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Abstract
Alterations in signalling due to bidirectional transactivation of G
protein-coupled receptor (GPCRs) and receptor tyrosine ki-
nases (RTKs) are well established. Transactivation significantly
diversifies signalling networks within a cell and has been
implicated in promoting both advantageous and disadvanta-
geous physiological and pathophysiological outcomes, making
the GPCR/RTK interactions attractive new targets for drug
discovery programmes. Transactivation has been observed for
a plethora of receptor pairings in multiple cell types; however,
the precise molecular mechanisms and signalling effectors
involved can vary with receptor pairings and cell type. This
short review will discuss the recent applications of proximity-
based assays, such as resonance energy transfer and fluo-
rescence-based imaging in investigating the dynamics of
GPCR/RTK complex formation, subsequent effector protein
recruitment and the cellular locations of complexes in living
cells.
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Transactivation: a mechanism to increase
the signalling diversity of activated G
protein-coupled receptors and receptor
tyrosine kinases
G protein-coupled receptors (GPCRs) and receptor
tyrosine kinases (RTKs) are major classes of cell surface
receptors extensively targeted in drug discovery
programmes due to their critical roles in health and
disease. GPCRs are seven transmembrane spanning re-
ceptors that bind a structurally diverse range of ligands
[1]. Activation stabilises GPCR conformations favouring

downstream signalling via heterotrimeric G proteins
(Ga and Gbg subunits). Four main classes of G proteins
exist: Gs, Gi/o, Gq/11, G12/13 that direct signalling via
distinct effector proteins such as adenylyl cyclase,
phospholipase C and Rho GTPases. GPCR activation
also promotes the recruitment of GPCR kinases (GRKs)
that phosphorylate the GPCR C terminus. This in turn
enhances recruitment of b-arrestin which uncouples
GPCR/G protein complexes, promoting GPCR desen-
sitisation and endocytosis in addition to G protein-in-
dependent signalling pathways; however, the functional

significance of this in physiology has been debated [2].
RTKs typically consist of a large extracellular ligand
binding domain, a transmembrane domain and an
intracellular catalytic kinase domain. RTKs notably bind
growth factors such as epidermal growth factor (EGF)
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GPCR and receptor tyrosine kinase interactions Kilpatrick and Hill 103
and vascular endothelial growth factor (VEGF). Ligand
binding typically induces dimerisation of receptor
monomers triggering trans-autophosphorylation of C
terminal tyrosine residues that act as recruitment sites
for intracellular adaptor proteins, such as Src, phos-
phoinositide 3-kinases (PI3K) and phospholipase C
(PLC). These adaptors can themselves be phosphory-
lated due to the intrinsic kinase activity of RTKs,

increasing and diversifying the network of signalling
pathways available from activation of a single receptor.
RTK-mediated signalling is typically responsible for
driving cell proliferation, migration and survival via
extracellular signal-regulated kinases 1/2 (ERK1/2),
focal adhesion kinase (FAK) and protein kinase A/Akt
mediators [3].

GPCRs and RTKs were believed to act as independent
signalling entities, until seminal work by Ullrich and
colleagues [4] revealed rapid tyrosine phosphorylation

of the epidermal growth factor receptor (EGFR) in
response to known GPCR agonists. This phenomenon,
termed transactivation, is characterized by altered RTK
activation and downstream signalling directly attribut-
able to GPCR/RTK interactions. Transactivation offers a
mechanism to increase the number and breadth of
signalling networks available within each cell, by inte-
grating the diversity of GPCRs and GPCR ligands with
the vast signalling networks mediated by activated
RTKs [5].

