)).

The process {W (n)(t)} is a continuous-time Markov chain, whose initial
state W (n)(0) is random, even for the epidemic on the MR random graph
as the numbers of infective and recovered half-edges created by the initial

infectives are random. In the epidemic on the NSW random graph, X
(n)
i (t)

(i = 0, 1, . . . , dmax) are also random. Before giving the transition intensities
of {W (n)(t)} some more notation is required.

For simplicity, we take H(n) = Zdmax+3
+ as a state space for {W (n)(t)},

but note that some states in H(n) are unattainable since clearly X
(n)
i (t) ≤

n (i = 0, 1, . . . , dmax), Y
(n)
E (t) ≤ ndmax and Z

(n)
E (t) ≤ ndmax for all t ≥

0. Let n = (nX
0 , nX

1 , . . . , nX
dmax

, nY
E , n

Z
E) denote a typical element of H(n).

The states with nY
E = 0 are absorbing, as is the state (0, 0, . . . , 0, 1, 0). Let

nX
E =

∑dmax
i=1 inX

i . For i = 0, 1, . . . , dmax, let e
S
i be the unit vector of length

dmax +3 with one in the component corresponding to a degree-i susceptible

imsart-aap ver. 2010/09/07 file: SIRconfigCLT7.tex date: October 31, 2020



26 BALL

so, for example, eS1 = (0, 1, 0, 0, . . . , 0). Similarly, let eI = (0, 0, . . . , 0, 1, 0)
and eR = (0, 0, . . . , 0, 1). For i = 1, 2, . . . , dmax and k = 0, 1, . . . , i−1, let pi,k
be the probability that if a degree-i susceptible is infected it subsequently
transmits infection along k of its remaining i − 1 half-edges. (Note that
a degree-0 susceptible cannot be infected.) Thus pi,k = P(X = k), where

X ∼ Bin(i − 1, 1 − exp(−λI)). The transition intensities of {W (n)(t)} are
as follows.

(i) For i = 1, 2, . . . , dmax and k = 0, 1, . . . , i − 1, an infective half-edge is
paired with a degree-i susceptible yielding k infective half-edges and
i− 1− k recovered half-edges

q(n)(n,n− eSi + (k − 1)eI + (i− k − 1)eR) =
nY
Ein

X
i pi,k

nX
E + nY

E + nZ
E − 1

;

(ii) an infective half-edge is paired with an infective half-edge

q(n)(n,n− 2eI) =
nY
E(n

Y
E − 1)

nX
E + nY

E + nZ
E − 1

;

(iii) an infective half-edge is paired with a recovered half-edge

q(n)(n,n− eI − eR) =
nY
En

Z
E

nX
E + nY

E + nZ
E − 1

.

Note that these transition intensities are independent of the population size
n. We index them by n to connect with theory of density dependent popu-
lation processes.

Let τ (n) = inf{t ≥ 0 : Y
(n)
E (t) = 0}. Then X

(n)
i (τ (n)) (i = 0, 1, . . . , dmax)

give the numbers of susceptibles of the different degrees at the end of the

epidemic and T (n) =
∑dmax

i=1

(
X

(n)
i (0)−X

(n)
i (τ (n))

)
.

5.2. Random time-scale transformation. We wish to apply Corollary 4.1
to obtain a central limit theorem for T (n) but that corollary cannot be
applied directly to {W (n)(t)} as τ (n)

p−→ ∞ as n → ∞. Thus we consider
the following random time-scale transformation of {W (n)(t)}; cf. Ethier and
Kurtz (1986), page 467, Watson (1980) and Janson et al. (2014).

For t ∈ [0, τ (n)], let

A(n)(t) =

∫ t

0

Y
(n)
E (u)

X
(n)
E (u) + Y

(n)
E (u) + Z

(n)
E (u)− 1

du,
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where X
(n)
E (u) =

∑dmax
i=1 iX

(n)
i (u). Let τ̃ (n) = A(n)(τ (n)). For t ∈ [0, τ̃ (n)], let

U (n)(t) = inf{u ≥ 0 : A(n)(u) = t} and W̃
(n)

(t) = W (n)
(
U (n)(t)

)
. Then the

process {W̃ (n)
(t) : 0 ≤ t ≤ τ̃ (n)} is Markovian and has transition intensities

during [0, τ̃ (n)) given by:

(i) for i = 1, 2, . . . , dmax, n
X
i ≥ 0 and k = 0, 1, . . . , i− 1,

q̃(n)(n,n− eSi + (k − 1)eI + (i− k − 1)eR) = inX
i pi,k;

(ii) for nY
E ≥ 1,

q̃(n)(n,n− 2eI) = nY
E − 1;

(iii) for nZ
E ≥ 0,

q̃(n)(n,n− eI − eR) = nZ
E .

In order to define W̃
(n)

(t) for t > τ̃ (n) (so that Corollary 4.1 can be
applied) we add the transition intensities:

(ii′) for nY
E ≤ 0,

q̃(n)(n,n+ 2eI) = −nY
E .

The process {W̃ (n)
(t)} = {W̃ (n)

(t) : t ≥ 0} is then a continuous-time
Markov chain with state space H̃(n) = Zdmax+1

+ × Z × Z+, though some

states in H̃(n) are unattainable, and transition intensities given by (i), (ii),
(iii) and (ii′) above.

Let l
(1)
ik = −eSi +(k−1)eI+(i−k−1)eR (i = 1, 2, . . . , dmax; k = 0, 1, . . . , i−

1), l
(2)
+ = −2eI, l

(2)
− = 2eI and l(3) = −eI − eR. The set of possible jumps of

{W̃ (n)
(t)} from a typical state n is ∆ = ∆1 ∪∆2 ∪∆3, where ∆1 = {l(1)ik :

i = 1, 2, . . . , dmax; k = 0, 1, . . . , i − 1}, ∆2 = {l(2)+ , l
(2)
− } and ∆3 = {l(3)}.

Let w = (x, yE , zE), where x = (x0, x1, . . . , xdmax), and H = Rdmax+3. The

intensities of the jumps of {W̃ (n)
(t)} admit the form

(5.1) q̃(n)(n,n+ l) = nβ̃
(n)
l (n−1n) (n ∈ H̃(n), l ∈ ∆),

where the functions β̃
(n)
l : H → R+ (l ∈ ∆) are given by

(5.2) β̃
(n)
l (w) =


β̃l(w) if l ∈ ∆ \ {l(2)+ , l

(2)
− },

β̃l(w)− n−1 if l = l
(2)
+ ,

β̃l(w) if l = l
(2)
− ,
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with

(5.3) β̃l(w) =


β̃
(1)
ik (x, yE , zE) = ixipi,k for l = l

(1)
ik ∈ ∆1,

β̃
(2)
+ (x, yE , zE) = yE1{yE>0} for l = l

(2)
+ ,

β̃
(2)
− (x, yE , zE) = −yE1{yE≤0} for l = l

(2)
− ,

β̃(3)(x, yE , zE) = zE for l = l(3).

The family of processes {W̃ (n)
(t)} is asymptotically density dependent (see

Section 4). The further intensities (ii′) have been chosen so that the resulting
drift function satsifies the Lipschitz and differentiability properties required
for the application of Theorems 4.1 and 4.2.

5.3. Proof of Theorem 2.1. For t ≥ 0, write W̃
(n)

(t) = (X̃
(n)

(t), Ỹ
(n)
E (t), Z̃

(n)
E (t)),

where X̃
(n)

(t) = (X̃
(n)
0 (t), X̃

(n)
1 (t), . . . , X̃

(n)
dmax

(t)). Note that, by construc-

tion, W (n)(τ (n)) = W̃
(n)

(τ̃ (n)), so the final size of the epidemic is given
by

(5.4) T (n) =

dmax∑
i=0

(
X̃

(n)
i (0)− X̃

(n)
i (τ̃ (n))

)
.

Note also that τ̃ (n) = inf{t ≥ 0 : Ỹ
(n)
E (t) = 0}. We use Corollary 4.1

to obtain a central limit theorem for W̃
(n)

(τ̃ (n)), and hence for the final
size T (n). The asymptotic variance matrix in the central limit theorem for

W̃
(n)

(τ̃ (n)) is not in closed form. However, we derive a closed-form expression
for the asymptotic variance of T (n). The main concepts of the proof are
presented here, with some detailed but elementary calculations deferred to
Appendix B.

5.3.1. Deterministic model. As at (4.2), define the drift function F̃ (w) =∑
l∈∆ lβ̃l(w). Using (5.3),

F̃ (w) = −
dmax∑
i=1

i−1∑
k=0

ixipi,k
[
−eSi + (k − 1)eI + (i− k − 1)eR

]
(5.5)

− 2yEe
I − zE(e

I + eR).

Recall that pi,k = P(X = k), where X ∼ Bin(i − 1, 1 − exp(−λI)). Thus∑i−1
k=0 pi,k = 1 and

∑i−1
k=0 kpi,k = E[X] = (i − 1)pI . Substituting these
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into (5.5) and recalling that qI = 1− pI yields

F̃ (w) = −
dmax∑
i=1

ixie
S
i +

{
dmax∑
i=1

ixi[(i− 1)pI − 1]− 2yE − zE

}
eI(5.6)

+

[
dmax∑
i=1

i(i− 1)xiqI − zE

]
eR.

For t ≥ 0, let w̃(t) = (x̃0(t), x̃1(t), . . . , x̃dmax(t), ỹE(t), z̃E(t)) be defined
by

(5.7) w̃(t) = w̃(0) +

∫ t

0
F̃ (w(u)) du.

Thus w̃(t) satisfies the differential equations

dx̃i
dt

= −ix̃i (i = 0, 1, . . . , dmax),(5.8)

dỹE
dt

=

dmax∑
i=2

i(i− 1)pI x̃i − x̃E − 2ỹE − z̃E ,(5.9)

dz̃E
dt

=

dmax∑
i=2

i(i− 1)qI x̃i − z̃E ,(5.10)

where x̃E =
∑dmax

i=1 ix̃i, having solution (see Appendix B.1)

x̃i(t) = x̃i(0)e
−it (i = 0, 1, . . . , dmax),(5.11)

ỹE(t) = (x̃E(0) + ỹE(0) + z̃E(0))e
−2t − [z̃E(0) + qI x̃E(0)]e

−t(5.12)

− pI

dmax∑
i=1

ix̃i(0)e
−it,

z̃E(t) = [z̃E(0) + qI x̃E(0)]e
−t − qI

dmax∑
i=1

ix̃i(0)e
−it.(5.13)

Let η̃E(t) = x̃E(t) + ỹE(t) + z̃E(t). Note that, for t ≥ 0,

(5.14) η̃E(t) = η̃E(0)e
−2t.

5.3.2. Initial conditions. Consider first the epidemic on the MR ran-
dom graph. Recall that in the epidemic E(n), for i = 0, 1, . . . , dmax, there

are v
(n)
i individuals of degree i, of whom a

(n)
i are initially infected. Also,
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Ỹ

(n)
E (0), Z̃

(n)
E (0)

)
is given by the total numbers of infective and recov-

ered half-edges created by the initial infectives. Thus X̃
(n)
i (0) = v

(n)
i − a

(n)
i

(i = 0, 1, . . . , dmax) and

(
Ỹ

(n)
E (0), Z̃

(n)
E (0)

)
=

dmax∑
i=1

a
(n)
i∑

j=1

(Yij , i− Yij) ,

where Yij (i = 1, 2, . . . , dmax; j = 1, 2, . . . ) are independent and Yij ∼
Bin(i, 1−exp(−λI)). Let ϵE =

∑dmax
i=1 iϵi. Then, recalling that ϵ

(n)
i = n−1a

(n)
i ,

√
n
[
n−1

(
Ỹ

(n)
E (0), Z̃

(n)
E (0)

)
− ϵE(pI , qI)

]
=

1√
n

dmax∑
i=1

a
(n)
i∑

j=1

(Yij , i− Yij)− a
(n)
i i(pI , qI)

+
√
n

dmax∑
i=1

i(ϵ
(n)
i − ϵi).

For i = 1, 2, . . . , dmax, let σ
2
Y,i = var(Yi1). Now limn→∞

√
n(ϵ

(n)
i − ϵi) = 0

(i = 0, 1, . . . , dmax), by assumption, so the central limit theorem and Slut-
sky’s theorem imply that

√
n
[
n−1

(
Ỹ

(n)
E (0), Z̃

(n)
E (0)

)
− ϵE(pI , qI)

]
D−→ N

(
0,

[
σ2
Y −σ2

Y

−σ2
Y σ2

Y

])
as n → ∞, where

(5.15) σ2
Y =

dmax∑
i=1

ϵiσ
2
Y,i.

(A closed-form expression for σ2
Y is given by (B.27) in Appendix B.4.2.)

Since X̃
(n)

(0) is non-random, it follows using (2.1) that

(5.16)
√
n
(
n−1W̃

(n)
(0)− w̃(0)

)
D−→ N

(
0,ΣMR

0

)
as n → ∞,

where

(5.17) w̃(0) = (p0 − ϵ0, p1 − ϵ1, . . . , pdmax − ϵdmax , ϵEpI , ϵEqI)

and

(5.18) ΣMR
0 =

0 0 0
0 σ2

Y −σ2
Y

0 −σ2
Y σ2

Y

 .
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Turning to the epidemic on the NSW random graph, recall that in E(n) the
number of initial infectives a(n) is prescribed and the a(n) initial infectives
are chosen by sampling uniformly at random without replacement from the
population. Thus the network can be constructed using two independent
sets of i.i.d. copies of D, viz. D′

1, D
′
2, . . . , D

′
n−a(n) for the initial susceptibles

and D1, D2, . . . , Da(n) for the initial infectives. Let (YE , ZE) be the bivariate
random variable obtained by first sampling D and then letting (YE , ZE) =
(YE , D − YE), where YE |D ∼ Bin(D, 1 − exp(−λI)). Let σ2

YE
= var(YE),

σYE ,ZE
= cov(YE , ZE) and σ2

YE
= var(YE). (Closed-form expressions for

σ2
YE

, σ2
ZE

and σYE ,ZE
are given in (B.38)-(B.40) in Appendix B.4.3.) Let

p = (p0, p1, . . . , pdmax) and ΣXX be the (dmax + 1)× (dmax + 1) matrix with
elements

(5.19) (ΣXX)ij =

{
−pipj if i 6= j,

pi(1− pi) if i = j.

Recalling that limn→∞
√
n(ϵ(n) − ϵ) = 0, where ϵ(n) = n−1a(n), a similar

argument to the above shows that

(5.20)
√
n
(
n−1W̃

(n)
(0)− w̃(0)

)
D−→ N

(
0,ΣNSW

0

)
as n → ∞,

where

(5.21) w̃(0) = ((1− ϵ)p, ϵµDpI , ϵµDqI)

and

(5.22) ΣNSW
0 =

(1− ϵ)ΣXX 0 0
0 ϵσ2

YE
ϵσYE ,ZE

0 ϵσYE ,ZE
ϵσ2

ZE

 .

