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Real-time target alignment system for high-power high-repetition rate laser
operations using a five degree-of-freedom hybrid mechanism
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ABSTRACT

This paper presents a real-time position control solution for the targets used in the high-repetition rate
laser operations of high-power laser facilities. The control system is designed based on an Abbe-compliant,
in-process position measurement system of targets, employing a plane mirror interferometer and a five
degree-of-freedom hybrid mechanism. An error model is developed to characterise the position feedback
information of target for a high-repetition rate process to determine the effects of the non-collocation of
the sensor’'s measurement point and target on the control system’s performance - a challenge for the real-
time position control of targets. Behaviour of the control system is investigated with the error model and
experimental data. It is found that a controller’s position compensation scheme can be ineffective due
to the erroneous position feedback as a result of the non-linear position information associated with the
non-collocated measurement point and the actual target. To solve the problem, an angular compensation

technique is proposed.

1. Introduction

The position accuracy of a target (tool or end-effector, but here-
after just called target), is one of the most important require-
ments for many precision systems, such as ultra-precision
machine tools, coordinate measuring machines and surgical
robots. Positional accuracy is generally achieved by carrying
out one or more of these processes: design, following preci-
sion engineering principles; calibration, requiring steps, such
as kinematic modelling, error identification and error com-
pensation; and compensation for the target’s path (or trajec-
tory), requiring in-process measurement of the position of the
target while the operation is taking place (i.e. real-time com-
pensation) (Bosmans et al., 2017; Buice, 2018; Karim, Piano,
Leach, Branson, et al., 2018; Karim, Piano, Leach, & Tolley,
2018; Schmitt et al., 2013; Schmitt et al., 2012; Schwenke et al.,
2008; Ruijl, 2001; Ramesh et al., 2000; Sartori & Zhang, 1995).
Real-time compensation using in-process metrology has been
playing an increasingly important role in recent years in the
process chain for manufacturing of precision workpieces with
complex shapes and/or tight tolerances (Schmitt et al., 2012;
Schmitt et al.,, 2013). Beyond the task of quality control for
workpieces, in-process metrology has proven effective for man-
ufacturing process control, by allowing optimisation of the pro-
cess and the machine tool settings (Gao et al., 2019; Hansen
et al., 2006). However, developing an instrument for in-process
measurements comes with many challenges, e.g. appropriate
mounting of the sensor in the manufacturing machine, high
measurement speeds to follow the manufacturing operation

ARTICLE HISTORY
Received 29 January 2020
Accepted 13 September 2020

KEYWORDS

Real-time position and
orientation control;
in-process metrology; hybrid
mechanism; target position
feedback; position and
angular compensation;
complaint and
non-complaint feedback
information

and avoidance of environmental disturbances (Colledani et al.,
2014; Syam et al,, 2019; Yang & Zhang, 2018). For these chal-
lenges, most in-process measurement solutions are application-
specific, and research covering different aspects of in-process
metrology, such as instrumentation, acquisition and calibra-
tion, is increasing (Gao et al., 2019). The research pre-
sented in this paper aims to develop an effective solution for
real-time target position compensation for high-power laser
operations.

Large-scale facilities with high-power lasers (petawatt class
lasers) need to operate at high-repetition rates to utilise the
full potential of the lasers, which comes with many engineer-
ing challenges (Booth et al., 2014; Spindloe et al., 2011). One
such challenge is the requirement for positioning and orientat-
ing the fresh targets at the laser beam focus with an accuracy of
a few micrometres at a rate of at least a few hertz (Booth et al.,
2014; Spindloe et al., 2011; Symes et al., 2014; Tolley & Spindloe,
2013). For example, clinically relevant experiments require sev-
eral thousands of laser shots, which demand for an automated
target positioning system. One method of automated position-
ing of nano-scale targets was reported by Gao et al. (2017).
With the use of a six-axis hexapod, a specially designed tar-
get wheel, a microscope and a confocal chromatic displacement
sensor, they achieved a target positioning accuracy of around
S5um in all spatial dimensions at 0.5Hz repetition rate; but
this method represents a pre-calibrated compensation for tar-
get’s positional deviations. Another method of automated target
alignment (positioning and orientation) can be found in the
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Figure 1. HAMS for high-power high-repetition rate laser operations: (a) HAMS with the target interface wheel; (b) target interface wheel with two replaceable target
sectors; (c) targets patterned around the circumference of a target sector [adapted from Karim, Piano, Leach, and Tolley (2018)].

form of an integrated target solution developed by the Central
Laser Facility (CLF) (Booth et al., 2014; Spindloe et al., 2011;
Symes et al., 2014). The target solution of the CLE, known as
the ‘High Accuracy Microtarget Supply’ (HAMS) system, uses
a number of identical targets manufactured with MEMS tech-
nology and delivers the targets to the laser focus within specifi-
cations at high speed (hertz level). Automated target alignment
using HAMS is the focus of this paper.

The motion stages, the key component of HAMS as shown
in Figure 14, form a five degree-of-freedom hybrid mechanism:
a linear xz stages and a tripod, which is a parallel mechanism
(the description of the motion stages is given elsewhere (Karim,
Piano, Leach, & Tolley, 2018)). The motions of the hybrid mech-
anism are used for high-speed (hertz level) positioning of the
target at the laser focal spot within the specifications (i.e. within
£10 um of the centre of the 300 um diameter target in the x and
y directions and within 44 pum of the laser focus in the z direc-
tion) — see Figure 1 (Booth et al., 2014; Karim, Piano, Leach,
& Tolley, 2018). While the x and y specifications are to ensure
that the laser hits the target without damaging the surround-
ings, the z specification is to ensure that the targets receive the
highest intensity of the laser beam. It is also important that the
targets are positioned perpendicular to the laser beam during
operation.

The target alignment at high-repetition rate depends on
the ability of the motion stages of HAMS to generate the
translational and rotational motions to locate the target with
the required accuracy and repeatability. The performance of
the parallel mechanism of HAMS, in terms of its ability to
achieve high-accuracy target positioning, is described elsewhere
(Karim, Piano, Leach, Branson, et al., 2018; Karim, Piano, Leach,
& Tolley, 2018). However, high-accuracy target alignment in
high-repetition rate operation means that a real-time position
compensation method is required to maintain the target’s refer-
ence position and plane throughout the operation. This can be
achieved by the HAMS controller with the use of a closed-loop
control when the target positions (and ideally orientations) are
known throughout the operation. This measurement require-
ment can be fulfilled by using in-process metrology but comes
with a number of challenges. For laser operation, the major chal-
lenges are: 1. adverse operating conditions (electro-magnetic

pulse of the laser) for the sensor, 2. space constraints inside the
laser chamber and 3. the measurement speed required to fol-
lowthe high-repetition rate. Furthermore, the necessity for the
targets to be placed at the laser focus and perpendicular to the
laser beam (Figure 1a) means that information about both the
target’s position and orientation are needed by the controller
to make the necessary compensations for the target alignment.
Irrespective of the applications (laser or non-laser), in-process
measurement of the target’s orientation can be difficult, as com-
prehensive information about the target’s location is required
throughout the operation.