Transactivation of the EGFR has been observed with
Class A and Class B GPCR partners including but not
limited to the b1, b2 and a1-adrenoceptors (AR), aden-
osine A1 and A3 receptors, m opioid receptor, muscarinic
M1 and the AT1R angiotensin receptor [reviewed in 6].
Evidence of transactivation has been observed in a range
of cell types for other RTK family members, such as the
vascular endothelial growth factor receptors (VEGFRs),
fibroblast growth factor receptors (FGFRs), platelet-
derived growth factor receptor (PDGFR), insulin-like
growth factor receptor-1 (IGFR-1) and the insulin re-
ceptor (IR) [7]. Recent reviews have extensively covered

the beneficial roles of transactivation in regulating
cardioprotection [6] and vital central nervous system
functions [3]. However, disadvantageous signalling as a
consequence of transactivation has been identified such
as progression from acute to chronic pain (m opioid/EGFR
in opioid-induced hyperalgesia [8]), proliferation of
human hyperplastic prostatic cells (a1-AR/EGFR [9]),
gastric cancer cell migration (CXCR4/EGFR [10]), poor
patient prognosis and increased lymphatic spread in
HER2þ breast cancer patients (cannabinoid receptor 2
(CB2R/HER2 [11]) and underlying tumour re-occur-

rence following anti-VEGF/VEGFR2 therapeutics
(sphingosine 1-phosphate receptor/VEGFR2 [12]). In
this short review, we focus on recent examples revealing
new insights into the molecular mechanisms involved,
and highlight some of the new technologies, beyond
www.sciencedirect.com Curr
traditional biochemical techniques, used to investigate
transactivation.
Ligand-dependent and independent
mechanisms of transactivation
RTKs can be activated by GPCRs in a ligand-dependent
or independent manner (Figure 1). Ligand-dependent
transactivation occurs via matrix metalloproteinases
(MMPs) or a disintegrin and metalloproteinases
(ADAMs) and has been extensively characterised for the
EGFR [5]. MMPs or ADAMs cleave RTK pro-ligands
bound to extracellular matrix components such as hep-
arin binding EGF (Hb-EGF). These cleaved ligands

then bind to cell surface RTKs triggering downstream
signalling. Activation of MMPs or ADAMs occurs as a
consequence of GPCR activation; however, the exact
mechanisms are not fully known but are proposed to
involve Gbg subunits [13] or Src [14e16].

As GPCRs lack intrinsic tyrosine kinase activity, ligand-
bound GPCRs indirectly activate RTKs via intracellular
protein kinases such as Src, PI3K and Pyk [3]. These
effector proteins directly induce RTK activation via
phosphorylation of tyrosine or serine/threonine residues.

For example, Src-mediated phosphorylation of EGFR
has been observed following activation of the cortico-
tropin releasing factor receptor 1 (CRF1R) with this
transactivation critical for CRF stimulated ERK1/2
signalling [17]. Mediators can also play simultaneous
roles in direct RTK activation and transactivation (e.g.
Src at CXCR4 and EGFR [15]).

Another mechanism of transactivation is via production
of second messengers, notably reactive oxygen species
(ROS). NADPH Oxidase produced ROS has been
shown to mediate transactivation between formyl pep-

tide receptor 1 (FPR1) with VEGFR2 [18], EGFR [19]
and TrkA [20] as well as the formyl peptide receptor 2
(FPR2) with HGF [21]. The multiple RTKs activated
by ROS have led to speculation that ROS may be a
mechanism for global transactivation [5] supported by
recent evidence of ROS-mediated dual transactivation
of EGFR and HER2 by neurotensin 1 receptors [22].

Though currently less extensively observed, trans-
activation can be bidirectional. For example, the lyso-
phosphatidic acid receptor 1 (LPA) and EGFR can

reciprocally transactivate and induce proliferation of
prostate cancer cells [23]. However, this same positive
crosstalk can be suppressed by activation of another
GPCR, the free fatty acid receptor (FFA4 [23]). For-
mation of RTK/GPCR complexes can also alter effector
protein coupling to the GPCR partner as seen for the
CB2R. In response to tetrahydrocannabinol (THC), the
CB2R typically couples to Gq/11; however, when
complexed with HER2, CB2R coupling switches to Gi or
Gz subtypes [11]. This suggests HER2/CB2R is a
ent Opinion in Endocrine and Metabolic Research 2021, 16:102–112

