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The conversion efficiency of ultra-thin solar cells based on layered materials has been limited 

by their open-circuit voltage, which is typically pinned to a value under 0.6 V.  Here we report 

an open-circuit voltage of 1.02 V in a 120 nm-thick vertically stacked homojunction fabricated 

with substitutionally doped MoS2. This high open-circuit voltage is consistent with the band 

alignment in the MoS2 homojunction, which is more favourable than in widely-used TMDC 

heterostructures. It is also attributed to the high performance of the substitutionally doped 

MoS2, in particular the p-type material doped with Nb, which is demonstrated by the 

observation of electroluminescence from tunnelling graphene/BN/MoS2 structures in spite of 

the indirect nature of bulk MoS2. We find that illuminating the TMDC/metal contacts decreases 

the measured open-circuit voltage in MoS2 van der Waals homojunctions because they are 

photoactive, which points to the need of developing low-resistance, ohmic contacts to doped 

MoS2 in order to achieve high efficiency in practical devices. The high open-circuit voltage 

demonstrated here confirms the potential of layered transition-metal dichalcogenides for the 

development of highly efficient, ultra-thin solar cells.  

Transition metal dichalcogenides (TMDCs) have recently attracted great attention for their 

potential application in ultra-thin opto-electronic devices because their layered nature provides 

tuneable, thickness-dependent band gap energies1 and self-passivated surfaces.2 Photovoltaic 

devices based on van der Waals junctions made of TMDCs have demonstrated remarkably high 

photocurrents for ultra-low thicknesses,3,4 holding out the promise of TMDCs being chemically 

stable, non-toxic absorber materials that will enable highly efficient ultra-thin solar cells. 

However, the open-circuit voltages (VOC) reported for van der Waals junctions of TMDCs are very 

low, hampering the development of efficient TMDC photovoltaics. 

The VOC is the maximum voltage produced by a photovoltaic device and, therefore, it represents 

the maximum energy that can be extracted from any absorbed photon under a given illumination 

level. If the illumination has a broadband spectrum, such as the solar spectrum, the device 

absorbs photons of all energies down to the minimum allowed energy, i.e. the band gap energy 

(EG). Therefore, the so-called bandgap-voltage offset (WOC = EG/e  – VOC) is a simple measure of 

the fundamental energy loss in the device.5,6 Due to thermodynamic constraints, there is a lower 
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limit to the WOC, which is approached when all parasitic loss mechanisms have been eliminated 

and only radiative recombination takes place. This minimum WOC value can be calculated 

following the Shockley-Queisser detailed balance theory7 and, for illumination with the AM1.5G 

standard solar spectrum, it lies between 0.24 and 0.30 V for EG values between 1.1 and 1.9 eV 

(see Supporting Information, SI, for details). Devices made of epitaxial III-V materials, such as 

GaAs, work close to the radiative limit and exhibit the lowest experimental WOC with 0.31 V under 

the AM1.5G standard solar spectrum.8 In the case of silicon, the record one-sun WOC is  0.38 V, 

determined by the Auger recombination inherent to this material.9 Among emerging 

technologies, metal halide perovskites have reached the lowest WOCs with 0.44 V,10 whereas 

record organic solar cells exhibit higher values around 0.53 V.11   

Solar cells based on van der Waals junctions of TMDCs reported to date, generally containing a 

heterojunction of MoS2 and WSe2, exhibit WOC values above 0.8 V for bulk devices and above 1 V 

for monolayer devices. The corresponding VOC values are below 0.4 V for multilayer TMDCs3,12,13 

(EG 1.2-1.3 eV) and below 0.6 V for monolayer devices14–18 (EG 1.6-1.9 eV), even for illumination 

levels much higher than one-sun irradiance. Moreover, many of these devices show a pinned VOC 

3,12,13,19, that is, a VOC that does not increase with illumination intensity. Interestingly, lateral 

junctions created on a TMDC flake by split-gating, selective chemical surface doping or using a 

double Schottky barrier have shown lower WOCs than van der Waals devices, with values down 

to 0.54 V reported for bulk flakes20,21 and 0.73 V for monolayers.21,22 This suggests that the 

reasons behind the small VOC in TMDC solar cells can be found in the limitations of the van der 

Waals junction rather than in the materials.   

In this letter, we demonstrate a VOC of 1.02 V and a WOC of 0.27 V in a TMDC-based photovoltaic 

cell under broadband illumination with 4 W/cm2. The device consists of a vertically stacked p-

MoS2:Nb and n-MoS2:Fe van der Waals homojunction. The main reason for the high VOC is the 

homojunction band alignment generated by the p- and n-type substitutional doping, which is 

more favourable than the band alignment of a heterojunction. Previous attempts at fabricating 

van der Waals MoS2 homojunctions, however, had not shown a considerable improvement over 

heterojunctions;23 the best reported result is a VOC pinned at 0.57 V.24 We argue here that this 
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can be explained by the presence of photoactive Schottky barriers at the contacts. In our devices 

we overcome this problem by supressing the photogeneration in these parasitic diodes, which 

enables the VOC to rise to 1 V. 

