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Abstract

In recent times it has emerged that some dietary sulfur compounds can act on mammalian cell 

signalling systems via their propensity to release hydrogen sulfide (H2S). H2S plays important 

biochemical and physiological roles in the heart, gastrointestinal tract, brain, kidney, and 

immune systems of mammals. Reduced levels of H2S in cells and tissues correlate with a 

spectrum of pathophysiological conditions including heart disease, diabetes, obesity and 

altered immune function. In view of the important roles for this molecule, researchers have 

now begun to explore the mechanisms by which dietary derived sulfur compounds, in 

addition to cysteine, can act as sources of H2S. Of the identified compounds, organic sulfides, 

isothiocyanates, and inorganic sulfur species including sulphate have received the most 

attention. Therefore, in the current review we will provide an overview of the literature 

focused on H2S release by these molecules.  

Innovation

Pathways for the production and catabolism of the gaseous signalling molecule H2S have 

now been characterised in mammalian systems. Dysregulation in these pathways is seen in 

numerous diseases spanning various cancers through to neurological disorders. Less widely 

reported are the impacts of diet including lipids, caloric restriction, vitamins, and minerals, on 

H2S producing systems in mammalian cells and tissues. Furthermore, recent research has 

shown that distinct pools of H2S may also be produced in cells following the metabolism of 

various dietary derived sulfur-containing phytochemicals. Therefore, a better understanding 

of how diet impacts on H2S, as described here, will enable a better understanding of gaseous 

signalling networks in mammalian cells and tissues.
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1. Introduction

The human diet is composed of a diverse array of inorganic and organic dietary derived 

sulphur compounds (33). Inorganic sulfate (SO4
2-) and sulfites (SO3

2-), are common in water 

and foods and   organic sulfur species like methionine, cysteine and its oxidised forms 

cystine, taurine, and the antioxidant glutathione present in meat products (15, 150). Many 

vitamins and co-factors also contain sulfur like biotin, and coenzyme A, and are common in 

many foods and food supplements (76, 106, 122 126). More widely, edible fungi and various 

dietary plants produce a whole spectrum of sulfur compounds including ergothionine (47, 

83), and S-alkenyl-L-cysteine sulfoxides (ASCOs) and glucosinolates (GSLs); again all are 

common constituents in the human diet (9, 12, 41, 138, 164). Interestingly, some of these 

molecules are sources of H2S, a recently characterised gaseous signalling molecule in 

mammals. Compounds like diallyl trisulfide (DATS), and isothiocyanates (ITCs) like 

sulforaphane are reported to have the capacity to release H2S, these molecules occurring in 

edible cruciferous and allium vegetables (Figure 1), (63, 138, 158). Interestingly, these plants 

have been widely investigated in human population studies and shown to be linked to 

reduction in the risk of some cancers, cardiovascular diseases, and type-2 diabetes, along with 

changes in the microbiome that may also be important to human health (4-5, 10-11, 29, 68, 

115, 135, 173). Common to both plant groups is the production of a spectrum of reactive 

sulfur species produced during tissue damage [reviewed in (9, 12, 136). For example, GSLs 

are broken down by myrosinases (EC 3.2. 1.147) to form nitriles, ITCs, thiocyanates and 

oxazolidindione (9), while ASCOs are substrates for the enzyme allinase (EC 4.4.1.4). The 

catabolic action of alliinase towards ASCOs causes the production an array of thiosulfinates, 

sulfides and other sulfur compounds (Figure 2). Many of these sulfur species have a wide 

range of biologically activities including the induction of cell signalling cascades in 

mammalian cells (23), protein modification via S-thioallylation of cellular proteins (46), and 
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in the production of H2S in mammalian cells (84), Other potential sources of H2S occur in the 

gastrointestinal tract following the metabolism of sulfate, by sulfate reducing bacteria (133). 

However, whether H2S at this site is important is hotly debated. Collectively, it is clear that 

several dietary sulfur compounds act as potential sources of H2S in mammalian cells. 

Moreover, the production of this molecule could go some way in explaining the observed 

effects of these compounds on mammalian cells and tissues. Therefore, the current review 

will address how some sulfur species ubiquitous in the human diet, may contribute to the 

cellular pools of H2S.

2. H2S biosynthesis and catabolism

In mammals, H2S functions as a gasotransmitter (176, 139), and plays roles in cellular 

proliferation and apoptosis (6, 65, 117, 187, 190), has pro- and anti-inflammatory effects in 

cells and tissues (16-17, 39, 78, 195), roles in the cardiovascular system (97, 149, 176, 191, 

198), alters cellular metabolism and energy production (43, 82, 151, 154, 168, 178), effects 

neurological function (1, 93), and is an important component of the ageing processes (129-

130). H2S synthesis is controlled by the enzymes, cystathionine β synthase (CBS, EC 

4.2.1.22), cystathionine-γ-lyase (CSE, EC 4.4.1.1), and 3-mercaptopyruvate sulfurtransferase 

(3-MST, EC 2.8.1.2); these enzymes utilise cysteine or 3-mercaptopyruvate as substrates. 