www.sciencedirect.com/science/journal/24519650


Figure 1

Ligand-dependent and independent transactivation mechanisms. GPCRs are seven transmembrane spanning receptors that are activated by
agonist binding. This stabilises GPCR conformations favouring the activation and subsequent dissociation of heterotrimeric G proteins (Ga and Gbg
subunits). Ga can mediate signalling via effector proteins such as Src and PKC. In ligand-dependent transactivation, effector proteins activated by GPCR
signalling such as Src can themselves induce the activation of matrix metalloproteinases (MMPs) or a disintegrin and metalloproteinases (ADAMs).
Evidence also exists suggesting Gbg subunits may activate MMPs. MMPs and ADAMs cleave pro-forms of RTK ligands that are bound to components of
the extracellular matrix (dotted lines). These pro-ligands are then free to diffuse to bind to their cognate RTK. A stylised version of a RTK structure is
shown here. RTK ligand binding activates the receptor, triggering monomer dimerisation, auto-transphosphorylation and subsequent downstream
signalling pathways. Transactivation can also occur through ligand-independent mechanisms (dashed arrows). Effector proteins activated following
GPCR activation, such as Src, PKC and Pyk can directly activate RTKs via phosphorylation of tyrosine residues in the C terminus. Additionally secondary
messenger molecules generated via effector protein mediated signalling (e.g. reactive oxygen species (ROS) produced by NADPH oxidase) can also
mediate direct activation of RTKs.

104 GPCRs
unique pharmacological entity compared to CB2R that
promotes pro-tumoural signalling. RTK-mediated
GPCR transactivation is typically more complex than
GPCR/RTK and can include tyrosine phosphorylation of
GPCRs and GRKs by RTKs or modulation of GPCR
serine/threonine phosphorylation by protein kinases
(reviewed in Ref. [24]). A recent example of this is
Current Opinion in Endocrine and Metabolic Research 2021, 16:102–112
internalised EGFR (induced by EGF), which can indi-
rectly mediate inhibition of dopamine D3 receptor
signalling by promoting tyrosine phosphorylation of
GRK2, subsequently inhibiting D3 signalling, endocy-
tosis and degradation [25]. To add further complexity,
different RTKs can induce phosphorylation of the same
GPCR but at differing residues (in this instance
www.sciencedirect.com
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tyrosines), as observed at the b2-AR following ligand
activation of the IR [26] or IGF-1R [27].

Challenges remain in unravelling signalling directly
attributable to transactivation alone, complicated by
RTKs also utilising ‘classical’ GPCR signalling mediators
such as G proteins, b-arrestins and GRKs (reviewed in
Ref. [7]). For example, Gai is critical to VEGFR2

clathrin-mediated endocytosis, with knockout of Gai
retaining VEGFR2 at the cell surface and decreasing
downstream VEGFR2 driven signalling [28]. Gbg, in
conjunction with Src, is implicated in regulating EGFR
endocytosis, and mediating interaction of internalised
EGFR/Src/GRK complexes [25]. GRKs can also directly
regulate RTK-driven signalling (seen for the IGF-1R),
with different GRK subtypes exhibiting opposing ef-
fects at the same receptor [29], potentially by modu-
lating changes in the lifespan of b-arrestin association.
Interestingly, following transactivation (Src and MMP

dependent) of the IGF-1R by the vasopressin 2 receptor
(V2R), it is the engagement of b-arrestin with IGF-1R
and not V2R that is critical for vasopressin stimulated
ERK1/2 signalling [16], with suggestions that RTK/b-
arrestin interactions may be applicable to other GPCRs.

Many signalling effectors, such as Src, PI3K, ERK1/2
and MAPK can act as convergence points for multiple
signalling pathways, including those that are GPCR or
RTK mediated, making it more difficult to tease out
signalling events directly attributable to transactivation.

RTK inhibitors, such as AG1478 (EGFR), have been
useful in ‘silencing’ the RTK component of trans-
activation; however, they often lack selectivity. Trans-
activation has largely been confirmed using indirect
biochemical measures of signalling pathways (e.g.
phosphorylation ERK1/2) at endogenous unmodified
receptors. Although, they often lack dynamic, temporal
or spatial resolution, these readouts can still reveal static
spatial detail such as differential subcellular ERK1/2 and
Akt activation in fractionated mice hearts and cardio-
myocytes as a result of isoprenaline-induced bAR-
mediated EGFR transactivation [30].