This paper reports the development of a closed-loop con-
trol system using an Abbe-complaint, in-process position mea-
surement system for real-time alignment of the targets for
high-repetition rate laser operations. The design principles of
the in-process target position measurements are discussed, fol-
lowed by the derivation of a model showing the relationship
between the positional deviations of the target, which form
the feedback information to the sensor, and the error sources
related to the high-repetition rate system. The hardware set-
up, control scheme of the closed-loop system and the exper-
imental procedure are described. Implementation issues with
the closed-loop control are discussed in light of the exper-
imental results and the model, which led to strategies for
improving the performance of the closed-loop control for the
real-time target alignment. Lastly, some examples are given to
demonstrate the applicability of the model for wider precision
applications.

2. Design of the control system for high-repetition
rate laser operations

Considering the performance of a positioning system in terms
of the positional accuracy of the target, the following three
locations of the system’s elements with respect to the system’s
coordinate system are critical for closed-loop control (Schmidt
etal., 2014):

e the actuator’s location;
e the sensor’s location; and
e the target’s location.



For closed-loop control of a precision positioning system,
the location of the sensor in the system is an important con-
sideration, because the locations of the actuators and sensors
influence the ‘observability’ and ‘controllability’ of an active con-
trol positioning system (Schmidt et al., 2014; Yang & Lee, 1993).
In the case that the positioning system’s sensor and actuator
are non-collocated, which is often the case, the functionality
of the positioning system can be impaired. In such cases, the
controller is unable to improve the system’s dynamic behaviour
due to closed-loop instability or a time-delay in the feedback
loop (Bruant et al., 2010; Yang & Lee, 1993). Furthermore, non-
collocation of the sensor and the target may result in Abbe
errors in the position measurement of the target, which in turn
mean that the controller’s compensation for the target position,
based on the sensor’s measurement, can be ineffective, lead-
ing to inaccuracy in target re-positioning during high-repetition
rate operation.

The design of the position measurement system for the target
is examined in the following sections in light of the Abbe prin-
ciple. The development of an analytical model is then outlined
to show the relationship between the target position feedback
(i.e. the z positional deviations of the target with respect to its
reference position) and the factors affecting the feedback.

2.1 In-process position measurement for the
high-repetition rate operation: applying the Abbe
principle

The generalised Abbe principle, reformulated by Bryan (1979),
states that ‘the path of the effective point (EP) of a displace-
ment measuring system should be collinear with the path of the
functional point (FP) whose displacement is to be measured. If
collinearity is not possible, either the slideways that transfer the
displacement must be free of angular motion or angular motion
data must be used to calculate the consequences of the offset’
(Bosmans et al., 2017). In this respect, one technique for achiev-
ing an Abbe complaint measurement system for a two or three
degree of freedom (DOF) system is to keep the FP stationary
with respect to the reading head of the sensor (EP), when the
FP is always coincident with the path of the EPs of the sensor
during the measurement. This configuration is attainable only
if the sensor measures the movement of the target surface sur-
rounding the workpiece or the motion stages, at the same time
allowing the target surface to move in a direction perpendicu-
lar to the sensor’s measurement direction (Bosmans et al., 2017;
Ruijl, 2001). A measurement configuration based on the above
principle was proposed by Bosmans et al. (2017) to develop an
ultra-precision, Abbe-complaint position measurement system
with linear encoders.

The measurement configuration stated above can be applied
to develop an Abbe compliant measurement system to measure
the positional deviation of a target T (FP in this case) located
at the target wheel rotating at a certain speed. For example, in

Figure 2 consider WT as a vector representing the reference
position and orientation of the target T with the coordinate
position (x, y, z:). When the target at position T° moves to T,
the coordinate position of T” has to be within x, y and z spec-
ifications of (x¢, yt, z¢). However, if error motions arise due to
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some disturbances (e.g. the kinematic errors of the wheel), T

will reach T, generating a positional error YT)TM at point T.
Provided this error motion along the z axis can be detected by
the interferometer and then fed back to the controller for com-
pensation, the target will be repositioned at T before the laser
hits the target. In this way, all the targets around the target wheel
will be within the z specification of the laser focus (only the z
positional deviation is considered in this paper, since z is consid-
ered as the sensitive direction for the target alignment). If plane
mirrors, as shown in Figure 3, can be placed around the circum-
ferential edge of the wheel (this mirror setting will be referred as
‘target position setting’ henceforth) and a plane mirror interfer-
ometer (Renishaw model XL-80) is used to measure the relative
movement between the sensor and target point T, then the FP
and EP become coincident. However, it is very difficult to place
the plane mirrors around the circumferential edge of the wheel
along with the target sectors. Therefore, plane mirrors are placed
at the front face of the wheel around the circumference, func-
tioning as a target surface (this mirror setting will be referred as
‘mirror position setting’ henceforth) as described before. In this
arrangement, although the EP of the mirror position setting (M
on the plane mirror as shown in Figure 3) is at some offsets to
the FP of the target position setting (T as shown in Figure 3),
the interferometer measures the movement of the target surface
while allowing the target surface to move in a direction perpen-
dicular to the interferometer’s measurement direction (along x
direction as shown in Figure 3) during the wheel rotation.

2.2 Positional deviation of target during wheel rotation:
model

An equation needs to be found that describes the positional
deviation of the target in the z direction when the target moves
from point T’ to point T during wheel rotation, as shown in
Figure 4. T is represented by a coordinate system x7yrzr whose
position is (x¢, y1, z;) with respect to the machine’s reference
coordinate x,,y,,2,. In the error-free condition, (x¢, ys, z;) will
be the reference position of the target, while T is represented
by a coordinate system x7vy z7 whose position is (xy, yy, zy)
with respect to the machine’s reference coordinate x,,y,zy. T’
is positioned at an angular distance 6 from T, and the equation
to be derived will provide the positional deviation of the target
for a complete wheel rotation.

The positional deviation of the target is generated from the
interferometer’s measurement of the change of z; of the ref-
erence point (x;, ¥, z:), when all the T” points around the
circumference of the wheel pass through the point T in a com-
plete rotation of the wheel. The positional deviation response
shows the effect of the error motions related to the wheel rota-
tion, arising from different error sources, such as geometric
and dynamic disturbances. Assuming that the displacement
measurement by the interferometer takes place in a controlled
environment and, therefore, has negligible random errors from
environmental disturbances, the positional deviation of the tar-
get in the z direction can be described in terms of the ‘face
runout’ of the wheel as a result of the geometric disturbances.
Face runout can be defined as the total displacement measured
parallel to the z reference axis at a specified radial location of
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the wheel by an instrument sensing against a moving surface or
moved with respect to a fixed surface (Slocum, 1992). Assum-
ing that a reference coordinate xy yy zy (Figure 4a) is placed at
point O’ of the interferometer’s quarter-wave plate, from which
the measurement beam emerges from the interferometer, the
relative motion between the reference coordinates of the inter-
ferometer (i.e. xy o zor) and the wheel (i.e. x7yrz7) measured by
the interferometer will determine the face motion of the wheel.