While much is known regarding the regulation and production of H2S by CBS and CSE, only 

now are we beginning to understand the functional roles of 3-MST. Indeed, 3-MST produces 

H2S in a coupled reaction with the enzyme cysteine aminotransferase (145) and appears to be 

important in cell proliferation (2), and in vascular tone (28). 3-MST expression is reduced 

during episodes of oxidative stress (107) and elevated by shear flow (58). Interestingly, 3-

MST is also important in the production of endogenous polysulfides including H2S2, H2S3, 

cysteine persulfide (Cys-SSnH) and glutathione persulfide (GSSnH) species (n = 2–4), (69, 

71, 110). Although the biological significance of these molecules is yet to be fully 
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appreciated, current evidence shows that polysulfides are responsible for many of the 

signalling actions previously ascribed to H2S. Indeed, polysulfides are cytoprotective (19-20), 

can activate the transient receptor potential ankyrin 1 (TRPA1) channel (48, 105, 111), and 

promote neuroblastoma cell differentiation (73). Other studies show polysulfides act as 

tumour suppressors (44), regulate the function of transcription factors like Nrf-2 (74), and 

various protein kinases (148), have antioxidant and pro-oxidant properties (103), and inhibit 

glucose-stimulated insulin secretion in mouse and rat pancreatic β-cell via the activation of 

ATP-sensitive potassium channels (146). The mechanisms of action for this class of sulfur 

compound are attributed to their ability to drive persulfidation of cysteine residues of target 

proteins (70).  

The detoxification of H2S is mediated by two enzymes, ethylmalonic encephalopathy protein 

1 (ETHE1, EC: 1.13.11.18), and mitochondrial sulfide–quinone oxidoreductase (SQR, EC 

1.8.5.4), respectively. Both enzymes prevent H2S mediated cellular toxicity viz. the inhibition 

of cytochrome c oxidase (116, 120). Evidence for this comes from the observation that mice 

lacking ETHE1 show symptoms of H2S toxicity, and typically have elevated levels of H2S in 

tissues (157). Moreover, in humans the loss of a functional ETHE1 causes the accumulation 

of H2S in tissues and promotes neurological impairment (67), and changes to the cellular 

proteome (141). H2S is also a substrate of thiol-S-methyltransferase (EC 2.1.1.9) producing 

methanethiol (CH3SH) and dimethylsulfide (CH3SCH3), and the enzyme rhodanese 

(thiosulfate:cyanide sulfurtransferase; EC 2.8.1.1), that produces thiocyanate (SCN−) and 

SO4
2−. Aside from enzymatic routes of detoxification, losses also occur via sulfide oxidation 

in tissues (13). For example, H2S reacts with methemoglobin to form sulfhemoglobin, that 

can be rapidly oxidized to form thiosulfate (S2O3
2−), later forming sulfite (SO3

2−) and sulfate 

(SO4
2−) in mammalian tissues. 

Page 5 of 58



6

3.0 Known dietary factors that impact on H2S biosynthesis

Studies describing the impact of diet on tissue levels of H2S are limited (summarised in 

Figure 3). Of the available research, dietary restriction (DR), caloric restriction (CR) and 

methionine restrictive (MR) diets have received attention due to the known impacts of these 

dietary regimes on stress resistance and longevity in model organisms like yeast, drosophila 

and Caenorhabditis elegans. Work in this field shows that DR based diets promote H2S 

biosynthesis via up-regulation of the trans-sulfuration pathway (51 - 52). Furthermore, in 

worms the overexpression of the H2S generating enzyme CBS-1, increases longevity (51), 

while genetic deficiencies in mpst-1 (3-MST orthologue 1), but not cth-2 (CSE orthologue), 

reduces lifespan (129). Critically, these effects can be reversed using H2S donor compounds 

like GYY4137 (130) and indicates a potential role of H2S in aging. Other researchers have 

shown H2S production slows aging and kidney senescence in mice (77, 177), and that 

increased H2S production in the hippocampus of obese mice ameliorates impaired learning 

and memory function (186). MR causes reduced hepatic steatosis and oxidative stress via 

increasing hepatic H2S production (193) and increases endogenous H2S production via a 

miR-328-3p dependant mechanisms inducing protein metabolism in animals (184). 

Dysregulation in the trans-sulfuration pathway, due to altered availability of enzyme co-

factors like pyridoxial-5-phosphate, or via the accumulation of metabolic intermediates like 

homocysteine (Hcy), can reduce the expression and activities of enzymes critical for H2S 

production under certain conditions viz. CBS and CSE. Similarly, additional evidence points 

to associations with the levels of S-adenosylmethionine (SAM), an allosteric activator of 

CBS (38), folate (102), 1, 25 dihydroxyvitamin D1 (75), and betaine (189) with changes in 

the activities of H2S biosynthetic enzymes like CSE and CBS. It should be stressed that in 

these studies no direct measures of H2S levels were made however, it is reasonable to 

speculate that H2S production rates may be impaired. Indeed, nutritional deficiencies in 
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betaine decrease the activities of betaine-homocysteine S-methyltransferase (BHMT) and 