5.3.3. Central limit theorem. We show first that {W̃ (n)
(t)} satisfies the

conditions of Theorems 4.1 and 4.2. It is immediate from (5.2) and (5.3)
that (4.3) and (4.7) are satisfied. The functions β̃l(w) (l ∈ ∆) are clearly
continuous on H. Note from (5.6) that F̃ (w) is a linear transformation of
w, so ∂F̃ is continuous on H and the Lipschitz condition (4.4) holds. Equa-
tions (5.11)-(5.13) imply that w̃(t) is finite for all t ≥ 0. Finally, (5.16)
and (5.20) imply that (4.8) (and hence also the corresponding convergence
in probability in Theorem 4.1) holds for the epidemic on an MR and NSW
random graph, respectively. Thus all the conditions of Theorem 4.2 are sat-
isfied.
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Note that τ̃ (n) = inf{t ≥ 0 : φ(n−1W̃
(n)

(t)) ≤ 0}, where φ(w) =
φ(x, yE , zE) = yE . Suppose that x̃i(0) = pi− ϵi (i = 0, 1, . . . , dmax), ỹE(0) =
pI
∑dmax

i=1 iϵi and z̃E(0) = qI
∑dmax

i=1 iϵi, so η̃E(0) = µD. Let τ̃ = inf{t ≥ 0 :
φ(w̃(t)) ≤ 0} = inf{t ≥ 0 : ỹE(t) = 0}. Then it follows from (5.12) that τ̃
satisfies the equation

(5.23) e−τ̃ − qI − µ−1
D pIf

(1)
Dϵ

(e−τ̃ ) = 0.

We show in Appendix B.2 that, under the conditions of Theorem 2.1, the
equation (5.23) has a unique solution in (0,∞). Note that z = e−τ̃ , where z
is defined at (2.2). Also, using (5.11) the deterministic final fraction of the
population that is susceptible is given by

dmax∑
i=0

x̃i(τ̃) =

dmax∑
i=0

(pi − ϵi)e
−iτ̃ = fDϵ(e

−τ̃ ).

The corresponding deterministic final size is ρ = 1− ϵ− fDϵ(e
−τ̃ ), agreeing

with (2.3).
Let a(τ̃) = ∇φ(w(τ̃)) · F̃ (w(τ̃)). Then, using (5.6), and noting that

ỹE(τ̃) = 0,

a(τ̃) =

dmax∑
i=1

ix̃i(τ̃)[(i− 1)pI − 1]− 2ỹE(τ̃)− z̃E(τ̃)

= pI

dmax∑
i=1

i(i− 1)x̃i(τ̃)− η̃E(τ̃).

Thus, using (5.11) and (5.14),

(5.24) a(τ̃) = e−2τ̃
(
pIf

(2)
Dϵ

(e−τ̃ )− µD

)
,

since η̃E(0) = µD. We show in Appendix B.2 that a(τ̃) < 0, so we may apply
Corollary 4.1.

Writing w̃ = (w̃0, w̃1, . . . , w̃p), where p = dmax+3, let Φ̃(t, u) = [ϕ̃ij(t, u)]
(0 ≤ u ≤ t < ∞), where

(5.25) ϕ̃ij(t, u) =
∂w̃i(t− u)

∂w̃j(0)
(i, j = 0, 1, . . . , p).

Also, let

(5.26) Σ̃(τ̃) = Φ̃(τ̃ , 0)Σ0Φ̃(τ̃ , 0)
⊤ +

∫ τ̃

0
Φ̃(τ̃ , u)G̃(w̃(u))Φ̃(τ̃ , u)⊤ du,
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where

(5.27) G̃(w̃(u)) =
∑
l∈∆

l⊤lβ̃l(w̃(u)),

and Σ0 = ΣMR
0 or ΣNSW

0 depending on whether the epidemic is on an MR
or an NSW random graph. Then application of Corollary 4.1 yields

(5.28)
√
n
(
n−1W̃

(n)
(τ̃ (n))− w̃(τ̃)

)
D−→ N(0, BΣ̃(τ̃)B⊤) as n → ∞,

where

B = I −

(
F̃ (w̃(τ̃))

)⊤
∇φ(w̃(τ̃))

∇φ(w̃(τ̃)) · F̃ (w̃(τ̃))
.

Thus, recalling (5.4),

√
n
(
n−1T (n) − ρ

)
D−→ N(0, σ2) as n → ∞,

where

(5.29) σ2 = (1, 0, 0)BΣ̃(τ̃)B⊤(1, 0, 0)⊤.

Now∇φ(w̃(τ̃)) = (0, 1, 0) and, using (5.6), (1, 0, 0)[F̃ (w̃(τ̃))]⊤ = −x̃E(τ̃),
so (1, 0, 0)B = (1, b(τ̃), 0), where

(5.30) b(τ̃) = a(τ̃)−1x̃E(τ̃).

Further, it follows from (5.11)-(5.13) and (5.25) that[
(1, 0, 0)Φ̃(τ̃ , u)

]
i
= e−i(τ̃−u) (i = 0, 1 . . . , dmax)

and
(5.31)[
(0, 1, 0)Φ̃(τ̃ , u)

]
i
=


i
[
e−2(τ̃−u) − qIe

−(τ̃−u) − pIe
−i(τ̃−u)

]
if i = 0, 1, . . . , dmax,

e−2(τ̃−u) if i = dmax + 1,

−e−(τ̃−u)(1− e−(τ̃−u)) if i = dmax + 2.

Further, let

c(τ̃ , u) = (1, 0, 0)BΦ̃(τ̃ , u)

= (cS(τ̃ , u), cI(τ̃ , u), cR(τ̃ , u)) ,(5.32)
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where

cS(τ̃ , u) = (c0(τ̃ , u), c1(τ̃ , u), . . . , cdmax(τ̃ , u)) ,(5.33)

cI(τ̃ , u) = b(τ̃)e−2(τ̃−u),(5.34)

cR(τ̃ , u) = −b(τ̃)e−(τ̃−u)(1− e−(τ̃−u))(5.35)

and, for i = 0, 1, . . . , dmax,

(5.36) ci(τ̃ , u) = e−i(τ̃−u) + b(τ̃)i
[
e−2(τ̃−u) − pIe

−i(τ̃−u) − qIe
−(τ̃−u)

]
.

Noting that c(τ̃ , u)l⊤ is a scalar, it follows from (5.26) and (5.29) that

(5.37) σ2 = c(τ̃ , 0)Σ0c(τ̃ , 0)
⊤ +

∑
l∈∆

∫ τ̃

0

(
c(τ̃ , u)l⊤

)2
β̃l(w̃(u)) du.

The asymptotic variances, σ2
MR and σ2

NSW in Theorem 2.1 can be obtained
by substituting Σ0 = ΣMR

0 and Σ0 = ΣNSW
0 , respectively, in (5.37) and

using (5.32)-(5.36), together with (5.3) and (5.11)-(5.13), to evaluate the
second term on the right-hand side of (5.37). The details are lengthy and
may be found in Appendix B.4.

5.4. Proof of Theorem 2.2. We prove Theorem 2.2 for the epidemic on an
NSW random graph. The proof for the epidemic on an MR random graph is
similar but simpler, as there is no randomness in the degrees of individuals,
and is thus omitted. The proof proceeds in two stages. First, in Section 5.4.1,
we couple the early stages of the epidemic Ẽ(n), defined in Section 5.1, to
a two-type branching process B̃(n) which assumes that all infective half-
edges in Ẽ(n) are paired with susceptible half-edges. The branching processes
B̃(n) (n = 1, 2, . . . ) are coupled to a limiting branching process B̃. The
couplings and standard properties of the limiting branching process B̃ show
that, with probability tending to 1 as n → ∞, a major outbreak occurs if
and only if the branching process B̃ does not go extinct, and yield weak
convergence results concerning the composition of the population in Ẽ(n)

when the number of infective half-edges first reaches log n in the event of
a major outbreak (see Theorem 5.1). Then, in Section 5.4.2, we use the
random time-scale transformation introduced in Section 5.2 to determine the
asymptotic distribution of the final size of a major outbreak. The argument
proceeds as in the proof of Theorem 2.1 but the equation defining τ̃ now has
a solution at 0 and one at τ̃ > 0 (see the discussion following (5.49)) and
a lower bounding branching process for the epidemic Ẽ(n) is used to show
that τ̃ > 0 is the relevant asymptotic hitting time.
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For ease of presentation we assume that, for n = 1, 2, . . . , there is one
initial infective in Ẽ(n) (i.e. that a = 1), who is chosen by sampling a half-edge

uniformly at random from allD
(n)
1 +D

(n)
2 +· · ·+D

(n)
n half-edges and infecting

the individual who owns that half-edge. The proofs are easily extended to
a > 1 and other ways of choosing the initial infective(s) but the details are
more complicated.

5.4.1. Coupling of epidemic and branching processes. Let (Ω,F,P) be
a probability space on which are defined the following independent sets of
random variables:

(i) D1, D2, . . . i.i.d. ∼ D;
(ii) U0, U1, . . . i.i.d. ∼ U(0, 1);
(iii) L1, L2, . . . i.i.d. ∼ Exp(1);
(iv) Y01, Y02, . . . Y0dmax , where Y0i ∼ Bin(i, 1− e−λI);
(v) for i = 1, 2, . . . , dmax, Yi1, Yi2, . . . i.i.d. ∼ Bin(i− 1, 1− e−λI).

For n = 1, 2, . . . , let p
(n)
i = n−1

∑n
k=1 1{Dk=n} (i = 0, 1, . . . , dmax) and

p̃
(n)
i = ip

(n)
i /µ

(n)
D (i = 1, 2, . . . , dmax), where µ

(n)
D = n−1

∑n
k=1Dk. Note that

by the strong law of large numbers µ
(n)
D > 0 (and p̃

(n)
i is well defined) for all

sufficiently large n almost surely. Let c̃
(n)
i =

∑i
j=1 p̃

(n)
j (i = 1, 2, . . . , dmax).

For x ∈ (0, 1), let d̃(n)(x) = min{i : x ≤ c̃
(n)
i }. Similarly, let p̃i = ipi/µD

and c̃i =
∑i

j=1 p̃j (i = 1, 2, . . . , dmax), and let d̃(x) = min{i : x ≤ c̃i}
(0 < x < 1).

For n = 1, 2, . . . , construct on (Ω,F,P) a realisation of a two-type continuous-
time Markov branching process B̃(n), which approximates the process of in-
fected and recovered half-edges in the epidemic Ẽ(n), as follows. The types
are denoted I and R depending on whether the individual corresponds to
an infective or recovered half-edge. Only type-I individuals have offspring
and they do so at their moment of death. Type-R individuals live for-

ever. For t ≥ 0, let Ŷ
(n)
E (t) and Ẑ

(n)
E (t) denote respectively the numbers

of type-I and type-R individuals alive in B̃(n) at time t. The initial state

(Ŷ
(n)
E (0), Ẑ

(n)
E (0)) is determined as follows. Let d

(n)
0 = d̃(n)(U0), which cor-

responds to the initial infective in Ẽ(n) having degree d
(n)
0 . If d

(n)
0 = 0 then

(Ŷ
(n)
E (0), Ẑ

(n)
E (0)) = (0, 0) and B̃(n) goes extinct immediately. Alternatively,

if d
(n)
0 > 0 then (Ŷ

(n)
E (0), Ẑ

(n)
E (0)) = (Y

0d
(n)
0

, d0 − Y
0d

(n)
0

). In that case, for

k = 1, 2, . . . , the kth type-I individual born in B̃(n) (including the initial

individuals) has degree d
(n)
k = d̃(n)(Uk) and lives until age Lk, when it dies.

Denote this individual by i∗. Suppose that d
(n)
k = i and i∗ is the lth degree-i
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individual (excluding the initial individuals) born in B̃(n). Then, when i∗

dies, it leaves Yil type-I and i−1−Yil type-R offspring. Reproduction stops

in B̃(n) if Ŷ
(n)
E (t) = 0. Construct also on (Ω,F,P) a realisation of a two-type

branching process B̃, defined analogously to B̃(n) but using the function
d̃ instead of d̃(n). For t ≥ 0, let YE(t) and ZE(t) denote respectively the
numbers of type-I and type-R individuals alive in B̃ at time t.

For n = 1, 2, . . . , construct on (Ω,F,P) a realisation of the epidemic
Ẽ(n), defined in Section 5.1, as follows. Give the n individuals in Ẽ(n) the

labels 1, 2, . . . , n in increasing order of degree. Now label the nµ
(n)
D half-edges

1, 2, . . . , nµ
(n)
D , starting with the half-edges (if any) attached to individual

1, then the half-edges (if any) attached to individual 2 and so on. Thus
half-edges attached to the same individual have consecutive labels. As in

Section 5.1, for t ≥ 0, let Y
(n)
E (t) and Z

(n)
E (t) denote respectively the number

of infective and recovered half-edges in Ẽ(n) at time t. The initial infective in

Ẽ(n) is the individual who owns the half-edge labelled
⌊
nµ

(n)
D U0

⌋
+ 1. Note

that this individual has degree d
(n)
0 = d̃(n)(U0). If d

(n)
0 = 0 then the epidemic

stops immediately. Alternatively, if d
(n)
0 > 0 then the initial infective infects

along k
(n)
0 = Y

0d
(n)
0

of its half-edges with its remaining d
(n)
0 − k

(n)
0 half-edges

becoming recovered half-edges. The epidemic stops if k
(n)
0 = 0, otherwise

the initial infective transmits infection along its infective half-edges at times
L1, L2, . . . , Lk0 .

For k = 1, 2, . . . , let l
(n)
k =

⌊
nµ

(n)
D Uk

⌋
+ 1 and note that the half-edge

having label l
(n)
k is attached to an individual having degree d

(n)
k = d̃(n)(Uk).