Figure 1a shows the structure of the photovoltaic device, in which a p-MoS2:Nb crystal (p-type, 

12 nm thick) partially overlaps with an n-MoS2:Fe crystal (n-type, 110 nm thick) forming a van der 

Waals junction with an area of 182 µm². The crystals were grown using the chemical transport 

method with a nominal doping level of 0.5%. The actual concentration of dopant atoms has been 

estimated from X-ray photoelectron spectroscopy (XPS) to be 0.4% Nb in the p-type crystals and 

0.1% Fe in the n-type crystals. The bulk electrical doping extracted from Hall measurements is 3.0 

× 1019cm-3 in the p-material and its band diagram is unambiguously degenerate. 25 The effective 

electrical doping in the n-material is estimated to be   ̴ 7-8 × 1018 cm-3. Crystal flakes were 

mechanically exfoliated and transferred onto a silicon wafer covered by a 90 nm thick silicon 

dioxide layer. Details on the fabrication procedure are available in the SI. Figure 1b shows the 

current density - voltage (J-V) characteristics of the device measured under broadband 

illumination (halogen spectrum) with three different intensities, using a two-wire configuration. 

The VOC of this device reaches 0.68 V at the highest intensity of 4 W/cm2. The photoconversion 

efficiency is fairly constant at ~ 2%, since the improvement in VOC for higher light intensities is 

counteracted by a decrease of the fill factor (FF) associated to series resistance losses.  
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Although the VOC observed in Figure 1b surpasses the highest values reported for bulk van der 

Waals MoS2/WSe2 heterojunctions (0.38 V)3 and bulk MoS2 homojunctions (0.57 V)24, it does not 

reveal the real potential of the MoS2 homojunction. In fact, the device can produce much higher 

photovoltages using the same light source and illumination density, as it is shown in Figure 2. 

Panels 2a to 2d show J-V characteristics of the device (in solid dark circles) measured in a four-

wire configuration under different illumination conditions, as illustrated by the schematics. When 

light shines on the entire chip the device is characterised by the J-V curve in Figure 2a, with a VOC 

of 0.73 V. Using an iris diaphragm, it is possible to control the size of the illuminated area without 

modifying the illumination power density (see schematics in Figure 2a-d). If the light falling on 

the p-side is blocked by the diaphragm, the device is characterised by the J-V curve in Figure 2b 

with VOC = 0.80 V and if it is blocked the light on the n contact we find VOC = 0.92 V, see Figure 2c. 

Finally, the highest VOC of 1.02 V is reached in Figure 2d when both contacts are in the dark and 

only the pn-junction is illuminated. The different illumination curves can be explained by the 

presence of undesired photoactive Schottky diodes at the TMDC-metal contacts which can be 

modelled using a simple equivalent circuit model.  

 

Figure 1. MoS2 van der Waals homojunction solar cell on SiO2/Si. a) Schematic: A p-MoS2:Nb layer 
partially overlaps with an n-MoS2:Fe layer forming a junction on an oxidized silicon substrate and they 
are contacted with Ni/Au electrodes. b) Two-wire J-V characteristics measured when the whole chip 
is illuminated with a broad-band (halogen) spectrum with the irradiances given by the labels. 
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The equivalent circuit for the van der Waals MoS2 homojunction solar cell is depicted in Figure 

2e. The main elements are three photovoltaic generators, each one represented as a 

combination of a constant current generator (with photocurrent JL) and a recombining diode 

(with dark current JD). These three generators are the MoS2 pn-junction, the photoactive diode 

at the n-Schottky contact and the photoactive diode at the p-Schottky contact. Each Schottky 

diode introduces a non-ohmic, illumination-dependent series resistance component in the 

circuit. Note that in four-wire measurements each Schottky generator appears twice. The circuit 

also includes a parallel resistance (RP) and linear series-resistance components associated to each 

flake (Rs,n and Rs,p). Solving the equation system we obtain the modelled curve Jmodel (blue solid 

line), which is in good agreement with the experimental data Jexp (black solid circles) in all cases 

in Figure 2, and also for the two-wire curves in Figure 1 and the dark curve (shown in SI, together 

with the set of parameters used).  
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To visualize the effect of the photoactive Schottky diodes on the device performance, we have 

plotted in Figure 2a-d the J-V characteristics of each element individually. A dashed green line is 

used for the n-Schottky, dashed purple line for the p-Schottky, and dashed red line for the MoS2 

pn-junction. All measurements are consistent with the pn-homojunction generating 1.02 V. 

 

Figure 2. High photovoltage in a MoS2 homojunction solar cell. a-d) Schematics and J-V characteristics 
for various illumination conditions, showing a maximum VOC of 1.02 V. Solid black circles are used for 
the experimental values and a blue line for the modelled fit. The dashed curves represent the 
modelled contributions from the MoS2 homojunction (red) and the contacts (green and purple). The 
irradiance level is the same in all cases, but the illuminated region is modified using a diaphragm. e) 

Equivalent circuit model. f) Plot of (𝛼ℎν)1 𝑚⁄  against ℎν and extrapolation of the experimental EG 
values (with m=2 for indirect and m=1/2 for direct band gaps). g) Ideal band diagram of a MoS2 
homojunction with substitutional doping. 
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However, because the Schottky diodes are reverse-biased with respect to the pn-junction, the 

photovoltage they produce under illumination is subtracted from the over-all voltage. The effect 

is that of a non-linear series-resistance that can not only degrade the FF but also the VOC. 