The coordinate systems are placed at points of interest within
the system (the motion stages of HAMS and the interferometer)
as shown in Figure 4, namely xcyczc at the centre of the wheel
C and x(y0zo at point O (O is perpendicularly below O on the
same plane). Note that in Figure 4 point M of the mirror, which
has the coordinate xyrypzyr placed at (x4, Ym» Zm), corresponds
to target point T. This means that offsets exist between the FP
(i.e. T) and EP (i.e. M) in the y and z directions, called I and h
respectively. Ideally, T'and M should be aligned (i.e. no offset in
the x direction) to minimise Abbe error. However, an offset s in

o \ /
.\\‘ |

\ /

w

W 1s the set point or reference with
respect to X, Yy 2y,

T'T 1is the desired trajectory of the
target currently at T’

TTmiS the positional deviation of the
target

Target sector
(target position
setting)

Front face of
the target
wheel

8 x Plane mirrors
(plane mirror

the x direction is also considered in the model for the sake of
generality.

Consider that T is directly above the centre of the wheel C.
If a plane mirror can be placed at T so that the interferometer
can measure the z displacement of T (ideally, the interferometer
plane should be parallel to the wheel’s plane), the interferome-
ter will read the value O'T, which is equal to (z + I), where z
is the perpendicular distance between O of the interferometer
plane and the centre of the wheel C (see Figure 4a), and ! is the
perpendicular distance in the z direction between point M and
target T (see Figure 4c).

The positional deviation of the target in terms of the wheel’s
face runout can be derived using a homogeneous transforma-
tion matrix (HTM) (Seugling, 2018). In the current analysis, it is
possible to define an HTM for each successive position and ori-
entation change of the mirror, with respect to the fixed xyyy zy
coordinate of the interferometer, to determine the final position
of the target. This is because the reflected beam from the plane
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Figure 4. Coordinate systems for the error model (a) with the effective and functional points shown in (b) and (c).

mirror (at the target position or mirror position setting) enter-
ing the interferometer is directly affected by the position and
orientation change of the plane mirror with respect to xy yyz,.
In the case that the wheel does not have any face motion
(i.e. error-free condition) and T’ corresponds to T as shown
in Figure 4a and b, the position and orientation of T with
respect to the coordinate xyyyzy (Xyyoy2zy and x,y,2, have
the same orientation) can be represented by the following
HTM (z distance measured by the interferometer should remain
unchanged, since T and T are the same point of the mirror):

T2 o = Tlurget T(0), (1)

TﬂO error
where T(T)arget is the HTM to describe the position of the target

with respect to x,y,2z, when there is no wheel rotation, and is
given by

1 0 0 s
o 01 0 y+h
TTurget = 0 0 1 };+l > (2)
0 0 0 1

where y is the radius of the wheel or the distance between C
and M, as shown in Figure 4. T(0) is the HTM to describe the
rotation of wheel about z¢ of xcyczc, and is given by

cos® sinf 0 0
—sinf cosf 0 O

o= 0 1 0 3)
0 0 0 1

By combining equations (2) and (3), T?

o error in equation (1)
will have the following form

cosf sinf 0 (h+y)sinf +scosé
70 | —siné cos® 0 (h+y)cosh —ssinf
Tno error — 0 0 1 z+1
0 0 0 1

(4)
The face motion of the wheel, expressed in terms of the posi-
tional deviation of the target T, results in two rotational error
motions that are generated due to imperfect wheel rotation
about the z¢ axis of xcyczc. One error motion (6y) is the tip
error that represents a rotation about x¢ of xcyczc, and the
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other is the tilt error (6)) that represents a rotation about yc of
xcyczc. Since the face motion distorts the ideal wheel rotation
path, when the wheel rotates, a point T” on the wheel reaches
to point T, instead of point T (see Figure 4b), resulting in
the change in the z distance measured by the interferometer.
The position and orientation of T, with respect to the coor-
dinate Xy ¥y 2o (Xo'Yo'Zo's X0Y0Z0> XCYCZC> XRYRZR and XTyTZT
have the same orientation at the outset of the wheel rotation)
can be represented by the following HTM

T9 =TT TOm) T TO)TO)TE, (5)

where Tg is the distance between C and O with respect to x,02,,
and is given by

1 000
0100

0 _

=10 01 ¢ ©
0001

T(6,) is the misalignment of the mirror described by the rota-
tion 6, about the x¢ axis of coordinate xcyczc, and is given
by

1 0 0 0

|0 cosB, —sinf, 0
T(On) = 0 sinf, cosd, O )

0 0 0 1

T(0p) is the misalignment of the mirror described by the rota-
tion 6,, about the yc axis of coordinate xcyczc, and is given
by

cosf,, 0 sinf, O
0 1 0 0

TOm) = | _ sind, 0 cosf, 0 (8)
0 0 0 1

T(0y) is the tilt error motion of the wheel with respect to x,/y, 2,
or xcyczc, and is given by

cos Gy 0 sin 9y 0
0 1 0 0

T =1 _ sinf, 0 cos6, 0 ©)
0 0 0 1

T(0y) is the tip error motion of the wheel with respect to
Xo'Yo'Zo OF XCYcZc, and is given by

1 0 0 0
|0 cosfy —sinbBy 0

T0x) = 0 sinfy cosf, O (10)
0 0 0 1

T% is the offset between C and T with respect to xcyczc, and is
given by

1 0 0 s

c o1 0 y+h

Ti=lo o1 1 | (1)
000 1

After substituting the values from equations (3) and (6) to
(11) into equation (5), and then subtracting equation (1) from

equation (5) provides the HTM T, which represents the
position and orientation deviation of the target when it moves
from T" to T. Therefore,

Ay B G Dy

T _ A B, Cy D,

error — A3 B3 C3 D3
0 0 0 1

(12)

where A1, Ay, A3, Bi, By, B3, C1, Cy, C3, Dy and D (i.e. equations
(13) to (23)) are shown in Appendix 1,
and

D3 = (h+ y)(sin 6 cos 0, sin(By + 0,,)
+ cos 6(cos Oy sin 8, + sin 6 cos 6, cos(6)y, — Op,))
— s(cos 0 cos By, sin(B), + 6,) — sin O (cos Oy sin 0y,
+ sin 6 cos 6y, cos(6, — Op))
— I(sin 6, sin 65 — cos O cos B, cos(6), — Oy)) — L. (24)