When infection is transmitted along a half-edge that half-edge, l∗ say, is

attempted to be paired with the half-edge having label l
(n)
k , where k is the

number of the U0, U1, . . . that have been used already in the construction
of Ẽ(n). (Thus, for example, the first half-edge emanating from the initial

infective is attempted to be paired with the half-edge having label l
(n)
1 .) If

the half-edge l
(n)
k has already been paired or l

(n)
k = l∗ then the attempt fails

and l∗ is attempted to be paired with the half-edge l
(n)
k+1, and so on until a

valid pairing is obtained and an edge is formed. Suppose that a valid pairing
is made with the half-edge having label lV . Let i∗ be the individual that
owns the half-edge lV and i be the degree of i∗. If i∗ is susceptible then it
becomes an infective, otherwise nothing happens apart from the formation
of the edge. Suppose that i∗ is susceptible and is the lth degree-i susceptible
to be infected in Ẽ(n), excluding the initial infective. Then i∗ infects along
Yil of its half-edges and its remaining i−1−Yil half-edges become recovered
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half-edges. (When i∗ was infected one of its i half-edges was paired to its
infector.) Let k1 = Yil. The times of these k1, infections, relative to the
infection time of i∗, are given by Lk∗+1, Lk∗+2, . . . , Lk∗+k1 , where k∗ is the
number of infective half-edges created in Ẽ(n) prior to the infection of i∗.

The epidemic terminates when Y
(n)
E (t) = 0, or when Y

(n)
E (t) = 1 and all

other half-edges have been paired.

As in Section 5.1, for t ≥ 0, let X(n)(t) = (X
(n)
0 (t), X

(n)
1 (t), . . . , X

(n)
dmax

(t)),

where X
(n)
i (t) is the number of degree-i susceptible individuals at time t in

Ẽ(n). For n = 1, 2, . . . , let τ̂ (n) = inf{t ≥ 0 : Y
(n)
E (t) ≥ log n}, where τ̂ (n) =

∞ if Y
(n)
E (t) < log n for all t ≥ 0. Let Aext = {ω ∈ Ω : limt→∞ YE(t) = 0}

denote the set on which type-I individuals become extinct in the branching
process B̃ and let α denote the Malthusian parameter of B̃. Then α is given
by the unique real solution of the equation∫ ∞

0
e−αtµD̃−1pIe

−t dt = 1,

so α = R0 − 1, where R0 is defined at (2.8).

Theorem 5.1. (a) limn→∞ P
(
τ̂ (n) = ∞|Aext

)
= 1.

(b) Suppose that R0 > 1, so P(AC
ext) > 0. Then, as n → ∞,

(i) P
(
τ̂ (n) < ∞|AC

ext

)
→ 1;

(ii) 1
lognY

(n)
E (τ̂ (n)) | AC

ext
p−→ 1;

(iii) 1
lognZ

(n)
E (τ̂ (n)) | AC

ext
p−→ α−1qIµD̃−1;

(iv)
√
n
(
n−1X(n)(τ̂ (n))− p

)
|AC

ext
D−→ N(0,ΣXX), where ΣXX is de-

fined at (5.19).

Proof. The key observations underlying the proof are that (i) the pro-

cesses {(Ŷ (n)
E (t), Ẑ

(n)
E (t)) : t ≥ 0} and {(Y (n)

E (t), Z
(n)
E (t)) : t ≥ 0} coincide up

until at least the first time that an attempt is made to pair a half-edge with
a half-edge belonging to an individual previously used in the construction of
Ẽ(n) and (ii) the branching processes B̃(n) and B̃ coincide up until the first
time that d̃(n)(Uk) 6= d̃(Uk). Thus we show that the probability that the pro-

cesses {(Ŷ (n)
E (t), Ẑ

(n)
E (t)) : 0 ≤ t ≤ τ̂ (n)} and {(YE(t), ZE(t)) : 0 ≤ t ≤ τ̂ (n)}

coincide converges to 1 as n → ∞. The theorem then follows using standard
results concerning the asymptotic behaviour of the branching process B̃.

For n = 1, 2, . . . and k = 1, 2, . . . , nµ
(n)
D , let C(n)(k) be the set of half-edges

attached to the individual owning half-edge k in Ẽ(n). Thus k ∈ C(n)(k) and
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|C(n)(k)| ≤ dmax. For n = 1, 2, . . . , let

M (n) = min

{
k ≥ 1 : l

(n)
k ∈

k−1⋃
i=0

C(n)(l
(n)
i )

}

be the number of pairings required in Ẽ(n) until an attempt is made to pair
a half-edge with a half-edge belonging to a previously used individual. Let
D = (D1, D2, . . . ). Then, for m = 1, 2, . . . ,

P(M (n) ≤ m|D) = P

(
m⋃
k=1

{
l
(n)
k ∈

k−1⋃
i=0

C(n)(l
(n)
i )

}
|D

)

≤ m(m+ 1)

2

dmax

nµ
(n)
D

.

Now µ
(n)
D

a.s.−→ µD as n → ∞ by the strong law of large numbers. Hence, for

any γ ∈ (0, 1/2), P(M (n) ≤ nγ |D)
p−→ 0 as n → ∞. Thus, for such γ,

(5.38) lim
n→∞

P(M (n) ≤ nγ) = lim
n→∞

E[P(M (n) ≤ nγ |D)] = 0,

as P(M (n) ≤ nγ |D) (n = 1, 2, . . . ) is uniformly bounded.
Turning to the coupling of B̃(n) and B̃, for n = 2, . . . ,

max
i=1,2,...,dmax−1

|c̃(n)i − c̃i| ≤ 1

2

dmax∑
i=1

|p̃(n)i − p̃i|(5.39)

≤ 1

µD

dmax∑
i=1

i|p(n)i − pi|.

The first inequality in (5.39) follows from the total variation distance be-

tween the distributions p̃
(n)
i (i = 1, 2, . . . , dmax) and p̃i (i = 1, 2, . . . , dmax),

and the second inequality follows using the triangle inequality and elemen-
tary manipulation (Ball and Neal (2017), equation (3.2)). For n = 1, 2, . . . ,
let M̂ (n) = min{k ≥ 0 : d̃(n)(Uk) 6= d̃(Uk)}. Then, for k = 0, 1, . . . ,

P
(
M̂n ≤ k

)
≤ (k + 1)(dmax − 1)

µD
E

[
dmax∑
i=1

i|p(n)i − pi|

]
.

Now, for i = 1, 2, . . . , dmax, as np
(n)
i ∼ Bin(n, pi),

E
[
|p(n)i − pi|

]
≤
√
var(p

(n)
i ) =

1√
n

√
pi(1− pi).
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Thus, for any γ ∈ (0, 1/2),

(5.40) lim
n→∞

P
(
M̂ (n) ≤ nγ

)
= 0.

For t ≥ 0, let TE(t) be the total number of individuals (of either type)
alive in the branching process B̃ during [0, t] and let TE(∞) = limt→∞ TE(t).
Thus TE(∞, ω) < ∞ if and only if ω ∈ Aext. For n = 1, 2, . . . and t ≥ 0, let

A
(n)
couple(t) =

{
ω ∈ Ω :

(
Y

(n)
E (u), Z

(n)
E (u)

)
= (YE(u), ZE(u)) for all u ∈ [0, t]

}
.

Let τ = min{t ≥ 0 : YE(t) = 0}, where τ(ω) = ∞ if ω ∈ AC
ext. Then (5.38)

and (5.40) imply that, for k = 0, 1, . . . ,

lim
n→∞

P
(
A

(n)
couple(τ) ∩ {TE(∞) = k}

)
= P(TE(∞) = k).

Part (a) of the theorem follows since Aext =
⋃∞

k=0{TE(∞) = k}.
Note that although B̃ is a two-type branching process, since only type-I

individuals produce offspring, it can be treated as a single-type branch-
ing process consisting only of type-I individuals, in which attached to each
(type-I) individual is a random characteristic (see Nerman (1981)) given by
its number of type-R offspring. Then it follows from Nerman (1981), Theo-
rem 5.4, that there exists a random variable W ≥ 0, where W (ω) = 0 if and
only if ω ∈ Aext such that, as t → ∞,

(5.41) e−αtYE(t)
a.s.−→ W,

(5.42) e−αtZE(t)
a.s.−→ α−1qIµD̃−1W

and

(5.43) e−αtTE(t)
a.s.−→ α−1µD̃−1W.

(It is easily checked that (5.41)-(5.43) hold by calculating the the appropriate

mϕ
∞ in Nerman (1981), Theorem 5.4, and using Corollary 3.2 of that paper.

For a heuristic argument note, for example, that if YE(u) ≈ W eαu (u ≥ 0)
then TE(t) ≈

∫ t
0 µD̃−1e

αuW du ≈ α−1µD̃−1W eαt, since type-I individuals
die at rate 1 and have on average µD̃−1 offspring.)

For n = 1, 2, . . . , let τ̄ (n) = inf{t ≥ 0 : YE(t) ≥ log n}, where τ̄ (n)(ω) = ∞
if ω ∈ Aext. Then it follows from (5.41) that τ̄ (n)(ω) < ∞ and limn→∞ τ̄ (n)(ω) =
∞, for P-almost all ω ∈ AC

ext. Thus, for P-almost all ω ∈ AC
ext,

(5.44) lim
n→∞

1

log n
YE(τ̄

(n)) = 1,
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since an individual has at most dmax offspring, and using (5.41)-(5.43),

lim
n→∞

1

log n
ZE(τ̄

(n)) = α−1qIµD̃−1

and

(5.45) lim
n→∞

1

log n
TE(τ̄

(n)) = α−1µD̃−1.

Now (5.38), (5.40) and (5.45) imply that

(5.46) lim
n→∞

P
(
A

(n)
couple(τ̄

(n))|AC
ext

)
= 1,

and (i)-(iii) of part (b) of the theorem follow using (5.42) and (5.44).
To prove part (b)(iv), note by the multivariate central limit theorem that

√
n
(
n−1X(n)(0)− p

)
D−→ N(0,ΣXX) as n → ∞.

Also, (5.45) and (5.46) imply that, for i = 0, 1, . . . , dmax,

lim
n→∞

P
(
X

(n)
i (τ̂ (n))−X

(n)
i (0) ≤ 2α−1µD̃−1 log n|A

C
ext

)
= 1,

so 1√
n

(
X

(n)
i (τ̂ (n))−X

(n)
i (0)

)
|AC

ext
p−→ 0 as n → ∞. Part (b)(iv) now fol-

lows using Slutsky’s theorem.

5.4.2. Epidemic starting with dlog ne infectives. Turning to the proof of
Theorem 2.2, note that by Theorem 5.1, limn→∞ P

(
G(n)4Aext

)
= 0, where

4 denotes symmetric difference. Hence, using the strong Markov property,

we can determine the asymptotic distribution of T
(n)
NSW|G(n) by consider-

ing the random time-scale transformed process {W̃ (n)
(t)}, defined in Sec-

tion 5.2, with initial state W̃
(n)

(0) = (X(n)(τ̂ (n)), Y
(n)
E (τ̂ (n)), Z

(n)
E (τ̂ (n))).

Thus, by Theorem 5.1(b),

(5.47)
√
n
(
n−1W̃

(n)
(0)− (p, 0, 0)

)
D−→ N(0,ΣNSW

0 ) as n → ∞,

where ΣNSW
0 is obtained by setting ϵ = 0 in (5.22).

By Theorem 4.1, for any t > 0,

(5.48) sup
0≤u≤t

|n−1Ỹ
(n)
E (u)− ỹE(u)|

p−→ 0 as n → ∞,
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where, using (5.12)

ỹE(t) = µD

(
e−2t − qIe

−t
)
− pIf

(1)
D (e−t).

Note that ỹE(t) = 0 if and only if

(5.49) e−t − qI − µ−1
D pIf

(1)
D (e−t) = 0

and that t = 0 is a solution of (5.49). If R0 ≤ 1 then t = 0 is the only
solution in [0,∞), but if R0 > 1 then we show in Appendix B.2 that, under
the conditions of Theorem 2.2, there is a unique solution in (0,∞) which we
denote by τ̃ .

As in Section 5.3.3, let τ̃ (n) = inf{t ≥ 0 : φ(n−1W̃
(n)

(t)) ≤ 0}. Re-
call that R0 > 1 is assumed in Theorem 2.2. It follows from (5.48) that,

min
(
τ̃ (n), |τ̃ (n) − τ̃ |

) p−→ 0 as n → ∞. We show below that there exists
ϵ0 > 0 such that

(5.50) lim
n→∞

P(τ̃ (n) < ϵ0) = 0.

Theorem 4.3 and Corollary 4.1, as stated, cannot be applied in the present
setting as φ(w̃(0)) = 0. However, in the terminology of Theorem 4.3, the
proof of Ethier and Kurtz (1986), Theorem 11.4.1, extends easily to the
situation when τ (n) = inf{t ≥ ϵ0 : φ(n−1X(n)(t)) ≤ 0} and τ = inf{t ≥ ϵ0 :
φ(x(t)) ≤ 0}, for fixed ϵ0 > 0. Hence, so do Theorem 4.3 and Corollary 4.1.

Let

(5.51) T̃ (n) =

dmax∑
i=0

(
X̃

(n)
i (0)− X̃

(n)
i (τ̃ (n))

)
.

Then using (5.50) and the above extension of Corollary 4.1 (we show in
Appendix B.2 that a(τ̃) = ∇φ(w(τ̃)) · F̃ (w(τ̃)) < 0), setting ϵ = 0 in the
proof of Theorem 2.1 yields

√
n
(
n−1T̃ (n) − ρ

)
D−→ N(0, σ̃2

NSW) as n → ∞.

Theorem 2.2 follows using Slutsky’s theorem since, by (5.45),

1√
n

(
T
(n)
NSW − T̃ (n)

)
p−→ 0 as n → ∞.

To complete the proof of Theorem 2.2 we use a device, first introduced
by Whittle (1955) in the setting of a homogeneously mixing epidemic, to
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show that there exists ϵ0 > 0 such that (5.50) holds. For n = 1, 2, . . . ,
construct on (Ω,F,P) an epidemic Ě(n) analogously to Ẽ(n) except having
initial state given in an obvious notation by(

X̌
(n)

(0), Y̌
(n)
E (0), Ž

(n)
E (0)

)
=
(
X(n)(τ̂ (n)), Y

(n)
E (τ̂ (n)), Z

(n)
E (τ̂ (n))

)
.

Let B̌(n) be the corresponding branching process which assumes all at-
tempted pairing in Ě(n) are valid. Let

Ť (n) =

dmax∑
i=0

(
X̌

(n)
i (0)− X̌

(n)
i (∞)

)
be the final size of Ě(n). Fix δ ∈ (0, 1). Then, provided Ť (n) ≤ nδ, for a
given pairing, the probability that an invalid pairing is attempted is at most

p(n)(δ) = min(δndmax/(nµ
(n)
D ), 1) = min(δdmax/µ

(n)
D , 1). It follows that

(5.52) P
(
Ť (n) ≥ nδ

)
≥ P

(
Ť
(n)
B (δ) ≥ nδ

)
,

where Ť
(n)
B (δ) is the total number of type-I individuals (excluding the initial

individuals) ever alive in the branching process B̌(n)(δ) that is obtained
from B̌(n) by aborting each type-I individual independently with probability
p(n)(δ).