Therefore, when the whole chip is illuminated (Figure 2a) both Schottky diodes together reduce 

the over-all VOC from 1.02 V to 0.73 V. The individual contributions can be decomposed by 

blocking selectively the light falling on either side with the diaphragm (Figure 2b and c). When 

both Schottky contacts are in the dark, the device VOC is determined solely by the one produced 

by the MoS2 homojunction, 1.02 V. We have disregarded here the effect of shunting and linear 

series resistances, which are considered in the SI. Note that the voltage bias of the Schottky 

diodes when they are illuminated is determined by the sum of JL,pn and JL,Sp (or JL,Sn). Therefore, 

in measurements where the whole device is illuminated, such as those showed in Figure 1b, a 

higher illumination intensity implies a larger voltage drop in the Schottky diodes, and hence a 

larger degradation of the FF, than what could be anticipated from the increase in JL,pn alone. 

The behaviour of the van der Waals MoS2 homojunction contacts is unconventional for solar cells. 

The presence of rectifying contacts in solar cells is usually associated to the appearance of a non-

ohmic series resistance which reduces only the FF of the device. They can only have an effect on 

the VOC (when the current is zero) if they are photoactive, and this is not the case in conventional 

solar cells because, even if they are strongly rectifying, the metal covering the semiconductor 

keeps the Schottky barrier and its depleted region in the dark. However, this is not true for very 

thin TMDC-based devices. It has been found that, in this case, the depletion regions associated 

with  Schottky barriers can extend laterally several microns away from the metal contact edge26,27 

which means that photoactive Schottky barriers are to be expected even if a metal has been 

evaporated on top of a TMDC. In our devices, the photocurrent generated by the Schottky 

contacts is consistent with depletion regions that spread   ̴5 µm on average from the metal edge, 

in good agreement with previous reports26 (see SI for details). 

The results in Figure 2a-d confirm the potential of the MoS2 van der Waal homojunction as 

photovoltaic device, proving that it can reach VOC values of, at least, 1.02 V. This potential is 

jeopardized by the presence of Schottky barriers at the contacts and, although we can eliminate 
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their effect on the VOC by keeping them in the dark and measuring with a four-wire configuration, 

their presence still degrades the FF of the device, and hence, its efficiency. Once the Schottky 

barriers are removed, the device would be characterized by the red dashed curve, which offers 

the prospect of reaching a photoconversion efficiency of ~6 % in this simple unoptimized device 

structure, rendering the use of MoS2 a promising approach to TMDC based photovoltaics. 

However, eliminating the Schottky barriers completely at TMDC/metal interfaces is not a simple 

task and will require further technological developments, as pointed out before.27,28 The 

comparison of Figure 2b and 2c shows that, in our device, the n-Schottky barrier is more rectifying 

than the p-Schottky barrier. In broad terms, this is to be expected from the Schottky-Mott rule, 

because the work function of Ni (-5.2 eV) is closer to the valence band maximum energy of bulk 

MoS2 (-5.5 eV) than to the conduction band minimum energy (-4.2 eV). Still, the real height of 

the Schottky barrier cannot be known from the work functions alone because the metal 

evaporation triggers band structure changes in TMDC and leads to Fermi-level pinning,21,27,29–32 

This implies that to achieve ohmic contacts to TMDCs it is not sufficient to evaporate metals with 

well-aligned work functions. Therefore, more sophisticated strategies will be required to unlock 

the photoconversion potential of the MoS2 homojunction in practical devices.   

Once we have established the VOC of the homojunction, the value of the band gap EG is critical 

for the discussion of the WOC. It is known that bulk MoS2 exhibits two bandgap energies: an 

indirect transition at around 1.3 eV and a direct transition at a higher energy. When the MoS2 

sample is thinned, the indirect transition is shifted upwards in energy and, in the ML limit, the 

direct band gap dominates the opto-electronic properties1. To determine EG in our samples we 

apply the generic relationship33 between the absorption coefficient (α) of a semiconductor, 

estimated in this case from the external quantum efficiency (EQE), and the photon energy (ℎν), 

obtaining the plot in Figure 2f (see SI for details). We find an indirect band gap with EG = 1.29 ± 

0.04 eV and a direct one with EG = 1.82 ± 0.02 eV in agreement with the reported values for bulk 

MoS2.1 In solar cells where the absorber material has a smaller indirect band gap and a larger 

direct band gap, such as the ubiquitous silicon solar cells, the smallest of the two limits the VOC.34 

In this case we find WOC = 0.27 V at an illumination intensity approximately equivalent to 40 suns. 

At this illumination intensity, the radiative WOC for an ideal device which absorbs all photons 
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above EG = 1.29 eV is 0.16 V (see SI for calculation applying Shockley-Queisser’s detailed balance 

theory7). Therefore, our experimental result is encouragingly close to the radiative limit.  

