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Simple Summary: Computed tomography (CT) is the modality of choice for assessing
the canine nasal cavity, offering critical insights into disease extent, facilitating targeted
tissue sampling, and informing therapeutic strategies. Although CT findings can provide
indications of pathology type, considerable overlap exists among neoplastic, inflammatory,
and infectious nasal diseases, complicating definitive differentiation. In human medicine,
recent advancements in computer-aided detection have leveraged machine learning and
deep learning techniques to enhance the identification and classification of intranasal
pathology with high accuracy. This study aimed to develop a neural network-based
pipeline for the automated detection and classification of nasal pathology in canines using
CT imaging. A dataset comprising 80 CT studies of the head was curated for model
training and validation. Each study was assigned to one of three categories—normal nasal
anatomy, fungal rhinitis, or intranasal neoplasia—and manually segmented to train a series
of neural networks. Performance was evaluated using standard accuracy metrics. The
trained model demonstrated a classification accuracy of 86% on isolated image slices and a
diagnosis accuracy of 99% when aggregated across slices of a given patient. These findings
underscore the potential of machine learning algorithms in accurately differentiating
intranasal pathologies in canines, highlighting their applicability in augmenting diagnostic
workflows and advancing veterinary imaging.

Abstract: Computed tomography (CT) is the imaging method of choice for evaluating the
canine nasal cavity, being invaluable in determining disease extent, guiding sampling, and
planning treatment. While predictions of pathology type can be made, there is significant
overlap between CT changes noted in neoplastic, inflammatory, and infectious nasal disease.
Recent years have seen remarkable advancement in computer-aided detection systems in
human medicine, with machine and deep learning techniques being successfully applied
for the identification and accurate classification of intranasal pathology. This study aimed
to develop a neural network pipeline for differentiating nasal pathology in dogs using CT
studies of the head. A total of 80 CT studies were recruited for training and testing purposes.
Studies falling into one of the three groups (normal nasal anatomy, fungal rhinitis, and
intranasal neoplasia) were manually segmented and used to train a suite of neural networks.
Standard accuracy metrics assessed performance during training and testing. The machine
learning algorithm showed reasonable accuracy (86%) in classifying the diagnosis from an
isolated scan slice but high accuracy (99%) when aggregating over slices taken from a full
scan. These results suggest that machine learning programmes can accurately discriminate
between intranasal pathologies based on canine computed tomography.
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1. Introduction
The use of machine learning is a rapidly growing field in medical imaging and can

achieve high degrees of accuracy that can exceed the abilities of human judgement in
making data predictions [1]. It has numerous clinically relevant uses and, in human
medicine, is already being used to aid in disease detection, diagnosis, prognosis, and
treatment response [2]. While little information is currently available regarding the use of
machine learning in veterinary species, there are clear areas of utility and an expectation
that it will have a significant impact with regard to medical decision making in the future.

The concept of using machine learning to assess nasal and paranasal pathology is
well described in human medicine, with multiple publications describing its utility for the
detection and classification of various pathologies, including rhinosinusitis [3–6], nasal
polyps [7,8], fungal infections [9], and malignancies [10–13]. Given the much wider inter-
species and inter-breed anatomical variation in veterinary species, proof of concept and
pilot studies are required to confirm that similar machine learning techniques can be
applied; however, the initial results are promising [14]. To the author’s knowledge, there
are only two publications specifically describing the application of machine learning to
images of the canine head and neck, which described a highly consistent and robust model
for the delineation of radiotherapy planning [15,16].

There is an overlap between the CT features of inflammatory, infectious, and neo-
plastic nasal pathologies, with varying degrees of nasal turbinate destruction, soft tissue-
attenuating material within the nasal cavities and/or frontal sinuses, and cribriform plate
lysis being just a few of the common characteristics [17–19]. In particular, both fungal
and neoplastic diseases often exhibit invasive and infiltrative behaviours within the nasal
cavities [20,21]. Although there are several distinguishing features that can help determine
the diagnosis, further investigations, such as rhinoscopy and biopsies, are usually required
to reach an accurate diagnosis [21]. Definitive diagnosis therefore relies on histopathology,
but the acquisition of representative tissue biopsies is invasive and lesions are not always
easily accessible [22,23]. The ability of machine learning to use raw rather than recon-
structed data offers an opportunity for increased sensitivity and specificity in comparison
with human interpretation, raising the possibility of yielding enhanced diagnostic and
prognostic information and perhaps reducing the need for histopathologic confirmation in
the future [2].