CBS in models of guanidinoacetic acid (GAA) and choline deprivation in rats causing 

hyperhomocysteinemia. Supplementation with betaine reverses these effects (88). In contrast, 

some studies report that Hcy can upregulate CSE but downregulates CBS in cardiomyocytes 

therefore impacting on the activities of each enzyme (113). Other nutritional related studies 

show that short-term protein restriction limits vein graft disease via up-regulation of CSE and 

increased endogenous production of H2S in mice (165). Vitamin B6 deficiency in cultured 

HepG2 cells promotes reductions in H2S synthesis and the rates of lanthionine and 

homolanthionine formation; products of H2S metabolism (45). Moreover, reductions in the 

expression of CBS are diminished in animals maintained on high-salt diets (55). For example, 

high salt diminishes renal CBS expression and endogenous H2S production in rats and the 

application of the H2S donor sodium hydrosulfide (NaHS) reverses the impact of salt induced 

hypertension, oxidative stress, and inflammation (55-57). Some dietary compounds found in 

plants act as anti-nutrients like the non-protein amino acid 1-amino D-proline (1ADP) found 

in flax Linum usitatissimum. 1ADP reduce pyridoxal 5'-phosphate (PLP) levels in animals, 

and this in turn reduces the rates of sulfur amino acid metabolism. 1ADP is a vitamin B-6 

antagonist and reduces plasma PLP concentrations and the enzymatic activities of CBS and 

CSE in animals (101). Other dietary components can act as inducers of H2S production in 

animal tissues. These include sulfated polysaccharide from Enteromorpha prolifera that 

increase H2S production in rat tissues via the upregulated hepatic mRNA and protein 

expression of CBS (134). Similarly, tyrosol, a major component of olive oil Olea europaea, 

increases the hepatic expression levels of CBS and CSE in the livers of mice fed a high fat 

diet. The associated increases in H2S linked to reductions in hepatic lipid peroxidation and 

the restoration of the redox equilibrium of the antioxidant glutathione (142).  
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Another area attracting attention is the part played by H2S and its effects on obesity and lipid 

metabolism. A potential role for H2S in body composition comes from the observations that 

animals carrying gene knockouts of trans-sulfuration pathway enzymes are associated with 

decreased body weight and fat mass (34) and lipid deposition (192). In humans, adiposity 

levels are reported to correlate with diminished plasma levels of H2S, an observation 

indicating that obesogenic diets negatively impact on the levels of H2S in humans (182). 

Mice fed high fat diets have reduced capacity to synthesise H2S. Indeed, CSE expression is 

reduced in liver, aortic endothelial cells and in lung, cystathionine β synthetase (CBS) 

elevated in liver and kidney, and 3-MST reduced in liver of animals fed high fat diets (125). 

In the murine fibroblast 3T3L1 cell line, H2S-synthesising enzymes CBS, CSE and 3-MST 

are expressed during adipogenesis. It appears that both endogenous and exogenous H2S is 

involved in adipogenesis and adipocyte maturation (166). In animal models, rats maintained 

on high fat diets have reduced expression of CBS and CSE in hepatic (14), and in aorta 

tissues (64). The inhibition of CSE using DL-propargylglycine (PAG) in rat adipocytes 

increases basal and isoproterenol stimulated lipolysis. In this instance, PAG was reported to 

cause phosphorylated of the protein kinase A substrate, perilipin 1 and hormone sensitive 

lipase. Interestingly replenishment of H2S using either L-cysteine, or the prototypic donor 

molecule GYY4137, decreased lipolysis and reduces insulin resistance in vivo (42). Other 

studies report increased mRNA and protein expression levels of CBS and CSE in mice 

(C57BL/6) fed HFD (60% kcal fat) with this correlating with the development of fatty liver 

disease. Upregulation of CBS and CSE enzymes corresponding with increased rates of Hcy 

clearance; reducing the levels of this pro-atherogenic molecule in the general circulation of 

animals and correlating with an elevation in H2S production in the liver (59).  Similarly, 3-

MST is upregulated in mice and humans with non-alcoholic fatty liver disease (NAFLD). 

This research suggesting roles of H2S in the cellular regulator of lipid metabolism in NAFLD 
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(79), via the regulation sterol regulatory element-binding transcription factor 1 (SREBP-1), 

JNK and oxidative stress pathways impacting on lipid metabolism (79). Dysfunction of the 3-

MST/H2S pathway is also induced by hyperglycemia; a common metabolic change associated 

with diabetes and vascular complications. In rodents, treatment with 3-mercaptopyruvate (3-

MP) facilitates wound healing, can promote relaxation of microvessels and enhances 

mitochondrial bioenergetic function via H2S associated mechanisms. Interestingly, these 

effects were stimulated in the presence of the dietary antioxidant lipoic acid (28). Changes in 

the enzymatic routes of synthesis of H2S are clearly important in many metabolic processes 

and more recent work has indicated that H2S production in mammalian cells can also occur 

via the metabolism of dietary sulfur phytochemicals; a source of H2S largely produced from 

plant-derived polysulfides (118, 140). Although detailed studies in humans have yet to be 

performed, it is compelling to predict that these reactions could be important routes of H2S 

production in humans consuming diets rich in dietary sulfur phytochemicals.  These areas 

will be reviewed in detail here.