Let R
(n)
0 (δ) be the mean number of type-I individuals spawned by a typi-

cal type-I individual in B̌(n)(δ) and let π(n)(δ) be the extinction probability
for type-I individuals in B̌(n)(δ) if the process were to start with one type-I

individual. As n → ∞, p
(n)
i

a.s.−→ pi (i = 0, 1, . . . , dmax), by the strong law of

large numbers, so p̃
(n)
i

a.s.−→ p̃i (i = 1, 2, . . . , dmax) and µ
(n)

D̃−1

a.s.−→ µD̃−1, where

µ
(n)

D̃−1
=
∑dmax

i=1 (i− 1)p̃
(n)
i . Thus,

R
(n)
0 (δ) = (1− p(n)(δ))µ

(n)

D̃−1
pI

a.s.−→ (1− p(δ))R0 as n → ∞,

where p(δ) = min(δdmax/µD, 1). Further, as n → ∞, the offspring distri-
bution of B̌(n)(δ) converges almost surely to that of B̃(δ), the branching
process obtained from B̃ by aborting each type-I individual independently
with probability p(δ). Thus, by a simple extension of Britton et al. (2007),
Lemma 4.1, π(n)(δ)

a.s.−→ π(δ) as n → ∞, where π(δ) is the extinction prob-
ability for type-I individuals in B̃(δ) starting from one type-I individual.

Recall that R0 > 1. Thus δ ∈ (0, 1) can be chosen sufficiently small such
that (1− p(δ))R0 > 1, whence π(δ) < 1.
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Now, Y̌
(n)
E (0) ≥ log n by construction, so using (5.52), for such δ,

lim
n→∞

P
(
Ť (n) ≥ nδ|D

)
≥ 1− lim

n→∞

(
π(n)

)logn
= 1,

for P-almost all ω ∈ AC
ext. Hence

(5.53) lim
n→∞

P
(
Ť (n) ≥ nδ|AC

ext

)
= 1.

Finally, for t ≥ 0, let x̃(t) =
∑dmax

i=0 x̃i(t) = fD(e
−t), using (5.11) with

x̃i(0) = pi (i = 0, 1, . . . , dmax). By construction, W (n)(τ (n)) = W̃
(n)

(τ̃ (n)),

so (5.53) and Theorem 4.1 applied to the process {W̃ (n)
(t)}, with initial

state satisfying (5.47), imply that (5.50) holds with ϵ0 being given by the
unique solution in (0,∞) of 1− fD(e

−ϵ0) = δ.

5.5. Proof of Theorem 2.3. The proof of Theorem 2.3 for the epidemic
on the NSW random graph parallels in an obvious fashion the argument in
Section 5.4.2 above without the need to condition on AC

ext, so the details
are omitted. Again, the proof for the epidemic on the MR random graph is
similar but simpler.

5.6. Proof of Theorem 2.7. Consider first bond percolation and note that
when I ≡ 1 and λ = − log(1 − π) then in the directed random graph G̃(n)

defined at the start of Section 5.1, all the possible directed edges in G̃(n)

(i.e. between pairs of neighbours in G(n)) are present independently, each
with probability π. Further, when constructing the final outcome T(n) of
the corresponding epidemic E(n) using G̃(n), for any pair (i, j) of distinct
individuals use is made of at most one of the directed edges i → j and j → i
(if i infects j, whether or not j tries to infect i is immaterial). Thus, in this

situation G̃(n) can be replaced by G
(n)
bond, obtained using bond percolation on

G(n), and in E(n), an initial susceptible is ultimately infected if and only if

in G
(n)
bond there is a chain of edges connecting it to an initial infective.

Suppose that there is one initial infective. Then the final size of the epi-
demic (including the initial infective) is given by the size of the connected

component of G
(n)
bond that contains the initial infective. With probability tend-

ing to 1 as n → ∞, a major outbreak occurs in E(n) if and only if the

initial infective belongs to the largest connected component of G
(n)
bond, and

the final size of a major epidemic is given by the size C(n) of that con-
nected component. Further C(n) has the same asymptotic distribution as
T (n)|G(n). Thus (2.11) and (2.12) follow immediately on setting I ≡ 1 and
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λ = − log(1−π) in Theorem 2.2. (Note that pI = π and, since I is constant,

q
(2)
I = q2I .)
Turning to site percolation, consider the epidemic E(n) with P(I = ∞) =

π = 1 − P(I = 0), so each infective infects all of its neighbours with
probability π and none of them otherwise. Suppose that there is one ini-
tial infective, i∗ say, and let T(n) = {j ∈ N(n) \ {i∗} : i∗ ; j} using
the directed random graph G̃(n). Then T(n) ∪ {i∗} differs from the con-

nected component containing i∗ in G
(n)
site (site percolation on G(n)) in that

T(n) also includes infected individuals having I = 0, which are deleted in

G
(n)
site. Thus, to obtain a central limit theorem for C(n), we need one for

V (n) = |{j ∈ N(n) \ {i∗} : Ij = ∞ and i∗ ; j}|, the final size of E(n) count-
ing only individuals with I = ∞. This can be obtained by augmenting the
process {W (n)(t)} as we now outline.

Let {Ŵ (n)
(t)} = {Ŵ (n)

(t) : t ≥ 0}, where

Ŵ
(n)

(t) = (W (n)(t), V (n)(t)) = (X(n)(t), Y
(n)
E (t), Z

(n)
E (t), V (n)(t))

and V (n)(t) is the total number of initial susceptibles that are infected dur-
ing (0, t] and have I = ∞ (so V (n)(0) = 0). A typical element of Ĥ(n),

the state space of {Ŵ (n)
(t)}, is now n̂ = (nX

0 , nX
1 , . . . , nX

dmax
, nY

E , n
Z
E , n

V ).

The transition intensities of {Ŵ (n)
(t)} are essentially the same of those of

{W (n)(t)}, given at the end of Section 5.1, except now transitions of type
(i) are partitioned according to whether or not the infected susceptible has
I = ∞. For i = 1, 2, . . . , dmax, we have

q̂(n)(n̂, n̂− eSi − eI + (i− 1)eR) =
nY
Ein

X
i pi,k(1− π)

nX
E + nY

E + nZ
E − 1

,

corresponding to the degree-i infected susceptible having I = 0, and

q̂(n)(n̂, n̂− eSi + (i− 1)eI + eV) =
nY
Ein

X
i pi,kπ

nX
E + nY

E + nZ
E − 1

,

corresponding to the degree-i infected susceptible having I = ∞.

We apply the same random time-scale transformation to {Ŵ (n)
(t)} as

done to {W (n)(t)} in Section 5.2. Denote the time-transformed process by

{W̄ (n)
(t)}. Let l̂(1)i,0 = l

(1)
i,0 and l̂

(1)

i,i−1 = l
(1)
i,i−1 + eV (i = 1, 2, . . . , dmax), l̂

(2)

+ =

l
(2)
+ , l̂

(2)

− = l
(2)
− and l̂

(3)
= l(3). The set of possible jumps of {W̄ (n)

(t)} from a

typical state n̂ is now ∆̂ = ∆̂1∪ ∆̂2∪ ∆̂3, where ∆̂1 =
⋃dmax

i=1 {l̂(1)i,0 }∪{l̂(1)i,i−1},
∆̂2 = {l̂(2)+ , l̂

(2)

− } and ∆̂3 = {l̂(3)}.
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Let ŵ = (x, yE , zE , v). The family of processes {W̄ (n)
(t)} is again asymp-

totically density dependent with corresponding functions β̄l(ŵ) (l ∈ ∆̂)
given by (cf. (5.3))

(5.54) β̄l(ŵ) =



β̄
(1)
i,0 (x, yE , zE , v) = ixi(1− π) for l = l̂

(1)

i,0 ∈ ∆̂1,

β̄
(1)
i,i−1(x, yE , zE , v) = ixiπ for l = l̂

(1)

i,i−1 ∈ ∆̂1,

β̄
(2)
+ (x, yE , zE , v) = yE1{yE>0} for l = l̂

(2)

+ ,

β̄
(2)
− (x, yE , zE , v) = −yE1{yE<0} for l = l̂

(2)

− ,

β̄(3)(x, yE , zE , v) = zE1{zE>0} for l = l̂
(3)

.

The associated drift function is (cf. (5.6))

F̄ (ŵ) = −
dmax∑
i=1

ixie
S
i +

{
dmax∑
i=1

ixi[(i− 1)π − 1]− 2yE − zE

}
eI

+

[
dmax∑
i=1

i(i− 1)(1− π)xi − zE

]
eR +

[
dmax∑
i=1

ixiπ

]
eV.

For t ≥ 0, let w̄(t) = (x̄0(t), x̄1(t), . . . , x̄dmax(t), ȳE(t), z̄E(t), v̄(t)) be de-
fined analogously to w̃(t) at (5.7). Noting that pI = π and qI = 1 − π, the
corresponding deterministic model for w̄(t) is given by (5.8)-(5.10), with x̃i
replaced by x̄i etc., augmented with

(5.55)
dv̄

dt
= π

dmax∑
i=1

ix̄i.

Thus, (5.11)-(5.13) still hold, with the above change of notation, and, us-
ing (5.11),

(5.56) v̄(t) = v̄(0) + π

dmax∑
i=1

x̄i(0)(1− e−it).

The stopping time τ̃ (n) is unchanged, except now φ(ŵ) = φ(x, yE , zE , v) =
yE . Recall that site percolation corresponds to one initial infective, so under
both the MR and NSW models, ϵi = 0 and x̃i(0) = pi (i = 0, 1, . . . , dmax).
Thus τ̃ = inf{t ≥ 0 : ȳE(t) = 0} (= inf{t ≥ 0 : ỹE(t) = 0}) is given by the
unique solution of (5.49) in (0,∞). Hence z = e−τ̃ is given by the unique so-
lution in (0, 1) of (2.10). Now ṽ(0) = 0, since V (n)(0) = 0 for all n = 1, 2, . . . ,
so using (5.56) and recalling that ρ = 1− fD(z),

v̄(τ̃) = π
[
1− fD(e

−τ̃ )
]
= πρ.
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Let V̄ (n) = V̄ (n)(τ̃ (n)), so in the site percolation setting, C(n) D
= 1 +

V̄ (n)|G(n). Now application of Corollary 4.1, as at (5.28), yields

√
n
(
n−1W̄

(n)
(τ̃ (n))− w̄(τ̃)

)
D−→ N(0, B̄Σ̄(τ̃)B̄⊤) as n → ∞,

where

B̄ = I −
(
F̄ (w̄(τ̃))

)⊤∇φ(w̄(τ̃))

∇φ(w̄(τ̃)) · F̄ (w̄(τ̃))

and Σ̄(τ̃) is obtained by making obvious changes to (5.25)-(5.27) to account

for the extra dimension. Further, V̄ (n) = W̄
(n)

(τ̃ (n))(0, 0, 0, 1)⊤, so

√
n
(
n−1V̄ (n) − πρ

)
D−→ N(0, σ̄2) as n → ∞,

where
σ̂2 = (0, 0, 0, 1)B̄Σ̄(τ̃)B̄⊤(0, 0, 0, 1)⊤.

A simple calculation yields (0, 0, 0, 1)B̄ = (0,−πb(τ̃), 0, 1), where b(τ̃) is
given by (5.30) with a(τ̃) obtained by replacing fDϵ by fD in (5.24). Define
Φ̄(t, u) analogously to Φ̃(t, u) at (5.25). Then it follows using (5.11)-(5.13)
and (5.56) that

[
(0, 0, 0, 1)Φ̄(τ̃ , u)

]
i
=


π
(
1− re−i(τ̃−u)

)
if i = 0, 1, . . . , dmax,

0 if i = dmax + 1, dmax + 2,

1 if i = dmax + 3,

and
[
(0, 1, 0, 0)Φ̄(τ̃ , u)

]
i
is 0, if i = dmax + 3, and given by the right-hand

side of (5.31) (with pI = π and qI = 1− π, if i = 0, 1, . . . , dmax + 2.
It follows that c̄(τ̃ , u) = (0, 0, 0, 1)B̄Φ̄(τ̃ , u) is given by

(5.57) c̄(τ̃ , u) = −π(c(τ̃ , u), 0) + π(1, 0, 0, 0) + (0, 0, 0, 1),

where c(τ̃ , u) is defined at (5.32), and (cf. (5.37))

σ̄2 = c̄(τ̃ , 0)Σ̄0c̄(τ̃ , 0)
⊤ +

∑
l̂∈∆̂

∫ τ̃

0

(
c̄(τ̃ , u)̂l

⊤)2
β̄l(w̄(u)) du,

where Σ̄0 = Σ̄MR
0 or Σ̄NSW

0 , depending on whether the random graph is
MR or NSW. Here, Σ̄MR

0 and Σ̄NSW
0 are the asymptotic variance matrices of

n− 1
2W̄

(n)
(0) for the MR and NSW random graphs, respectively; cf. (5.16)

and (5.20).
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We show in Appendix B.5 that

∑
l̂∈∆̂

∫ τ̃

0

(
c̄(τ̃ , u)̂l

⊤)2
β̄l(w̄(u)) du = π(1− π)[ρ− 2h(z)(1− z)µD](5.58)

+ π2
∑
l∈∆

∫ τ̃

0

(
c(τ̃ , u)l⊤

)2
β̃l(w̃(u)) du

and, for both the MR and NSW random graphs, that

(5.59) c̄(τ̃ , 0)Σ̄0c̄(τ̃ , 0)
⊤ = c(τ̃ , 0)Σ0c(τ̃ , 0)

⊤.

Equations (2.13) and (2.14) then follow using Theorem 2.2, noting that

q
(2)
I = π(1− π).

5.7. Simple graphs. As noted in Section 2.1, the graph G(n) constructed
using the configuration model may contain self-loops and parallel edges.
We now apply recent results of Janson (2019) to show that our central

limit theorems hold also for the graph G
(n)
S , which is distributed as G(n)

conditioned on being simple. We do this for T
(n)
MR in Theorem 2.3. Similar

arguments hold for the other central limit theorems.
The method of Janson (2019) starts with a realisation of G(n) and adjusts

it by a sequence of switchings, which maintain the degrees of its vertices, un-

til a simple graph, which we denote by Ĝ
(n)
S , is obtained. An edge is called bad

if it is either a self-loop or a parallel edge. If the realisation of G(n) contains

no bad edge then Ĝ
(n)
S = G(n). Otherwise a bad edge is chosen and its end-

points are switched with those of an edge chosen uniformly at random from
all edges (see Janson (2019), Section 3.2 for details). The switching process

is continued until a simple graph is obtained. Recall that T
(n)
MR is the final

size of an epidemic on G(n). Let T̂
(n)
MR denote the final size of an epidemic on

the graph Ĝ
(n)
S and T

(n)
MR,S denote the final size of an epidemic on the simple

graph G
(n)
S . Let S(n) be the number of switchings required to obtain a simple

graph. Using Janson (2019), Theorem 3.2, limK→∞ supn P(S
(n) > K) = 0.