Equation (24) represents the positional deviation of the target
TTe in the z direction as measured by the interferometer. To
derive a simpler form of equation (24), assume that the mis-
alignments of the mirror are negligible, which means 6,, and
0, are zero (the effects of misalignment and their avoidance are
discussed in section 4.2). Also, assume that s in equation (24) is
zero, which means M and target point T are aligned, as shown
in Figure 4. Therefore, equation (24) becomes

Zerror = TTerr = (h + y)(sin 0 sin 6, + cos 6 sin 6 cos 6))

+ lcos Oy cos Oy — 1. (25)
Taking (h + y) sin6), = E; cosa and (h + y) sin 6y cos 0, = E,
sin &, equation (25) can be re-written as the periodic function
equation

Zerror = Er sin(@ + «) + L cos Oy cos Oy — I (26)
where
E, = (h+ ),/ ((in6))* + (sin by cos 6))%), (27)
and
o = tan~! sin Ox' (28)
tan 6,

The sine function in equation (26) relates the rotational distance
travelled by the wheel (i.e. ) to the corresponding positional
deviation of the target in terms of wheel’s error motions 6, and
6. Note that (h + y) in equation (27) becomes (h + y)/ cos 6 at
angle 6 and is subject to change by 6, and 6,. So, equation (27)

becomes
. (h+ ),/ ((sin8))* + (sinby cos ey)z).

r
cos 6

(29)

From the model described, the following observations are
important for the analysis of the experimental data in
section 5.
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Figure 5. Hardware set-up for the closed-loop control of the target.

1. As mentioned before, since it is practically very difficult
to place the mirror exactly at the target position T (i.e. target
position setting) to read the displacement and, therefore, the
mirrors are placed at the front face of the wheel around the
circumference (i.e. mirror position setting), the resultant posi-
tion deviation at point M as read by the interferometer will be
determined by

Zerroratm = Ey sin(0 + a) (30)

V/ ((5in6)? + (sin 6, cos 6,)?)
E Zy Sin 'y Sin COS 'y '

r
cosf

where

(31)

The difference between equations (26) and (30), as shown in
equation (32), represents the error in the target position feed-
back because of the use of the mirror position setting (EP) in
the control system, i.e.

Zfeedbackerror

h,/((sin6))* + (sin O cos 6,)?)

cosd

sin(6 + «)

+ (Icos O cos 0y — I). (32)

3. Design of the closed-loop control system

The hardware set-up for the closed-loop system is shown in
Figure 5, and the control scheme is presented in Figure 6. The
HAMS motion stages use Delta Tau’s multi-axis motion control
system (Turbo PMAC) to control the seven servo motors (three
for the tripod, two for the two linear stages, one for the rotat-
ing platform and one for the wheel rotation - see Figure 1b) of
the motion stages with the use of the quadrature signals gen-
erated from the seven encoders of the respective motors. The
eighth encoder channel of the controller accepts the quadrature
signal from the interferometer to provide the real-time position

Motor/Encoder:

information about the target. Although the position encoders of
the motion stages and the interferometer are both incremental
encoders, the resolution of the encoders of the motion stages is
not as high as the resolution of the interferometer. Therefore,
the quadrature signal generated by the interferometer is con-
verted to the equivalent encoder counts through the use of an
encoder conversion table (a characteristic feature of the Turbo
PMAC controller); the counts can then be used by the con-
troller’s servo motors for the position compensations (‘Delta
Tau Data System,” 2008).

As part of setting the control system, a motion programme
was written in the controller’s language, using the controller’s
various functional parameters, to run the target wheel at a
specified speed, read the position information from the interfer-
ometer and then compensate the position deviations by actuat-
ing the motion stage/s. The simplified flowchart of the motion
programme is shown in Figure 7.

4. Experimental validation of the closed-loop design
for the high-repetition rate laser operation

4.1 Experimental procedure

Experiments were carried out to verify the design of the closed-
loop control, as described in sections 2.1 and 3, for real-time
target alignment for high-repetition rate laser operations. The
experiments can be divided into two groups: open-loop and
closed-loop, while the main objectives are as follows.

(1) For the open-loop experiments: evaluate, with respect to
the required positional accuracy of target (4 um in the z
direction), the high-repetition rate system’s behaviour in
open-loop control by measuring the z positional deviations
(magnitudes and directions) for a complete wheel rotation.
For closed-loop experiments:
(a) find a functional closed-loop design capable of gen-
erating the position compensations with the target
position feedback; and

)
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Figure 7. Simplified flow-diagram of the motion programme for the high-
repetition rate operations.

(b) find an optimised closed-loop design capable of pro-
ducing the necessary compensations to position the
targets within the z position specification of the ref-
erence position.

4.1.1 Open-loop experiments

The set-up of the experiment is shown in Figure 44, and the
procedure of the target position measurement using the mirror
interferometer is briefly outlined in sections 2.1. For the mirror
position setting or EP (Figure 3 and 4), eight square plane mir-
rors (Thor Lab’s 1° x 1’ broadband dielectric mirror, 400 nm to
750 nm) were attached to the wheel at the angular positions 0°,
45°,90°, 135°, 180°, 225°, 270° and 315°, covering a total angu-
lar distance of 189° of 360° of the wheel’s circumference (see
Figure 3 and 4). For the target position setting of FP (Figure
3 and 4), eight mirrors were placed around the circumferential
edge of the wheel, maintaining the alignment with the corre-
sponding eight mirror positions of the mirror position setting.
The position measurements were taken at 0.5 Hz, representing
0.5 Hz repetition rate laser operation, which means there was
a 2 s time-gap for each repetition, during which period a tar-
get moves from a position to the next position of the wheel (i.e.
1.5%).

4.1.2 Closed-loop experiments

The same interferometer set-up as described in section 4.1.1
was used to find a functional closed-loop design. With a func-
tional closed-loop control system (see section 3 and Figure 5
and 6), a series of experiments — mainly to improve the motion



programme (Figure 7) for the compensation — were carried
out to find the optimal condition/s at which £4 um position
accuracy could be achieved. As will be shown in section 5, the
investigation of the issues of the closed-loop control system led
to suitable compensation techniques (angular compensation)
for the target’s alignment for the high-repetition rate opera-
tions. All closed-loop experiments were carried out at 0.5 Hz
repetition rate.

4.2 Measurement uncertainties

The experimental results related to z position measurements
are subject to some sources of measurement uncertainties, for
example:

e errors from the conversion of the interferometer’s quadra-
ture signal to equivalent counts of the controller;

e accuracy of the motion of the z position stage; and

e misalignment of the plane mirrors that may cause parallel
and/or orthogonality errors.

