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Multimodal Imaging Brain Markers in Early Adolescence
Are Linked with a Physically Active Lifestyle

Piergiorgio Salvan,! Thomas Wassenaar,! Catherine Wheatley,' Nicholas Beale,> Michiel Cottaar,! Daniel Papp,!
Matteo Bastiani,'** Sean Fitzgibbon,! Euguene Duff,' Jesper Andersson,' Anderson M. Winkler,>°

Gwenaélle Douaud,' Thomas E. Nichols,"”* Stephen Smith,' Helen Dawes,? and Heidi Johansen-Berg'

"Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Raddliffe Hospital,
Oxford, OX3 9DU, United Kingdom, 2Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, Oxford, OX3 0BP, United
Kingdom, ’Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, United Kingdom, “National Institute
for Health Research Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2UH, United Kingdom, SEmotion and Development Branch,
National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-9663, Maryland, 6Department of Psychiatry, Yale University School of
Medicine, New Haven, CT 06511, Connecticut, ’Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield
Department of Population Health, University of Oxford, Oxford, OX3 7LF, United Kingdom, and 8Department of Statistics, University of Warwick,
Coventry, CV4 7AL, United Kingdom

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development.
However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked
whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and
physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired
multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion.
We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and
blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of
demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also
showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume,
cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with
measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active life-
style is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biologi-
cal processes. These results support the notion of close brain-body relationships and underline the importance of
investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.
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An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimag-
ing markers relate with young adolescents’ level of physical activity, fitness, and physical health? Combining advanced whole-
brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active
lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroi-
maging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other
brain-body relationships in an effort to foster brain health at this crucial stage in development. /
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Introduction

The World Health Organization encourages early positive life-
style choices aimed to improve both physical and mental health
(World Health Organization, 2010). Physical activity is a power-
ful and rapid means to improve fitness and physical health
throughout the life-span (Cotman, 2002; Hillman et al., 2008).
During adolescence, however, levels of physical activity decline
(Guthold et al., 2020).

Public health guidelines recommend that school-aged chil-
dren engage in 60 min of moderate-to-vigorous physical activity
daily (Piercy and Troiano, 2018), yet globally only ~22% of boys
and 15% of girls achieve that (Guthold et al., 2020). In addition
to its importance to physical health, there is growing evidence
that a physically active lifestyle during childhood is associated
with improved mental and cognitive health through adulthood
(Department of Health & Human Services Office of Disease
Prevention and Health Promotion, 2000). While there is limited
available evidence in adolescents, similar patterns have been
reported (Lubans et al., 2016).

A body of work has studied the relationship between single
physical measures of activity, fitness, or body mass, and separate
MRI metrics of brain structure, microstructure, or function,
showing focal neural correlates (for review, see Donnelly et al.,
2016; Valkenborghs et al., 2019). However, it is unlikely that a
single physical measure fully captures active lifestyles, or that a
single MRI metric fully quantifies the condition of the brain.
Rather, lifestyles are better characterized by a range of physical
measures, and the state of the brain is better quantified by com-
binations of metrics.

Multimodal MRI can probe different aspects of brain struc-
ture and function. While each metric provides an indirect probe
of the underlying biology, in combination they provide insights
into a range of biological processes (Tardif et al., 2016). Further,
these measures can be acquired simultaneously across the whole
brain. Many previous brain imaging studies of physical activity
and fitness have focused on the hippocampus, where changes in
noninvasive imaging measures of tissue volume or perfusion
have been argued to relate to processes of neurogenesis and
angiogenesis triggered by exercise (van Praag et al., 1999; Pereira
et al., 2007; Chaddock et al., 2011; Thomas et al., 2012).
However, in addition to such focal changes, more global biologi-
cal processes might also be triggered by exercise (Tardif et al.,
2016). It remains unknown whether whole-brain patterns of
multimodal brain metrics are related to cardiorespiratory fitness,
physical activity, and physical health.

Physical activity influences physical health and contributes to
physical fitness, but both activity and fitness may be considered
part of an underlying, latent factor. In order to characterize a
phenotype of physical lifestyle, measuring whole-day physical ac-
tivity levels during a normal school week is therefore at least as
important as assessing gold-standard measures of cardiorespira-
tory fitness, such as VO,max measured on an incremental step-
test on a cycle ergometer.

