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The pressing global issue of food insecurity due to population growth, diminishing 

land and variable climate can only be addressed in agriculture by improving both 

maximum crop yield potential and resilience.1, 2  Genetic modification (GM) is one 

potential solution, but has yet to achieve worldwide acceptance particularly for crops 

such as wheat.3 Trehalose-6-phosphate (T6P), a central sugar signal in plants, 

regulates sucrose use and allocation, underpinning crop growth and development.4, 5 

Here we demonstrate a chemical intervention solution that directly modulates T6P 

levels in planta. Plant-permeable analogues of T6P were designed and constructed 

based on a ‘signalling-precursor’ concept for permeability, ready uptake and 

sunlight-triggered release of T6P in planta. For the first time we show that chemical 

intervention of a potent sugar signal increases grain yield, whereas application to 

vegetative tissue improves recovery and resurrection from drought. This technology 

offers an unprecedented and rational means to combine increases in yield with crop 

stress resilience. Given the generality of the T6P pathway in plants and other small 

molecule signals in biology, these studies suggest that suitable synthetic exogenous 

small molecule signal-precursors can be used to directly enhance plant performance 

and perhaps other organism function. 

We designed a signaling-precursor strategy based on release by light (ED Figure 

1).  Light-activated control is a potent strategy in biology, allowing temporal and spatial 

resolution surpassing that of standard genetic methods;6 such resolution can be increased 

when combined with small molecule chemical control.7-9 Potency is increased further when 

releasing a signaling molecule with effect amplified several-fold. Hydrophilic or charged 

molecules do not readily enter plants unless transported.  
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We designed unnatural precursors (1-4) of T6P with groups to mask charge, 

increase hydrophobicity and also be released by light (Figure 1a). Their construction 

(Figure 1b) used different phosphorus chemistries: phosphoramidite chemistry10, 11 to 

create P(III)-intermediates that were then oxidized to corresponding P(V)-phosphotriesters 

or direct P(V)-phosphorylation chemistry (Figure 1b). Regioselective access to the OH-6 

group in trehalose exploited trimethylsilyl (TMS) as a protecting group that is chemically 

orthogonal to phosphotriester; 12 was prepared on multigram-scale.13 Phosphorylation 

(reaction with phosphoramidites 9-1110, 11 followed by tBuOOH or treatment with POCl314 

followed by the addition of appropriate alcohol) gave intermediates that were deprotected 

under mildly acidic conditions (see Supplementary Methods). 1-4 were all inactive 

against SnRK1 (ED Figure 2).   

Mass spectrometry (MS), TLC and NMR (see Supplementary Methods, 

Supplementary Table S1 and ED Figure 1) revealed release times (95% release, t95) 

dependent on both light intensity and frequency under a range of conditions. Consistent 

with design, light-sensitive groups were differently susceptible: precursor 1 gave T6P more 

rapidly at lower wavelengths; 4 was more reactive at higher. Whilst release with higher 

light intensity was more rapid (125W / 365 µmol.m2.s-1 cf 8W / 23 µmol.m2.s-1), direct 

sunlight proved sufficient, in some cases showing t95 as brief as 90 min (for 3). NMR 

analysis (Supplementary Methods and ED Figure 1ef) confirmed formation of T6P and 

generation of potent inhibitory activity against SnRK1 (ED Figure 2). 
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Following successful in vitro release, uptake in planta was examined. 1-4 (to give 

final concentration 1 mM) were fed to roots of plantlets of Arabidopsis thaliana and the 

aerial (shoot) analyzed over time and with increasing dose (Figure 2 and Supplementary 

Tables S2-S7). Quantitative MS16 and HPLC of extract revealed increasing uptake over 

time (Figure 2a and ED Figure 3) and dose responses. Consistent with design, structural 

variation allowed use of altered hydrophobicity to modulate permeability17 and transport.18 

Importantly, in this way systematic variation of group type and copy number identified 

(ortho-nitrophenyl)ethyl (oNPE)-variant 3 (clogP 0.11±0.60, see also Supplementary 

Methods and Table S17) as most potent (Figure 2a), allowing absorption of ~20% of the 

after 72 h; 1,2 and 4 (clogPs -2.35 to -0.17) were less readily taken up. 

Next, light-activated release in planta was tested: plants were treated via media, 

grown for three further days, irradiated, harvested and extracted.19 T6P-release was 

confirmed by MSMS (ED Figure 4) and determined by quantitative HPLC-MS (2-deoxy-

glucose-6-phosphate as internal standard16, Figure 2b, ED Figure 4 and Supplementary 

Table S10). Release in planta could be controlled and modulated by choice of light source 

and signalling precursor (Figure 2b and Supplementary Table S10). Most transgenic 

approaches alter T6P over a 2-3-fold range only.4, 5 Using 1-4, levels of up to 900 nmol.g-

1FW (100-fold higher than endogenous, 75-fold higher than with genetic methods) were 

attainable. Consistent with strategy, maximal T6P was released when precursor-treated 

plants were irradiated with most flux (100 W / 292 µmol.m2.s-1 UV) in all cases. 

Importantly, and with relevance to field application, under just sunlight all released 

significantly enhanced T6P (39- 296 nmol.g-1FW) (Supplementary Table S10), some ~4-
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to-30-fold above endogenous. No significant reduction in fresh weight of plantlets at 1mM 

(Supplementary Methods and ED Figure 5) suggested low toxicity. Accumulation of T6P 

after treatment was revealed through MS-imaging20 (Figure 3) via signature-ion markers21 

in treated leaves of A. thaliana seedlings (Figure 3b) after 2h of irradiation; the different 

distributions from 2 and 3 appeared consistent with their measured release rates. 

Interestingly, increased trehalose was also observed22 in the same regions (Figure 3c), 

suggestive of metabolism. Moreover, MS-imaging via treatment-specific ions corroborated 

uptake of precursors into leaves (Figure 3 d,e).  

The dynamics of this apparently enhanced in planta T6P release, and possible 

consequent metabolic products, were determined not only through both quantitative HPLC-

MS and/or enzymatic quantification but also through the use of unnaturally-enriched 

isotopic labelling of the signalling precursors, allowing unambiguous delineation of their 

fate (Figure 4 and ED Figure 6 and Supplementary Methods). Thus, in 7-day-old 

Arabidopsis seedlings,23 1 mM DMNB-T6P 2 and oNPE-T6P 3 (fed for 24 h prior to 

exposure light, UV 8W, 23 μmol.m-2.s-1) led to peak T6P after 60 min (229 and 159 nmol g-

1 FW, respectively), which declined over the following 2 days (Figure 4a). Corresponding 

trehalose levels were also elevated, with peaks at ~2h (up to a maximum of 134 nmol.g-1 

FW c.f. controls 20 nmol.g-1 FW, Figure 4b), confirming the metabolism suggested by 

MS-imaging. Glucose, the next sugar in the pathway, was also increased to a smaller 

degree, peaking at ~2-4 h (Figure 4d). Such levels are consistent with known low 

metabolic fluxes.24 Given known interrelationships,5 sucrose levels were also determined. 