The interferometer’s quadrature signal for position is con-
verted to equivalent counts for the position measurement of the
servo loop of the controller. Comparison of a number of z dis-
placements measured by the interferometer and the controller’s
encoder (in terms of counts) shows that 1 um for the inter-
ferometer is equivalent to 991 nm for the controller’s encoder.
Considering that the HAMS with closed-loop control will not
show a positional deviation of more than £5um during the
wheel rotation, the maximum error related to the equivalent
counts of the controller’s encoder will be 45 nm. Furthermore,
considering the positional accuracy of the z stage is +2 um
for 25 mm travel (from supplier’s data-sheet), the uncertainty
related to the accuracy of the travelled distance in the z direc-
tion is negligible, since the controller’s compensation will not
exceed &5 pm.

Although the parallel and orthogonality errors should be
avoided as much as possible, it is worth mentioning the unique
benefit of using a plane mirror interferometer for position mea-
surements. In the plane mirror interferometer, the double pass
of the laser beam to the plane mirror with retro reflection
actually compensates a tilt of the mirror (Badami & deGroot,
2013).

5. Results and discussion

5.1 Characterisation of the high-repetition rate process in
the open-loop system

For the high-repetition rate operation in open-loop control, the
study of the z positional deviations at EP and FP essentially indi-
cates a ‘wheel characterisation’ process, since the errors of the
wheel are mapped through this process.

Figure 8 shows the profiles of the position feedback (z posi-
tional deviations) for eight locations of the wheel, as discussed
in section 4.1. The feedback, as shown in Figure 8, has two com-
ponents: the magnitude and the direction of the z positional
deviation. Based on the position feedback from EP and FP (i.e.
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mirror and target position settings), two types of behaviour of
the system can be observed during a complete wheel rotation.

(1) At some locations of the wheel (0°, 45° 90° 180° and
225° as shown in Figure 8), the position feedback from
EP does not comply with the feedback from FP (the term
‘non-compliance’ is used henceforth to indicate this). In all
such cases, the directions and magnitudes of the z position
deviations are non-compliant to each other.

(2) At some locations of the wheel (135° 270° and 325°) as
shown in Figure 8, the position feedback from both EP
and FP comply with each other (the term ‘compliance’ is
used henceforth). At location 325° both the magnitude
and direction of the z positional deviation are almost the
same for EP and FP. However, at locations 135° and 270°,
the positional deviations at EP and FP initially appear to
comply with each other but deviate (in magnitude and/or
direction) at the later stage with further rotation of the
wheel.

5.2 Performance evaluation of the closed-loop design

Following the examination of the system’s open-loop charac-
teristics, the closed-loop behaviour was studied by evaluating
the control system’s performances in terms of its ability to re-
position the target within £4 um of the reference position.
Analysis of the experimental results showed that the controller’s
position compensations were able to reposition the target within
+1.7 um of the reference position by using the position feed-
back (z positional deviation) from EP or FP (indicated by
the compensation values of the O and P profiles in Figures 9
and 10). However, although the accuracy level (1 pm) indi-
cates that the closed-loop system is functioning well, the results
of the closed-loop experiments highlight the problems related
to the position feedback from EP and FP (see section 5.1).
The key observations, as shown in Figure 9 and 10, are the
following.

(1) Figure 9 and 10 show typical behaviours of the closed-loop
system for the complaint and non-complaint cases, respec-
tively. These two characteristic behaviours indicate that,
while at some locations the position feedback from EP (the
mirror position setting) can be representative (check M and
N profiles of Figure 9) of the actual positional deviation of
the target or FP (with £1 pm error as indicated by profile Q
in Figure 9), the position feedback from EP cannot repre-
sent (see M and N profiles of Figure 10) the target position
or FP at other locations (i.e. non-complaint cases).

(2) For the non-complaint cases, the compensation by the con-
troller based on the feedback from EP does not produce
any benefit, and the positional deviation of the target (FP)
remains uncompensated, as indicated by profile Q of Figure
10. Note that profile P of Figure 10 represents the con-
troller’s compensation based on the position feedback from
EP.

(3) The zigzag upward or downward trend (Figure 9 and 10)
of the positional deviation curves indicates that the plane of
the wheel with respect to the interferometer’s measurement
beam is changing with each wheel rotation angle (1.5°),
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representing the change of reference plane of the target (i.e.
reference orientation of the target). The change of the plane
of the target wheel results in the accumulation of the z posi-
tional deviations of the target at each wheel rotation angle,
even though the controller’s compensations can reposition
the target to the reference position after every 1.5° rotation.
Since the target plane needs to be perpendicular to the laser
beam in high-power laser operation, the change of the ref-
erence orientation of the target during the wheel rotation
indicates a serious problem for real-time target alignment
for high-repetition rate operation.

From the above discussion, it is clear that the uncertainty
in determining the position and orientation of the targets
based on the position feedback from EP makes the closed-loop

control ineffective in achieving required accuracy (£4 pm) for
the real-time target alignment for the high-repetition rate laser
operations.

5.3 Investigating the closed-loop design issues using the
model

The relation between the positional deviations of the target dur-
ing the wheel rotation and the sources of the contributing errors
can be analysed using the model derived in section 2.2. The
model equations (26) to (29) predict the positional deviations
of the target for a complete wheel rotation by taking account
of the interactions of the following contributing elements: the
wheel rotation angle ( 8), rotational error motions of the wheel
(tip Ox and tilt 6,) and the structural parameters of the wheel
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system (wheel diameter y and the offsets,  and h, between the
target and the mirror).

The experimental data for the z positional deviations (in
open loop) at EP and FP, as shown in Figure 8, was fitted with
the periodic function of the model as shown in equations (26)
and (30) by letting the 6, and 6, angles vary between 0° to 90°
(Figure 11). The 6, and 6, angles, resulting from the model fit-
ting, are shown in Figures 12 and 13 for EP and FP. The resultant
angular error of the wheel « related to 6, and ), as can be cal-
culated from the equation (28), is shown in Figure 16 and 17.
The key observations are the following.

1. Comparative study of Figures 11-13 shows the role of 6,
and 6, on the magnitude and phase differences of the position
feedbacks from EP and FP at different locations of the wheel.
Noting that the experimental z positional deviation data are
used to calculate 6, and Oy of Figure 12 and 13, the differences
in the magnitudes of 6, and 6, are due to the vertical offset

(h) and the horizontal offset (1) between the EP and FP - see
equation (32).

2. Comparison of Figures 11-13 also suggests that the 0,
values accumulated with the wheel rotation have greater val-
ues than the 6, values, and the magnitudes of the z position
deviation are mainly contributed by ;.

3. Based on the magnitude and phase difference of the posi-
tion feedbacks from EP and FP, the behaviour of the open-loop
high-repetition rate system (i.e. wheel rotation) can be funda-
mentally divided in five categories as shown in Table 1 (identi-
fied by A, B, C, D and E profiles in Figures 11-13). As will be
seen later that understanding the behaviours of profile A and
D as ideal non-complaint and complaint cases, respectively, is
necessary to explain the behaviours of profile B, C and E.