3.1 Allium sulfur compounds; polysulfides as H2S donor compounds

Allium vegetables include species like garlic, A. sativum, onion, A. cepa, leek A. 

ampeloprasum, shallot, chive, A. schoenoprasum, and are representative of the main allium 

species consumed in the diets of humans. Current estimates of consumption for these 

vegetables is derived from studies from China, that report intake of allium vegetables of 

approximately 8.3 g/day, with garlic being the most commonly consumed allium vegetable 

(53). Most sulfur compounds in these plants are derived from the degradation of S-alkenyl-L-

cysteine sulfoxides. (+)-S-allyl-L-cysteine sulfoxide (S-ACSO), commonly known as alliin, 

(+)-S-methyl-L-cysteine sulfoxide (methiin; MCSO), (+)-S-propyl-L-cysteine sulfoxide 

(propiin; PCSO), and (+)-S-trans-1-propenyl-L-cysteine sulfoxide or isoalliin (TPCSO) (12, 

138) are the main sulfur storage compounds in allium vegetables. By far the most ubiquitous 
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is (+)-S-methyl-L-cysteine sulfoxide that is common in the intact tissue of A. sativum, A. cepa, 

A. porrum, and A. ursinum L., and some brassica vegetables including broccoli, B. oleracea 

(183). Generally, the occurrence of the sulfoxides is highly variable, as are the relative tissue 

levels (40). The enzyme alliinase (EC 4.4.1.4), breaks down ACSOs to produce pyruvate, 

ammonia, and sulfenic acids. The sulfenic acids produced are highly reactive and rapidly 

condense to form thiosulfinates. The thiosulfinates in turn produce additional sulfur 

compounds, ranging from compounds like ajoene, various sulfides including diallyl sulfide, 

and vinyl dithiins (Figure 4). These sulfur compounds are believed to be partly responsible for 

the reported health benefits attributed to the consumption of an allium- and possibly brassica-

rich diet (4-5, 10-11, 29, 53).

In reference to H2S, several edible plant species can generate this molecule including the stinky 

bean (Parkia speciose), durian (Durio zibethinus), yellow onion (A. cepa), leeks (A. porrum) 

and garlic (A. sativum); a property that is influenced by food preparative and cooking regimes 

(89, 159-161). Moreover, in culture cells exposed to oils derived from these plants intracellular 

H2S can be detected (30, 80). Historically, the link between dietary derived sulfur compounds 

as a potential source of H2S were first made following the observation that the compounds, 

DATs and S-allylcysteine (SAC) could be used  to manipulated the levels of H2S in blood and 

heart tissues of animals (8, 25, 127). Early work by Benavides et al. eloquently showed that 

human RBCs convert garlic-derived DATs into H2S as measured in real time using a 

polarographic H2S sensor (8).  H2S production was highest for the compound DATs followed 

by DADs and lowest for DPDs. H2S from these sulfur compounds is liberated following their 

reaction with reduced thiols like glutathione. H2S production occurs via two routes in these 

reactions, the first via nucleophilic substitution at the α carbon of the allyl moiety to form a 

hydropolysulfide (RSnH) and, second following the nucleophilic substitution at a sulfur atom 
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of the polysulfides (R-Sn-R′; n > 2) to yield RSnH and H2S (81). Under normoxic conditions, 

the liberated H2S causes vasorelaxation in phenylephrine pre-contracted rat aorta rings (8). In 

contrast, H2S production by the cysteine derivative SAC is postulated to occur via the induction 

of H2S biosynthetic enzymes, a mechanism affording cardioprotection in animal models (25). 

In rats pre-treated with SAC, significantly lower mortality rates and reduced infarct size were 

reported in animals. Importantly, SAC increases plasma H2S levels and the activity of the H2S 

biosynthetic enzyme, cystathionine-γ-lyase (CSE) in left ventricular tissues; an observation 

reversed in animals treated using the CSE inhibitor, propargylglycine (PAG). These 

observations provided a direct link between the cardioprotective effects of allium derived sulfur 

compounds with that of the production of H2S. In addition, this research revealed two routes 

for the production of H2S in mammalian systems viz. direct chemical production via reactions 

with cellular thiols or following the stimulation of known H2S biosynthetic enzymes in tissues. 

A focal point of much of the interest in this field of late has centred on the trisulfide, DATS. In 

mammalian cells and tissues, this molecule is cardioprotective (194), anti-inflammatory (60), 

induces antioxidant defences (22), prevents neurological dysfunction (87), and alters metabolic 

pathways linked to glucose (187) and lipid metabolism (86). H2S produced from DATs via two 

processes, the first by increasing the protein expression of CSE and CBS protein in cells 

following exposure to DATs (61, 121, 166, 188) and the second following the reaction of DATs 

with cellular thiol compounds including cysteine (Cys) and glutathione (GSH) to liberate H2S 

(157). Cai et al. recently showed using computational modelling that Cys and GSH react with 

DADs and DATs as thiol anions attacking the sulfur atoms present in DADs and DATs. This 

chemical reaction leads to the formation of an allyl perthiol anion (ASS-) that releases H2S in 

the presence of other thiols via a proton-shuffle dependant process (18, 158). The production 

of H2S from DATs likely contributes to some of the known biological effects attributed to this 
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compound (140). In a rodent model of Alzheimer’s disease (AD), DATs enhances the 

performance of animals in maze tasks and reduces neuro-inflammation, oxidative stress, and 

cholinergic function via an H2S associated mechanism (108). DATs treatment replenishes the 

levels of H2S in animals replete of this molecule (24). A consequence of H2S replenishment 

being the enhanced retention of injected bone marrow cells in ischemic tissues, improves blood 

perfusion, and cell survival in the ischemic hind limbs of diabetic mice (49). DATS can increase 

blood flow recovery, revascularization and increased capillary density in a model of hind-limb 

ischemia injury. These effects were only observed in wild type but not in eNOS knockout mice 

and provides evidence of an interaction between the H2S derived from DATs with NO (72). 