Machine learning is an umbrella term that refers to a broad range of algorithms that
perform intelligent predictions based on a dataset. A wide variety of models are in use,
the choice of which is determined by the characteristics of the data and the type of desired
outcome. In the case of image classification tasks, the data lends itself to ‘supervised’
teaching models using input data that has predefined output labels associated with it [24].
The aim of this pilot study was to ascertain whether ‘supervised’ machine learning models
could be used to identify the presence or absence of nasal pathology in dogs and to assess
whether algorithms were able to further distinguish between normal nasal anatomy, fungal
rhinitis, and intranasal neoplasia.
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2. Materials and Methods
2.1. Selection and Categorisation of Subjects

CT data from two large UK veterinary referral hospitals, stored via two Picture Archiv-
ing and Communication Systems (PACS), Horos (Horos version 3.3.6, The Horos Project,
Pureview) and Osirix (Osirix MD DICOM viewer Viewer, Pixmeo Sarl, version 14.0.1,
Geneva, Switzerland), between the dates of 2013 and 2022, were interrogated for all canine
anatomical studies labelled ‘head CT’. All studies were obtained using a multidetector
row scanner (BrightSpeed [16 slice], General Electric Medical Systems, Chicago, IL, USA
or MX 8000 IDT, Philips Medical Systems, Cleveland, OH, USA [16 slice]), depending
on the hospital of origin. The studies were visually assessed by two of the authors (A.I.
and R.C), and those of diagnostic quality from dogs with and without nasal pathology
were archived. A final diagnosis along with patient signalment for each of the archived
studies was then documented based on information derived from specialist CT reports,
clinical notes, and laboratory reports. Ethical approval was granted by the Royal College of
Veterinary Surgeons Ethics Review Pannel (2022-108).

CT studies were initially separated into two groups (normal or abnormal nasal
anatomy), based on the presence or absence of nasal pathology according to the find-
ings documented in the CT reports at the time of diagnosis. All included CT studies were
reported by Diplomates in Veterinary Diagnostic Imaging (ECVDI). A definitive diagnosis
of either fungal rhinitis (Aspergillus fumigatus infection) or intranasal neoplasia (lymphoma,
carcinoma or sarcoma) was then assigned to each study in the ‘abnormal’ group based on
the clinical notes and laboratory results. Studies were excluded if a definitive histopatho-
logic diagnosis was not available. A total of 80 CT studies were selected for model training:
27 with ‘normal nasal anatomy’, 28 with ‘fungal rhinitis’, and 25 in the ‘neoplasia’ subgroup.
All studies were acquired from medium- to large-headed dolichocephalic breeds.

2.2. Data Preparation

Due to the examinations spanning almost a decade, CT scanning protocols and pa-
rameters were variable between institutions. Nevertheless, all scans included pre- and
post-contrast imaging with soft-tissue and bone algorithms. Based on preliminary investi-
gations, the more identifiable anatomical structures and extent of pathology demonstrated
in the bone pre-contrast scans allowed for more efficient and reliable training of the clas-
sification model; hence, only the bone pre-contrast window images were utilised for the
remainder of the study.