4. To understand the nature of the magnitudes and phases
of profile A and D for EP (mirror setting), let’s consider the
following two cases of equation (30), which is written for EP:

L. Zerror at EP= E;sin(@ + @) =0 when no or minimum
positional deviations read at EP

orf = —« (33)

II. sin(@ + o) = 1 when maximum position deviation read
at EP

T
0r6’+a=5 (34)

Now, consider the wheel rotation for only 1.5°, the 3D shape
of the wheel for 1.5°, the path of 1.5° as read by the EP and the
associated error motions 6y and 6, for 1.5° — as shown in Figure
14 and 15. As can be seen in Figure 14 for case I, the wheel rota-
tion path LK read by EP becomes L 'K due to 6y and finally LK’

due to Oy. Therefore, LK’ represents the effect of resultant angu-
—1 sin By
tan 0},

approaches to LK (i.e. equation (33)) when 6, and 6, are approx-
imately equal in magnitudes, but opposite in directions to cause
least positional deviations as read by EP. This behaviour can be

lar error « (¢ = tan as shown in equation (28)). LK’
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observed for small error motions of 6, and 6,. Note that the pro-
file D for EP of Figure 12 and 13 exhibits the characteristics of
case .

On the other hand, as shown in Figure 15 for case II, LK will
be at maximum angular distance from LK (i.e. equation (34))
when the effect of ), is minimum (i.e. 6y is comparatively much
larger than 6). The characteristics of case II can be found in the
profile A for EP in Figure 12 and 13. Also, note the significant
shape difference of the IJKL plane of Figure 15 as compared with
the plane of Figure 14.

5. After examining the behaviour of EP for minimum and
maximum positional deviations scenarios, let’s examine the
condition at which the positional deviation information from
EP and FP should be same (i.e. complaint case). In such case,
Zerror Of equation (26) is equal to Zepor ot m Of equation (30).

Therefore, from equation (26) and (30), the following can be
written:

I(cos 6y cos6), — 1)

sin(f + a) = (35)
h,/((sin6))* + (sin Oy cos 6,)?)
I(cos by cosb, — 1
or O+a=sin"! (cos b cos by ) (36)

h,/((sin6))* + (sin Ox cos 6,)?)

When, cos 9, = m, equation (36) becomes equation (33) for
EP. However, cos 0, = @ is possible if 6 and 6, are small in

values and approximately equal. In such case, the position devi-
ation information from EP and FP should be complaint (check
the profiles D for EP and FP in Figures 11-13).
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Table 1. Different categories of behaviour of the open-loop high-repetition rate system (i.e. wheel rotation).

Magnitudes of the Phases of the

Profile feedback from EP and FP feedback from EP and FP Note

A Non-complaint Non-complaint 180° phase difference between EP and
FP

B Non-complaint Non-complaint 180° phase difference between EP and
FP. Note the random and opposite
behaviour of 6 and 6, for both EP
and FP

C Approximately Approximately Approximately no phase difference

complaint complaint between EP and FP. Some random

behaviour of 6 and 6, for both EP
and FP

D Complaint Complaint No phase difference between EP and
FP

E Combination of Combination of Compliance of the profiles becomes

complaint and
non-complaint

complaint and
non-complaint

non-compliance with further wheel
rotation

§ J

LK represents
wheel rotation path
for 6 as read by EP
(no 8 or 6y)

LK’ represents
actual wheel
rotation path for 6
as read by EP

(with 6, and 6,) ‘ 6 (=1.5

3y
Position deviation T a

observed along = C (= centre of wheel rotation)
direction %

3D shape of wheel for 1.5°

/ path

TIKL plane of the
wheel is subject
to 0, and 6,
rotations before it
becomes I'TK'L’

v
Wheel rotation ~ ~

Ef}ect of 0,
onI"T"K"L"”

Figure 14. Examination of the wheel rotation path for 1.5° when no or minimum positional deviation read by EP.

hy/((sin@ )2+(sin9,C cos 6,)?)
Now, when, (cos6ycos6), —1= ! )

equation (36) becomes equation (33) for EP However,
(cos Oy cos 6, — 1) is negative, and equation (36) represents 180°
phase change with respect to the condition shown in equation
(34) for EP. In such case, the positional deviation information
from EP and FP will show non-compliance in phase due to
the term [(cos 0 cos 6, — 1) of equation (32) or (36), and the
magnitude of the positional deviation information from FP will
be determined by the equation (32). The profiles of A for EP
and FP in Figures 11-13 show the characteristics of such non-
compliance behaviour, indicating comparatively much larger 6,
with respect to 6.

6. Based on the observations of the above 1-5 points, the
behaviours of all the five categories of complaint and non-
complaint feedback information from EP and FP (Table 1) can
be explained. For this purpose, the slopes of the 6, and 6,
profiles for the five categories (Figure 12 and 13) are taken to
calculate the profiles of the resultant angular error « for both
EP and FP. The results are shown in Table 2 and Figure 16. Note
the changes in the magnitude and the directions of the slopes for
the FP profiles with respect to the EP profiles in Table 2, and also
the shape difference between any two « profiles for EP and FP

in Figure 16. In the absence of a horizontal offset I between EP
and FP, the shapes of the o profiles are not expected to change;
only the o magnitudes will increase or decrease.

7. The examination of the slopes of the 6y, 6), and « profiles
of five different categories (A to E) presented in Table 2 suggests
that the compliance between the position feedback from EP and
FP depends on two criteria:

o the ratio between two error motions 6, and 6, (i.e. g—;); and
e the change of the resultant angular error o associated with
FP with respect to « of EP.

Considering these two criteria, profile A and profile D show
ideal non-complaint and ideal complaint cases, respectively (see
Figure 8 and 11). This is based on the observation that if z—’y‘ hasa

large value, and the resultant angular error « for FP has a higher
value than that for EP, the non-compliant behaviour is expected.
As such, for profile A in Table 2, 0, related to EP (i.e.1.14°) is
comparatively much larger than 6, of the same EP (i.e. —0.02°),

which makes z—; equal to 57. The interaction of 6, and 6), with the

offset I generates a resultant angular error « (i.e. 0.09°) for the
FP, which is higher than that for the EP (i.e. 0.08°). On the other
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Table 2. Slopes of the 6y, 6, and « profiles as shown in Figure 12, 13 and 16.