Furthermore, DATs can reduce left ventricular dilatation and dysfunction, the severity of 

perivascular and intermuscular fibrosis, and cardiac hypertrophy (128). DATs also mitigates 

the production of intracellular reactive oxygen species (ROS), and inhibits hepatocyte 

apoptosis in an intragastric infusion model of alcohol fatty liver disease (AFL) by increasing 

expressions of CSE and CBS, and points to a potential therapeutic role of H2S in AFL (21). 

More recently, nanoparticle-based deliver systems have been developed that deliver controlled 

amounts of DATs to tissues using mesoporous silica particles. This technology also 

overcoming the problem of poor solubility that is associated with this molecule. These novel 

formulations offer protection several models including ventilator-induced lung injury by 

inhibiting NF-kB signalling (174), the production of pro-inflammatory molecules, TNF-α, IL-

1α/β and IL-2 in animals (152-153), ischemia/reperfusion (I/R) injury (175) and heart 

transplantation (152). Recently, a DATs based self-spray coating system for treating colitis has 

been described with foaming capabilities (CAP-w-FC). This system generates nano-scale 

micellar particles in the colorectal tract that are internalised by colon epithelial cells to yield 

H2S (85). Additional delivery systems include a poly(D,L-lactic-co-glycolic acid) 

microparticle based DATs system (DATs@MPs). In vitro these carriers release DATs at slow 
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rates allowing for sustained intracellular production of H2S. In turn, the liberated H2S induces 

the cytoprotective transcription factor Nrf2 that upregulates gene expressions of antioxidant 

enzymes. In vivo, DATs@MPs induces angiogenesis and protects cells and tissues from 

damage (54). Finally, mesoporous iron oxide nanoparticles (MIONs) loaded with DATS have 

been generated that protect mouse myocardial tissues from ischemia-reperfusion injury by 

virtue of H2S production. Collectively, the DATs/H2S system has received the most attention 

but it is worth noting that other sulfur molecules including the compounds, 2-vinyl dithiin, 3-

vinyl dithiin, and ajoene can also release H2S (160). While information is sparse, H2S 

production has been confirmed for these molecules using a cell-based (MCF-7 cells) H2S-

releasing capacity assay. This system uses a H2S selective probe, based on a CuII-cyclen 

complex linked to a NIR‐light‐emitting BODIPY fluorophore that fluoresces in the presence 

of H2S (185). At present, none of these molecules have been further developed as tools to aid 

H2S research.

3.2 Brassica derived sulfur compounds

In recent times it has emerged that sulfur compounds found in brassica plants could also be 

important dietary components that produce H2S. The Brassicaceae comprise a large group of 

agronomically important vegetables including familiar varieties of the Brassica oleracea 

complex like cabbage, cauliflower, Brussels sprouts, broccoli, and various salad species like 

watercress (Nasturtium officinale), and radish (Raphanus sativus). These plants contain 

glucosinolates (GSLs, Figure 5), sulfur phytochemicals composed of a beta-D-thioglucose 

moiety, sulfonated oxime residue and a variable side chain (9). The variable side chain 

consists of aliphatic, aromatic or indolyl moiety and is determined by the type of amino acid 

from which the GSL is synthesised (9, 164). Following damage to tissues, the stored GSLs 

are hydrolysed by plant myrosinase, or alternatively by intestinal bacteria following 

ingestion, to produce additional and often reactive sulfur molecules. At pH 5-7, hydrolysis 
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produces bioactive ITCs. This class of compound is biologically active in mammalian cells 

and tissues. Indeed, reports of the biological activities of isolated and synthetic ITCs are 

commonplace in the literature and focus mainly on 4-methylsulfinylbutyl ITC, β-phenylethyl 

ITC, benzyl ITC and allyl ITC [reviewed in 104]. Bioactivity is largely due to the presence of 

an electrophilic carbon atom positioned between the nitrogen and sulfur atom of the ITC 

group, R-N=C=S. These electrophilic compounds can participate in reactions by accepting 

electrons from nucleophilic donor molecules (112). In this regard, many naturally occurring 

ITCs and several synthetic analogues are known to react with nucleophilic centres of proteins 

(typically cysteine residues), or with cellular antioxidants like glutathione. 

In recent times the possible role of ITCs as potential H2S donor molecules has been 

postulated. Naturally occurring GSLs are typically catabolised by plant or bacterial 

myrosinase to liberate ITCs and nitriles, a property also common to many gut bacteria (90). 