The distributions of Ĝ
(n)
S and G

(n)
S differ, though they are equal asymp-

totically (Janson (2019), Theorem 2.1). Moreover, it follows using Janson

(2019), Corollary 2.3 (see also Remark 8.2), that T
(n)
MR,S satisfies the central

limit theorem in Theorem 2.3 provided

(5.60)
1√
n

(
T̂
(n)
MR − T

(n)
MR

)
p−→ 0 as n → ∞.
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To prove (5.60), fix δ, ϵ > 0. There exists integer K > 0 such that, for
all n, P(S(n) > K) < δ

2 , so we restrict attention to switching processes

with S(n) ≤ K. Let N
(n)
S denote the set of vertices in Ĝ

(n)
S that have at

least one edge that is switched in its construction. Let Γ
(n)
S be a vector

which contains for each vertex in N
(n)
S its degree and the number of edges

connected to vertices not in N
(n)
S . Note that Γ

(n)
S remains unchanged dur-

ing the switching process. Let T̂
(n)
MR,− denote the final size of an epidemic

on Ĝ
(n)
S in which all the vertices in N

(n)
S are initially recovered; apart from

this restriction the initial conditions are the same as those for T
(n)
MR and

T̂
(n)
MR. We construct a realisation of (Ĝ

(n)
S , T̂

(n)
MR,−)|(Ñ

(n)
S ,Γ

(n)
S ), where Ñ

(n)
S

denotes the vertices N
(n)
S together with edges joining them in Ĝ

(n)
S and

edges joining them in G(n), as follows. Break all the edges except those

between individuals in N
(n)
S into half-edges and make all half-edges emanat-

ing from individuals in N
(n)
S recovered half-edges. Now use the construction

in Section 5.1 to yield a continuous-time Markov chain {W̌ (n)
(t)}, where

W̌
(n)

(t) = (X̌
(n)
0 (t), X̌

(n)
1 (t), . . . , X̌

(n)
dmax

(t), Y̌
(n)
E (t), Ž

(n)
E (t)), that is defined

analogously to {W (n)(t)}. The process {W̌ (n)
(t)} does not contain the end-

points of edges as they are formed in the corresponding realisation of Ĝ
(n)
S ,

nor the disease status of individuals, but it can be augmented to carry

that information. Let τ̌ (n) = inf{t ≥ 0 : Y̌
(n)
E (t) = 0}. By applying Theo-

rem 4.1 to the random time-changed version of {W̌ (n)
(t)} that is analogous

to {W̃ (n)
(t)}, since S(n) ≤ K and the degrees are bounded, it is shown easily

that, as n → ∞,
(5.61)
1

n
X̌

(n)
i (τ̌ (n))

p−→ x̃i(τ̃) (i = 0, 1, . . . , dmax) and
1

n
Ž

(n)
E (τ̌ (n))

p−→ z̃E(τ̃),

where τ̃ > 0 satisfies (5.23), with ϵ = 0, and x̃i(t) and z̃E(t) are given
by (5.11) and (5.13) with x̃i(0) = pi and z̃E(0) = 0.

At this stage Ĝ
(n)
S is partially constructed. To obtain a realisation of

T̂
(n)
MR|(N

(n)
S ,Γ

(n)
S ), we now change the disease status of individuals in N

(n)
S

to susceptible or infective, according to their initial status in the epidemic

on G(n). Also the disease status of any individual in N
(n)
S that had at least

one half-edge paired (and hence received infection) by time τ̌ (n) in the
augmented version of {W (n)(t)} is changed to infective. If no member of

N
(n)
S becomes infected then T̂

(n)
MR = T̂

(n)
MR,−. Otherwise the epidemic is now

spread within N
(n)
S , which may lead to infectives within N

(n)
S who have at
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least one (unpaired) half-edge, and we carry on the joint construction of

(Ĝ
(n)
S , T̂

(n)
MR,−)|(Ñ

(n)
S ,Γ

(n)
S ). The construction can also be continued from time

τ̌ (n) in a similar way to yield a realisation of (G(n), T
(n)
MR)|(Ñ

(n)
S ,Γ

(n)
S ), the only

difference being the spread of infection withinN
(n)
S to decide which half-edges

emanating from individuals in N
(n)
S become infective half-edges. Let T̂

(n)
MR,+

denote the total size of a similar epidemic, E
(n)
+ say, in which at time τ̌ (n) all

individuals in N
(n)
S are made infective. Clearly, realisations of T̂

(n)
MR and T

(n)
MR

can be derived from a realisation of E
(n)
+ so that T̂

(n)
MR,− ≤ T̂

(n)
MR ≤ T̂

(n)
MR,+ and

T̂
(n)
MR,− ≤ T

(n)
MR ≤ T̂

(n)
MR,+, whence |T̂ (n)

MR − T
(n)
MR| ≤ T̂

(n)
MR,+ − T̂

(n)
MR,−.

To construct E
(n)
+ , we carry on the exploration process from infective half-

edges (if any) emanating from N
(n)
S in turn, only pairing half-edges along

which an infective transmits infection After the infection process has fin-
ished, we continue by pairing all remaining half-edges to make the graph. If

the construction from time τ̌ (n) creates a new edge inside N
(n)
S , we abort and

restart the entire construction from time 0; this happens with probability
o(1) as n → ∞, so it may be ignored.

Let i∗ denote the first infective half-edge emanating from N
(n)
S that is

explored. When infection is transmitted along it, the probability it is paired
with a half-edge from a degree-i susceptible is

iX̌
(n)
i (τ̌ (n))

Ž
(n)
E (τ̌ (n))− 1 +

∑dmax
j=1 iX̌

(n)
j (τ̌ (n))

p−→ ix̃i(τ̃)

x̃E(τ̃) + z̃E(τ̃)
as n → ∞,

where x̃E(τ̃) =
∑dmax

i=1 ix̃i(τ̃). Let

(5.62) R0(τ̃) = pI

∑dmax
i=1 i(i− 1)x̃i(τ̃)

x̃E(τ̃) + z̃E(τ̃)

be the asymptotic mean number of infections made by the individual owning
the half-edge with which i∗ is paired. Then R0(τ̃) < 1 (see Appendix B.3), as
is intuitively plausible since otherwise the epidemic would not have stopped
at time τ̌ (n). Thus, using (5.61), there exists ϵ′ > 0 such that

lim
n→∞

P
(
Ž

(n)
E (τ̌ (n)) > n(z̃E(τ̃)− ϵ′)

)
= 0,(5.63)

lim
n→∞

P
(
X̌

(n)
i (τ̌ (n)) < n(x̃i(τ̃) + ϵ′)

)
= 0 (i = 1, 2, . . . , dmax),(5.64)

and

R′
0 = pI

∑dmax
i=1 i(i− 1)(x̃i(τ̃) + ϵ′)

z̃E(τ̃)− ϵ′ +
∑dmax

i=1 i(x̃i(τ̃) + ϵ′)
< 1.
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It follows that, with probability tending to 1 as n → ∞, the total number of
infectives in the exploration process from the half-edge i∗ may be bounded
above by the total progeny, Z ′ say, of a (subcritical) Galton-Watson pro-
cess having offspring mean R′

0. (Since P(Z ′ < ∞) = 1, (5.61) ensures that
obvious modifications of (5.63) and (5.64) hold throughout the exploration
process from i∗.)

Now E[Z ′] = (1 − R′
0)

−1 < ∞ and there can be at most L = 4Kdmax

infective half-edges emanating from N
(n)
S , since S(n) ≤ K. Thus a simple

argument involving exchangeability and Markov’s inequality yields

lim
n→∞

P
(
T̂
(n)
MR,+ − T̂

(n)
MR,− > ϵ

√
n|(Ñ(n)

S ,Γ
(n)
S )
)
≤ lim

n→∞

L(1−R′
0)

−1

ϵ
√
n

= 0,

so, since |T̂ (n)
MR − T

(n)
MR| ≤ T̂

(n)
MR,+ − T̂

(n)
MR,−,

(5.65) lim
n→∞

P

(
1√
n

∣∣∣T̂ (n)
MR − T

(n)
MR

∣∣∣ > ϵ|(Ñ(n)
S ,Γ

(n)
S )

)
= 0.

The above construction may yield a graph that contains self-loops and/or
parallel edges. However, by Janson (2009b), (5.61) and hence also (5.65)
still holds if the graph is conditioned on there being no such imperfections.
Thus (5.60) follows as P(S(n) > K) < δ

2 and δ, ϵ > 0 are arbitrary.

6. Concluding comments. A shortcoming of our results, from a math-
ematical though not a practical viewpoint, is the requirement of a maximal
degree dmax. It seems likely that Theorems 2.1-2.3 continue to hold when
that requirement is relaxed, subject to appropriate conditions on the degree
sequence (MR model) or degree distribution D (NSW model). This conjec-
ture is supported by the numerical illustrations in Section 3, and by the
recent work of Barbour and Röllin (2019) and Janson (2018), who inter alia
prove central limit theorems for the size of the giant component for con-
figuration model graphs, with asymptotic variances consistent with setting
pI = 1 in Theorem 2.2. To extend the present proof to models with un-
bounded degree would require a functional central limit theorem for density
dependent population processes with countable state spaces. Barbour and
Luczak (2012) give such a theorem but it is not applicable in our setting
as it would require a finite upper bound on the number of neighbours an
individual can infect.

Note that (5.28) yields a multivariate central limit theorem for the num-
bers of susceptibles of different degrees remaining at the end of an epidemic,
although we do not derive a closed-form expression for the asymptotic vari-
ance matrix. Setting pI = 1, as in Remark 2.6, enables a multivariate central
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limit theorem to be obtained for the number of vertices of different degrees
in the giant component of an MR random graph, and hence also for the
numbers of vertices and edges in the giant component. In particular, the
asymptotic variance, σ2

E say, of the number of edges in the giant component
admits a similar form to (5.37), with Σ0 = 0, and it is immediately apparent
that σ2

E is strictly positive; cf. Janson (2018), Remark 10.6.
The central limit theorems can be extended, at least in principle, to al-

low for the infection rate λ to depend on the degree of an infective, and
also to more general infection processes in which the set of its neighbours
that are contacted by a given infective is a symmetric sampling procedure
(Martin-Löf (1986)). In both cases it is straightforward to determine the
limiting deterministic model in Section 5.3.1 and the equation correspond-
ing to (5.23), which governs τ̃ , but calculation of the asymptotic variances
in the central limit theorems is likely to be prohibitive.

The configuration model does not display clustering in the limit as n →
∞ and several authors have considered modifications of the configuration
model that introduce clustering. In Trapman (2007) and Coupechoux and
Lelarge (2014), in the configuration model construction, for d = 1, 2, . . . ,
some individuals having d half-edges are replaced by fully connected cliques,
each of size d, with each member of a clique having exactly one half-edge.
The half-edges are then paired up in the usual fashion. In Gleeson (2009)
and Ball et al. (2010), the network is formed as in the configuration model
and the population is also partitioned into fully connected cliques. In both
models, the set of edges in the network is the union of those in cliques and
the paired half-edges. The methodology in this paper can be extended to
this general class of models as follows.

As in Section 5.1, the network and epidemic are constructed simultane-
ously. The objects counted are now fully susceptible cliques, typed by their
size and degree composition, and infective and recovered half-edges. When
infection is transmitted down a half-edge that half-edge is paired with a
uniformly chosen half-edge as before. If it is paired with a susceptible half-
edge, then an epidemic is triggered within the corresponding clique and
associated half-edges, leading to the creation of further infective and recov-
ered half-edges and, unless the clique epidemic infects the entire clique, a
new susceptible clique having reduced size. Central limit theorems for the
final size of epidemics on MR and NSW versions of such random graphs
should follow using similar arguments to before but again calculation of the
asymptotic variances may be difficult. If the infectious period is constant,
so the epidemic model is equivalent to bond percolation on the network, the
analysis may perhaps be simplified by first splitting the cliques into com-
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ponents determined by bond percolation and then using similar methods to
the present paper treating the components as super-individuals.

APPENDIX A: PROOF OF THEOREMS 4.1 AND 4.2

In this appendix we prove Theorems 4.1 and 4.2. As noted in Section 4,
the proofs follow closely those of similar theorems in Britton and Pardoux
(2019), the main difference being the use of Skorohod’s theorem in the proof
of Theorem 4.2. As we are primarily interested in Theorem 4.2, we prove
Theorem 4.1 under the stronger initial condition (4.8) (repeated in (A.3) be-
low) and indicate how the proof may be extended easily to the corresponding
convergence in probability in Theorem 4.1, as stated, and to the correspond-
ing strong law of large numbers in Ethier and Kurtz (1986) and Britton and
Pardoux (2019). In this appendix, vectors are column vectors, to aid con-
nection with Ethier and Kurtz (1986) and Britton and Pardoux (2019), and
notation is local to it and Section 4.

The process {X(n)(t) : t ≥ 0} can be expressed as

(A.1) X(n)(t) = X(n)(0)+
∑
l∈∆

lYl

(∫ t

0
nβ

(n)
l

(
n−1X(n)(s)

)
ds

)
(t ≥ 0),

where {Yl(t) : t ≥ 0} (l ∈ ∆) are independent unit-rate Poisson processes;
see Ethier and Kurtz (1986), Chapter 11, equation (2.1). For l ∈ ∆, let
Ỹl(t) = Yl(t)− t (t ≥ 0). Then

(A.2)

{
1√
n
Ỹl(nt) : t ≥ 0

}
⇒ {Wl(t) : t ≥ 0} as n → ∞,

where {Wl(t) : t ≥ 0} is a standard Brownian motion (starting at 0); see,
for example, Britton and Pardoux (2019), Lemma 2.3.4. Recall (4.8), i. e.

(A.3)
√
n
(
n−1X(n)(0)− x0

)
D−→ V (0) as n → ∞,

where V (0) ∼ N(0,Σ0).
By Skorohod’s theorem (see Ethier and Kurtz (1986), page 102), there ex-

ists a probability space (Ω,F,P), on which are defined the following random
quantities:

(i) for each n = 1, 2, . . . , {Y̌ (n)
l (t) : t ≥ 0} (l ∈ ∆) and X̂

(n)
(0), where

{Y̌ (n)
l (t) : t ≥ 0} (l ∈ ∆)

D
= {Yl(t) : t ≥ 0} (l ∈ ∆) and independently

X̂
(n)

(0)
D
= X(n)(0);
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(ii) {Ŵl(t) : t ≥ 0} (l ∈ ∆), independent standard Brownian motions, and
independently V̂ (0) ∼ N(0,Σ0);

such that, for l ∈ ∆,

(A.4)

{
1√
n
Y̌

(n)
l (nt) : t ≥ 0

}
a.s.−→ {Ŵl(t) : t ≥ 0} as n → ∞,

and

(A.5)
√
n
(
n−1X̂

(n)
(0)− x0

)
a.s.−→ V̂ (0) as n → ∞.