The band diagram in Figure 2g illustrates why approaching the radiative limit established by the 

detailed balance theory is possible in a homojunction and not in a heterojunction. In Figure 2g 

we draw an idealised band diagram (disregarding possible surface bending effects) of a bulk MoS2 

homojunction. Doping, and in particular degenerate doping as in our material,25 causes the bands 

to be shifted so far that the built-in voltage (times the electron charge e) approaches the band 

gap. With suitable contacts and minimal non-radiative recombination, the VOC approaches the 

built-in voltage. Therefore, in a homojunction the VOC is ultimately limited by EG, which is not the 

case of a heterojunction. For example, intrinsic bulk MoS2 in combination with intrinsic bulk WSe2 

results in a band diagram in which the alignment is given by the respective electron affinities 

(band diagrams of MoS2 / WSe2 heterojunctions are shown in the SI). If a forward voltage bias is 

applied, one band becomes flat when the bias equals the smaller of the two band offsets, in this 

case 0.4 V. Therefore, the smaller band offset limits the VOC in a heterojunction. This barely 

improves if the device consists of MLs, although their band gap energies are much larger (also 

shown in the SI). The smaller of the two offsets at the band edges, i.e. the ultimate limit to the 

VOC, in an intrinsic ML MoS2 / ML WSe2 union is 0.7 eV.  

Having discussed the VOC, in the following we focus on the photocurrent generated by the 

homojunction solar cell, which is determined by the absorbance. We calculate the light energy 

flux inside of a MoS2/substrate structure applying the generalized matrix method as described by 

E. Centurioni35 and using literature values of the optical constants36. Figure 3a shows the 

calculated absorbance, transmittance, and reflectance of a MoS2 slab for varying thickness d from 

1 ML to 200 nm. The values are representative of photon energies above the direct optical EG 

(1.82 eV) because photons between the two band gaps of MoS2 are only weakly absorbed in an 

ultra-thin device. The plotted values correspond to the fraction of photons from the AM1.5G 

spectrum that are absorbed, transmitted, or reflected in the range 300-680 nm. Three cases are 

presented: a free-standing MoS2 slab (solid lines), deposited onto a glass substrate (dashed lines) 

and deposited onto a Si substrate with a 90 nm thick SiO2 layer on top (dotted lines).  
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For free-standing MoS2, the absorbance plotted in Figure 3a has a local maximum of 38% at d = 

7 nm and an absolute maximum at d = 61 nm of 51%. Above d = 100 nm the transmittance is 

negligible, and both the absorbance and the reflectance reach virtually constant values close to 

50%. The dotted and dashed lines in Figure 3a, representing devices on a substrate, show a similar 

trend and only differ slightly from free-standing MoS2 due to the different optical environments 

and the reflections at the additional interfaces. The difference to bare MoS2 is greatest at small 

thicknesses and decreases monotonically with increasing thickness up to d = 100 nm. Above that 

point, their absorbance is also constant and close to 50%. We identify two regions of interest for 

photovoltaic applications. Extremely thin devices between 1 ML and 10 nm can render high 

efficiency due to low reflectance losses, especially for semi-transparent applications (e.g. power-

generating windows) or if light-trapping techniques are used to minimise transmission losses. To 

this end, it still has to be demonstrated that van der Waals homojunctions with ML or few ML 

thickness can be produced via substitutional doping. Recent reports on stable conductivity of 

MoS2:Nb in the ML limit are encouraging in this respect.37 The second region of interest is the 

range around 100 nm thickness, which is exploited in this work. In this range half of the incoming 

power is lost by reflection due to the high refractive index of MoS2 compared to other 

semiconductors commonly used in photovoltaics, such as GaAs or Si. Therefore, it can be 

concluded that the photoconversion efficiency of these devices could be approximately doubled 

with the design and application of an optimised anti-reflection coating.  

Figure 3b shows an example of the calculated absorbance spectra for a MoS2 flake on glass with 

d = 2, 15, 50 and 120 nm. The spectra show the two excitonic peaks A and B characteristic of 

MoS2, at 660±5 and 600±5 nm respectively, corresponding to the absorption by direct transitions 

at the K point of the Brillouin zone, with an energy difference given by the valence band splitting 

due to spin–orbit and interlayer coupling.1,38 In some cases, additional peaks appear that are 

related to multiple reflection and interference in the semiconductor layer. For example, in the 

red curve a peak is observed at λ = 530 nm for d = 50 nm, for which the resonance condition 𝑑 =

𝑗λ/4n is fulfilled, where j is an integer and n is the refractive index.39  
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Figure 3c compares an experimental EQE measured on a MoS2 van der Waals homojunction with 

the calculated absorbance of a MoS2 slab of the same thickness on the same type of substrate. 

For this measurement we used a device fabricated on glass (12 nm p-MoS2:Nb on 262 nm n-

MoS2:Fe, area 293 µm²). This device was made on glass instead of oxidized silicon because the 

EQE measurement is performed using a lock-in amplifier and a chopped light source, and 

therefore, implies the measurement of an alternating current.  When a SiO2/Si substrate is used 

 

Figure 3. Photocurrent in a MoS2 homojunction solar cell. a) Calculated absorbance, reflectance and 
transmittance (weighted average over the AM1.5G solar spectrum) for varying thickness of MoS2, 
either free-standing, on SiO2 (90 nm)/Si, or on glass, showing that a maximum of absorbance is 
reached for a layer thickness above ~100 nm. b) Calculated absorption spectra of MoS2 on glass for 

thicknesses d = 2, 15, 50 and 120 nm. c) Calculated absorption spectra for our MoS2 on glass device 
and comparison to experimental EQE data. 



 

 

13 

the EQE measurement is distorted because the SiO2 layer acts as a capacitor that allows the 

photogeneration in the Si substrate to alter the measurement. The performance of the MoS2 on 

glass device is inferior to the one on oxidize silicon due to surface doping of the flakes (see SI for 

experimental and modelled J-V curves). Therefore, the EQE plotted in Figure 3c can be considered 

a lower bound to the EQE of the MoS2 van der Waals homojunctions.  