The liberated ITCs can then be further metabolised to generate H2S. In 1972, the first 

evidence that benzyl ITC can be catabolised by Enterobacteriaceae bacteria to liberate H2S 

was published (155), (Figure 6). In this notable piece of work homogenates of mature papaya 

seeds, when kept overnight at room temperature developed an odour of H2S. The authors 

postulated that the liberated H2S was generated via the bacterial degradation of benzyl ITC to 

form benzylamine and H2S (155). Only recently have ITCs been considered as possible 

sources of H2S, and that this property may be important in explaining some of their known 

biological effects in mammalian cells and tissues. In this regard, sulforaphane (4-

methylsulfinylbutyl ITC; SFN), commonly found in broccoli (Brassica oleracea), and is 

readily bioavailable in humans (164) has gained attention. SFN, like all ITCs, reacts with 

glutathione (GSH) priming the ITC for detoxification via the mercapturic acid pathway. 

Using the zinc trap assay, Pei et al. found that SFN releases H2S in the presence of PC-3 cells 

or mouse liver homogenates. In this instance, H2S concentrations in the cell culture medium 
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were significantly increased 30 min post- incubation and were stable for at least 4 h (124). 

Citi et al provided additional confirmation of the H2S-releasing capacity of some important 

natural ITCs using amperometric detection. Allyl ITC, erucin, benzyl ITC, and sinigrin were 

found to exhibit H2S releasing capacity in the presence of the cellular thiol cysteine (26, 27). 

In addition, H2S generated from 4-hydroxybenzyl ITC (HBITC), an ITC found in white 

mustard seeds (Sinapis alba), reportedly inhibits cellular proliferation of human 

neuroblastoma (SH-SY5Y) and glioblastoma (U87MG) cells (66). Wang et al showed H2S 

production in the tissue extracts of Moringa oleifera Lam; a species rich in GSLs and ITCs 

(179). Other studies indicate that subcutaneous and oral administrations of GRA or SFN 

reduced neuropathic pain in a dose-dependent manner in chemotherapy-induced neuropathy 

(91). The co-administration of GRA and SFN in mixture with the H2S binding molecule, 

haemoglobin, abolished the pain-relieving effect. This finding leading the authors to 

speculate that H2S produced from GRA and SFN reduce neuropathic pain by releasing H2S 

and by modulating Kv7 channels.  Other research indicates that SFN is vasoactive when 

administered at doses of 10 µM-1 mM. At these levels SFN caused immediate and sustained 

dilation of pial arterioles; this occurring concomitantly with an elevation in the levels of H2S 

in cerebrospinal fluids (123). In this work, SFN was not acting as a H2S donor molecule 

directly but rather by inducing the expression of CSE and CBS in animal tissues. Moreover, 

the inhibition of CSE/CBS using PAG, aminooxyacetic acid or the inhibition of KATP and BK 

channels using glibenclamide, paxilline, and iberiotoxin blocked the vasodilator effects of 

SFN in the brain. Similarly, erucin can be used to generate H2S inside human aortic smooth 

muscle cells with this causing hyperpolarization of the cellular membrane. Moreover, in rat 

aortic rings, erucin was also found to promote vasodilation and to inhibit noradrenaline-

induced vasoconstriction. In vivo, erucin decreased systolic blood pressure to values seen in 

normotensive rats (100). Much of the research on naturally occurring ITCs has inspired the 
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development of a range of synthetic ITC derivatives developed as potential H2S donor 

molecules (143). These synthetic ITCs can liberate H2S. The novel H2S donor 4-carboxy 

phenyl-ITC (4CPI), has vasorelaxant effects in rat aorta and coronary arteries (100), and in 

models of myocardial I/R (156), is reported to reduce neuropathic pain in animal models 

caused by the chemotherapeutic drugs, paclitaxel or oxaliplatin in experimental models (32), 

and diminishes [Ca2+ ] availability and thus mast cell degranulation and renin release (98). 

Phenyl ITC (PITC) and 3-carboxyphenyl ITC (3C-PITC) reduce spontaneous pain induced 

by nerve injury and osteoarthritis (92). The molecule, DM-22, a therapeutic compound 

comprising alendronate (AL) and the H2S-releasing moiety of aryl-ITC, inhibit h-OCs 

function and stimulate osteogenic differentiation.  Amperometric measurement revealed that 

DM-22 releases H2S at a slow rate via a thiol-dependent mechanism (132), (Figure 7). 

Collectively, these studies supporting the notion that thiol compounds are critical for H2S 

release from ITC derivatives.