In this study, in 50 12-year-old pupils, we acquired multimo-
dal whole-brain MRI metrics to measure resting state networks
(RSNs), gray matter (GM) volume and perfusion, cortical surface
(area and thickness), white matter (WM) microstructure, and
myelin content (R1 and R2:), resulting in a total of 18 different
metrics. These metrics are combined into multimodal whole-
brain phenotypes whose variation across individuals can be inter-
rogated. We also acquired a rich set of variables depicting physical
lifestyle, measuring cardiorespiratory fitness (VO,max and work-
load), objective physical activity (7 d actigraphy, measuring total
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Figure 1. Summary of statistical analysis. In order to test the individual covariation

between brain IDPs and physical measures of fitness, physical activity and physical health,
we aimed to identify one single mode of covariation using CCA, while taking into account
the hierarchical structure represented by schools.

week time of brief bursts and long-lasting physical activity), and
reported (questionnaire item) and physical health (resting heart
rate, blood pressure, and body mass index) (Fig. 1). We hypothe-
sized that, across pupils, intersubject differences in brain pheno-
types covaried with differences in physical lifestyle, independent of
sex, socioeconomic status, age, pubertal level, and school. A single
holistic multivariate analysis allowed us to identify a latent mode
of covariation between brain and physical phenotypes, represent-
ing a pattern of active physical lifestyle features that significantly
covaries with spatially extended patterns of brain metrics.

Materials and Methods

Participants and recruitment

Year 7 pupils from a subset of 10 United Kingdom schools participating
in the Fit to Study project Main trial (total 93 schools) were invited to
take part in a brain imaging substudy (Wassenaar et al., 2019). The 10
recruitment schools were selected for being conveniently located for
travel to Oxford. Researchers visited recruitment schools to pitch the
study to pupils and collected pupils’ expressions of interest. For each
school, an upper limit was determined in order not to over-recruit from
a given school. For schools in which the number of interested pupils
exceeded this limit, pupils with lower physical activity scores (based on
values already collected through the Main trial) were given priority to
select a sample that was the most representative as possible of the entire
population. The expressions of interest, however, varied greatly by
school. Some schools were therefore topped up with more pupils despite
creating an imbalance to pragmatically increase study sample size.

After taking consent and assent in accordance with the University of
Oxford ethical guidelines (CUREC reference number: R51313/RE001),
61 pupils were recruited to the brain imaging substudy. Participants
attended a testing session at the University of Oxford during which brain
imaging, cognitive, and behavioral data were collected.

The analysis required high-quality complete multimodal MRI data.
One participant withdrew during the scan session. One complete dataset
was lost because of hardware failure. Of the remaining datasets, quality
control process identified issues with data quality (e.g., head motion,
ringing artifacts, blurring, etc.) in one or more modalities in 9 pupils.
Therefore, only 50 pupils (median age: 12 years; 26 females, 52%; Table
1) had high-quality, complete multimodal MRI data that could be taken
forward into our final analysis. This substudy population is representa-
tive of the larger Fit to Study population in terms of demographics
(Table 1). However, the substudy pupils were more active and less likely
to qualify for free school meals. These differences can be explained by
difficulties in recruitment (i.e., low socioeconomic status households
were less keen to travel and more active pupils might have been more
interested in participation). All statistical analyses were conducted on
this sample of 50 pupils sampled from 10 schools (Table 2). The number
of participants per school ranged from 1 to 13. We consistently followed
the recruitment process described above, but levels of interest varied
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Table 1. Demographics, socioeconomic status, and self-reported physical
activity®

MRI substudy (n=50) Main trial (n=15,956)

Demographics
Age, mean (SD), years 12 (0.27) 12.5 (0.294)
Female, no (%), yes 26 (52%) 8931 (56.0%)

Pubertal development level, mean (SD) 2.216 (0.59) —
Socioeconomic status

IMD, mean (SD) 7.82 (1.96) —

FSM, no (%), yes 1(2%) 2664 (16.7%)
Self-reported physical activity

Reported active days, mean (SD) 5.43 (1.83) 4.42 (1.92)
“IMD, Index of multiple deprivation; FSM, free school meal.
Table 2. Sampling frequency by school
School® No. of pupils %
S-1 1 2
S-2 2 4
S-3 10 20
S-4 6 12
) 8 16
S-6 1 2
S-7 1 2
S-8 1 2
S-9 13 26
S-10 7 14

“Values in the first column School are arbitrary.

considerably across schools because of several reasons, including variable
interest from pupils, concerns from parents regarding the study or travel
distance, and unavailability during summer holidays.