Thus, there exists A ∈ F with P(A) = 1, such that the convergences cor-
responding to (A.4) and (A.5) hold pointwise on A and, for all l ∈ ∆, the
function Ŵl(t, ω) (t ≥ 0) is continuous for all ω ∈ A.

For n = 1, 2, . . . , define the process {X̂(n)
(t) : t ≥ 0} by

(A.6)

X̂
(n)

(t) = X̂
(n)

(0) +
∑
l∈∆

lŶ
(n)
l

(∫ t

0
nβ

(n)
l

(
n−1X̂

(n)
(s)
)
ds

)
(t ≥ 0),

where Ŷ
(n)
l (t) = t+Y̌

(n)
l (t) (t ≥ 0, l ∈ ∆). We prove almost sure analogues of

Theorems 4.1 and 4.2 for the processes {X̂(n)
(t) : t ≥ 0} (n = 1, 2, . . . ) by

showing that they satisfy the required convergence pointwise on A. The-
orems 4.1 and 4.2 then follow since, for each n = 1, 2, . . . , the process

{X̂(n)
(t) : t ≥ 0} has the same law as {X(n)(t) : t ≥ 0}.

We assume that ω ∈ A and suppress explicit dependence on ω, so

(A.7)
√
n
(
n−1X̂

(n)
(0)− x0

)
→ V̂ (0) as n → ∞

and, since convergence in the Skorohod topology is equivalent to locally
uniform convergence when the limit process is continuous,

(A.8) lim
n→∞

sup
0≤t≤T

∣∣∣∣ 1√
n
Y̌

(n)
l (nt)− Ŵl(t)

∣∣∣∣ = 0 (l ∈ ∆, T ≥ 0).

For t ≥ 0, let X̄
(n)

(t) = n−1X̂
(n)

(t),

Ȳ
(n)

(t) =
1

n

∑
l∈∆

lY̌
(n)
l

(∫ t

0
nβ

(n)
l

(
X̄

(n)
(s)
)
ds

)
and

Z̄
(n)

(t) =

∫ t

0

[
F (n)(X̄

(n)
(s))− F (X̄

(n)
(s))

]
ds,
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where F (n) is defined analogously to F at (4.2) but with βl(x) replaced by

β
(n)
l (x). Then (A.6) yields

(A.9) X̄
(n)

(t) = X̄
(n)

(0) +

∫ t

0
F (X̄

(n)
(s)) ds+ Ȳ

(n)
(t) + Z̄

(n)
(t).

For T > 0, let KT = {x(t) : 0 ≤ t ≤ T}. Then KT is a compact subset of
the open set H, so there exists ϵ = ϵ(T ) > 0, so that KT,ϵ ⊂ H, where KT,ϵ

is the (compact) set of consisting of all points in Rp that are at distance ≤ ϵ

from KT . Let τ
(n)
T,ϵ = inf{t > 0 : X̄

(n)
(t) /∈ KT,ϵ}.

Fix T > 0. Recalling from (4.5) that x(t) = x0 +
∫ t
0 F (x(s)) ds, it follows

from (A.9) and (4.4) that, for 0 ≤ t ≤ T ,∣∣∣X̄(n)
(t ∧ τ

(n)
T,ϵ )− x(t ∧ τ

(n)
T,ϵ )

∣∣∣
≤
∣∣∣X̄(n)

(0)− x0

∣∣∣+MKT,ϵ

∫ t∧τ (n)
T,ϵ

0

∣∣∣X̄(n)
(s)− x(s)

∣∣∣ ds
+ T sup

x∈KT,ϵ

∣∣∣F (n)(x)− F (x)
∣∣∣+ ∣∣∣Ȳ (n)

(t ∧ τ
(n)
T,ϵ )

∣∣∣
≤ An exp(−MKT,ϵ

t),

using Gronwall’s inequality (see Ethier and Kurtz (1986), page 498), where
(A.10)

An =
∣∣∣X̄(n)

(0)− x0

∣∣∣+ T sup
x∈KT,ϵ

∣∣∣F (n)(x)− F (x)
∣∣∣+ sup

0≤t≤T∧τ (n)
T,ϵ

∣∣∣Ȳ (n)
(t)
∣∣∣ .

By (4.3), there exists a constant C ∈ (0,∞) such that, for all n,

max
l∈∆

sup
0≤t≤T∧τ (n)

T,ϵ

∣∣∣β(n)
l

(
X̄

(n)
(s)
)∣∣∣ < C,

so it follows from (A.8) and the continuity of Ŵl(t) (l ∈ ∆) that the third
term on the right-hand side of (A.10) tends to 0 as n → ∞. The first and
second terms tend to 0, using (A.7) and (4.3), respectively. Thus An → 0 as
n → ∞, so

(A.11) lim
n→∞

sup
0≤t≤T

∣∣∣X̄(n)
(t)− x(t)

∣∣∣ = 0,

since An exp(−MKT,ϵ
T ) ≤ ϵ implies τ

(n)
T,ϵ > T , and Theorem 4.1 follows.

Note that if n−1X(n)(0)
a.s.−→ x0 as n → ∞, then the above argument is

easily modified to show directly from (A.1) (without invoking Skorohod’s
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theorem) that (4.6) holds with convergence in probability replaced by con-
vergence almost surely, since, for all l ∈ ∆,

lim
n→∞

sup
0≤t≤T

∣∣n−1Yl(nt)− nt
∣∣ = 0 for all T ≥ 0,

almost surely. The proof is then essentially that in Ethier and Kurtz (1986)

and Britton and Pardoux (2019). If n−1X(n)(0)
p−→ x0 as n → ∞, then

Skorohod’s theorem has to be invoked only for X(n)(0) (n = 1, 2, . . . ).

Turning to Theorem 4.2, for t ≥ 0, let V (n)(t) =
√
n[X̄

(n)
(t) − x(t)],

R(n)(t) =
√
n[F (X̄

(n)
(t)) − F (x(t))], Ỹ

(n)
(t) =

√
nȲ

(n)
(t) and Z̃

(n)
(t) =

√
nZ̄

(n)
(t). Then, (A.9) and (4.5) yield

(A.12) V (n)(t) = V (n)(0) + Z̃
(n)

(t) +

∫ t

0
R(n)(s) ds+ Ỹ

(n)
(t) (t ≥ 0).

Further, for n = 1, 2, . . . and t ≥ 0, it follows using the mean value theorem
that there exists a p× p matrix B(n)(t) such that

(A.13) R(n)(t) = ∂F (x(t))V (n)(t) +B(n)(t)V (n)(t);

cf. Britton and Pardoux (2019), Lemma 2.3.2. Moreover, as ∂F is continuous,
it follows using (A.11) that

(A.14) lim
n→∞

sup
0≤t≤T

∥∥∥B(n)(t)
∥∥∥ = 0 (T ≥ 0).

Substituting (A.13) into (A.12) yields
(A.15)

V (n)(t) = V (n)(0) +

∫ t

0
∂F (x(s))V (n)(s) ds+U(t) + ϵ(n)(t) (t ≥ 0),

where U(t) =
∑

l∈∆ lŴl

(∫ t
0 βl(x(s)) ds

)
and

(A.16) ϵ(n)(t) = Z̃
(n)

(t) +

∫ t

0
B(n)(s)V (n)(s) ds+ Ỹ

(n)
(t)−U(t).

We show now that, for all T > 0,

(A.17) lim
n→∞

sup
0≤t≤T

∣∣∣ϵ(n)(t)∣∣∣ = 0.

Fix T > 0 and l ∈ ∆. Then
(A.18)

sup
0≤t≤T

∣∣∣∣ 1√
n
Y̌

(n)
l

(∫ t

0
nβ

(n)
l

(
X̄

(n)
(s)
)
ds

)
− Ŵl

(∫ t

0
βl(x(s)) ds

)∣∣∣∣ ≤ Cn+Dn,
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where

Cn = sup
0≤t≤T

∣∣∣∣ 1√
n
Y̌

(n)
l

(∫ t

0
nβ

(n)
l

(
X̄

(n)
(s)
)
ds

)
− Ŵl

(∫ t

0
β
(n)
l

(
X̄

(n)
(s)
)
ds

)∣∣∣∣
and

Dn = sup
0≤t≤T

∣∣∣∣Ŵl

(∫ t

0
β
(n)
l

(
X̄

(n)
(s)
)
ds

)
− Ŵl

(∫ t

0
βl(x(s)) ds

)∣∣∣∣ .
Using the continuity of βl, the limit in (4.3) and (A.11), there exists a

constant c > 0 such that
∫ T
0 β

(n)
l

(
X̄

(n)
(s)
)
ds < c for all sufficiently large n,

so (A.8) implies that Cn → 0 as n → ∞. Further, βl is uniformly continuous
on any compact subset of H. Hence, using∣∣∣β(n)

l

(
X̄

(n)
(s)
)
− βl(x(s))

∣∣∣
≤
∣∣∣β(n)

l

(
X̄

(n)
(s)
)
− βl

(
X̄

(n)
(s)
)∣∣∣+ ∣∣∣βl (X̄(n)

(s)
)
− βl(x(s))

∣∣∣ ,
the second condition in (4.3) and (A.11) imply that

lim
n→∞

sup
0≤t≤T

∣∣∣∣∫ t

0
β
(n)
l

(
X̄

(n)
(s)
)
ds−

∫ t

0
βl(x(s)) ds

∣∣∣∣ = 0.

Thus Dn → 0 as n → ∞, since Ŵl(t) is uniformly continuous on any finite
interval. It then follows using (A.18) that

(A.19) lim
n→∞

sup
0≤t≤T

∣∣∣Ỹ (n)
(t)−U(t)

∣∣∣ = 0 (T > 0).

Using Gronwall’s inequality, it follows from (A.15) and (A.16) that, for
any T > 0,

sup
0≤t≤T

∣∣∣V (n)(t)
∣∣∣ ≤ (∣∣∣V (n)(0)

∣∣∣+ sup
0≤t≤T

∣∣∣Z̃(n)
(t)
∣∣∣+ sup

0≤t≤T

∣∣∣Ỹ (n)
(t)
∣∣∣)(A.20)

× exp

(
sup

0≤t≤T

∥∥∥∂F (x(t)) +B(n)(t)
∥∥∥T) .

Now supn≥1

∣∣∣V (n)(0)
∣∣∣ < ∞, using (A.7); supn≥1 sup0≤t≤T

∣∣∣Ỹ (n)
(t)
∣∣∣ < ∞,

using (A.19) and the continuity of U ; and

(A.21) lim
n→∞

sup
0≤t≤T

∣∣∣Z̃(n)
(t)
∣∣∣ = 0 (T > 0),
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using (4.7) and (A.11). Recalling (A.14), it then follows from (A.20) that

supn≥1 sup0≤t≤T

∣∣∣V (n)(t)
∣∣∣ < ∞, since ∂F is continuous, whence using (A.14),

(A.22) lim
n→∞

sup
0≤t≤T

∣∣∣∣∫ t

0
B(n)(s)V (n)(s) ds

∣∣∣∣ = 0 (T > 0).

The limit (A.17) now follows using (A.16), (A.19), (A.21) and (A.22).
The mapping y 7→ η(y), which maps y ∈ C([0, T ];Rp) to η(y) = x ∈

C([0, T ];Rp) given by the solution of the integral equation

x(t) =

∫ t

0
∂F (x(s)))x(s) ds+ y(t) (t ≥ 0),

is continuous (Britton and Pardoux (2019)). Hence, (A.15) and (A.17) yield

(A.23) lim
n→∞

sup
0≤t≤T

∣∣∣V (n)(t)− V (t)
∣∣∣ = 0 (T ≥ 0),

where V (t) (t ≥ 0) is the solution of the integral equation

(A.24) V (t) = V (0) +

∫ t

0
∂F (x(s))V (x) ds+U(t) (t ≥ 0).

Now V (t) (t ≥ 0) is a sample path of the Gaussian process {V (t) : t ≥ 0},
defined using (A.24) with V (0) ∼ N(0,Σ0) and {U(t) : t ≥ 0} being given

by U(t) =
∑

l∈∆ lWl

(∫ t
0 βl(x(s)) ds

)
, where {Wl(t) : t ≥ 0} (l ∈ ∆) are

independent standard Brownian motions that are independent of V (0). The
process {V (t) : t ≥ 0} admits the Itô integral representation

V (t) = Φ(t, 0)V (0) +

∫ t

0
Φ(t, s) dU(s) (t ≥ 0),

see Ethier and Kurtz (1986), page 458. Thus {V (t) : t ≥ 0} has zero mean
and covariance function given by (4.10), since V (0) and {U(t) : t ≥ 0} are
independent. We have thus shown the almost sure analogue of Theorem 4.2
on the probability space (Ω,F,P), so Theorem 4.2 follows.

APPENDIX B: DETAILED DERIVATIONS

B.1. Deterministic solution (5.11)-(5.13). First note that (5.11) fol-
lows immediately from (5.8). Substituting (5.11) into (5.10) yields

dz̃E
dt

= qI

[
dmax∑
i=2

i(i− 1)x̃i(0)e
−it

]
− z̃E
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and (5.13) follows using the integrating factor et.
Multiplying (5.8) by i and adding over i = 1, 2, . . . , dmax yields

(B.1)
dx̃E
dt

= −
dmax∑
i=2

i(i− 1)x̃i − x̃E .

Recall that η̃E(t) = x̃E(t) + ỹE(t) + z̃E(t). Summing (B.1), (5.9) and (5.10)
gives

dη̃E
dt

= −2η̃E ,

and (5.14) follows. Equation (5.12) then follows since ỹE(t) = η̃E(t)−x̃E(t)−
z̃E(t) and, using (5.11), x̃E(t) =

∑dmax
i=1 ix̃i(0)e

−it.