3.3 Other potential sources of H2S in mammals

In the gastrointestinal tract H2S is produced by resident gut bacteria following the metabolism 

of sulfate, sulfite and various proteins (94, 131, 147-148). Production of H2S is largely 

mediated by the action of resident sulfate reducing bacteria (SRB) including members of the 

genera, Desulfovibrio, Desulfobacter, and Desulfobulbus (147-148). Following the 

metabolism of sulfate by these species H2S is produced (131, 163). H2S is also generated 

from sulphite by a spectrum of different bacteria species including Bacillus, 

Corynebacterium, Enterobacter, E. coli, Klebsiella, Rhodococcus, Staphylococcus, and 

Salmonella, respectively. In this instance sulfite is catabolised by the enzyme sulphite 

reductase to produce H2S (7). An addition source of this molecule is via the action of 

bacterial cysteine desulfhydrase, present in anaerobic species like Salmonella enterica, and 

Enterobacter aerogenes, that catabolise cysteine to produce H2S, pyruvate and ammonia; a 
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metabolic step akin to the catabolic effects of mammalian CBS protein on cysteine (3). It is 

likely that these bacterial sources of H2S bathe the surrounding tissues and will contribute to 

the total pool of H2S in and around enteric cells (36). Attempts at measuring the levels of H2S 

in the GI tract are sparse however, some researchers point to sulfide levels reaching 

concentrations of between 0.2–3.4 mmol/L (94). What is not currently know is how much of 

this free sulfide diffuses across epithelial cells and whether this contributes to circulatory 

pools in blood (31); current evidence suggests sulfide produced at this site does not enter the 

bloodstream. Interestingly, it has been reported that H2S levels are reduced in germ-free 

animals (144), and in rodents that are vitamin B6 deficient (36). In addition, studies have 

shown diminished levels of bound sulfane sulfur; divalent sulfur atom bound to an adjacent 

sulfur atom which is highly reactive and labile (62, 162). Compounds containing sulfane 

sulfur are reported to act as a form of stored H2S in mammalian tissues. At present, 

descriptions of any potential physiological roles for H2S generated in the GI tract have yet to 

be fully described.  Historically, H2S production in the GI tract has been linked to colonic 

inflammation viz. Crohn’s disease (109) and some cancers (180, 114), and has typically been 

viewed negatively by researchers. However, in the last decade, a number of studies point to 

potential beneficial effects of this molecule in the GI tract for example, as an energy substrate 

for colonic cells (43, 95, 170), to stimulate mucosal formation (172), and to act as a 

cytoprotective agent (37, 137, 170, 196). Studies in animals models consistently show H2S 

donors to have therapeutic effects in the GI tract with reported anti-inflammatory effects and 

enhanced safety profiles (96, 169), chemopreventative effects in experimental models of 

colorectal cancer (35, 119), protection against stress induced gastric lesions (95-96), and 

reductions in colonic inflammation (37). Moreover, pioneering work by Wallace et al. has 

shown that ATB-346 a hydrogen sulfide (H2S)-releasing anti-inflammatory and analgesic 

drug, has reduced toxicity in the GI tract of humans (171). These protective effects have been 
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attributed to the sustained and controlled release of H2S coupled with the inhibition of 

cyclooxygenase. Indeed, participants receiving ATB-346 showed a significant (~50%) 

increases in plasma levels of H2S over the course of the two-week intervention. Collectively, 

this body of work points to a beneficial effect of this molecule in the GI tract. Key questions 

still remain however and relate to the bioavailability of H2S in the GI tract; i.e., whether or 

not the molecule reaches the systemic circulation in humans? How H2S affects gut-

inflammatory signalling networks? And whether in gastrointestinal diseases H2S production 

is a by-product of bacterial infiltration, or a response of tissues to preserve cellular viability 

following damage? Hopefully, in the near future these questions will be answered. 

4. Conclusion

The biological effects of dietary sulfur species are more complicated than first imagined. 

Many sulphur species derived from the diet are metabolised via a spectrum of separate 

metabolic pathways, leading to the products of sulfur molecules with differing chemical 

properties. Liberation of these sulfur species within cellular compartments induces a 

spectrum of separate signalling cascades (Figure 8). While research on the biological fate of 

these molecules and their role in health is still ongoing much still needs to be addressed. For 

example, does the consumption of allium or brassica plants produce H2S in humans? The 

propensity to produce H2S, and its wide range of biological effects in mammalian systems is 

intriguing, as such this area deserves further investigation. Critically, if H2S is generated in 

vivo by people consuming diets rich in alliums and brassicas, then are the levels sufficient to 

mediate biological effects? Furthermore, several human intervention studies have shown that 

the consumption of allium vegetables can have modest effects on blood pressure in humans 

however, few studies have yet to consider potential links between brassica consumption and 

cardiovascular health. In addition, some restrictive diets alter H2S production in the tissues of 
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animals however, the impact of this on health and healthy ageing processes needs additional 

scrutiny.  Hopefully, these questions will be resolved in the near future. 
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Abbreviations Used.

CBS = Cystathionine β synthase

CSE = Cystathionine-γ-lyase

3-MST = 3-Mercaptopyruvate sulfurtransferase 

SQR-1 = Sulfide–quinone oxidoreductase

ETHE1 = Ethylmalonic encephalopathy protein 1

ASCOs = S-alkenyl-L-cysteine sulfoxides 

GSLs = Glucosinolates

ITCs = Isothiocyanates

Nrf2 = Nuclear factor erythroid 2-related factor 2

NF-kB = Nuclear factor kappa-light-chain-enhancer of activated B cells

SREBP-1 = Sterol regulatory element-binding transcription factor 1

JNK = c-Jun N-terminal kinases

GAA = Guanidinoacetic acid

PAG = DL-propargylglycine

GYY4137 = p-Methoxyphenyl)morpholino-phosphinodithioic acid

ATB-346 = H2S-releasing naproxen derivative

DATs = Diallyl trisulfide

DPDs = Dipropyl disulfide

SAC = S-allylcysteine
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Figure 1. Small molecular weight sulfur compounds reported to release H2S gas, (A) diallyl 

trisulfide, (B) S-allyl cysteine, (C) S-propargyl cysteine, (D) Ajoene, (E) 1,2 vinyldithiin, and 

(F) the isothiocyanate, sulforaphane.