The use of resonance energy transfer techniques to
measure the real-time recruitment of adaptor proteins
in transactivation
There remains a need to quantify the real-time location
and dynamics of transactivation specific signalling.
Proximity-based techniques such as bioluminescence
resonance energy transfer (BRET) or Förster Resonance
Energy Transfer (FRET) offer exquisite spatial and
temporal sensitivity for investigating proteineprotein
interactions in live cells due to the need for close
proximity of donor/acceptor pairings (within 10 nm of
each other) [31]. The use of a FRET-based biosensor

illustrated the importance of phosphorylation by PI3K in
regulating Src activity during transactivation of b2-AR/
www.sciencedirect.com Curr
EGFR [32]. Furthermore, a BRET-based assay has
highlighted the complexity of AT1R transactivation of
insulin receptors as the protein kinase (ERK1/2 vs.
PKC) mediator was found to differ between insulin re-
ceptor substrates [33]. BRET has also investigated the
real-time kinetics of fluorescently tagged b-arrestin2
recruitment to b2-AR/IR complexes in response to
isoprenaline [34] and at NanoLuc tagged b2-AR in the

presence of VEGFR2 (Figure 2A [35]). The profile of b-
arrestin2 recruitment to b2-AR was altered following
agonist co-stimulation when compared to b2-AR agonist
alone and required the presence of activated VEGFR2
(Figure 3A). In both cases b-arrestin was only seen with
GPCR stimulation [34,35]. However Grb2 recruitment
to AT1R/EGFR complexes measured using BRET
revealed different extents depending on which receptor
partner was activated, with rapid recruitment seen with
EGFand only partial recruitment with the AT1R agonist
angiotensin II [36]. Grb2 recruitment to AT1R/EGFR

complexes in these cells (HEK293T) was shown to be
independent of Gq/11 or b-arrestin, whereas previous
observations in COS-7 cells or ventricular cardiomyo-
cytes showed dependence on Gq/11 activation for AT1R/
EGFR mediated hypertrophy [37]. These discrepancies
may reflect differences in proximal (direct effector
protein recruitment) versus indirect (e.g. downstream
pathway activation) measures of transactivation [36].

However, it is also becoming increasingly clear that
transactivation mechanisms may differ between cell

types due to changes in the expression levels or reper-
toire of signalling components present. Functional
genomic approaches (at AT1R/EGFR complexes in
HMEC-LST cells [38]) and DNA microarray gene
expression studies (a2B-AR in vascular smooth muscle
cells [39]) have begun to provide new unbiased
methods for identifying mediators involved.
Physical complex formation between
GPCRs and RTKs
The formation of oligomeric complexes between
GPCRs and RTKs is now accepted as a regulator of
transactivation [2]. These complexes may represent a
mechanism to localise signalling components together
to increase the efficiency of transactivation and resul-
tant downstream signalling. Discrete complexes also
raise the potential for cooperativity across putative
GPCR/RTK interfaces; however, evidence for this is still
largely speculative. Observations of complex formation
have largely been derived from co-immunoprecipitation
assays, which cannot definitively confirm physical com-

plexes, their cellular location or lifespan. In contrast, the
exquisite spatial sensitivity and dynamism of BRETand
FRET techniques have recently been used to investi-
gate GPCR or RTK oligomerisation in real time
(reviewed in Ref. [31], summarised in Table 1).
ent Opinion in Endocrine and Metabolic Research 2021, 16:102–112
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Figure 2

Using bioluminescence resonance energy transfer to investigate GPCR/RTK complex formation and adaptor protein recruitment. RTKs can be
tagged at their N terminus with a luminescent protein (e.g. NanoLuc; termed the ‘donor’; blue hexagon) at both monomers, whereas a fluorescent tag (e.g.
‘SnapTag’ termed the ‘acceptor’; green rectangle) can be attached to the N terminus of a GPCR (a). The substrate for the luminescent protein is then
oxidised, producing energy in the form of photons. If donor and acceptor tagged receptors are in sufficiently close proximity (<10 nm), non-radiative
transfer of this energy occurs to excite the acceptor fluorophore. The ratio of fluorescence and luminescence emissions allows a BRET ratio to be
determined. BRET can also be used to investigate adaptor protein recruitment to a GPCR/RTK complex (b), for example, using a GPCR tagged at its C
terminus with a luminescence protein (blue hexagon) and a fluorescently tagged adaptor protein (in this case b-arrestin2-YFP; green circle).