Behavioral testing

All pupils underwent a half-day testing session at the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) building in Oxford
during summer 2017. Over a period of ~5 h, and with multiple breaks,
pupils performed, in this order, cognitive testing, multimodal MRI scans,
physical health monitoring, and physical activity testing. Actigraphy
monitoring aimed at capturing activity levels over a normal school week
time was conducted previous to the day of testing at FMRIB.

Cardiorespiratory fitness

Objective measures of cardiorespiratory fitness were acquired through
an incremental step-test on a cycle ergometer (Lode Excalibur Sport).
We then extracted values for maximal oxygen consumption per kilo-
gram (VO,/kg max) (ml/min/kg), and work load maximum (Watts) as
primary measures of interest.

Physical activity

Objective physical activity was assessed over 5 weekdays and 2 weekend
days using the Axivity AX3 wrist-worn accelerometer (Open Lab,
Newcastle University) (Ladha et al., 2013). We therefore chose to define
a valid wear day as 12 consecutive hours from 08:00 to 20:00 to capture
travel to and from school and after-school sports and activities. To
account for later weekend waking times, we accepted any consecutive
10 h period between 08:00 and 20:00 on Saturdays and Sundays, and
standardized total activity to 12 h. We then aimed to capture both brief
bursts and long-lasting activity. We summarized raw accelerometer data
from three axes of movement into the signal vector magnitude, or activ-
ity “count,” expressed per 60 s epoch and also per 1 s epoch to character-
ize sustained bouts of activity and also shorter bursts of movement.
Axivity’s Open Movement GUI software calculated whether each 60 s
epoch was spent in sedentary, light, moderate, or vigorous activity by
applying “cut-points” or “count” thresholds corresponding to different
activity intensities derived from a validation study with young people
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aged 8-14 (Phillips et al., 2013). The software identified nonwear time as
periods of at least 30 consecutive minutes of zero activity counts. We
used a bespoke program, designed to handle large volumes of data, to
apply the same cut-points to each 1 s epoch. Participants who had at
least three valid weekdays and one valid weekend day were included in
the analysis (Troiano et al., 2014). For both brief bursts and long-lasting
physical activity, participants’ total minutes of sedentary, moderate, and
vigorous activity per day were calculated.

Physical health

Physical health was assessed on the day of testing at rest (prior cardiores-
piratory testing) by measuring heart rate and systolic and diastolic blood
pressure. Compared with publicly available age-matched normative val-
ues (Flynn JT et al, 2018), blood pressure (5th-95th percentiles) was
found within healthy values (normative values for 12years old pupils:
systolic: 102-131 with average of 113; diastolic: 61-83 with average of 75;
study sample, systolic: median =106, 5th-95th percentiles: 89-123; dia-
stolic: median = 73, fifth-95th percentiles: 58-85).

Negative behaviors not considered in the analysis

As part of the study, we also obtained ethics to ask pupils information
about negative behaviors, such as smoking, drinking alcohol, or drug
use. However, none of the pupils reported having used any of these
substances.

MR imaging
MRI acquisition parameters
All MRI scans were conducted during summer 2017 at the Oxford
Center for FMRIB using a 3T Siemens Magnetom Prisma scanner with a
32-channel head coil.

The MRI protocol included the following:

T1 weighted (T1w) three-dimensional rapid gradient echo sequence
(3D MPRAGE): TR = 1900 ms; TE = 3.97 ms; flip angle = 8% FOV = 192
mm; voxel size: 1xX 1 X 1 mm. Sequence duration: 5 min 31 s.

1. Resting-state functional MRI (rs-fMRI): multiband EPI sequence;
TR =933ms; TE = 33.40 ms; FOV = 192 mm; 72 slices; voxel size:
2 x 2 x 2 mm; multiband acceleration factor = 6. Sequence dura-
tion: 10 min 10 s. For each scan, 644 volumes were acquired.
Participants were asked to look at a fixation cross, blink normally,
try not to fall asleep, and try not to think about anything in particu-
lar. A field map was also acquired to correct for inhomogeneity dis-
tortions. Sequence duration: 1 min 34 s.