Figure 2. Brassica and allium vegetables contain the sulfur storage compounds namely, 

glucosinolates and S-alk(en)yl-L-cysteine sulfoxides. Consumption of these vegetables is 

associated with reduced risk of developing several chronic diseases like cancer(s) and 

cardiovascular disease.

Figure 3. Summarised overview of the dietary factors influencing the expression of H2S 

biosynthetic pathways. Arrows are used to highlight upregulation (↑), or down regulation (↓) 

of enzyme or protein levels.

Figure 4. The catabolism of S-alk(en)yl-L-cysteine sulfoxides (ASCOs) by the enzyme 

alliinase produces a diverse array of reactive sulfur compounds. Some including diallyl 

trisulfide (DATs) can produce H2S gas following reactions with cellular thiols.

Figure 5. The glucosinolate–myrosinase system in brassica plants. Following tissue damage, 

glucosinolates are catabolised by myrosinases leading to the production of several sulfur 

containing products. At neutral pH, ITCs are produced, or in the presence of epithiospecifier-

protein-like factor or alkali pH, nitriles. Glucosinolates hydroxylated at the third carbon atom 

of the side chain generate ITCs that can spontaneously cyclize to form oxazolidine-2-thione. 

Other compounds identified in brassica tissues include epithionitriles and thiocyanates. 

Abbreviation: R, variable side chain of aromatic, aliphatic or indole structures.
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Figure 6. In homogenates of papaya seeds and benzyl isothiocyanate (BITC)-enriched 

papaya pulp the metabolism of BITC by E. cloacae generates benzylamine and H2S.

Figure 7. Isothiocyanates (ITCs, R-NCS) rapidly form adducts with cysteine and rapidly 

cyclize to release amine (R–NH2) and raphanusamic acid (RA) and minor amounts of 2-

carbylamino-4,5-dihydrothiazole-4-carboxylic acids and H2S. Adapter from (84).

Figure 8. Allium and brassica derived sulfur compounds viz. sulfides and isothiocyanates 

(ITCs) are hypothesised to generate H2S in cells via two major routes. The first pathway 

includes the reaction of individual molecules with cellular thiols such as glutathione (GSH). 

In the second pathway, the up-regulation of biosynthetic enzymes involved in H2S production 

is reported. The H2S generated can then act on cell signalling processes to mediate effect or 

alternatively form various polysulfide species. 
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Figure 2. Brassica and allium vegetables contain the sulfur storage compounds namely, glucosinolates and 
S-alk(en)yl-L-cysteine sulfoxides. Consumption of these vegetables is associated with reduced risk of 

developing several chronic diseases like cancer(s) and cardiovascular disease. 
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Figure 3. Summarised overview of the dietary factors influencing the expression of H2S biosynthetic 
pathways. Arrows are used to highlight upregulation (↑), or down regulation (↓) of enzyme or protein levels. 
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Figure 4. The catabolism of S-alk(en)yl-L-cysteine sulfoxides (ASCOs) by the enzyme alliinase produces a 
diverse array of reactive sulfur compounds. Some including diallyl trisulfide (DATs) can produce H2S gas 

following reactions with cellular thiols. 
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Figure 5. The glucosinolate–myrosinase system in brassica plants. Following tissue damage, glucosinolates 
are catabolised by myrosinases leading to the production of several sulfur containing products. At neutral 

pH, ITCs are produced, or in the presence of epithiospecifier-protein-like factor or alkali pH, nitriles. 
Glucosinolates hydroxylated at the third carbon atom of the side chain generate ITCs that can spontaneously 

cyclize to form oxazolidine-2-thione. Other compounds identified in brassica tissues include epithionitriles 
and thiocyanates. Abbreviation: R, variable side chain of aromatic, aliphatic or indole structures. 
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Figure 6. In homogenates of papaya seeds and benzyl isothiocyanate (BITC)-enriched papaya pulp the 
metabolism of BITC by E. cloacae generates benzylamine and H2S. 

338x190mm (96 x 96 DPI) 

Page 56 of 58



 

Figure 7. Isothiocyanates (ITCs, R-NCS) rapidly form adducts with cysteine and rapidly cyclize to release 
amine (R–NH2) and raphanusamic acid (RA) and minor amounts of 2-carbylamino-4,5-dihydrothiazole-4-

carboxylic acids and H2S. Adapter from (84). 
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Figure 8. Allium and brassica derived sulfur compounds viz. sulfides and isothiocyanates (ITCs) are 
hypothesised to generate H2S in cells via two major routes. The first pathway includes the reaction of 

individual molecules with cellular thiols such as glutathione (GSH). In the second pathway, the up-regulation 
of biosynthetic enzymes involved in H2S production is reported. The H2S generated can then act on cell 

signalling processes to mediate effect or alternatively form various polysulfide species. 
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