106 GPCRs
FRET has confirmed the formation of 5-
hydroxytryptamine receptor 1 A (5-HT1A; GPCR)
complexes with FGFR1 [40] supporting physiological
evidence for these complexes and their role in neuronal
plasticity [41]. BRET studies have also revealed the

formation of heteromeric complexes between the b2-AR
and IR that could underlie the counter-regulatory ef-
fects of insulin and catecholamines in glucose meta-
bolism [42]. FRET has also shown isoprenaline-induced
dissociation of b2-AR/EGFR complexes which inter-
nalise to distinct endocytic compartments [32].
Constitutive and dynamic agonist-induced complexes of
AT1R/EGFR [36] and b2-AR/VEGFR2 [35] have also
been revealed using BRET. b2-AR/VEGFR2 complexes,
as measured by BRET, were also observed with endog-
enously expressed b2-AR (using CRISPR/Cas9 gene
Current Opinion in Endocrine and Metabolic Research 2021, 16:102–112
edited HEK293T cells) and in human umbilical vein
endothelial cells (HUVECs [35]). Interestingly signifi-
cantly increased BRETwas observed between adenosine
A2A and FGF1 following concomitant agonist stimula-
tion [43], consistent with previous biochemical obser-

vations in PC12 adrenal medulla cells where synergistic
ERK1/2 phosphorylation was only observed with dual
activation of A2A and FGFR-1 [44]. Dissociation of
complexes upon GPCR stimulation has also been
observed with BRETstudies of CB2R/HER2 in response
to THC [11].

A disadvantage of RET-based studies is they cannot
necessarily show the cellular location of GPCR/RTK
complexes. Fluorescence imaging of co-localised GPCRs
with RTKs has been limited by the paucity of selective
www.sciencedirect.com
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Figure 3

Potential effects of transactivation of GPCR and vascular endothelial growth factor receptor 2 (VEGFR2) on effector protein recruitment or
endocytosis. Schematics (a) and (b) are based on findings detailed in Ref. [35] using BRET to measure b-arrestin2 recruitment to b2-adrenoceptor when
co-expressed with the vascular endothelial growth factor receptor 2 (VEGFR2). b2-Adrenoceptors were stimulated with the agonist isoprenaline, resulting
in GRK phosphorylation of the b2-adrenoceptor C terminus and subsequent rapid recruitment of b-arrestin2, which then subsided within minutes (a).
However co-stimulated with isoprenaline and the VEGFR2 prototypical agonist VEGF165a altered the profile of b-arrestin2 recruitment (b). Although peak
responses were truncated and then partially dropped, BRET signals did not return to baseline. This suggested that the presence of ligand-activated
VEGFR2 lead to sustained b-arrestin2 coupling to b2-adrenoceptor. These data also reconciled with observations also seen in Ref. [35] that b2-
adrenoceptors and VEGFR2 co-internalise into the same Rab5+ endosomal compartments following stimulation with either receptor agonist. This has the
potential for modulation of signalling, in respect to pathway activation, kinetics of signalling or intracellular fate of receptors (recycling or degradation)
when compared to endocytosis of either receptor alone. GPCRs have also been shown to indirectly modulate cell surface expression and endocytosis of
RTKs resulting in altered signalling outcomes. The example depicted here is derived from data in Ref. [12] (c). Ligand-induced activation of a GPCR leads
to Gai-mediated activation of intracellular protein kinases, which can then directly phosphorylate specific tyrosine residues on the C terminus of the RTK.
The example depicted here is in respect to sphingosine 1 phosphate receptor (S1P1 R)-mediated regulation of VEGFR2 endocytosis and involves the
intracellular protein kinase c-Abl, phosphorylating VEGFR2 at tyrosine residue 951 (as opposed to the prototypical activation residue of Tyr1175) ulti-
mately inhibiting VEGFR2 endocytosis. This leads to sustained VEGFR2-mediated Rac signalling that drives endothelial cell proliferation and enhances
tumour growth.