2. Diffusion-weighted MRI (DW-MRI): multishell, multiband EPI
sequence; b values = 0, 1250, 2500 s/mm?, with, respectively 11, 60,
60 diffusion-weighted directions; TR = 2483 ms; TE = 78.20 ms;
FOV = 214 mm; voxel size: 1.75 x 1.75 x 1.75 mm; multiband accel-
eration factor = 4. Sequence duration: 5 min 40 s. In addition, 4 b =
0 s/mm? images were acquired with reversed phase encoding, for the
purpose of EPI distortion correction. Sequence duration: 32 s.

3. Quantitative FLASH-MRI (Weiskopf et al., 2013): two 3D multiecho
FLASH datasets, one predominantly proton-density weighted (PDw,
flip angle = 6 deg), and one predominantly Tlw (flip angle = 21
deg); FOV = 256 mm; voxel size: 1 X 1 x 1 mm; TR = 25 ms; first
TE = 2.34 ms; eight equally space echoes, echo spacing = 2.3;
GRAPPA acceleration factor = 2 in both phase-encoded directions,
with 40 reference lines in each direction. Duration for each FLASH
sequence: 5 min 11 s. Two single-echo, low-resolution (4 mm iso-
tropic) FLASH scans were acquired before each high-resolution
scan; identical FOV; TR =4 ms; TE = 2 ms; one was acquired receiv-
ing on the 32-channel receive head coil, the other receiving on the
body coil. To correct for the effect of RF inhomogeneities, the local
RF field was mapped using a 2D DAM method with a FLASH
readout.

4. Pseudo-continuous arterial spin labeling with background presatu-
ration (Okell et al,, 2013): six imaging blocks, each with different
post-labeling delays: 0.25, 0.5, 0.75, 1, 1.25, and 1.5 s. Arterial blood
was magnetically tagged using a labeling duration of 1.4 s. Other
imaging parameters were as follows: single-shot EPI; TR = 4100 ms;
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TE = 14 ms; FOV = 220 mm; voxel size: 3.4 x 3.4 x 4.5 mm.
Sequence duration: 5 min 34 s.

In order to provide a more comfortable experience, during all struc-
tural scans, a wildlife documentary was shown. A fixation cross was
instead shown during rs-fMRI and ASL in order not to bias cognitive
processing to certain areas/networks during assessment of resting brain
activity.

MRI preprocessing
MRI data were processed primarily using FSL software (Jenkinson et al.,
2012) and FreeSurfer (Dale et al., 1999).

Gradient distortion correction (GDC). GDC was applied within
image analysis pipelines using tools developed by FreeSurfer and HCP
groups (https://github.com/Washington-University/Pipelines), using the
Siemens scanner-specific table of gradient nonlinearities.

Structural. Brain extraction was performed in native space after
GDC unwarping using FSL BET (Smith, 2002). Tissue-type segmenta-
tion was estimated based on FSL FAST (Zhang et al., 2001), providing
hard segmentation as well as partial-volume images for each tissue type.
This tool was also used to provide a fully bias-field-corrected version of
brain extracted structural brain images. Subcortical structures were
modeled using FSL FIRST (Patenaude et al., 2011).

Cortical surface reconstruction. Subject-specific cortical surface
reconstruction and cortical parcellation were estimated based on the
GDC, brain-extracted T1 image, using the command recon-all from
FreeSurfer (Dale et al., 1999).

Registration. Rigid registrations between multimodal MRI native
spaces were estimated through FSL FLIRT with boundary-based cost
function (Jenkinson et al., 2002; Greve and Fischl, 2009). Nonlinear
warps to MNI152 standard-space T1 template were estimated through
FSL ENIRT. This set of nonlinear warps is then carried over to all MRI
modalities, such as in the case of rs-fMRI.

EPI distortion correction. BO fieldmap processing was estimated
through FSL Topup (Andersson et al., 2003) based on AP-PA image
pairs from DWI-MRI protocol.