The calculated absorbance in Figure 3c is broken down into three contributions from the three 

electrical regions of the device: space charge region (SCR, 16.5 nm), neutral part of the p-flake 

(3.5 nm) and neutral part of the n-flake (249 nm). We have calculated the SCR thickness using the 

total depletion approximation40 and the doping levels 3.0 × 1019 and 7.5 × 1018 cm-3 estimated 

from the characterisation of doped bulk MoS2 samples. It is important to note that the measured 

EQE accounts approximately for the sum of the p-flake and the SCR contributions, and the neutral 

part of the n-flake does not contribute a significant amount to the photocurrent. This points to a 

higher quality (larger minority carrier diffusion length) of the p-doped material over the n-doped 

material (note that under short-circuit conditions all carriers photogenerated in the SCR are 

collected, independently of the material quality). The integration of the EQE over the AM1.5G 

solar spectrum results in a total short-circuit current of 6.6 mA/cm2. To estimate the room for 

improvement of this value, it can be compared to the integration of the theoretical absorbance 

over the same spectrum, which is 11.8 mA/cm2. This yields an internal quantum efficiency (IQE) 

of 56 % weighted over the range of interest. To increase the IQE, the collection from the n-flake 

needs to be improved. As pointed out before, the absorbance, and therefore the photocurrent, 

could be almost doubled if a suitable anti-reflection coating for this material is developed.  

To test the radiative efficiency of the doped MoS2 material we have fabricated light emitting 

tunnelling devices. These devices consist of a MoS2 flake on which a thin hexagonal boron nitride 

(h-BN) layer (1-3 ML) and few-layer graphene (FLG) have been deposited (see Figure 4a). This 

contact is quasi-transparent and allows homogenous charge injection over a large area, 

producing a 2D junction which enhances the collection of EL from TMDC-based devices.41 The 

MoS2 flake is deposited on top of a thick h-BN supporting layer and a second contact is 

implemented laterally using FLG. Figure 4b shows the current-voltage (I-V) characteristic of a 
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device containing a bulk p-MoS2:Nb flake. The I-V curve is exponential in both quadrants, 

revealing that the electrical behaviour of the device is dominated by tunnelling through the h-

BN. An idealised band diagram of the tunnelling device is depicted in Figure 4c. 

 

We find that the device produces EL for bias voltages above 1.6 V. Figure 4d shows the EL 

spectrum when 93 µA (red curve) and 175 µA (blue curve) are injected. The exciton peaks A and 

 

Figure 4. EL from FLG/BN/p-MoS2:Nb tunneling structure. a) Schematic of the device. A bulk p-
MoS2:Nb flake is contacted from above by a FLG/BN tunneling contact, and laterally by FLG. b) Current-
voltage curve. d) EL spectra at injection currents I = 93 μA (red) and 175 μA (blue), showing the exciton 
peaks A and B as well as the indirect transition I. e) Log-log plot of the EL signal (with background 
subtracted) integrated between 580 and 780 nm and between 780 and 1000 nm, vs current. 
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B are at 684±1 nm and 622±2 nm. The redshift of the exciton peaks by ~70 meV compared to the 

absorption spectra can be attributed to the interaction of the MoS2 surface with the different 

surrounding media, glass and h-BN, in agreement with previous studies on luminescence in 

MoS2.42,43 Remarkably, EL from the indirect transition I at 880±5 nm is also observed.  

As we have discussed above, the optical properties of MoS2 in bulk form are dominated by the 

indirect band gap at 1.3 eV. Only when the thickness is decreased, approaching 1 ML, does the 

band gap shift upwards in energy, leading to a crossover to the direct band gap with energy 1.8 

eV. For this reason, photoluminescence spectra from ML MoS2 are four orders of magnitude 

stronger than from bulk samples,1 and the EL, which is strong in MLs, can generally not be 

detected in bulk devices.44 EL from multilayer intrinsic MoS2 has been demonstrated only under 

strong electric fields and has been attributed to electric-field-induced carrier redistribution from 

the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space.45 

Our observation of EL from a bulk MoS2:Nb highlights the potential of substitutional doping of 

MoS2 for the fabrication of opto-electronic devices and it also sheds light on why the WOC 

exhibited by MoS2 homojunction solar cells is so close to the radiative WOC limit in spite of the 

indirect nature of bulk MoS2. A log-log plot of the integrated EL emission versus the injected 

current (Figure 4e) reveals that the recombination is only partially radiative, as is expected given 

the nature of the transitions (a fully radiative device would exhibit a slope k =1). Similar devices 

fabricated with n-doped or intrinsic MoS2 did not produce any measurable EL. This indicates a 

lower radiative efficiency in the n-doped material, which is consistent with our analysis of the 

EQE from MoS2 homojunctions, where we determined that the n-flake contributes much less to 

the photocurrent than the p-flake. 

In conclusion, we report a MoS2 homojunction produced through substitutional doping that 

exhibits the highest yet-reported VOC in a photovoltaic van der Waals TMDC structure, 1.02 V 

under broadband illumination with 4 W/cm2. This corresponds to a WOC value of 0.27 V, to be 

compared to 0.16 V calculated for an ideal, fully radiative device under the same illumination. 