Strikingly, these increased 2-3-fold over the first 2 h of irradiation (Figure 4c) and 

positively related to T6P for both 2 and 3 (Figure 4); fructose was minimally affected (ED 
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Figure 6d). We checked that inhibited growth was not an explanation for sucrose 

accumulation and found instead that growth was stimulated by T6P (ED Figure 6e).  

Creation of 13C-isotopically-labeled variant 2* (ED Figure 7a) allowed direct 

tracking via ‘mass-shifts’ of the corresponding ions in MS. Treatment with 2* led to release 

of 13C-T6P and consequent sequential metabolism (to 13C-trehalose, 13C-glucose) following 

essentially the same dynamics (ED Figure 7). Excitingly, in this way, mass labelling also 

revealed not only released but also induced T6P. Strikingly, this not only accounted for 

approximately half of T6P measured at 30 min, thereby providing direct evidence of 

induction of de novo T6P synthesis, but this induction continued, giving rise to increased 

T6P accumulation over time (ED Figure 7). This could be due to the large increase in 

sucrose observed; sucrose induces T6P.5, 23 Together these data suggested perturbation of 

T6P levels by two modes-of-action: direct release from the signalling precursor and 

simultaneously induced release by virtue of biosynthesis of T6P by the plant. 

Together these data suggested 3 as the plant permeable signalling precursor with the 

greatest tissue uptake coupled with the greatest temporal control (consistent with its tuned 

permeability and its fastest release rates), allowing minimal application amounts (0.1 mM) 

whilst still able to enhance T6P levels some 1.5 to 6.5-fold above endogenous without 

potentially dramatic disruption of metabolism.25 Plants were treated with precursor 3 for 

72h and then subjected to a single 8 h period under growth lights supplemented with 8W 

UV (Supplementary Table S10, generating ~ 21 nmol. g-1FW T6P) and harvested a day 

later. The mean starch level (63.2 μmol.g-1FW) determined26 was significantly higher 

(F(1,14) =13.59; p = 0.002) than for water-treated plants (40.7 μmol.g-1FW, ED Figure 5d).  
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 The release of T6P from 1-4 involves fragmentation with concomitant release of 

side products. Although considered27  to be non-toxic, we nevertheless tested for any 

unexpected phenotypic changes. Glucose-6-phosphate (G6P) analogues 14-17 of 1-4 were 

synthesized (Supplementary Methods and ED Figure 8) and compared for their activity; 

G6P methyl glycoside itself is inactive in planta and in all interactions with SnRK1 (ED 

Figure 8) and so its light-activated release from 14-17 provided useful controls. 14-17 

showed similar light-activated release parameters to 1-4 (Supplementary Table S11) and 

relative uptake performance similarly dependent on identity of light-sensitive moiety (ED 

Figure 8 and Supplementary Table S12-S14). No toxicity was observed in any of the 

plants treated with 14-17 up to 0.5 mM (Supplementary Methods and ED Figure 5a-c), 

suggesting the benign nature of the light-released moiety. Critically, also, starch was not 

affected in controls treated with 16, the G6P-analogue of T6P precursor 3. 

 

The rate of starch synthesis over a 12h period (ED Figure 5f,g) indicated a flux 

(0.037 μmol.min-1.g-1FW) nearly three times that of water-treated control (0.013 μmol.min-

1.g-1 FW). T6P is proposed to stimulate starch synthesis through redox-activation28 of ADP-

glucose pyrophosphorylase (AGPase), a rate-limiting enzyme. Whilst not necessarily 

causal, consistent with this hypothesis, oNPE-T6P 3-treated plants had significantly higher 

AGPase activity (up 35%, ED Figure 5e). AGPase has been previously shown to affect 

starch turnover.29  

We then measured transcripts of genes known to be associated with T6P. Firstly, 

SnRK1 is a proposed target of T6P15; SnRK1-induced and -repressed markers TPS5, TPS8, 

bZIP11 and ASN responded synchronously to the activation of the precursors in a manner 
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consistent with known effects of T6P on SnRK1 activity (ED Figure 9). However, other 

markers (e.g. UDPGDH and bGAL4) showed clear temporal delay (ED Figure 9b); 

observed synchronization of these ‘secondary markers’ only after a day suggest that these 

could be later, downstream targets of T6P. Secondly, since starch is not only a proposed 

target of T6P28, 30 but also increased upon treatment, expression of starch biosynthetic genes 

was also examined: transcripts of APL3, SS3, BE1 and GBSS1 were increased up to five-

fold (ED Figure 9c).  

These data from Arabidopsis raised the exciting possibility of enhanced starch 

synthesis in crops, vitally allowing increased yield. Signalling precursors 2 and 3 were 

applied (0.1, 1, 10 mM) to spring wheat Cadenza, grown in a controlled environment, 

representative of summer in Northern Europe. Spraying occurred either to ears only or to 

the whole plant during the grain-filling period (5, 10, 15, 20 days post anthesis (DPA)) at 

mid-photoperiod. This increased grain yield per plant due to the formation of larger grain in 

plants treated with 1mM DMNB-T6P 2 and 1mM oNPE-T6P 3 particularly (Figure 5a,b); 

in these grains, starch content increased 13-20% (Figure 5c). A trend towards higher starch 

and protein, when expressed as a percentage of component content per gram of grain, was 

also observed (Supplementary Table S16). Dose response showed that yield peaked at 1 

mM (ED Figure 10f). Minimal spray at just 10 DPA increased yield substantially at 1 and 

10 mM doses (ED Figure 10g). Plants treated with 2 and 3 stayed greener for longer than 

plants treated with water, consistent with chlorophyll content (ED Figure 10a,b) and prior 

observations for genetically-enhanced T6P content.31 T6P release in the wheat grains 

treated with 2 and 3 was enhanced at 5 DPA (128 nmol.g-1FW, 81 nmol.g-1FW, 

respectively) and further at 10 DPA (378 nmol.g-1FW, 300 nmol.g-1FW, respectively) (ED 
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Figure 10c-e). Trehalose levels were also higher (30-70 nmol.g-1FW cf endogenous 13 

nmol.g-1FW), consistent with the metabolism observed in Arabidopsis.  