CT data were exported as Digital Imaging and Communications in Medicine (DI-
COM) files. For training the slice selection and segmentation models, volumetric masks
encompassing the nasal cavities in all 80 patients were manually defined by two of the
authors (L.A. and S.T.) using the Medical Image Labeller within MATLAB (Version: 9.13.0,
R2022b). DICOM scan files and masks were then converted to Neuroimaging Informatics
Technology Initiative (NIfTI) format using the python library dicom2nifti (Version: 2.4.8),
to bring all scan and mask data to a common resolution for model training (see below). All
analysis in the study was restricted to scan data projected onto the axial plane. Aggregating
all 80 patients, a total number of approximately 12,000 axial slices intersecting the nasal
cavity were acquired. Section 2.5 outlines how slices were split into training, validation,
and testing sets.

When converting to NIfTI format, a set of scans retaining the full image extent were
created alongside a set of cropped scans. The cropped scans were formed by cropping
each slice to a square bounding box containing all image pixels above a defined bright-
ness threshold.
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Figure 1 shows an example of the extent of cropping. Both cropped and uncropped
slices were created with image dimensions of 96 × 96 pixels and 128 × 128 pixels, reduced
from the original dimensions of 512 × 512 pixels of the DICOM scans. Models were
trained and tested with different combinations of image resolution and cropping (see next
Section 2.3).

 

Figure 1. Example of uncropped (top-left) and cropped (top-right) scans projected onto the axial
plane. Both cropped and uncropped images were tested in slice selection and segmentation, but only
cropped images were used for pathology classification. The bottom-left panel shows the manually
defined ground truth mask (highlighted in red) that segments the nasal cavity of the slice shown in
the top-right, and the bottom-right panel shows the mask predicted by the segmentation model.

2.3. Models

A three-phase pipeline was assembled to evaluate the feasibility of fully automating
nasal pathology diagnosis from CT scans. Each phase incorporated a different deep learn-
ing model. All models constructed by the authors utilise the tensorflow python library
(Version: 2.9.0).

The first phase employs a model to select the range of axial slices that exclusively
contains the nasal cavities from the most rostral region to the area of the cribriform plate.
Several different model architectures were trained and tested on both cropped and un-
cropped 96 × 96-pixel slices. Models included very deep networks such as the VGG16
convolutional neural network (CNN) [25], ResNet50V2 [26], and MobileNetV2 [27], but a
shallow CNN constructed by the authors outperformed the deeper models. This shallow
CNN comprises three convolutional blocks (64, 128, 256 filters, 3 × 3 kernel, each with
2,2 stride and each followed by 2 × 2 max-pooling) and three ReLU-activated dense layers
(comprising 158, 256 and 128 neurons), with a final 1-channel sigmoid output. Given the
shallow CNN’s superior performance, only its results are presented.

The second phase segments the nasal cavity regions within the slices selected in
phase 1. A range of models based on the UNet architecture [28] were trained and tested on
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both cropped and uncropped 96 × 96-pixel slices. Of all the models tested, ResUNet++ [29]
showed the best performance; thus, only results from this model were reported. In this
work, the network’s design preserves the native ResUNet++ architecture. The encoder
segment commences with a 16-filter input ResNet block, then progresses through three
subsequent ResNet blocks containing 32, 64, and 128 filters, respectively. This progression
extends to the bridge, which is characterised by 256 filters.

In the third and final phase, segmented regions are fed to a classification model. For
this phase, two models were trained and tested on the 96 × 96- and 128 × 128-pixel cropped
slices. The first model is a CNN constructed by the authors. Its architecture deepens
through three convolutional blocks (comprising 32, 64, and 128 filters with 3 × 3 kernels,
each followed by 2 × 2 max-pooling). The pooled features are then processed by a global
average pooling layer, followed by a 512-neuron dense layer that uses ReLU activation
and a 0.5 dropout rate. Finally, a softmax output layer provides the three classification
probabilities. For the second, the 20-layer Residual Attention Network, ResAttNet [30],
was used. The 3-channel implementation of the network applied in this study used a
regularisation strength of 0.01 and a kernel size of 5 × 5 pixels in the convolutional layer.