The generation of a photovoltage close to the radiative limit is consistent with the observation 

of electroluminescence from tunnelling structures containing p-doped MoS2, which is a 
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remarkable finding given the indirect nature of bulk MoS2. We find that in our devices the high 

VOC produced by the MoS2 homojunction can only be observed if the photogeneration in the 

Schottky barriers present at the TMDC/metal interfaces is avoided. This result confirms the 

potential of TMDCs, and in particular substitutionally doped MoS2, for the development of highly 

efficient, ultra-thin and ultralight weight photovoltaic devices. From the analysis of the J-V curves 

and the EQE we outline the next steps to realize high efficiency, which are the elimination of the 

Schottky barriers at the metallic contacts, the implementation of an anti-reflection coating and 

the improvement of the radiative efficiency of the n-doped flake.  
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SI_Section 1. Detailed balance calculations. 

We use the detailed balance formalism to calculate the maximum VOC that can be produced by 

an ideal single-junction solar cell with a given band gap energy, EG, and under a given illumination 

density. The original reference for the theoretical framework is Ref. 1 and a comprehensive 

explanation can be found in Ref. 2. 

The maximum VOC is produced by an ideal device in which the absorptivity is 1 (it absorbs all 

photons with energy above EG) and radiative recombination is the only loss mechanism. The 

current density (J, mA/cm2) of such a device as function of the bias voltage (V) is given by 

 𝐽(𝑉) = 𝐽L − 𝐽D(𝑉)       (1) 

Therefore, the radiative VOC can be extracted from 

 𝐽L − 𝐽D(𝑉OC) = 0       (2) 

The illumination current, JL, is given by 

 𝐽L = 𝑒 ∫ 𝐹(𝐸) 𝑑𝐸
∞

𝐸G
       (3) 

where e is the electron charge and F (expressed in s-1 cm-2 eV-1) is the number of photons in an 

energy interval dE of the AM1.5G standard solar spectrum3, per unit of time and area.  

The dark current, JD, is given by 

 𝐽D(𝑉) = 𝑒 
2𝜋

ℎ3𝑐2 ∫
𝐸2

exp(𝐸−𝑒𝑉
𝑘𝑇⁄ )−1

 𝑑𝐸
∞

𝐸𝐺
    (4) 

where h is Planck’s constant, c the speed of light in vacuum, k Boltzmann’s constant and T the 

device temperature (here 300 K). Note that we have considered the most ideal case, that is, a 

solar cell with an ideal back mirror which only emits photons through the front surface. For a 

free-standing semiconductor slab, which emits photons at the same rate through the front and 

rear surfaces, the dark current in equation (4) would be multiplied by a factor 2, and the radiative 

VOC would be reduced accordingly. 
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Figure S1. a) J-V curve of a GaAs device working in the radiative limit, calculated using Eq. (1) to (4), and compared 

it to the best reported experimental VOC. b) Same calculation for a device made of bulk MoS2 (blue curve). We also 

include the calculation for an illumination of 40 AM1.5G suns (red curve), which is eqivalent to the one used in our 

experimental set-up. It is obtained multiplying JL (eq. 3) by 40. In the plot J has been scaled down, dividing it by 40, 

to faciliate comparison. 

 

SI_Section 2. Device Fabrication. 

An exhaustive study of the material composition and growth of MoS2:Fe and MoS2:Nb is given in 

Suh et al.4 and Wang et al.5. The crystals were exfoliated onto SiO2 (85 nm)/Si wafers (Siltronix) 

or glass using adhesive tape (BT-150E-CM, Nitto). To assemble the material stack we prepared 

polymer stamps, consisting of a glass slide onto which a drop of Sylgard® 184 

polydimethylsiloxane covered with polypropylene carbonate (15 % by weight in anisole, Merck) 

is deposited. The top material flake was picked up by bringing the stamp into contact with the 

flake on the substrate which is heated to 45 °C. The stamp is then retracted and removes the 

flake from the substrate. This pick-up is repeated to form the p-n junction. To release the p-n 

junction the stamp is brought into contact with another substrate and heated to 90 °C, which 

causes the PPC to melt and the p-n junction to stay on the substrate. This method warranties that 

the interfaces forming the p-n junction have not been in contact with any polymer. Residual PPC 

from the upper-most surface is washed off using chloroform. Metal contacts (40 nm Ni/70 nm 
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Au) are deposited using thermal evaporation in combination with optical lithography and lift-off. 

For the device fabricated on glass, the metal contacts where pre-patterned and the 

semiconductor flakes were deposited on top of them. The FLG/BN tunnelling structures have 

been fabricated analogously.  

 

 

Figure S2: Schematic showing the technique to pick-up and release flakes. 

SI_Section 3. Device Characterisation. 

All measurements were aquired in atmosphere at room temperature. J-V characteristics were 

measured using a sourcemeter (either Keithley 2400 or Keysight B2901A). The illumination 

source for J-V curves was a halogen lamp coupled to a microscope (Motic BA310 MET-H). The iris 

diaphragm of the microscope allowed us to partially block the light impigning on certain regions 

of the chip. The light intensity was adjusted to 4000 mW/cm² using a calibrated Si solar cell. 