Next, the effects of signalling precursors upon plant resilience and recovery were 

tested. Drought is still the biggest global factor limiting crop yields, even in developed 

countries.32 When 4-week-old wheat plants were sprayed with 2 or 3  (30 mL, 1 mM, once) 

after 9 days of drought, the regrowth effects following resumption of watering 1 day post 

treatment were dramatic (Figure 6a,b). Regrowth of new tissue from plants cut-back after 

drought was also higher in precursor-treated plants (Figure 6c,d). This demonstrated both 

growth of new tissue (resurrection response) and salvage and growth of new tissue 

(recovery response). T6P solution alone gave identical results to water (Figure 6), 

consistent with inability of T6P to enter directly into plants, further highlighting the design 

principles of signalling precursors.  

In conclusion, we have shown here that a chemical strategy can directly control 

amounts of an important sugar-signalling molecule in vivo. The collected data are 

consistent with signalling action of released T6P. For example, the mass balance of added 

signalling precursor appears insufficient to simply act as a carbon source. That said, we do 

not discount other possible mechanisms behind the exciting traits that we have observed 

here. The apparent resulting ‘biosynthetic amplification’ observed from signalling 

precursors, we believe, is a promising concept; we calculate here up to 50-fold ‘molecular 

amplification’ of plant sugar ‘product’ compared to precursor. One can therefore envisage a 

self-sustaining production strategy in which a fraction of the additional starch generated by 

this amplification is used as feedstock chemical for eventual synthesis of the signalling 

precursors themselves (Supplementary Discussion and Supplementary Table S18).  
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We speculate that this chemical approach also offers temporal and strategic 

flexibility over genetic methods (e.g. a ‘pulse’ to circumvent adaptation effects or in 

manipulating genetically more complex crops) as well as the prospect of providing an 

immediate boost to productivity at critical times in plant life cycle (e.g. to allow 

synchronicity with the sun or to rescue drought-stricken regions, Supplementary 

Discussion) – the potential in managing global food security seems striking and immediate. 

Given the widespread importance of cell signalling and of carbohydrates in biology, this 

system, applied here to plants, may also, in principle, have even wider utility. 
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METHODS  

 

Synthesis of signalling-precursor compounds 1-4. 1H-tetrazole solution (0.45 M in 

CH3CN) (0.6 mL, 0.24 mmol, 2.0 equiv.) was added into a stirred solution of 12 (100 mg, 

0.12 mmol, 1 equiv.) and bis-(2-nitrobenzyl)-N,N-diisopropylphosphoramidite 9 (78.3 mg, 

0.18 mmol, 1.5 equiv.) in anhydrous CH2Cl2 (5 mL) under an argon atmosphere at 0 oC. 

The resulting reaction mixture was stirred at 0-5oC and progress of the reaction was 

monitored by TLC (petroleum ether: ether; 8:2) and mass spectrometry. After complete 

disappearance of starting material (1h), tBuOOH (0.1 mL) was added at 0 oC and stirring 

was continued for another 30 min. After 30 min the reaction mixture was concentrated in 

vacuo and the residue was suspended in methanol (2 mL) and stirred in the presence of 30 

mg of Dowex-H+ resin for 1h at room temperature to globally remove TMS groups. 

Dowex-H+ was removed through filtration and the filtrate was concentrated, which on flash 

chromatography (water: isopropanol: ethyl acetate, 1: 2: 8) purification yielded 1 (70 mg) 

in 87% isolable yield. Similar reaction protocols were adopted for the synthesis of 

compounds 2 and 3. Compound 4 was obtained when a stirred solution of 12 (100 mg, 0.12 

mmol) in pyridine (2 mL) at room temperature was treated with POCl3 (0.012 mL, 0.132 

mmol) for 10 min followed by addition of 4,5-dimethoxy-2-nitrobenzyl alcohol (76.7 mg, 

0.36 mmol) and continuous stirring for 1h. The resulting reaction mixture was concentrated 

in vacuo to yield crude product mixture, which was treated with Dowex-H+ (30 mg) in 

methanol (2 mL). After filtration, concentration in vacuo and flash chromatography 

purification yielded 4 (45 mg, 62%) as a pure sticky solid. For additional details see 

Supplementary Methods. 
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In planta uptake of signalling-precursor compounds and release of trehalose-6-

phosphate and metabolites. In planta uptake was carried out using A. thaliana plantlets.  

A. thaliana (Columbia 0) seeds were surface-sterilised for 10 min in 10% sodium 

hypochlorite, 0.01% Triton-X-100 and then copiously washed with sterile water and 

stratified for 3 days at 4 oC. Seeds were sown onto 0.5 mL solid medium (0.5x Murashige 

and Skoog (MS) medium with Gamborg’s vitamins (Sigma P0404), 0.5% sucrose and 0.5% 

agar) in 0.5 mL Eppendorf tubes, pierced in the bottom with a tiny hole. The tubes were 

arrayed in hand-cut polystyrene racks in Phytatrays (Sigma) and floated on liquid medium 

(same as solid medium but lacking sucrose and agar).  Plantlets were grown under the 

following conditions: 12 h day under Philips master TL-D 840/58W fluorescent lights 

giving 250 µmol.m-2.s-1, and 23oC day/18 oC night temperatures.  At 18 days after sowing 

the liquid medium was removed and the tubes were sealed with electrician’s tape. All 

plants were topped up with 0.5 x MS medium with no sucrose. 

Plants were treated with compounds by adding 10 µL of 50 mM stock prepared in water or 

1% DMSO to the agar medium, avoiding contact with aerial parts. The final concentration 

of precursor compound in the agar medium was 1mM. After certain period of time (after 24 

h, 48 h and 72 h) the aerial part was harvested carefully, weighed and extracted in 

H2O:MeOH (1:1) under liquid nitrogen. The crude fresh plant extract thus obtained was 

analysed by MS and HPLC. 

For in planta T6P release experiments compound-treated plants were exposed to UV light 

treatment after 72 h. UV treatments consisted of (a) 8 h exposure to natural daylight, (b) 8 h 

exposure to a 100 W UV spotlight (BlackRay B-100AP) at a distance of 18 cm, (c) 8 h 

exposure to an 8 W UV bulb (365 nm, Gelman transilluminator Model  51438) at a distance 

of 6 cm or (d) exposure for two 8 h periods under 8 W. UV treatments were in addition to 

normal growth lights. Control plants (except for daylight treatment) were treated under the 

same conditions but without UV light. At the end of the day of exposure to UV/light, the 

aerial parts of the plants were quickly harvested, weighed and frozen in liquid nitrogen. For 



 

13 

 

starch extractions a moderate light regime was selected of 1 × 8 h exposure to 8W UV light. 