EP (mirror setting) FP (target setting)
Profile type Oy (°) 0y () o (%) Oy (°) 0y (°) o (%) Note
A 114  —0.02 0.08 —0.89 0.02 0.09 larp] > |oep|
B —2.21 —-0.18 —0.02 8.72 072 —0.08 lapp] > |otep|
E 5.26 0.16 0.13 3.72 060 —0.01 lagp| < |aep|
C —080 —0.15 023 —1.65 0.32 0.46 lagp] > |aep|
D —1.81 —0.32 006 —124 —0.09 —0.04 larp] < |oep|

hand, for profile D, 6, and 6, have relatively comparable values
(—1.81° and —0.32° respectively) for EP, which makes z—; equal

to 6. In this case, the resultant angular error « (i.e. 0.04°) for the
FP is lower than that for the EP (i.e. 0.06°). The behaviours of
B, C and E are the combinations of the behaviours of profile A
and D. For example, although it is seen that |epp| > |agp| for
profile C, the result is a complaint case with some anomaly, since
% has1 lue (i.e. 5). In contrast, for profile E, although it
5, has lower value (i.e. 5). In contrast, for profile E, although i

can be seen that |app| < |agp|, Z—’; is higher (i.e. 33). Therefore,

in this case, the z positional deviation at EP shows some com-
pliance with the z positional deviation at FP, but eventually the
two behaviours become non-complaint (Figure 8 and 11). For
profile B, with |agp| > |agp|, the result is a non-complaint case
with significant anomaly, since g—" is higher (i.e. 12), but not as

high as in the case for A. A closer look at the slopes of the o
profiles of Figure 16 also supports the above observations.

8. In the design of the in-process position measurement sys-
tem (section 2.1), the EP and FP were positioned aligned to
avoid the Abbe errors. However, the reference plane of the wheel
changes throughout its rotation due to resultant angular error

o (o = tan™! %). The interaction of the error motions ( 0,

and 60)) with the structural offsets between EP and FP (hori-
zontal offset | and vertical offset h) gives rise to a (1) cosine
error in the form of (Icos 6y cos6), — 1) and (1) a sine error in

hy/((sin 6,)2+(sin 6y cos 6,)%)
the form of ( 4 4

050 sin(# + «)) as shown in
equation (32). Depending upon the relative values of 6, and 6,

these sine and cosine errors cause the target position informa-
tion from EP either comply or non-comply with the actual target
position. In other words, measuring the target position with
respect to EP may provide incorrect and non-representative
feedback information about the actual target position, repre-
senting uncertainty in determining target position for generat-
ing compensations by the closed-loop control.

9. Equations (26) and (30) suggest that if the resultant angular
error « value can be measured directly at both EP and FP, o will
be same for both EP and FP. As can be seen in Figure 16 and 17,
the profiles of the resultant angular error « for both EP and FP
show similar behaviour. However, as indicated before, the differ-
ences in the « values for EP and FP are due to the fact that the
experimental z positional deviations were used to calculate 6y
and 6, values, from which « values were determined. Since the
z positional deviation at FP contains the sine and cosine errors
(see equation (32)), the calculated 6, and 6, (and hence the o)
for FP will be different from those for the EP.

5.4 Improvement of the closed-loop control design

The above discussion suggests that, if the angular errors of the
wheel ( o) with respect to the reference position and orientation
of the target are known for each repetition (described in section
4.1.1), the angular motions (tip # and/or tilt v about x and y axes,
respectively- see Figure 1) of the tripod of HAMS can be used to
generate the angular compensations for «. For this, direct mea-
surement of the angles at or near the target is required, which is
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possible with a measurement instrument, such as dual displace-
ment measurement interferometer for both distance and angle
(Badami & deGroot, 2013). Alternatively, the z positional devi-
ation at EP measured by the plane mirror interferometer can be
used in the motion programme (see Figure 7) to determine the
new angular positions of the target, instead of the ‘calculated z
position’ of the motion programme as shown in Figure 7.
Various angular compensation methods were examined by
carrying out the experiments described in section 4.1.2 to
improve the performance of the closed-loop control. For angu-
lar compensation, a simple way to determine the resultant angu-
lar error of the wheel ( «) was to find an equivalent 9, angle
with the following: position deviation information at EP (mirror
position setting) and the distance between the EP to the cen-
tre of the wheel (see Figure 3 and 4a). The principle behind
this strategy is due to the dominant contribution of 6, in «
(see Figures 12, 13, 16 and 17). Figure 18 shows the outcome
of applying one such angular compensation scheme, in which
the tripod’s tip angular motion (1) was used to generate the
angular compensation for the equivalent 6, values. Since the 6y,
which accumulates over time with the wheel rotation, is now
compensated, the positional deviation profile of the new scheme
(Figure 18) does not show any upward or downward trend as

compared with the positional deviation profiles related to the
position compensation scheme (Figure 9 or 10). However, the
use of equivalent 6 leaves some errors in the z positional devia-
tion profiles. The zigzag pattern of the position deviation profile
in Figure 18 shows the effects of the uncompensated 6, values.
Also, a point to note is that the accuracy of the target posi-
tion after angular compensation has not improved appreciably
as compared with the target positional accuracy achieved by
the position compensation scheme (see Figure 9 or 10). This is
because, as is described in Karim, Piano, Leach, Branson, et al.
(2018) and Karim, Piano, Leach, and Tolley (2018), the tip or tilt
motion of the tripod may cause significant positional deviation
of the target if the compensation for these positional devia-
tions are not included in the controller as part of a kinematic
calibration process.

To overcome the limitation of the above angular compensa-
tion scheme and improve the target positional accuracy, another
angular compensation scheme is proposed. In this scheme,
instead of using the radius of the wheel y, the distance between
the centre of the tripod and the EP (mirror position setting) is
used to calculate an equivalent 6y, such that the reference coor-
dinate position of EP always remain the same for all the tip
motions (u) of the tripod required to generate the 6, values for
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Figure 18. Performance of the improved scheme of the closed-loop control using a

the angular compensations. This scheme, in fact, improves the
positional accuracy of the target (Figure 19), although it needs
further development.

The angular compensation technique for the closed-loop
control can provide the following benefits over the positional
compensation technique, when considered for real-time target
alignment for the high-repetition rate laser operations.

In angular compensation, true target alignment (both posi-
tion and orientation of the target), avoiding Abbe errors,
is possible since reference position and orientation of the
target are maintained throughout the high-repetition rate
operation.

The feedback processing time of the controller for each rep-
etition cycle will be faster for the angular compensation
schemes than for the position compensation scheme. This
is because the accumulation of the positional deviations of
the target with the wheel rotation is small for the angular
compensation technique.

5.5 Development of a real-time target position control for
high-repetition rate laser operation: outlook

Although the development of an effective closed-loop control
solution discussed in this paper is for real-time target alignment
for high-repetition rate laser operation, some findings appear
to be generally valid for wider precision applications, espe-
cially for design considerations of a high-accuracy positioning
or measurement system. For example,

(1) To predict the position measurement uncertainty of the
end-effector of a positioning system, e.g. a motion stage,
which has been designed to avoid the Abbe errors but
is subject to a periodic motion, e.g. sinusoidal straight-
ness error of guideways, and its associated rotational error
motions ( 0 and 6)). A high-accuracy positioning system

ngular compensation.

requiring real-time position compensation for the end-
effector may become ineffective due to the stated measure-
ment uncertainty.