GPCR and receptor tyrosine kinase interactions Kilpatrick and Hill 107
antibodies for GPCR subtypes. The use of proximity
ligation assays (PLA) has circumvented this in some
ways with notable recent observations of endogenous
heterocomplexes of 5-HT1A/FGFR-1 in rat hippocam-
pal pyramidal neurons [40] and rat hippocampal astro-
cytes [45], muscarinic acetylcholine receptor 1 (M1)/
FGFR1 complexes in hippocampal neurons [46],
constitutive thyroid stimulating hormone receptor
(TSHR) and IGF-1R in Graves orbital fibroblasts [47]
www.sciencedirect.com Curr
and CB2R/HER2 complexes in HER2þ breast cancer
patient biopsies [11]. Although PLA can provide
improved spatial resolution, it is limited to use with
fixed permeabilized cells and cannot reveal real-time
changes. The use of genetically encoded fluorescent
protein tags (e.g. GFP), or exogenously labelled tags
(e.g. SnapTag or HaloTag) has allowed cellular co-
localisation of GPCR/RTKs to be visualised both in
absence or presence of ligands [35]. Questions remain as
ent Opinion in Endocrine and Metabolic Research 2021, 16:102–112
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Table 1

Summary of GPCR/RTK complexes detected using fluorescence- or luminescence-based techniques.

GPCR RTK Cell type Technique used Reference

5-HT1A FGFR1 HEK293 cells (FRET, PLA), rat dorsal and
median raphe nuclei (PLA)

FRET, PLA [40]

5-HT1A FGFR1 HEK293T cells, rat hippocampal cultures PLA [41]
5-HT1A FGFR1 Rat brain dorsal hippocampus (astrocytes) PLA [45]
M1 FGFR1 Rat hippocampus and cerebral cortex PLA [46]
TSHR IGF-1R Graves orbital fibroblasts PLA [47]
b2-AR IR HEK293T cells BRET [42]
b2-AR EGFR HEK293T cells FRET [32]
AT1R EGFR HEK293T cells, CHO K1 cells, NIH-3T3,

primary vascular smooth muscle cells
BRET [36]

b2-AR VEGFR2 HEK293 cells, HUVECs BRET [35]
Adenosine A2A FGFR1 HEK293T cells BRET [43]
CB2R HER2 HEK293T cells (BRET, bimolecular

fluorescence complementation),
Her2+ breast cancer patient biopsies (PLA)

BRET, PLA, bimolecular
fluorescence complementation

[11]

BRET = bioluminescence resonance energy transfer.
FRET = fluorescence resonance energy transfer.
PLA = proximity ligation assay.
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to whether changes in endocytosis of one partner may
modulate transactivation. Stimulation with insulin can
induce insulin receptor mediated internalisation of the
b2-AR [42]. Insulin, acting via the IR, has been shown to
stimulate internalisation of the b2-AR via IR-mediated
phosphorylation of specific tyrosine residues in the b2-
AR C terminus enhancing association with endocytosis
components such as Grb2 [48]. Similarly, the b1 agonist
dobutamine has been shown to induce partial internal-
isation of EGFR (b1-AR/EGFR [14]). The S1PR is able
to promote VEGFR2 angiogenic signalling by regulating
selective tyrosine phosphorylation of VEGFR2 via Gai
activation of the protein kinase c-Abl. Interestingly this
retains VEGFR2 at the cell surface altering the kinetics
of VEGFR2 driven Rac signalling from a transient to
sustained profile. This results in increased migration of
tumour-associated endothelial cells and ultimately
tumour angiogenesis [12; Figure 3C]. Dual labelling of
b2-AR/VEGFR2 revealed constitutive cell surface co-

localisation [35]. Stimulation with receptor selective
ligands resulted in co-endocytosis into early endosomal
compartments which co-localised with immunolabelled
Rab5 endosomes and reconciled with BRET data
showing altered and sustained b-arrestin2 recruitment
at these complexes (Figure 3B). This is interesting in
light of the increasing appreciation of the importance of
endosomal signalling in the spatiotemporal control of
signalling for GPCRs [49] and RTKs [50].