After irradiation plants were returned to the growth room for a further day (day 5) to 

recover after light treatment and to respond to altered T6P levels before being harvested as 

above. Frozen tissue was stored at -80 °C until extracted.  

Harvested plant material was extracted by liquid/liquid extraction (LLE) followed by solid 

phase extraction (SPE) for T6P analysis.19 For LLE/SPE extractions around 25 mg plant 

tissue was used, pooled from several plants.  Samples were reconstituted in 50 µL of 

H2O:MeOH (1:1) and 10 µl used  for T6P analysis using  HPLC-MS (Quattro, Waters) and 

T6P release determined with quantitative using 2-deoxy-glucose-6-phosphate a suitable 

calibration internal standard.  

Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) was used to confirm 

the identity disaccharide monophosphates via fragmentation pattern analysis performed on 

a Waters Xevo G2-S QTof (Quadrupole Time-of-flight) Mass Spectrometer coupled to a 

Waters Acquity Ultra Performance Liquid Chromatography (UPLC), and a Waters 

Micromass® Quattro microTM API Mass Spectrometry coupled to a Waters 1525μ binary 

HPLC pump and a Waters 2777 auto sampler using a SIELC Primesep SB column, solvent 

A (0.1% formic acid in H2O) and solvent B (1.0% formic acid in H2O:CH3CN (75:25)), 

were used as the mobile phase at a flow rate of 0.4 mL min–1. For the Xevo G2-S QTof 

MS, the electrospray (ES) source was operated with a capillary voltage of 2.0 kV and a 

cone voltage of 30 V. Nitrogen was used as the desolvation gas at a total flow of 800 L/h–1. 

The intact molecular ion of T6P was detected as m/z 421.0759 (C12H22O14P, calculated as 

421.0753) in a negative ion-mode. The Time of Flight (ToF) tandem mass spectrum of the 

parent ion 421.00 was then obtained in a negative ion-mode for the m/z range from 50 to 

500 using optimized collision energy of 20 eV. For the Quattro microTM API MS, the 

electrospray (ES) source was operated with a capillary voltage of 3.0 kV and a cone voltage 
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of 40 V. The quadrupole tandem mass spectra of the parent ion 421.0 of T6P and S6P were 

obtained in a negative ion-mode for the m/z range from 50 to 500 using collision energy of 

20 eV. With the reference to standard fragmentation patterns, tracking of the fragment ions 

of T6P in the plant sample was also performed by quadrupole tandem mass spectra. Five 

most intense m/z peaks recorded in the MS/MS spectrum of T6P, m/z 78.3, 96.4, 138.6, 

240.9 and 421.0 (unfragmented) were also selected to perform the Multiple Reaction 

Monitoring (MRM) and cross-referenced with Selected Ion Recording (SIR) for the intact 

molecular ion m/z 421.0.  

For seedling liquid culture, seeds of A. thaliana were grown in liquid culture as described 

previously.23 Once the seedlings were 7 days old, oNPE-T6P or DMNB-T6P were added to 

the growth medium to a final concentration of 1mM. Plants were left under growth lights to 

uptake the compounds for 24 hours. To facilitate precursor release, plants were placed 

under 23 µmol.m-2.s-1 UV for 2 hours, after which they were returned to previous 

environmental conditions. Samples were taken for analysis before addition of compound, 1 

day after addition, 30, 60 and 120 minutes during UV treatment, and sampled again at 1 

and 2 days post-UV treatment. Samples were weighed, snap frozen and stored at -80°C. 

For enzymatic sugar analysis, sugars were extracted from 5-10mg of A. thaliana ground 

under liquid nitrogen, 1mL of 80% was added and sample was heated at 100°C for 1 hour, 

samples were centrifuged for 10 minutes at 13000g to remove debris. The samples were 

added to assay buffer.26 Enzymatic reactions were performed as described previously33 

using hexokinase, glucose-6-phosphate dehydrogenase, phosphoglucose isomerase and 

invertase from Sigma-Aldrich (H4502, G8404, P5381, I9274 respectively). Two technical 

replicates were completed for each sample, a total of three biological replicates were 

analysed. See Supplementary Methods for further details. 
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Extraction and measurement of starch in planta. Three to four chemical and UV light 

treated plantlets were pooled and weighed (fresh weight, 70-100mg) for each biological 

replicate. Extraction was based on literature methods.26 Samples were ground in liquid 

nitrogen to a fine powder in a mortar. The powder was rapidly extracted with 1 mL 80% 

ethanol at 80°C, followed by 2 × 0.5 mL to rinse, transferred to a 2mL eppendorf at 100°C 

and heated for 2-3 mins until just boiling. Tubes were transferred to a water bath at 80°C 

while other samples were accumulated. Samples were centrifuged at 13,000 × g for 10 min 

to collect all solid material. The pellet was extracted twice more with 2 mL hot 80% 

ethanol. The pellet was washed with 1 mL water, the supernatant removed and 100 μL 

water added. The pellet was homogenized to a smooth consistency with an Eppendorf 

micropestle before being made up to 500 μL final volume with water. Samples were heated 

at 100°C for 10 mins to gelatinize starch granules. Duplicate aliquots (100 μL) were 

removed and digested with α-amylase (2 U) and amyloglucosidase (6 U) in 0.05 M sodium 

acetate pH 4.8 for 4 hour at 37°C. Control digests lacking enzyme were also set up. 

Glucose released from digested starch was measured using an enzymatic assay coupled to 

the reduction of NADP to NADPH34 and adapted for microtitre plate reader. Normally 10-

20 μL of digest was assayed in triplicate. Starch content is expressed as hexose equivalents 

per gram fresh weight. See Supplementary Methods for further details. 