2.4. Metrics

Several metrics were used to assess model performance during training and testing.
For slice selection, models were trained using the binary cross-entropy loss function and
tested using the standard metrics of accuracy (defined as the fraction of correct classifica-
tions out of all classifications made), the area under the Receiver Operating Characteristic
curve (ROC-AUC), and the F1 score:

F1 =
2 × precision × recall

precision + recall

where precision is the fraction of true positive classifications out of all positive classifications
made, and recall is the fraction of true positive classifications out of all true cases. The F1
score provides a balanced metric even when a class imbalance exists. For segmentation, the
testing metrics reported are the Dice coefficient, which measures the ratio of intersection
to union between the true and predicted segmented area, and the F1 score. In the case of
segmentation, for the F1 score, the precision measures the percentage of pixels predicted
as positive that match the ground truth positive pixels. Recall is the percentage of actual
positive pixels in the ground truth that are correctly identified by the model as positive.
For training, the following definition of Dice loss was used: dice loss = 1 − dice coefficient.
For the classification model, accuracy, the F1 score, and the ROC-AUC (in this case the ‘one
versus rest’ strategy) were used as testing metrics. The cross-entropy loss function was
used for training.

2.5. Model Training

In total, 20 instances of each model were trained; four unique sets of 20 patients from
the cohort of 80 were used as unseen training data, and for each of these sets, 5 model
instances were trained using 5-fold cross-validation with a 48/12 patient train/validation
split. This helps mitigate the impact of the small patient cohort and enables the estimation of
metric uncertainty through variance. Care was taken to ensure that the same approximately
equal distribution of classes was present in the training and validation splits.

During training, all models utilised the ADAM optimizer. The slice extraction model
was trained with a learning rate of 0.001 and a batch size of 256 slices and the segmentation
model with a learning rate of 0.001 and batches of 64 slices. For the two classification
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models, the CNN was trained with a learning rate of 0.008 and batches of 256 slices and the
ResAttNet model with a learning rate of 0.001 and a batch size of 32 slices.

For all model training, early stopping was applied with a patience of 10 epochs. This
prevents overfitting by monitoring the model’s performance on the validation dataset
and stopping the training process when the loss stops improving for 10 epochs. Test and
validation loss curves were manually monitored to confirm the absence of overfitting.

3. Results
The metrics corresponding to the CNN model applied to both cropped and uncropped

test slices with image dimensions of 96 × 96 pixels are shown in Table 1. The accuracy
of identifying slices containing a nasal cavity with the uncropped scans is 96.2 percent
with a standard deviation of 2 percent estimated from the 5-fold cross-validation. Out
of typically 150 slices per patient intersecting the nasal cavity, this corresponds to only
~6 being misidentified on average. When applied to the cropped scans, the CNN exhibits
a slight degradation in performance corresponding to a mean misidentification rate of
~8 slices per patient. Figure 2 (left panel) shows the validation loss and accuracy curves
for the slice extraction model. Some example slices rejected and selected by the model are
shown in Figure 3.

Table 1. Results of the trained slice extraction CNN applied to cropped and uncropped test scans.
Slices with dimensions of 96 × 96 pixels were used.

Accuracy F1 Score ROC-AUC

Uncropped slices 0.962 0.949 0.962
Cropped slices 0.944 0.922 0.941

Figure 2. Validation metrics for each phase of the pipeline, showing the loss and accuracy for the slice
extraction model (left), the loss and Dice coefficient for the segmentation model (middle), and the loss
and accuracy for the slice classification CNN model (right). All metrics correspond to 96 × 96-pixel
cropped slices.

The results of segmentation using the ResUNet++ model are shown in Table 2, and an
example segmentation is shown in the bottom-right panel of Figure 1. Considering that
a Dice coefficient of 1 indicates complete agreement between the predicted and ground
truth segmentation masks, the findings reveal the highly accurate identification of nasal
cavities by the model. Reliable segmentation is key for the success of the final phase
where classification is carried out on these identified areas. Once again, the metrics show
that performance degrades slightly when the model is trained and tested on the cropped
scans. Figure 2 (middle panel) shows the validation loss and Dice coefficient curves for the
segmentation model.
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Figure 3. Example slices rejected (left) and accepted (right) by the model as intersecting the nasal
cavity in one patient.