To predict the positional deviation of the end-effector of a
high-repetition rate positioning system if the error motions
and the structural parameters (see the model equations
(26), (30), (32) etc) are known.

Based on the positional deviation equations of the model,
to construct a position compensation table which can
be included in the controller of the positioning system
to carry out pre-calibrated error compensation for the
end-effector.

To develop a real-time position control of the end-effector
based on angular compensation technique to avoid Abbe
error and maintain the reference position and orientation
of the end-effector of a positioning system.

)

©)

(4)

Furthermore, since the FP and EP will not be the same for
many applications (e.g. high accuracy positioning system) and,
therefore, there may be some uncertainties in determining the
actual target position information from the sensor, the only
way to estimate this uncertainty is by modelling the particu-
lar scenario of the application, with the considerations of its
key characteristic parameters such as the kinematic errors asso-
ciated with the motions of the positioning system, the spatial
offsets between the EP and FP, to understand the effect of the
position uncertainty in the control system’s behaviour as shown
in this paper.

5.6 Future work

The future work in the area of developing a closed-loop sys-
tem for real-time target alignment involves further improve-
ment of the angular compensation techniques to increase the
target position accuracy for higher repetition rate operations
(>0.5Hz).
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While this paper outlines the tuning of the control sys-
tem design and its implementation for addressing the non-
collocation issue of the target (FP) and the sensor (EP), the
paper has not covered the study of the positional uncertainty
of the target, arising from the non-collocation issue, under a
closed-loop control which may be subject to instability due
to external disturbances, e.g. vibration. This important study
is considered as the next major stage of the current research
presented in this paper, so that a robust control strategy can
be developed to simultaneously accomplish the desired distur-
bance rejection performance and maintain a reference posi-
tion and orientation of the target by avoiding the uncer-
tainty in determining the actual position of the target in 3D
space.

Case-studies will also need to be carried out to evaluate the
applicability of the model and the findings of this paper for such
precision applications that require high positional accuracy of
the target.

6. Conclusion

For the target positioning system for high-power high-
repetition rate laser operation, real-time target position control
is required for the accurate repositioning of the target (espe-
cially, in the z direction along the laser axis) at the reference
target position. A closed-loop control, commonly used for actu-
ator control, can fulfil this requirement. However, getting accu-
rate and reliable feedback of the target position for the controller
poses a significant challenge. One of the main reasons for this is
due to the inclusion of Abbe errors to the target position mea-
surement, since the functional point (target) and the effective
point (where the target position is actually measured) are often
not same. This paper presents a closed-loop control method
for a high-repetition rate target positioning system (a target
interface wheel controlled by the motion stages of a hybrid
mechanism) based on a target position measurement system
designed to avoid Abbe errors. A plane mirror interferometer
is used as the sensor, and the target position feedback is used by

the controller of the motions stages to generate the compensa-
tions for the positional deviation of the target in the z direction.
The plane mirror (effective point) is placed at a location on the
wheel as close to the target (functional point) as practical, with
the smallest possible offsets between the two points.

The experimental results of the closed-loop control method
show that, while the control system is capable of reposition-
ing the targets within 1.7 um of the reference target position
during the wheel rotation, this is not the case for all the loca-
tions of the targets whose positions are to be determined by the
corresponding effective points of the plane mirror. The non-
linear position data at different locations of the wheel causes
magnitude and phase differences (direction) between the posi-
tion feedback (i.e. z positional deviation) from the target and
the effective point at various locations of the target, resulting in
inaccurate position compensations generated by the controller.

To understand the cause of the errors in the position feed-
back of the control system, a model was developed to find the
relationship between the target position feedback (i.e. z posi-
tional deviation) and the errors affecting the feedback accuracy.
Fitting the experimental data of the z positional deviations (in
open-loop control) into the model’s equations suggests that two
criteria are important to determine the magnitude and phase
differences between the feedback from the target and the effec-
tive point: (1) the relative magnitudes of the wheel’s rotational
error motions, which determine the resultant angular error of
the wheel, associated with the effective point and (2) the change
of the resultant angular error of the target with respect to that of
the effective point. To overcome the closed-loop feedback prob-
lem, a solution is proposed where the controller generates the
angular compensations based on the resultant angular errors
calculated from the z positional deviation at the effective point
(mirror). With this approach, a positional accuracy of £1 pum is
achieved, while it is possible to maintain the target’s reference
plane throughout the wheel rotation and, hence, avoid the Abbe
error for the target position measurement.

The model and the observations of this paper are general
and applicable to wider precision applications that require high
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positional accuracy. Typical applications may include: (1) the
prediction of the uncertainty related to the position measure-
ment of the target of a positioning system in the presence of
periodic error/s (i.e. straightness error) that may arise from the
drive system of the motion stage/s, and (2) the generation of
an effective solution for the real-time position and orientation
control of targets for a process requiring high-repetition rate
operation.
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Appendix 1

A1, Ay, As, B, B, B3, C1, C2, C3, D1and D;, as shown below, represent the
elements of the matrix in equation (12) of section 2.2:

A} = cos0 cos(0), — 0y) + sin 6 sin 6y cos(Oy + 6,,) — cos O, (13)
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Aj = sin6 + cos 6 sin 6, sin(0y + Om) + sin 0 (cos O, cos Ox
— sin 0y sin 0, cos(8)y — O)),
Az = sin6(cos 0y sin 0, + sin 6 cos 6, cos(By — Op,))
— cos 6 cos Oy sin(0y — Op),
By = cos 8 sin Oxsin(8y + 01) — sin6 cos(dy — 0) — sin 6,
B, = cos 6(cos 0, cos 0y — sin Oy sin 6, cos(0y — O))
— sin 6 sin 6, sin(8y + 6,4) — cos O,
B3 = sin 6 cos 0,,sin(0) + 0,,) + cos 0(cos Oy sin 6y,
+ sin 6 cos 6, cos(0y — O)),
Cy = cos Oxsin(6), + Om),

(14

(15)
(16)

17)

(18)
19)

G
G
D,
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— €08 0, sin Oy — cos Oy sin G,cos(0y — O), (20)
cos 6y cos 0,co8(6, — Oy) — sin Osindy — 1, (21)
s(cos 0 sin(6), — 6y,) + sin Osinby sin(Oy + O,) — scosO

— (h+ y)(sin6 cos(6)y — Oy) — cos O sin Oy sin(0), + 01))

— (h+y)sin6 + [cos Oxsin(6) + Op), (22)
ssinf — (h+ y) cos @ — (h + y)(sin 0 sin 6, sin(fy + 6,,)

— cos 0( costly costly — sinby sinb), cos(Oy — Op,))

+ s(cos 6 sin Oy sin(0y + 0, + sin O (cosdy, costy

— sin 0y sinfy, cos(6), — Om))

— I(cosBy sindy + cosby sinby cos(Oy — ;). (23)
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