B.2. Properties of τ̃ and a(τ̃ ). In this appendix we show that τ̃ ∈
(0,∞) and a(τ̃) < 0, first in the setting of Theorem 2.1 and then in the

setting of Theorems 2.2 and 2.3. Let G(s) = pIf
(1)
Dϵ

(s)−µD(s− qI) (0 ≤ s ≤
1). Then, from (5.23), z = e−τ̃ satisfies G(z) = 0. Now G(0) = pIf

(1)
Dϵ

(0) +

µDqI > 0, unless qI = 0 and p1−ϵ1 = 0. Also f
(1)
Dϵ

(1) < µD, since piϵi > 0 for
at least one i > 0, so G(1) < 0. Thus, under the conditions of Theorem 2.1,
G(s) has at least one zero in (0, 1). Moreover it has precisely one zero,

z say, as G(s) is convex on [0, 1], since G(2)(s) = pIf
(3)
Dϵ

(s) ≥ 0 for all
s ∈ [0, 1]. Hence τ̃ = − log z ∈ (0,∞), as required, and it follows from (5.24)
that a(τ̃) < 0 if and only if G(1)(z) < 0. Suppose, for contradiction, that
G(1)(z) ≥ 0. Then, since G(2)(s) ≥ 0 for all s ∈ [z, 1],

G(1) ≥ G(z) +

∫ 1

z
G(1)(s) ds ≥ 0.

However, G(1) < 0, so G(1)(z) < 0, as required.

Turning to the setting of Theorems 2.2 and 2.3, now let G(s) = pIf
(1)
D (s)−

µD(s− qI) (0 ≤ s ≤ 1). Then, from (5.49), z = e−τ̃ satisfies G(z) = 0. Now
G(1) = 0 and, under the conditions of Theorems 2.2 and 2.3, G(0) > 0. Also,

using (2.8), G(1)(1) = pIf
(2)
D (1) − µD > 0, since R0 > 1. Thus, since G(s)

is convex on [0, 1], there exists a unique z ∈ (0, 1) such that G(z) = 0, so
τ̃ ∈ (0,∞). Moreover, G(2)(s) > 0 for s ∈ [z, 1] and a similar contradiction
argument to before shows that G(1)(z) < 0, whence a(τ̃) < 0.

B.3. Proof of R0(τ̃ ) < 1. Using (5.11) and (5.13), with x̃i(0) = pi

and z̃E(0) = 0, yields
∑dmax

i=1 i(i− 1)x̃i(τ̃) = z2f
(2)
D (z), x̃E(τ̃) = zf

(1)
D (z) and

z̃E(τ̃) = qIz[µD−f
(1)
D (z)], where z = e−τ̃ . As in the previous paragraph, z is
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the unique solution of G(s) = 0 in (0, 1), where G(s) = pIf
(1)
D (s)−µD(s−qI).

Thus pIf
(1)
D (z) = µD(z − qI) and, using (5.62),

R0(τ̃) < 1 ⇐⇒ pIzf
(2)
D (z) < pIf

(1)
D (z) + qIµD ⇐⇒ pIf

(2)
D (z) < µD,

which holds as we have shown above that G(1)(z) < 0.

B.4. Asymptotic variances σ2
MR and σ2

NSW. In this appendix we
derive the expressions for σ2

MR and σ2
NSW given in Theorem 2.1. Recalling

the partition ∆ = ∆1∪∆2∪∆3 defined in Section 5.2, it follows from (5.37)
that

(B.2) σ2
MR = σ2

0,MR +

3∑
i=1

σ2
i and σ2

NSW = σ2
0,NSW +

3∑
i=1

σ2
i ,

where

(B.3) σ2
0,MR = c(τ̃ , 0)ΣMR

0 c(τ̃ , 0)⊤, σ2
0,NSW = c(τ̃ , 0)ΣNSW

0 c(τ̃ , 0)⊤

and, for i = 1, 2, 3,

σ2
i =

∫ τ̃

0

∑
l∈∆i

(
c(τ̃ , u)l⊤

)2
β̃l(w̃(u)) du.

We calculate
∑3

i=1 σ
2
i in Appendix B.4.1, σ2

0,MR and then σ2
MR in Ap-

pendix B.4.2, and σ2
0,NSW and then σ2

NSW in Appendix B.4.3.

B.4.1. Calculation of
∑3

i=1 σ
2
i . Noting that ỹE(t) ≥ 0 for 0 ≤ t ≤ τ̃ , it

follows from (5.3), (5.34) and (5.35) that

(B.4) σ2
2 =

∫ τ̃

0
4cI(τ̃ , u)

2ỹE(u) du

and

σ2
3 =

∫ τ̃

0
(cI(τ̃ , u) + cR(τ̃ , u))

2z̃E(u) du(B.5)

=

∫ τ̃

0
(2cI(τ̃ , u)− cJ(τ̃ , u))

2z̃E(u) du,

where

(B.6) cJ(τ̃ , u) = b(τ̃)e−(τ̃−u).
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Now

(B.7) σ2
1 =

∫ τ̃

0
g̃(u) du,

where, using (5.3),

g̃(u) =
∑
l∈∆1

(
c(τ̃ , u)l⊤

)2
β̃l(w̃(u))

=

dmax∑
i=1

i−1∑
k=0

[
c(τ̃ , u)(l

(1)
ik )⊤

]2
pi,kix̃i(u).(B.8)

Recalling (5.36), it follows using (5.3) that, for i = 1, 2, . . . , dmax and
k = 0, 1, . . . , i− 1,
(B.9)

c(τ̃ , u)(l
(1)
ik )⊤ = (pIb(τ̃)− 1)e−i(τ̃−u) − 2cI(τ̃ , u) + [iqI − (i− k − 1)]cI(τ̃ , u).

Recall that pi,k = P(X = k), where X ∼ Bin(i − 1, 1 − exp(−λI)); see
Section 5.1. Elementary calculation yields, for i = 1, 2, . . . , dmax, that

(B.10)
i−1∑
k=0

(i− k − 1)pi,k = (i− 1)qI

and

(B.11)
i−1∑
k=0

(i− k − 1)2pi,k = (i− 1)(i− 2)q
(2)
I + (i− 1)qI .

Using (B.10) and (B.11), it follows from (B.9) and some algebra that, for
i = 1, 2, . . . , dmax

i−1∑
k=0

[
c(τ̃ , u)(l

(1)
ik )⊤

]2
pi,k = [2cI(τ̃ , u)− qIcJ(τ̃ , u)]

2(B.12)

+ qIpIcJ(τ̃ , u)
2(i− 1) + (q

(2)
I − q2I )cJ(τ̃ , u)

2(i− 1)(i− 2)

+ 2[2cI(τ̃ , u)− qIcJ(τ̃ , u)]e
−i(τ̃−u)[1− ib(τ̃)pI ]

+ e−2i(τ̃−u)
[
(1− b(τ̃)pI)

2 − (i− 1)b(τ̃)pI(2− 3b(τ̃)pI)

+(i− 1)(i− 2)b(τ̃)2p2I
]
.

Recall from (5.17) and (5.21) that, under both the MR and NSW models,
x̃i(0) = pi − ϵi (i = 0, 1, . . . , dmax), so (5.11) yields

(B.13) x̃i(u) = (pi − ϵi)e
−iu (i = 0, 1, . . . , dmax).
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For i, k = 0, 1, . . . , let i[k] = i(i− 1) . . . (i− k + 1) denote a falling factorial,
with the convention that i[0] = 1. Then it follows from (B.13) that, for θ ∈ R
and k = 1, 2, . . . ,

dmax∑
i=1

i[k]θ
i−kx̃i(u) = e−kuf

(k)
Dϵ

(θe−u).

Thus, for k = 1, 2, . . . ,

dmax∑
i=1

i[k]x̃i(u) = e−kuf
(k)
Dϵ

(e−u),(B.14)

dmax∑
i=1

i[k]e
−i(τ̃−u)x̃i(u) = e−kτ̃f

(k)
Dϵ

(e−τ̃ ),(B.15)

dmax∑
i=1

i[k]e
−2i(τ̃−u)x̃i(u) = e−k(2τ̃−u)f

(k)
Dϵ

(e−(2τ̃−u)).(B.16)

Substituting (B.12) into (B.8) and using (B.14)-(B.16) yields

g̃(u) = [2cI(τ̃ , u)− qIcJ(τ̃ , u)]
2 x̃E(u) + cJ(τ̃ , u)

2pIqIe
−2uf

(2)
Dϵ

(e−u)

+ cJ(τ̃ , u)
2(q

(2)
I − q2I )e

−3uf
(3)
Dϵ

(e−u)

+ 2 [2cI(τ̃ , u)− qIcJ(τ̃ , u)] [1− b(τ̃)pI ]e
−τ̃f

(1)
Dϵ

(e−τ̃ )

− 2b(τ̃)pI [2cI(τ̃ , u)− qIcJ(τ̃ , u)] e
−2τ̃f

(2)
Dϵ

(e−τ̃ )

+ [1− b(τ̃)pI ]
2 e−(2τ̃−u)f

(1)
Dϵ

(e−(2τ̃−u))

− b(τ̃)pI [2− 3b(τ̃)pI ] e
−2(2τ̃−u)f

(2)
Dϵ

(e−(2τ̃−u))

+ b(τ̃)2p2Ie
−3(2τ̃−u)f

(3)
Dϵ

(e−(2τ̃−u)).

It then follows using (B.4), (B.5) and (B.7) that

(B.17) σ2
1 + σ2

2 + σ2
3 =

10∑
i=1

Ii,

where

Ii =

∫ τ̃

0
fi(u) du,
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with

f1(u) = 4cI(τ̃ , u)
2 (x̃E(u) + ỹE(u) + z̃E(u)) ,

f2(u) =
[
cJ(τ̃ , u)

2 − 4cI(τ̃ , u)cJ(τ̃ , u)
]
]z̃E(u),

f3(u) = qI
[
qIcJ(τ̃ , u)

2 − 4cI(τ̃ , u)cJ(τ̃ , u)
]
]x̃E(u),

f4(u) = cJ(τ̃ , u)
2pIqIe

−2uf
(2)
Dϵ

(e−u),

f5(u) = cJ(τ̃ , u)
2(q

(2)
I − q2I )e

−3uf
(3)
Dϵ

(e−u),

f6(u) = 2 [2cI(τ̃ , u)− qIcJ(τ̃ , u)] [1− b(τ̃)pI ]e
−τ̃f

(1)
Dϵ

(e−τ̃ ),

f7(u) = −2b(τ̃)pI [2cI(τ̃ , u)− qIcJ(τ̃ , u)] e
−2τ̃f

(2)
Dϵ

(e−τ̃ ),

f8(u) = [1− b(τ̃)pI ]
2 e−(2τ̃−u)f

(1)
Dϵ

(e−(2τ̃−u)),

f9(u) = −b(τ̃)pI [2− 3b(τ̃)pI ] e
−2(2τ̃−u)f

(2)
Dϵ

(e−(2τ̃−u)),

f10(u) = b(τ̃)2p2Ie
−3(2τ̃−u)f

(3)
Dϵ

(e−(2τ̃−u)).

Noting that η̃E(0) = µD, it follows using (5.34) and (5.14) that

(B.18) I1 = 2b(τ̃)2µDe
−2τ̃

(
1− e−2τ̃

)
.

Recall from (5.17) and (5.21) that under both the MR and NSW models,
x̃E(0) =

∑dmax
i=1 i(pi−ϵi) and z̃E(0) = qI

∑dmax
i=1 iϵi. It then follows from (5.13)

and (B.13) that
z̃E(u) = qI

(
µDe

−u − x̃E(u)
)
,

so

f2(u) + f3(u) = cJ(τ̃ , u)µDqI [cJ(τ̃ , u)− 4cI(τ̃ , u)] e
−u − cJ(τ̃ , u)

2qIpI x̃E(u).

Also, setting k = 1 in (B.14) yields x̃E(u) = e−uf
(1)
Dϵ

(e−u). Thus,

I2 + I3 + I4 =

∫ τ̃

0
cJ(τ̃ , u)µDqI [cJ(τ̃ , u)− 4cI(τ̃ , u)] e

−u du

(B.19)

+ qIpI

∫ τ̃

0
cJ(τ̃ , u)

2
[
e−2uf

(2)
Dϵ

(e−u)− e−uf
(1)
Dϵ

(e−u)
]
du.

The first integral in (B.19) involves only exponential functions and is easily
evaluated. Using (B.6), the integrand in the second integral in (B.19) can
be expressed as

−b(τ̃)2e−2τ̃ d

dt

[
euf

(1)
Dϵ

(e−u)
]
,
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so that integral is also easily evaluated. Hence, omitting the details,

I2 + I3 + I4 = 2b(τ̃)2µD

(
e−2τ̃ − e−4τ̃

)
− b(τ̃)2µDqIe

−τ̃
(
1 + e−τ̃ − 2e−2τ̃

)(B.20)

+ qIpIb(τ̃)
2
[
e−2τ̃f

(1)
Dϵ

(1)− e−τ̃f
(1)
Dϵ

(e−τ̃ )
]
.

Turning to I5, note that

cJ(τ̃ , u)
2e−3uf

(3)
Dϵ

(e−u) = −b(τ̃)2e−2τ̃ d

dt

[
f
(2)
Dϵ

(e−u)
]
,

so

(B.21) I5 = b(τ̃)2
(
q
(2)
I − q2I

)
e−2τ̃

[
f
(2)
Dϵ

(1)− f
(2)
Dϵ

(e−τ̃ )
]
.

The integrals I6 and I7 are easily evaluated yielding

I6 + I7 = 2b(τ̃)
{
[1− pIb(τ̃)] e

−τ̃f
(1)
Dϵ

(e−τ̃ )− pIb(τ̃)e
−2τ̃f

(2)
Dϵ

(e−τ̃ )
}

(B.22)

×
(
pI − e−2τ̃ + qIe

−τ̃
)
.

To evaluate I8 to I10, let Jk =
∫ τ̃
0 e−k(2τ̃−u)f

(k)
Dϵ

(e−(2τ̃−u)) du (k = 1, 2, . . . ).
Then a simple reduction formula yields

Jk = e−(k−1)τ̃f
(k−1)
Dϵ

(e−τ̃ )− e−2(k−1)τ̃f
(k−1)
Dϵ

(e−2τ̃ )− (k − 1)Jk−1,

for k = 2, 3, . . . , and

J1 = fDϵ(e
−τ̃ )− fDϵ(e

−2τ̃ ).