Quantum efficiency measurements were carried out using an Oriel Cornerstone 260 

Monochromator equipped with order sorting filters, a quartz tungsten halogen lamp, a low-

current transimpedance pre-amplifier (Stanford Research SR570 DSP), a mechanical chopper and 

a Stanford Research SR830 DSP Lock-In Amplifier. The photocurrent was calibrated against a 

NIST-traceable calibrated Si photodetector (Newport STPVCERT) and then it was scaled to obtain 

the absolute quantum efficiency using a LED-based solar simulator (WaveLabs LS2). The atomic 

force microscopy (AFM) was done using a Multimode Nanoscope III A in tapping mode. To 

measure electroluminescence we used a Horiba MicOS optical spectrometer with a 50x objective, 

NA: 0.5, and 150 l/mm grating. 
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SI_Section 4. Equivalent circuit model. 

The model to fit the J-V curves of the MoS2 van der Waals homojunction device is based on the 

equivalent circuit depicted in Fig. S3a. For 4-wire measurements we use the circuit in Fig. S3b. 

 

Figure S3: Equivalent circuit model of the MoS2 homojunctions when measured in 2-wire (a) and 4-wire (b) configu-

ration. The n-MoS2-p-MoS2 junction generates under illumination a current IL,PN. The Schottky contacts generate, 

when illuminated, a current IL,Sp and IL,Sn. 

There are three photovoltaic elements, each represented in the circuit as a combination of a 

constant current generator (photogeneration) and a diode (recombination): the MoS2 homojunc-

tion, which generates a photocurrent 𝐼L,pn ; the Schottky at the n-contact, which generates a 

photocurrent 𝐼L,Sn ; and the Schottky at the p-contact, which generates a photocurrent 𝐼L,Sp. The 

respective dark currents of the diodes are 𝐼D,pn, 𝐼D,Sn and 𝐼D,Sp.  

The three dark currents can be modelled as: 

𝐼𝐷,pn = 𝐼0,pn exp (
𝑞𝑉

𝑛pn𝑘𝑇
− 1)       (5) 

𝐼D,Sn = 𝐼0,Sn exp (
𝑞𝑉

𝑛Sn𝑘𝑇
− 1)       (6) 

𝐼D,Sp = 𝐼0,Sp exp (
𝑞𝑉

𝑛Sp𝑘𝑇
− 1)       (7) 
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where I0,XX is the reverse saturation current of the respective diode, nXX the ideality factor, q the 

electron charge, k the Boltzmann constant and T the temperature. 

RP is the shunt resistance of the device, which is constant for all measurements on that device. 

RS is the linear series resistance introduced by the n- and p-flake in the transport of current to 

the metal contacts. RS is strongly illumination dependent, decreasing when the regions around 

the junction and the metal contacts are illuminated. Since the n- and p-flakes are degenerately 

doped, we attribute this illumination dependence to the existence of depleted regions (associ-

ated to the lateral extension of the depleted regions of the contacts and to surface doping effects 

cased by the contamination and by the substrate properties). Therefore, when the flakes are in 

the dark, their series resistance increases. This effect by itself would result in an improvement of 

the FF with the illumination intensity. However, in our device we observe the opposite tendence, 

the FF degrades as the illumination power is increased (for example in Figure 1b) because the 

voltage drops generated at the Schottky diodes become larger, counteracting the improvement 

in the linear series-resistance. Note that the series resistive effects on the FF in this device, in-

cluding the linear component and especially the non-linear component, are strong enough to 

affect the measured JSC value.  

It is important to note that the interplay of RP and RS in our circuit model enables that the VOC is 

reduced by the effect of RS. This is not the case in simple solar cell circuits, where RS is in series 

with the current meter and, if the measured current is zero, the voltage drop over RS is also zero. 

Here RP and RS are interconnected in a way that RS can induce a reduction in the photovoltage, 

even when measured under open-circuit conditions. If we define 𝑉pn
∗  as the voltage drop across 

the junction itself, then 

 𝑉pn = 𝑉pn
∗ + (𝐼L,pn − 𝐼D,pn) ∙ 𝑅S     (8) 

is the resistively-reduced junction voltage. The second term is negative because IL,PN is negative. 

VPN equals also the voltage across RP. Although the difference between 𝑉pn
∗  and 𝑉pn

  is very small 

in actual devices, our experimental curves cannot be fitted consistently if we use a different in-

terconnection between RS and RP. The measured VOC is then: 
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 𝑉OC = 𝑉pn − 𝑉Sn − 𝑉Sp      (9) 

Table S1 summarizes the parameters that have been used to fit the J-V curves shown in Figure 2 

in the main text. Note that the small variations in short-circuit current in the experimental curves  

are caused by slight differences in the amount of stray light when the diaphragm is position mod-

ified. In Table S1 we have converted the current values into current density values using the over-

lapping area of each junction. This is an approximation because, as discussed in the main text, 

the real junction areas can spread beyond the overlapping area. Also, when a bias is applied, the 

space charge region (SCR) spreads or shrinks vertically and/or laterally and this has an impact on 

the amount of photocurrent and dark current because, in thin devices made of TMDCs, unlike 

conventional devices, the volume of the SCR represents a large portion of the device. Therefore, 

a exact modelling of the device would require the introduction of voltage-dependent IL and I0 

parameters. Nevertheless, the good areement between experiment and model in Figure 2 indi-

cates that using the approximation of constant junction area and constant SCR volume is valid, 

although it results in a high apparent ideality factor for the pn-junction. 