 

SnRK1 activity. Kinase activities  were determined by measuring the incorporation of 

radiolabeled phosphate into the AMARA peptide substrate and were carried out as 

described previously.15 

 



 

16 

 

ADP-glucose pyrophosphorylase activity. Enzyme activity was measured as described 

previously.35  

 

Application of precursors to wheat. Spring wheat (Triticum aestivum Cadenza) seeds 

were sown in Rothamsted standard compost mix and grown in controlled environment 

conditions with a photoperiod of 16 hours light, 8 hours dark, day/night temperatures of 

20°C/16°C, photon flux density of 600µmol m-2
 s-1, and ambient relative humidity. Once 

the plants had reached anthesis, solutions of oNPE-T6P and DMNB-T6P (0.1, 1 or 10mM) 

as well as control solutions, water, 1mM T6P and 1mM trehalose were made up in distilled 

water with 0.1% TWEEN-20. At 5, 10, 15 and 20 days post-anthesis, either the ears, or the 

whole plant were sprayed individually with the chemicals at volumes of 5mL and 50mL 

respectively. Leaf samples were taken at 5, 10, 15, 20 and 25 days post anthesis for 

chlorophyll content analysis, grain was harvested at maturity for analysis. Chlorophyll 

content of leaves was measured by methanol extraction and spectrophotometry.36 Starch 

content of grain was measured enzymatically26and protein content was measured by 

Bradford’s assay.37  

For the drought treatment, Vegetative Cadenza wheat plants were grown in the same 

compost and environments as above. Once the plants had reached Feekes stage 4, water 

was withheld for 10 days. On the 9th day, 30ml 1mM solutions of oNPE-T6P and DMNB-

T6P were applied to all above-ground biomass, on the 10th day the watering schedule was 

reinstated. Plants were harvested to measure biomass production every 5 days for 30 days 

after rewatering. Both experiments were completed in replicates of six. 

For quantification of T6P, trehalose and sucrose in wheat samples, the harvested wheat 

grains were weighed, snap frozen and stored at -80 °C. Wheat grain was ground to fine 
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powder in liquid nitrogen and the sugars were extracted by liquid/liquid extraction (LLE) 

for T6P, trehalose and sucrose analysis using the same LCMS quantification method as for 

Arabidopsis.  

For minimal spray application, spring wheat (Triticum aestivum Cadenza) seeds were sown 

in Rothamsted standard compost mix and grown in controlled environment conditions with 

a photoperiod of 16 hours light, 8 hours dark, day/night temperatures of 20°C/16°C, photon 

flux density of 600μmol m-2 s-1, and ambient relative humidity. Once the plants had reached 

anthesis, solutions of oNPE-T6P and DMNB-T6P (1mM and 10mM) and a water control, 

were made up in distilled water with 0.1% TWEEN-20. At 10 days post anthesis, the top 

20cm of above ground biomass encompassing ears and flag leaves were sprayed 

individually with the chemicals at a volume of 25mL. Grain from individual ears was 

harvested at maturity for analysis. All wheat experiments were repeated twice, with 3 

technical and 6 biological replicates completed at each stage of analysis. 

 

 

RNA extraction, cDNA synthesis and q-RT-PCR. Total RNA was extracted from 50mg 

snap-frozen leaf tissue from A. thaliana Columbia using the Ribopure™ Kit (Ambion®) 

according to the manufacturer’s instructions. RNA was quantified using a Nanodrop 

spectrophotometer and integrity of RNA was visualised using denaturing agarose gel 

electrophoresis.38 DNA was removed using RQ1 RNase-free DNase (Promega). cDNA was 

synthesised using SuperScript® III First-Strand Synthesis System (ThermoFisher 

Scientific) using 2ug of total RNA and oligodT primers according to the manufacturer’s 

instructions. Gene expression was quantified using SYBR Green chemistry on a Real-Time 

PCR system 7500 (Applied Biosystems). Total reaction size was 20µl containing 10µl 

SYBR® Green Jumpstart™ Taq ReadyMix™ (Sigma Aldrich), 2µl cDNA and 0.5mM 
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primers. PCR used an initial denaturation stage of 95°C for 2 min, followed by 40 cycles of 

95°C for 15s, 60°C for 1. The specificity of products was confirmed by performing a 

temperature gradient analysis of products at temperatures ranging from 55°C to 95°C at 

0.5°C increments. Two technical replicates were completed for each sample, a total of three 

biological replicates were analysed. Relative quantification of gene expression was 

performed using the Livak method using ubiquitin-transferase family protein as the 

reference gene. Primers utilised for SnRK1 marker gene expression, and starch gene 

expression are listed in Supplementary Tables S19 and S20 respectively. 

 

 

MS Imaging Methods. Arabidopsis utilised in ToF-SIMS imaging were grown in Petri 

dishes on 1/2MS medium with 0.8% agar for 10 days, with a photoperiod of 16 hours light, 

8 hours dark, day/night temperatures of 23 °C / 18 °C, photon flux density of 250 µmol m-2
 

s-1. Plants were then transferred to Petri dishes containing the same media supplemented 

with either 1mM of oNPE-T6P or 1mM of DMNB-T6P for 24 hours during which they 

remained under the previously stated growth conditions. After 24 hours, the plants were 

exposed to UV light at 23 µmol m-2
 s-1 for 2 hours to facilitate T6P release. Plants were left 

for 2 hours to recover, frozen and dehydrated in a vacuum chamber before MS-imaging 

analysis. Reference materials were drop-dried on clean substrates. The ToF-SIMS (time-of-

flight secondary ion mass spectrometry) Mass Spectrometry Imaging analysis was 

performed with the ToF-SIMS IV mass spectrometer (IONTOF, Muenster, Germany) from 

three leaves, control, oNPE-T6P treated one and DMNB-T6P treated one. A pulsed 25 keV 

Bi3
+ primary ion source was used as the analysis beam (pulse width = 23 ns, mass 

resolution = m/Δm 5000). Mass spectra of the reference material were obtained in positive 

and negative ion mode at a primary ion dose of 1.1 × 1011 ions.cm-2.  The leaf ion images 
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were also collected in both polarities with a dose of 5.4 ×1010 ions.cm-2. An electron flood 

gun was employed for charge compensation during the data acquisition. Mass spectral data 

was analysed in ION-TOF SurfaceLab 6.4 software and further processed in MATLAB and 

Origin Pro. Known melissic acid markers21 (m/z 435.4, C30H59O, [M-OH]- and 451.4 

C30H59O2, [M-H]-) were used. See Supplementary Methods for further details. 

MALDI MS imaging data were acquired using identically prepared leaf samples with a 

modified QSTAR XL Qq-ToF instrument (Sciex, Ontario, Canada) fitted with a Nd:YAG 

laser (Elforlight Ltd, Daventry, UK) operated at 1000 kHz in positive ion mode with a 

fluence of ~ 205 J/m2 and a pixel size of 200 µm × 200 µm. The QSTAR was operated in 

continuous raster sampling mode. The sample was affixed to a stainless steel target plate 

with double sided tape and sprayed with CHCA (5 mg/mL CHCA in 80 % Methanol, 0.1% 

TFA) using automated spray deposition (TM Sprayer, HTX Technologies, Carrboro, NC). 