Applying these formulae to I8 to I10 yields after some algebra that

I8 + I9 + I10 = fDϵ(e
−τ̃ )− fDϵ(e

−2τ̃ )

(B.23)

+ b(τ̃)pI(b(τ̃)pI − 2)
[
e−τ̃f

(1)
Dϵ

(e−τ̃ )− e−2τ̃f
(1)
Dϵ

(e−2τ̃ )
]

+ b(τ̃)2p2I

[
e−2τ̃f

(2)
Dϵ

(e−τ̃ )− e−4τ̃f
(2)
Dϵ

(e−2τ̃ )
]
.
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Letting z = e−τ̃ , it follows from (B.17) and the above equations that

3∑
i=1

σ2
i =2µDb(τ̃)

2(z2 − z4)− µDqIb(τ̃)
2(z + z2 − 2z3)

(B.24)

+ pIqIb(τ̃)
2
[
z2f

(1)
Dϵ

(1)− zf
(1)
Dϵ

(z)
]
+ p2Ib(τ̃)

2
[
z2f

(2)
Dϵ

(z)− z4f
(2)
Dϵ

(z2)
]

+ 2b(τ̃)
[
(1− pIb(τ̃))zf

(1)
Dϵ

(z)− pIb(τ̃)z
2f

(2)
Dϵ

(z)
] (

pI − z2 + qIz
)

+ fDϵ(z)− fDϵ(z
2) + pIb(τ̃) (pIb(τ̃)− 2)

[
zf

(1)
Dϵ

(z)− z2f
(1)
Dϵ

(z2)
]

+ (q
(2)
I − q2I )b(τ̃)

2z2
[
f
(2)
Dϵ

(1)− f
(2)
Dϵ

(z)
]
.

B.4.2. Calculation of σ2
0,MR and σ2

MR. To determine σ2
0,MR, note from (B.3),

(5.18) and (5.32) that

σ2
0,MR = [cI(τ̃ , 0)− cR(τ̃ , 0)]

2 σ2
Y(B.25)

= b(τ̃)2z2σ2
Y ,

using (5.34), (5.35) and z = e−τ̃ . Now σ2
Y is given by (5.15), where, for

i = 1, 2, . . . , dmax, σ
2
Y,i = var(Yi1) with Yi1 ∼ Bin(i, 1− exp(−λI)). A simple

calculation, conditioning on I, yields

(B.26) σ2
Y,i = i(i− 1)q

(2)
I + iqI − i2q2I .

Now
∑dmax

i=1 iϵi = µD − f
(1)
Dϵ

(1) and
∑dmax

i=1 i(i− 1)ϵi = f
(2)
D (1)− f

(2)
Dϵ

(1), so

(B.27) σ2
Y =

[
(q

(2)
I − q2I )

(
f
(2)
D (1)− f

(2)
Dϵ

(1)
)
+ pIqI

(
µD − f

(1)
Dϵ

(1)
)]

.

Using (B.2), adding (B.24) and (B.25), after substituting from (B.27),
yields

σ2
MR =2µDb(τ̃)

2(z2 − z4)− µDqIb(τ̃)
2(z + qIz

2 − 2z3)− pIqIb(τ̃)
2zf

(1)
Dϵ

(z)

(B.28)

+ 2b(τ̃)
[
(1− pIb(τ̃))zf

(1)
Dϵ

(z)− pIb(τ̃)z
2f

(2)
Dϵ

(z)
] (

pI − z2 + qIz
)

+ fDϵ(z)− fDϵ(z
2) + pIb(τ̃) (pIb(τ̃)− 2)

[
zf

(1)
Dϵ

(z)− z2f
(1)
Dϵ

(z2)
]

− pIqIb(τ̃)
2zf

(1)
Dϵ

(z) + b(τ̃)2p2Iz
2
[
f
(2)
Dϵ

(z)− z2f
(2)
Dϵ

(z2)
]

+ (q
(2)
I − q2I )b(τ̃)

2z2
[
f
(2)
D (1)− f

(2)
Dϵ

(z)
]
.
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Using (5.23) and recalling that z = e−τ̃ yields

(B.29) µD(z − qI) = pIf
(1)
Dϵ

(z).

Also, using (5.24), (5.30) and (B.14), with k = 1, gives

(B.30) b(τ̃) =
f
(1)
Dϵ

(z)

z
(
pIf

(2)
Dϵ

(z)− µD

) ,
so

(B.31) b(τ̃)zpIf
(2)
Dϵ

(z) = b(τ̃)zµD + f
(1)
Dϵ

(z).

Substituting (B.29) and (B.31) into (B.28), recalling (2.3) and noting from
(B.29) and (B.30) that h(z) = b(τ̃)z yields (2.4) after some algebra.

B.4.3. Calculation of σ2
0,NSW and σ2

NSW. To determine σ2
0,NSW , first

note that (B.3), (5.22) and (5.32) imply that

(B.32) σ2
0,NSW = (1− ϵ)σ2

A + ϵσ2
B,

where

(B.33) σ2
A = c(τ̃ , 0)ΣXXc(τ̃ , 0)⊤

and

(B.34) σ2
B = cI(τ̃ , 0)

2σ2
YE

+ 2cI(τ̃ , 0)cR(τ̃ , 0)σYE ,ZE
+ cR(τ̃ , 0)

2σ2
ZE

.

Recalling (5.19) and (5.33),

(B.35) c(τ̃ , 0)ΣXXc(τ̃ , 0)⊤ =

dmax∑
i=0

pici(τ̃ , 0)
2 −

(
dmax∑
i=0

pici(τ̃ , 0)

)2

,

where from (5.36) and recalling that z = e−τ̃ ,

ci(τ̃ , 0) = zi + ib(τ̃)z(z − qI)− pIb(τ̃)iz
i.

Thus,

dmax∑
i=0

pici(τ̃ , 0) = fD(z) + b(τ̃)z(z − qI)µD − pIb(τ̃)zf
(1)
D (z)
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and

dmax∑
i=0

pici(τ̃ , 0)
2 = fD(z

2) + b(τ̃)2z2(z − qI)
2(σ2

D + µ2
D)

+ p2Ib(τ̃)
2z2
(
z2f

(2)
D (z2) + f

(1)
D (z2)

)
+ 2b(τ̃)z2(z − qI)f

(1)
D (z)

− 2pIb(τ̃)z
2f

(1)
D (z2)− 2pIb(τ̃)

2z2(z − qI)
(
zf

(2)
D (z) + f

(1)
D (z)

)
.

Note that in the NSW model

(B.36) fDϵ(s) = (1− ϵ)fD(s) (s ∈ R).

Hence, using (B.29),

dmax∑
i=0

pici(τ̃ , 0) = fD(z)−
ϵ

1− ϵ
b(τ̃)z(z − qI)µD

and, using (B.29) and (B.31),

(1− ϵ)

dmax∑
i=0

pici(τ̃ , 0)
2 = fDϵ(z

2) + p2Ib(τ̃)
2z2
(
z2f

(2)
Dϵ

(z2) + f
(1)
Dϵ

(z2)
)

− 2pIb(τ̃)z
2f

(1)
Dϵ

(z2) + (1− ϵ)b(τ̃)2z2(z − qI)
2
(
σ2
D + µ2

D

)
− 2b(τ̃)2z3(z − qI)µD − 2b(τ̃)2z2(z − qI)

2µD.

It then follows using (B.33) and (B.35) that

(1− ϵ)σ2
A = fDϵ(z

2)− (1− ϵ)fD(z)
2 + p2Ib(τ̃)

2z2
(
z2f

(2)
Dϵ

(z2) + f
(1)
Dϵ

(z2)
)(B.37)

− 2pIb(τ̃)z
2f

(1)
Dϵ

(z2) + 2ϵb(τ̃)z(z − qI)µDfD(z)

+ b(τ̃)2z2(z − qI)
2

[
(1− ϵ)σ2

D +
1− 2ϵ

1− ϵ
µ2
D − 2µD

]
− 2b(τ̃)2z3(z − qI)µD.

Recall the definition of (YE , ZE) just before (5.19). Now E[YE |D] = pID

and, using (B.26), var(YE |D) = D(D − 1)q
(2)
I +DqI −D2q2I , so

σ2
YE

= E [var(YE |D)] + var(E[YE |D])(B.38)

= (q
(2)
I − q2I )f

(2)
D (1) + pIqIµD + p2Iσ

2
D.
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Similar arguments show that

(B.39) σ2
ZE

= (q
(2)
I − q2I )f

(2)
D (1) + pIqIµD + q2Iσ

2
D

and

(B.40) σYE ,ZE
= −

[
(q

(2)
I − q2I )f

(2)
D (1) + pIqIµD

]
+ pIqIσ

2
D.

Thus, using (B.34), (5.34), (5.35) and z = e−τ̃ ,

σ2
B = b(τ̃)2z2

[
(q

(2)
I − q2I )f

(2)
D (1) + pIqIµD + σ2

D(z − qI)
2
]
.

Noting from (B.36) that f
(1)
Dϵ

(1) = (1− ϵ)µD and f
(2)
Dϵ

(1) = (1− ϵ)f
(2)
D (1), it

follows using (B.25) that

(B.41) ϵσ2
B − σ2

0,MR = ϵb(τ̃)2z2(z − qI)
2σ2

D.

Note from (B.2) that σ2
NSW−σ2

MR = σ2
0,NSW−σ2

0,MR. Hence, using (B.32), (B.37)
and (B.41),

σ2
NSW − σ2

MR = fDϵ(z
2)− (1− ϵ)fD(z)

2 + p2Ib(τ̃)
2z2
(
z2f

(2)
Dϵ

(z2) + f
(1)
Dϵ

(z2)
)(B.42)

− 2pIb(τ̃)z
2f

(1)
Dϵ

(z2) + 2ϵb(τ̃)z(z − qI)µDfD(z)

+ b(τ̃)2z2(z − qI)
2

[
σ2
D +

1− 2ϵ

1− ϵ
µ2
D − 2µD

]
− 2b(τ̃)2z3(z − qI)µD.

Recall that h(z) = b(τ̃)z. Note from (2.3) and (B.36) that

fD(z) = (1−ϵ−ρ)/(1−ϵ) and also that f
(2)
Dϵ

(z) = (1−ϵ)f
(2)
D (z). Adding (2.4)

and (B.42) then yields (2.6).

B.4.4. Proof of Remark 2.5. Suppose that the support of D is not con-
centrated on a single point. Then (B.33), (B.35) and Jensen’s inequality
imply σ2

A > 0, since ci(τ̃ , 0) (i = 0, 1, . . . , dmax) are not all equal. It then
follows from (B.32) and (B.41) that σ2

0,NSW > σ2
0,MR, whence, using (B.2),

σ2
NSW > σ2

MR. Further, setting ϵ = 0 yields σ̃2
NSW > σ̃2

MR.

imsart-aap ver. 2010/09/07 file: SIRconfigCLT7.tex date: October 31, 2020



68 BALL

B.5. Asymptotic variances σ2
MR,S and σ2

NSW,S. For i = 1, 2, 3, let

σ̄2
i =

∫ τ̃

0

∑
l̂∈∆̂i

(
c̄(τ̃ , u)̂l

⊤)2
β̄l(w̄(u)) du.

Note from (5.57) that c̄(τ̃ , u)(̂l
(2)

+ )⊤ = −πc(τ̃ , u)(l
(2)
+ )⊤, so σ̄2

2 = π2σ2
2 since

β̄l(w̄(u)) is independent of v̄ for l ∈ ∆̂2. Similarly, σ̄2
3 = π2σ2

3.
Turning to σ̄2

1, note that for i = 1, 2, . . . , dmax,

c̄(τ̃ , u)(̂l
(1)

i,0 )
⊤ = −π

[
c(l

(1)
i,0 )

⊤
]

and c̄(τ̃ , u)(̂l
(1)

i,i−1)
⊤ = 1− π

[
c(l

(1)
i,i−1))

⊤
]
,

whence,

(1− π)
(
c̄(τ̃ , u)(̂l

(1)

i,0 )
⊤
)2

+ π
(
c̄(τ̃ , u)(̂l

(1)

i,i−1)
⊤
)2

= π(1− π) + π2

[
(1− π)

(
c(τ̃ , u)l

(1)
i,0 )

⊤
)2

+ π
(
c(τ̃ , u)l

(1)
i,i−1)

⊤
)2]

+ 2π2(1− π)c(τ̃ , u)
(
l
(1)
i,0 − l

(1)
i,i−1

)⊤
.

Now l
(1)
i,0 − l

(1)
i,i−1 = (i− 1)(eR − eI), so, using (5.32),(5.34) and (5.35),

c(τ̃ , u)
(
l
(1)
i,0 − l

(1)
i,i−1

)⊤
= −(i− 1)cJ(τ̃ , u),

where cJ(τ̃ , u) = b(τ̃)e−(τ̃−u) (see (B.6)). Thus, using (5.54), σ̄2
1 =

∫ τ̃
0 ḡ(u) du,

where

ḡ(u) =

dmax∑
i=1

[
(1− π)

(
c̄(τ̃ , u)(̂l

(1)

i,0 )
⊤
)2

+ π
(
c̄(τ̃ , u)(̂l

(1)

i,i−1)
⊤
)2]

ix̃i(u)

= π2g̃(u) +

dmax∑
i=1

π(1− π) [1− 2(i− 1)πcJ(τ̃ , u)] ix̃i(u),

and g̃(u) is given by (B.8) with pi,i−1 = π = 1− pi,0.

Now x̃i(0) = pi (i = 0, 1, . . . , dmax), so (5.11) yields
∑dmax

i=1 i[k]x̃i(u) =

e−kuf
(k)
D (e−u) (k = 1, 2). Hence,

σ̄2
1 = π2σ2

1+π(1−π)

∫ τ̃

0
e−uf

(1)
D (u) du−2π2(1−π)b(τ̃)e−τ̃

∫ τ̃

0
e−uf

(2)
D (u) du.
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Thus, recalling that z = e−τ̃ and ρ = 1− fD(z),∫ τ̃

0
e−uf

(1)
D (u) du = fD(1)− fD(e

−τ̃ ) = ρ

and ∫ τ̃

0
e−uf

(2)
D (u) du = f

(1)
D (1)− f

(1)
D (e−τ̃ ) = µD − f

(1)
D (z).

Further, (2.10) implies π[µD − f
(1)
D (z)] = µD(1− z), so

3∑
i=1

σ̄2
i = π2

3∑
i=1

σ2
i + π(1− π)[ρ− 2z(1− z)b(τ̃)µD]

and (5.58) follows since h(z) = b(τ̃)z.
For the MR random graph, setting ϵi = 0 (i = 1, 2, . . . , dmax) in (5.15),

using (5.18) and recalling that V (n)(0) = 0 for all n, shows that Σ̂0 = 0
and (5.59) follows. For the NSW random graph, a similar argument setting
ϵ = 0 in (5.22) and using (5.57) yields

(B.43) c̄(τ̃ , 0)Σ̄0c̄(τ̃ , 0)
⊤ = (c(τ̃ , 0) + 1)ΣXX(c(τ̃ , 0) + 1)⊤.

A simple calculation using (5.19) (or noting that ΣXX is the variance matrix
of a single multinomial trial) gives 1ΣXX1⊤ = 0 and c(τ̃ , 0)ΣXX1⊤ = 0,
so (5.59) follows from (B.43).
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