RET and imaging studies have mostly used model cell

systems due to the need to modify receptors with
luminescent or fluorescent labels, which risk artefacts of
receptor overexpression, although future use with
CRISPR/Cas9 may mitigate this. In endogenous sys-
tems the extent of transactivation may be dependent on
expression levels of each partner; however, interestingly
BRET studies of angiotensin II-induced transactivation
of EGFR by AT1R in HEK293T cells using overex-
pressed receptors revealed transactivation only repre-
sented a subset of the total signalling capacity of EGFR
(estimated at w20% [36]). GPCR/RTK complex for-
mation may therefore represent a subset of RTKs ar-

ranged in membrane microdomains or within
intracellular compartments that facilitate close prox-
imity and the formation of discrete complexes with their
partner GPCR. Advanced imaging techniques with
single cell/receptor sensitivity such as fluorescence
correlation spectroscopy (FCS) and total internal
reflection fluorescence microscopy (TIRF-M) have
illustrated that receptors are not homogenously
expressed on the surface of cells, but are within discrete
membrane regions [51]. This localises components of
signalling within microdomains, bringing different

signalling mediators into close proximity, facilitating
greater efficiency of receptor/effector coupling. These
specialised microdomains termed ‘lipid rafts’ are linked
to the actin cytoskeleton [52]. Signalling as a conse-
quence of transactivation of CBR1/FGFR1 complexes
www.sciencedirect.com Curr
has been shown to emanate from lipid rafts in embryonic
cortical neurons [53]. As many GPCRs and RTKs are
known to localise to caveolin containing lipid rafts [54],
it is likely that other GPCR/RTK complexes may also
exist here.

Unravelling GPCR/RTK complex formation is further
complicated by RTK heterodimerisation. Recent FRET

studies have indicated that RTK homo and hetero-
dimers have similar strength of interactions, high-
lighting the potential influence that RTK heterodimer
may have upon transactivation [55]. The increasing
acceptance of GPCR homo and heteromerisation (albeit
likely to be relatively transient) may also further
complicate understanding of transactivation signalling
networks [56]. GPCR/RTK complexes may also be
components of larger macromolecular complexes
containing other membrane bound proteins such as
integrins, extracellular matrix glycoproteins and co-

receptors (e.g. Neuropilin-1 for VEGFR2 [57]). Inves-
tigation of the influence of these proteins on GPCR/
RTK complex formation, organisation, lifetime and
signalling is still in its infancy. The altered signalling
seen with GPCR/RTK transactivation suggests that co-
targeting of GPCR/RTK macromolecular complexes
may represent new therapeutic avenues; wholesale in-
hibition of RTK signalling can often result in consider-
able off-target effects due to the integral role RTKs play
in physiological processes. The use of lower concentra-
tions of RTK inhibitors in conjunction with ‘trans-inhi-

bition’ of GPCR partners may provide a mechanism to
modulate RTK-driven signalling to overcome some of
these off-target issues.
Conclusion
GPCRs have been shown to exploit the intrinsic kinase

activity and vast signalling networks available to RTKs,
whereas proteins previously defined as ‘GPCR signalling
mediators’ are now known to also be integral signalling
partners for RTKs (e.g. G proteins, b-arrestins). This
bidirectional transactivation between GPCRs and RTKs
allows integration of signalling inputs to increase the
number and diversity of signalling outcomes available.
The advancement of fluorescence- and luminescence-
based techniques has allowed the identification of
GPCR/RTK complexes whose dynamics, localisation
and distinct pharmacological profiles can be quantified

in real time. Studies of cooperativity across GPCR and
RTK interfaces are still relatively understudied; how-
ever, advancements in techniques that offer increased
real-time spatial and temporal resolution will allow this
phenomenon to be teased apart from signalling crosstalk
and may open up new opportunities to co-target GPCR/
RTK complexes in drug discovery.
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pathology.
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