Data were converted from the proprietary .wiff format into .mzML using AB MS Data 

Converter version 1.3 (Sciex). These mzML files were then converted to .imzML using 

imzMLConverter39 and processed in custom made software within MATLAB (version 

R2014b, Math Works Inc., USA). Images are created by summing across the full-width-

half-maximum of the peak of interest to give the intensity within each corresponding pixel. 

See Supplementary Methods for further details. 

 

Statistical methods. ANOVA was applied to data to test for differences between 

treatments. A natural log transformation was used where necessary to ensure constant 

variance. The GENSTAT statistical system was used for this analysis (2011, 14th edition, © 

VSN International Ltd, Hemel Hempstead, UK). 
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FIGURE LEGENDS 

 

Figure 1 | Design and synthesis of signalling precursors of T6P. T6P is plant 

impermeable; synthesis of plant-permeable variants allowed subsequent 

photoactivated release T6P in planta. (a) Designed precursors 1-4, their (b) 

syntheses using phosphoramidite chemistry (1-3) or direct phosphorylation 

chemistry (4) from key intermediate 12. Universally 13C-labelled 2* was prepared in 

essentially the same way (see ED Figure 7a). 

 

Figure 2 | In planta uptake of signalling precursors and T6P release. (a) 

Uptake of 1-4 (1mM in medium) at 24, 48, 72 h (SEM, n= 3). (b) T6P released in 

planta (SEM, n= 3). Compounds applied 18d after sowing then irradiated for 72h. 

otsA = Arabidopsis over-expressing trehalose-phosphate synthase. GL = 250 

μmol.m-2.s-1. UV (8W  = 23 µmol.m-2.s-1); 100W (292 µmol.m-2.s-1) = GL 

supplemented with 365nm. Sunlight (250 μmol.m-2.s-1 cloud, 1440 μmol.m-2.s-1. full-

sun). ANOVA showed significant differences (P<0.001) between treatments (water 

or precursor) for each regime. All treatments with precursor and UV showed 

significance (P<0.001, LSD) cf water and UV. For GL * = 0.01<P<0.05, ** = 

0.001<P<0.01 (LSD, data on natural-log scale). See also Supplementary Table 

S10. 
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Figure 3 | MS Imaging of treated leaves. For all ion images, pixel intensity scale 

represents area under corresponding m/z peak. (a-c) ToF-SIMS (a) spectra from 

surface of A. thaliana leaves (top three spectra). Marker ions m/z 156.8, 196.8, 

212.8 in T6P reference (bottom spectrum). (b) T6P (three markers, green) in 

control (left), oNPE-T6P (3)-treated (middle) and DMNB-T6P (2)-treated leaf (right), 

anti-colocalized with H2O (m/z 18.0) and silicon substrate (m/z 27.9) (c) T6P 

(markers, green, positive mode), trehalose (m/z 325.2, 321.2, blue, negative mode) 

and overlay with known21 epicuticular wax markers (red, negative mode) in the 

oNPE-T6P (3)-treated leaf. (d-e) MALDI-MS (d) Overlay of mean on-leaf spectra 

for control, oNPE-T6P (3)-treated and DMNB-T6P (2)-treated leaf. Lower panels 

show expansions for correlated markers. (e) RGB-colour overlay images of marker 

ions; separate ion images shown on right. Images in b, c and e are representative 

of 3 individual images. 

 

Figure 4 | In planta T6P release and sugar metabolism over time. 7 day-old 

Arabidopsis seedlings grown in liquid culture were treated with 1mM of either 

oNPE-T6P 3 or DMNB-T6P 2; control seedlings treated with water. Seedlings were 

left under growth lights to uptake the signalling precursors for 24 h, plants were 

then exposed to 23 μmol.m-2.s-1 UV for 2 h. Measurements were taken 1 day after 

uptake (Pre UV), 30 min, 60 min and 120 min post-initiation of UV treatment (23 

μmol.m-2.s-1), 1 day and 2 days post initiation of UV treatment.  (a) T6P content. (b) 

Trehalose content. (c) Sucrose content. (d) Glucose content. In all cases n = 3, 

Statistical significance (Students t-test) are indicated by asterisk: * (p <0.05) and ** 

(p < 0.01), error bars represent SEM (n=3). 
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Figure 5. Increased crop yield. (a) Increased grain size (20 per tube) after 

spraying. (b) Grain yield per plant with 1mM oNPE-T6P (3) or DMNB-T6P (2). (c) 

Starch content of grain. * = p < 0.05 cf water control (student’s t-test). Error bars 

SEM (n=6). 

 

Figure 6. Increased crop resilience. (a) Plants after 20 days recovery following 

one application (1 mM) oNPE-T6P (3) or DMNB-T6P (2) one day prior to 

rewatering. (b) Dry weight (DWT) biomass from (a). (c) Plants after one application 

(1mM) oNPE-T6P (3) DMNB-T6P (2) one day prior to rewatering, cut at 5 days 

after rewatering, and left to regrow for 10 days. Cut back point = white arrow and 

line. (d) Fresh weight (FW) biomass of regrowth from (c). In all cases, * = p < 0.05 

cf water control (students t-test, n = 6). Error bars represent SEM (n=6). 
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EXTENDED DATA FIGURE LEGENDS 

 

 

Extended Data Figure 1 | The Central Role of T6P in Plants and Design of a Chemical 
Strategy for its Control  

(a) Photosynthesis generates sucrose, which is translocated to growing regions of the plant. Inside 

the cell it feeds a pool of core metabolites which are substrates for biosynthetic processes that 

determine growth and productivity. T6P is synthesised from UDPG and G6P by trehalose 6-

phosphate synthase (TPS) and therefore reflects the abundance of sucrose. It is broken down by 

trehalose phosphate phosphatase (TPP). Increasing T6P (i) stimulates starch synthesis and (ii) 

inhibits SnRK1, a protein kinase central to energy conservation and survival during energy 

deprivation. Inhibition of SnRK1 by T6P thus diverts carbon skeleton consumption into biosynthetic 

processes. (b) Trehalose biosynthetic pathway. (c) T6P is plant impermeable. Plant permeable 

variants allowed subsequent photoactivated release. (d) Generalized mechanism of light-activated 

release of precursors. (e) Release of T6P by light irradiation from the signalling precursor 1-4 in 

vitro. 31P NMR at different time points of light irradiation confirming the activation of signalling 

precursors (1-4) and release of T6P. Time points: for 1 (0, 30, 60, 150 and 360min); for 2 (0, 60, 

120, 300, 420 and 600 min); for 3 (0, 15, 30, 45 and 60 min); for 4 (0, 60, 120, 240, 360 and 420 

min). (f, g) 1H and 31P NMR spectra after complete photolysis of signalling precursor confirming the 

release of T6P. 