Functional. rs-fMRI data were preprocessed using a custom pipeline
previously validated on developmental datasets (Baxter et al, 2019;
Fitzgibbon et al., 2020). rs-fMRI data were corrected for intervolume
and intravolume subject head motion and EPI distortions (Andersson
and Sotiropoulos, 2015); high pass temporal filtering and GDC unwarp-
ing were also applied. Registration to structural was improved by an
extra rigid registration step aided by a single-band EPI image. Structured
artifacts were removed by FSL ICA+FIX processing (Beckmann and
Smith, 2004; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). The
FSL FIX classifier was specifically trained for these data and provided the
following scores in leave-one subject-out accuracy: true positive ratio
(TPR)=98.8%; true negative ratio (TNR)=95.3%; weighted ratio
((3*TPR + TNR)/4)=97.9%. Independent components (separately
identified for each individual) classified as noise (i.e., motion-related,
physiological artifacts, MRI acquisition/reconstruction artifacts, etc.), as
well as 24 motion confounds, were then regressed into the rs-fMRI signal
to obtain denoised (clean) rs-fMRI signal, thus minimizing the effect of
head-motion, physiological, and MRI-related artifact at the individual
subject level. FSL MELODIC was then used to estimate 50 group-average
independent components. We then calculated median absolute (ridge)
partial correlation (with a regularization value of 0.1) and amplitude for
each of the 25 independent components identified as RSNs.

Diffusion. DWI-MRI data were first corrected for eddy currents, EPI
distortions, and intervolume and intravolume subject head motion, with
outlier-slice replacement, using FSL Eddy (Andersson and Sotiropoulos,
2015). GDP unwarping was then applied (Miller et al., 2016). Diffusion
tensor imaging (DTI) fitting was conducted with FSL DTIFIT using a
kurtosis model (Behrens et al., 2007). Neurite Orientation Dispersion
and Density Imaging (NODDI) modeling was estimated using FSL
cuDIMOT based on the Bingham-NODDI model (Tariq et al., 2016). In
order to resolve crossing-fiber configurations, multishell voxelwise diftu-
sion was modeled using FSL BedpostX (Jbabdi et al., 2012). Probabilistic
tractography was then conducted with FSL ProbtrackX (Behrens et al.,
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Table 3. Descriptives of cognitive skills, reported mental health, and reported
general health

Mean (SD)

Cognition

Associative task (correct valid answers, %) 71 (11)

Task switching (switch cost, ms) 548 (333)

Object location task (identification errors, 8 s delay) 11 (4)
Mental health (Strengths and Difficulties Questionnaire)

Prosocial scale 8 (1.4)

Hyperactivity scale 4(2.5)

Conduct scale 2 (1.5)

Peer scale 2(1.9)

Emotional scale 3(23)
General Health (Health Behavior in School-aged Children questionnaire)

Life satisfaction 8 (1.6)

Self-rated health 4(0.9)

Multiple health complaints 13 (4.8)

2007), and 29 major WM bundles were reconstructed as implemented in
FSL AutoPtx (de Groot et al., 2013).

Myelin and iron maps. Quantitative MRI data were processed to pro-
duce the quantitative maps of myelination (1/T1) and iron level (1/T2#),
using the Voxel-Based Quantification toolbox (Callaghan et al., 2014) in
Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm/). Although
R1 (1/T1, longitudinal relaxation rate) and R2# (1/T2:, effective transverse
relaxation rate) are not direct quantitative maps of myelination or iron (as
other biological factors can also affect them), these quantitative maps have a
high degree of sensitivity to myelination and iron (Weiskopf et al,, 2013;
Callaghan et al., 2014; Lutti et al., 2014).

Perfusion. Perfusion images were processed using FSL BASIL
(Chappell et al., 2009). Images were first corrected with fieldmap and
GDC unwarping; then, to obtain maps of cerebral blood flow and arrival
time in absolute units, a calibration step was implemented based on cere-
brospinal fluid values.

Image-derived phenotypes (IDPs)
Each MRI parameter was summarized in a series of IDPs: anatomy-spe-
cific average values that span three sets of ROIs. For cortical and subcort-
ical regions, we used the Desikan-Killiany Atlas (84 parcels, 68 cortical,
and 16 subcortical) from the individual FreeSurfer parcellation (Fischl et
al., 2002). This parcellation was then warped into each (relevant) modal-
ity in order not to interpolate MRI-map values. For ASL, we used this
parcellation while opting for a conservative approach to minimize cover-
age issues in frontal and temporal pole ROIs (voxels size being too large
for these thin cortical ribbons). We removed bilaterally the frontal and
temporal poles ROIs, thus resulting in 80 ROIs for ASL perfusion and 80
ROIs for ASL arrival time (instead of 84 and 84 ROIs). For the white
matter, we used the 29 white matter bundles from the AutoPtx recon-
struction; first averaged at group level; optimally thresholded; and then
warped back to native spaces. For functional activity, 25 group-level
RNSs were identified.