Table 2. Results of the segmentation model applied to cropped and uncropped test scans. Slices
with dimensions of 96 × 96 pixels were used. A Dice coefficient of 1 corresponds to perfect overlap
between the ground truth mask and the predicted mask.

Dice Coefficient F1 Score

Uncropped slices 0.959 0.970
Cropped slices 0.947 0.946

The results of the classification model are shown in Table 3. Classification was applied
only to the cropped scans, but training and testing of both the 96 × 96- and 128 × 128-pixel
slices were carried out. The ROC-AUC metric shows that very similar performance is
obtained between the two image dimensions considered for both the CNN and ResAttNet
models, but the CNN is consistently more accurate than the ResAttNet model. Interest-
ingly, the CNN exhibits a marginally higher accuracy with the higher resolution slices
(128 × 128 pixels) in contrast to the ResAttNet model, which shows better performance
with the lower resolution scans. This is not a statistically significant result given a typ-
ical error of 2–3 percent on the metrics found from the 5-fold cross-validation analysis.
Figure 2 (right panel) shows the validation loss and Dice coefficient curves for the CNN
segmentation model.

Table 3. Performance of the CNN and ResAttNet models in classifying individual slices into one of
the three categories of ‘normal’, ‘fungal rhinitis’, or ‘neoplasia’. The models were trained and tested
on only cropped scans but with both 96 × 96- and 128 × 128-pixel dimensions.

Accuracy F1 Score ROC-AUC

CNN 96 × 96 0.835 0.840 0.939
CNN 128 × 128 0.856 0.858 0.953

ResAttNet 96 × 96 0.821 0.827 0.895
ResAttNet 128 × 128 0.781 0.796 0.873

Figure 4 shows the confusion matrix, which breaks down prediction performance
by class for the 128 × 128-pixel slices in the case of the CNN model. These results show
that the classification accuracy of individual slices is better than 90 percent for neoplasia
cases and 84 percent in the absence of pathology, but only 80 percent for rhinitis cases.
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The model’s strongest confusion stems from the misclassification of rhinitis cases as being
pathology-free.

Figure 4. Confusion matrix showing the normalised fraction of the predicted classifications of slices
versus the ground truth for the three cases of ‘normal’, ‘neoplasia’, and ‘fungal rhinitis’ considered.
Matrix is shown for the 128 × 128-pixel slices classified by the CNN model. The 5-fold cross-validation
analysis yields an uncertainty of 0.006 on the fractions displayed in the matrix.

While a single CNN-classified slice lacks sufficient clinical reliability, the abundance
of slices per patient (typically one hundred and fifty, with tens intersecting a pathology if
present) allows for a more robust assessment through aggregated probabilities. By selecting
the 10 most spatially separated slices within a potential pathology (thus minimising inter-
slice correlation), an aggregated probability for each class can be computed by multiplying
the individual slice probabilities for that class. The class with the highest aggregated
probability is taken as the prediction. Given that the adopted 5-fold cross-validation tests
each of the 80 patients, this aggregated probability can be calculated for the entire cohort.
The results of this are presented as a confusion matrix in Figure 5, showing that only 1 of
the 80 patients is misclassified under this scheme.

Figure 5. Confusion matrix showing the predicted classifications versus ground truth using aggre-
gated probabilities for each patient for the three cases of ‘normal’, ‘neoplasia’, and ‘fungal rhinitis’
considered. Matrix is shown for the 128 × 128-pixel slices classified by the CNN model.
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4. Discussion
This pilot study has demonstrated the efficacy of applying deep learning models to

cranial CT imaging data for the diagnosis of nasal disease in dogs. Whilst such technologies
have been successfully demonstrated with human scan data [31], the viability of applying
such methods to the more varied morphology exhibited in canine scans has remained
uncertain. This pilot study demonstrates, with a relatively small volume of training data,
that the latest deep learning models can classify canine nasal cavities as belonging to one of
the categories defined as ‘normal nasal anatomy’, ‘fungal rhinitis’, and ‘neoplasia’ with a
high accuracy of 99%. The work has demonstrated a full end-to-end diagnostic process,
starting with the automatic selection of relevant slices from the scan, followed by the
identification of the nasal cavities in each scan, and concluding with classification.