 

Extended Data Figure 2 | Inhibition of SnRK1.  

Signalling precursors (1-4), T6P released from 1-4 (r1, r2, r3, r4) and T6P standard (T6P) were 

tested against SnRK1. T6P (0.26 mM) inhibits SnRK1 activity to ~36% of original activity. Signalling 

precursor compounds show no such inhibition whereas UV-released compounds show identical 

inhibition to free T6P. SnRK1 activity was determined from level of incorporation of phosphate onto 
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peptide substrate .min-1 .mg -1 protein. (s.e.m., n=3). The activities of assays treated with precursors 

or released T6P were not significantly different from their controls (P<0.001, LSD) following one-

way ANOVA of data transformed on the natural log scale. 

 

Extended Data Figure 3 | In planta uptake analysis of signalling precursors 1-4.  

(a) Schematic of protocol used for uptake analysis. (b) Calibration curves for oNB-T6P 1, DMNB-

T6P 2, oNPE-T6P 3, mono-DMNB-T6P 4, respectively. Error bars represent SEM (n = 2)  (c) HPLC 

(left) and MS (right) data, [M+Na]+ or [M-H]-, of pure signalling precursors 1-4. (d) HPLC (left) and 

MS (right) data, [M+Na]+ or [M-H]-, of plant samples afte treatment with signalling precursors 1-4. In 

the case of 3 the partially uncaged molecule also accumulated and was detected (coloured light 

blue). 

 

Extended Data Figure 4 | Extraction and quantification of T6P.  

(a) Schematic of protocol used for preparation of sample for T6P quantification. LLE = Liquid/liquid 

extraction, SPE = Solid phase extraction, AEC-MS = Anion exchange chromatography-mass 

spectrometry. (b) Liquid chromatograms of T6P, S6P and 2DG6P separation (top) using conditions 

optimized in Supplementary Table S8 (entry 7) and the representative LCMS chromatograms of 

extraction samples treated with signalling precursors (middle) and water control (bottom). (c, d) 

Liquid chromatograms of variable concentration of T6P (500, 250, 100, 50, 25, 10, 5 μM) with 

constant concentration (100 μM) of 2DG6P as internal standard. (e) Resulting calibration curves of 

T6P peak area and T6P/2DG6P ratio against T6P concentrations (μM) in water as well as in the 

plant matrix. (f-h) LC-MS/MS analysis of T6P, S6P and the DMNB-T6P 2-treated plant sample: (f) 

Fragmentation patterns of T6P (top) and S6P (bottom) by Quadrupole Time-of-fight tandem mass 

spectrometry (QTof-MS/MS) in negative ion mode. (g) Fragmentation patterns of T6P (top) and S6P 

(middle) by Triple quadrupole tandem mass spectrometry (QqQ-MS/MS) in negative ion mode and 

the T6P fragment ions tracking in the plant matrix (bottom). (h) HPLC chromatograms of T6P/S6P 

by Selected Ion Recording (SIR) of the intact molecular ion (m/z 421.0) and Multiple Reaction 
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Monitoring (MRM) of the fragment ions give the same retention time for each compound. (i) LC-MS 

quantification method through SIR and LC-MS/MS quantification method through MRM of the T6P 

level in the DMNB-T6P 2-treated plant sample. From bottom to top: integration of T6P trace (2661) 

using SIR of m/z 421.0, integration of T6P trace (2550) using MRM of m/z 78.6, 96.3, 138.7, 241.0 

and 421.0, integration for each fragment ion m/z 78.6 (801), m/z 96.3 (868), m/z 138.7 (76), m/z 

241.0 (404) and m/z 421.0 (392). 

 

Extended Data Figure 5 | Analysis of Arabidopsis plantlets following treatment.  

(a-c) Phenotype (a) Fresh weight of plantlets versus concentration of signalling precursors of T6P 

(1-4) and G6P precursors (14-17) in medium after three days (72 h) of uptake. s.e.m, n=3. Each 

T6P precursor shown (top) followed by its G6P analogue (bottom). Visual appearance of a typical 

plantlet was observed for a given concentration of precursors at point of harvest. (b) Phenotype of 

plants at end of light treatments. Plants allowed to take up compounds for 72 h and were then 

treated the next day with light treatments. Light treatments: GL, growth light irradiance 250 μmol.m-

2.s-1. UV 8 W and UV100 W were GL supplemented with UV light (365 nm). Daylight, part sun/part 

cloud, irradiance range 250 μmol.m-2.s-1 under cloud, 1440 μmol.m-2.s-1 under full sun. Compounds 

fed to plants to a final concentration of 1 mM. Phenotype of plants fed with oNPE-T6P 3 at a 

reduced final concentration of 0.1 mM shown in right hand panel. Scale, diameter of plastic tube 

mouth = 10 mm. GL= Growth light, UV= Ultraviolet. (c) Typical A. thaliana phenotypes in starch 

experiment. Plants were treated with a final medium concentration of 0.1 mM compound or water 

for 72 h and then exposed to 8 h 8W UV treatment. The plants were allowed to recover for another 

24 h and were harvested at the end of the day and starch content measured. No significant 

phenotypic differences were observed between treatments. (a) water, (b) oNPE-T6P 3 0.1 mM, (c) 

oNPE-G6P(1-OMe) 16. Scale, tube diameter = 10 mm. 

(d-g) Biosynthetic effects of increasing T6P in planta. (d) Starch level at the end of the day in UV 

treated (8W, 23 μmol. m-2.s-1, 8h) plants fed with oNPE-T6P 3 + UV is significantly higher than 

plants treated with water + UV (n=9, s.e.m). Samples for starch were taken 1 day post-UV 
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treatment. (e) ADP-glucose pyrophosphorylase (AGPase) activity is increased in UV + oNPE-T6P 3 

plants compared to oNPE-T6P only, UV only, water only, UV + water treated plants and oNPE-G6P 

16 treated plants (n=3, s.e.m.). (f) Starch synthesis rate in UV treated (20 μmol. m-2.s-1, 8h) oNPE-

T6P treated plants (s.e.m., n = 3). (g) Starch level at the beginning (SEM n = 3) and at the end 

(SEM, n = 4) of the day in UV (20 μmol. m-2.s-1, 8h)  + water-treated (●) and UV + oNPE-T6P-

treated (○) plants. Arabidopsis used in e-g were at a light regime of 12h day/12h night, at 250 

μmol.m-2.s-1, and 23 ˚C day/18 ˚C night temperatures, treated with compounds 18 days post sowing, 

and exposed to UV light 72 hours after addition of compound. Asterisks in d-f denote statistical 

significance with ANOVA analysis (p = 0.002). Asterisk in g denotes statistical significance by one-

way ANOVA (LSD 5% = 11.19). 