Table S1: Modelling parameters used for Figure 2  

Rp (Ωcm2) 2093 
Rs (Ωcm2) 
 

from 74.6 (in the dark) 
to 0.5 (when illuminated with 4W/cm2) 

nnp 3.8 
nSn  2.0 
nSp 2.0 
J0,np (mA/cm2) 0.012 
J0.Sn (mA/cm²) 9  
J0,Sp (mA/cm²) 327 
Anp (µm2) 182 
ASn (µm2, under metal) 216 
ASp (µm2, under metal) 95 
JL.Sn / JL.pn 1.65 
JL.Sp / JL.pn 0.7 

 

All curves in Figure 2 are fitted using a constant ratio between the photocurrent produced by 

each Schottky contact and the photoccurent produced by the pn-junction. From this ratio we can 

estimate an average width of the MoS2 region that produces photocurrent around the metal 
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edge. Assuming that the photocurrent density in the Schottkys is similar to the pn-junction, the 

width of the photogenerating region can be estimated to  ~6 µm around the n contact and  ~4 

µm around the p-contact. 

 

SI_Section 5. Experimental and modelled two-wire J-V curves. 

 

Figure S4: Experimental two-wire J-V characteristics of the device on SiO2/Si shown in Fig. 1b in the main text (solid circles) 

together with corresponding fitted curves (solid lines) using the model from Figure S3a. 
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SI_Section 6. Experimental and modelled two-wire J-V curves of the device on glass 

 

Figure S5: Schematics and J-V characteristics of the device on glass for various illumination conditions (the device used for EQE 

measurements). The light source is a halogen lamp with intensity approximately 600 mW/cm2. Blocking the light on both sides 

was not possible due to the smaller device size. The modelled curves have been calculated using the model from Figure S3a. 

SI_Section 7. Experimental and modelled dark J-V curves. 

 

Figure S6: Experimental dark J-V characteristics (solid black circles) of the two devices, together with corresponding modelled 

curves (blue solid lines). The modelled curves for each device are obtained with the same fitting parameters as the illumination 

curves of the same device, except for the linear series resistance components, which are illumination dependent. (a) Device on 

SiO2/Si. (b) Device on glass. 
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SI_Section 8. Band gap energy determination. 

To determine the band gap energies in Figure 2f we use the relationship between the absorption 

coefficient α of a semiconductor and the photon energy ℎν: α = 𝐾(ℎν − 𝐸𝐺)𝑚 ℎν⁄ , with K being 

a constant and m a number characterising the transition type (m=1/2 for a direct transition and 

m=2 for an indirect transition).6 Rearranging yields (𝛼ℎν)1 𝑚⁄ ∝ ℎ𝜈 − 𝐸𝐺 , implying that EG can be 

determined from a linear extrapolation of (𝛼ℎν)1 𝑚⁄  against ℎν. For photon energies around the 

band gap, α is proportional to the external quantum efficiency (EQE) of the device, so that 𝛼 =

−ln(1 − EQE)/𝑑 where d is the device thickness. 

SI_Section 9. Device micrographs and AFM profiles. 

 

Figure S7: Optical micrograph of the device on SiO2/Si (a) and device on glass (b). 
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Figure S8: AFM images of the border of the junction area. Device on SiO2 and glass (a,c) with profiles (b,d). 

SI_Section 10: Heterojunction band diagrams 

 

Figure S9: Band diagrams of heterojunctions using intrinsic material of bulk (a) and monolayer (b) MoS2 and WSe2. 
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SI_Section 11: Comparison to other works 

Device structure 
Highest 
VOC (V) 

Irradiance P 

Monolayer 
(ML) / Few-
layer (FL) / 
bulk 

Year Reference 

p-MoS2 / n-MoS2 1.02 halogen, 4 W/cm² bulk 2020 This work 

WSe2 / MoS2 0.38 
monochromatic 
3000 W/cm2 

Few-layer (FL) 
<15 nm 

2017 Ref. 3 

Gr/WS2/Gr or  
Gr/MoS2/Gr 

0.18 
monochromatic, 
unspecified P 

5-50 nm 2013 Ref. 4 

WSe2 / MoS2 0.55 
halogen, 0.64 
W/cm2 

ML 2014 Ref. 14 

WSe2 / MoS2 0.5 
monochromatic, 
100 W/cm2 

ML 2014 Ref. 15 

WSe2 / MoS2 0.27 
monochromatic, 
unspecified P 

ML WSe2 and 
FL MoS2 

2014 Ref. 17 

WSe2 / MoS2 0.32 
monochromatic, 
0.037 W/cm2 

FL 2016 Ref. 12 

WSe2 / MoS2 0.5 
monochromatic,  
4 W/cm2 

ML 2018 Ref. 16 

hBN / MoS2 (chemical pn-
junction) 

0.5 
monochromatic, 
unspecified P 

ML 2014 7 

GaTe / MoS2 0.224 
monochromatic,  
65 mW/cm2 

ML 2015 8 

ITO/MoS2/plasma-doped 
MoS2 

0.28 AM1.5G Bulk 2014 9 

WSe2 / MoS2 0.36 
halogen, 
4.4mW/cm2, 

Bulk  2018 Ref. 13 

MoSe2 / WSe2 0.46 
monochromatic, 
320 W/cm2 

3 ML each 2015 Ref. 19 
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