The CNN classification model indicates that higher slice image resolution generally
correlates with better diagnostic accuracy, though the more complex ResAttNet model
showed the opposite trend. Due to computational constraints, investigations of higher
resolutions were not possible, but it is anticipated that performance would continue to
increase with further resolution improvements. Improvement in resolution would require
more training data and likely deeper machine learning models, but with this would come
the possibility of distinguishing between a greater number of pathology types, including
those that show more subtle differences.

A trend observed in this work is that models trained and tested on cropped slices
consistently perform worse, albeit only slightly, than those applied to uncropped slices.
Since the image dimensions were set equally in both cases, the cropped slices effectively
have a higher resolution (i.e., more pixels per physical unit area); this behaviour is therefore
likely due to a combination of factors. The model architectures and the number of training
slices were kept constant across both cases, suggesting that the reduced performance
with cropped slices may be due to the models not being sufficiently deep to capture the
complex features within the smaller, cropped regions. Additionally, the reduced amount of
data available for training with cropped slices may have hindered the models’ ability to
generalise effectively.

A significant limitation of the current study is the relatively small sample size. The
use of a relatively small number of CT studies raises the possibility of a skewed dataset,
and it is possible that the model was tested on studies in which the differences between
subgroups were particularly prominent. In this instance, it would be unclear whether the
same performance would be obtained using studies in which the changes were less striking.
Similarly, this work considered only three classes (two pathology types). Preliminary tests
of the classification model with scans of nonspecific nasal pathologies not seen during
training resulted in an inconclusive diagnosis. As an interim step toward training a model
capable of handling a significantly wider range of pathologies, further training could
include an ‘other’ category. A final, minor limitation of this work is that the three classes
considered in this work exhibit a small degree of imbalance, which may introduce bias
during model training. However, the aim of the study was not to provide a ready-to-
use clinical program but to explore the basic capacity of a machine learning algorithm to
distinguish between two of the most common intranasal pathologies in dogs.

Another limitation is that the model developed was only used in medium-to-large
dolicocephalic breeds. Whilst such breeds exhibit a larger variation in cranial morphology
than humans, the question of how well deep learning methods will perform over a more
diverse range of breeds remains unclear. This is a question beyond the immediate remit of
the present study, but a brief test was carried out on an additional dataset of scans from
small-breed dogs using the models trained on the medium-to-large dolichocephalic breeds.
The models continued to perform well over all three phases of slice selection, segmentation,
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and classification, yielding accuracies consistent with those of the medium-to-large headed
breeds. This is most likely attributable to the scale-invariant nature of CNNs, which are at
the heart of the models used in this work.

Finally, this study analysed only the pre-contrast bone CT imaging data. Although
these more clearly show the nasal cavities and their pathologies upon visualisation of the
images, this neglects the additional data contained in the post-contrast bone scans and
the pre- and post-contrast soft-tissue scans that are typically obtained. Further studies,
preferably including different algorithms, will provide additional independent data to
allow for greater classification accuracy if used in combination.

The overall excellent classification results achieved by the current model suggest that
machine learning programmes based on CNNs could become a useful tool in accurately
diagnosing a varied range of intranasal pathologies in dogs. The next steps towards
developing possible routine clinical applications should ideally include a greater range of
nasal pathologies (other types of infectious or non-infectious rhinitis alongside neoplastic
disease) in a significantly larger cohort of dogs to further test the accuracy of the model in a
probable clinical scenario.

5. Conclusions
In summary, the results reported in the current study illustrate the possibility of

using a deep convolutional neural network for distinguishing between intranasal fungal
rhinitis and neoplastic disease in dogs using CT images. Further studies, ideally with larger
datasets, are required to determine the learning potential and performance of a CNN in a
clinical setting.
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