 

Extended Data Figure 6 | Quantification of in planta metabolites.  

(a) LCMS chromatograms of trehalose, sucrose, glucose and fructose separation using HILIC 

column, for details see Supporting Information. (b) Liquid chromatograms and peak areas of 

variable concentration of trehalose (100, 50, 25, 10, 5 μM) and glucose (500, 250, 100, 50, 25, 10, 

5 μM). (c) Calibration curves of trehalose peak area against the concentrations (μM) and glucose 

peak area against the concentrations (μM). (d,e) As for Figure 4, 7 day-old Arabidopsis seedlings 

grown in liquid culture were treated with 1mM of either oNPE-T6P 3 or DMNB-T6P 2 control 

seedlings were treated with water. Seedlings were left under growth lights to uptake the signalling 

precursors for 24 h, plants were then exposed to 23 μmol.m-2.s-1 UV for 2 h. Measurements were 

taken 1 day after uptake (Pre UV), 30 min, 60 min and 120 min post-initiation of UV treatment (23 

μmol.m-2.s-1), 1 day and 2 days post initiation of UV treatment.  See Figure 4 for T6P content, 

trehalose content, sucrose content, glucose content; here (d) fructose content and (e) Fresh weight 

biomass are shown. In all cases n = 3, Statistical significance (students t-test) are indicated by 

asterisk: * (p <0.05) and ** (p < 0.01). Error bars represent SEM (n=3). 
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Extended Data Figure 7 | Dynamics of 13C-T6P, 13C-trehalose, 13C-glucose and T6P in A. 

Thaliana treated by 13C-labelled precursor 2*.  

1mM of DMNB-13C-T6P 2* was added to the growth medium of 7- day-old Arabidopsis seedlings. 

The plants were left under growth light to uptake for 24 h and the uncaging was performed under 23 

μmol.m-2.s-1 UV for 2 h. Samples were harvested for analysis at different time points – pre UV, 30 

min, 60min and 120 min (after onset of UV irradiation) and 1 day and 2 days after onset of UV 

irradiation. (a) Synthesis of universally 13C-labelled 2* in essentially the same manner as for 2. (b) 

Amount of 13C-T6P released over time in planta. (c) Amount of 13C-trehalose accumulated. (d) 

Amount of 13C-glucose accumulated. (e) Amount of endogenous T6P. (f) Overview of 13C tracking 

of T6P and metabolites. In all cases SEM n = 3. Asterisks indicate statistical (Students t-test) 

significance (* 0.01<P<0.05, ** 0.001<P<0.01). 

 

Extended Data Figure 8 | Synthesis, in vitro SnRK1 inhibition studies and in planta uptake 

analysis of G6P (1-OMe) analogues 14-17.  

(a) Design and synthesis of oNB-G6P 14, DMNB-G6P 15, oNPE-G6P 16 and mono-DMNB-G6P 17. 

(b) Lack of inhibition of SnRK1 by G6P (1-OMe) analogues. Bars represent SEM (n=3).  (c) HPLC 

and MS data, [M+Na]+ or [M-H]-, of pure G6P (1-OMe) precursors 14-17. For HPLC conditions see 

the Supplementary Information section 1. (d) HPLC and MS data, [M+Na]+ or [M-H]-, of uptaken 

G6P(1-OMe) precursors14-17 in planta. (e) Calibration curves for DMNB-G6P 15, oNPE-G6P 16, 

mono-DMNB-G6P 17, respectively (n = 2 in all cases). 

 

Extended Data Figure 9 | Transcript abundance of genes involved in starch synthesis and 

SnRK1 marker genes in response to caged-T6P precursor application of 7- day- old 

Arabidopsis seedlings in liquid culture.  

Seedlings were treated with a final concentration of 1mM of either oNPE-T6P 3 or DMNB-T6P 2, 

allowed to uptake for 1 day under the growth lights, then treated with 23 μmol.m-2.s-1 UV light 2 h to 

facilitate uncaging. (a) Transcript fold change after 60 min of UV treatment and (b) 1 day after UV 
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treatment of SnRK1 marker genes. Marker genes normally down-regulated by SnRK1: TPS5 

(At4g17770), UDPGDH (At3g29360) and bZIP11 (At4g34590), and marker genes normally up-

regulated by SnRK1: TPS8 (At1g70290), βGAL (At5g56870), and ASN (At3g47340). (c) Transcript 

fold change of starch synthesis genes after 60 min of UV treatment. Genes involved in starch 

synthesis: APL3 (At4g39210); SS3 (At1g11720), BE1 (At3g20440) and GBSS1 (At1g32900).  (d) 

Transcript fold change after 60 min of UV treatment for starch degradation genes. Genes involved 

in starch degradation: BAM1 (At3g23920); BAM3 (At4g17090); BAM4 (At5g55700) and GWD3 

(At4g24450). Changes in transcripts for enzymes of degradation were more equivocal with GWD3 

increasing and BAM genes showing small changes or decreasing (BAM3). All data was normalised 

to a ubiquitin control. All data are means with SEM of three independent samples 

 

Extended Data Figure 10 | Additional Effects in Wheat.  

(a) Chlorophyll content of leaves post anthesis of ear treatments, (b) Chlorophyll content of leaves 

post anthesis of whole plant treatments. (c-e) T6P release and metabolism in wheat. Developing 

wheat grain were treated with either T6P, oNPE-T6P 3 or DMNB-T6P 2 (all 1mM) at 5 or 10 days 

post anthesis (DPA) and harvested 1 day later. (c) Amount of T6P in wheat grains (n=3, s.e.m.). (d) 

Trehalose  (n=3, s.e.m.). (e) Sucrose (n=3, s.e.m.). Asterisks indicate statistical significance with 

Students T-test (* 0.01<P<0.05, ** 0.001<P<0.01). (f) Dose response grain yield per plant to T6P 

precursors (0.1 mM, 1 mM and 10 mM oNPE-T6P or DMNB-T6P) and water, T6P and trehalose 

controls) sprayed to ears (5 ml) or to whole plant (45 ml) at 5, 10, 15 and 20 DPA. Asterisks indicate 

statistical significance (p < 0.05) compared to water control. +- standard error (n=6). (g) Grain yield 

per ear in response to single time point spray (5 ml to ear at 10 DPA). Asterisks in (f and g) indicate 

statistical significance (p < 0.05) with students t-test in comparison to water control. +/- standard 

error (n=6). 

 