A total of 859 IDPs were then fed into statistical analysis. Functional
IDPs (RSNs and ASL IDPs) represented 25% of all IDPs, while WM and
GM IDPs represented, respectively, 30% and 45% of all IDPs.

Cognitive testing and reported mental health and general health
measures

All measures acquired during the testing are reported in detail in
Wassenaar et al. (2019).

Cognitive skills

Here we considered a summary measure for three tasks of interest: the
relational memory task (correct valid answers, %) (Chaddock et al,
2010); task switching (switch cost, ms) (Hillman et al., 2014); and object-
location task (identification errors 8 s delay; Table 3) (Pertzov et al.,
2012).
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Table 4. MRI modalities and MRI metrics used to define IDPs of brain function
and structure®

MRI modality Metric ROI type No.
rs-fMRI Functional connectivity RSN 25
rs-fMRI Amplitude RSN 25
ASL Perfusion GM 80
ASL Arrival time GM 80
T1w-MRI Volume (VBM-like) GM 84
g-MRI R1 GM 84
g-MRI R2 GM 84
T1w-MRI Surface area Cortex 68
TTw-MRI Surface thickness Cortex 68
DW-MRI DTI - FA WM 29
DW-MRI DTI - MD WM 29
DW-MRI DTI - Kurtosis WM 29
g-MRI R1 WM 29
g-MRI R2: WM 29
DW-MRI NODDI f-iso WM 29
DW-MRI NODDI f-intra WM 29
DW-MRI NODDI DA WM 29
DW-MRI NODDI 0DI WM 29

“Five MRI sequences were used to quantify 18 different MRI metrics. Specific sets of ROIs were then used for
each MRI metric to extract whole-brain MM IDPs quantifying brain structure, microstructure, function, myelin
content, and blood perfusion.

Mental health
Mental health was assessed with the Strengths and Difficulties
Questionnaire (Goodman, 1997).

Questionnaire on general health

From the Health Behavior in School-aged Children questionnaire
(World Health Organization, 2016), we used the positive health items
(self-rated health, life satisfaction, multiple health complaints) to mea-
sure reported general health.

Experimental design and statistical analyses

This is a cross-sectional study with a sample size of N=50 subjects.
Because of the limited sample size compared with the number of varia-
bles of interest, we strove to reduce input data and nuisance variables
dimensions as much as possible. Standardization of variables before
decomposition methods (principal component analysis [PCA] and ca-
nonical correlation analysis [CCA]) was applied to avoid variables with
disproportionately greater variance driving the decomposition. All statis-
tical analyses were conducted in MATLAB 2018.

Confounds

Before all statistical analyses, a series of relevant confounds was chosen: age;
sex; pubertal developmental level (assessed through the Pubertal
Development Rating Scale) (Petersen et al., 1988), a self-report measure of
physical development for youths under the age of 16); socioeconomic status
(assessed through the United Kingdom Index of Multiple Deprivation); and
head size/scaling factor (computed through FSL SIENAX).

On these nuisance variables, we perform a dimensionality reduction
through means of PCA (Nz=2) accounting for 60% of total variance.
These confounds were then regressed out of all IDPs and behavioral var-
iables and the residuals standardized.

Dimensionality reduction of IDPs and physical variables

In order to avoid an overdetermined, rank-deficient CCA solution, and
to limit the chances of overfitting, a dimensionality reduction step was
performed to both IDPs and physical variables. Using the same approach
previously applied by Smith et al. (2015), IDPs were reduced into 10
PCAs (Nx=10; variance explained =53%), whereas physical variables
were reduced into 5 PCAs (Ny = 5; variance explained = 79%).

CCA
We sought to characterize a mode of brain—physical covariation across
pupils: a data-driven latent factor linking a linear combination of
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Table 5. Descriptives of physical variables®

Mean (SD)
VO,max, V0,/kg max (ml/min/kg) 37.2 (85)
V0,max, workload max (Watts) 137.8 (25.9)
Vigorous PA, bursts (min per week) 41.0 (34.2)
Moderate PA, bursts (min per week) 247 (106)
Sedentary activities, bursts (min per week) 4075 (993)
Vigorous PA, long-lasting (min per week) 10 (14)
Moderate PA, long-lasting (min per week) 320 (167)
Sedentary activities, long-lasting (min per week) 3502 (369)
Days active during past week 49 (1.8)
Body mass index 19.5 (4.1)
Resting heart rate (bpm) 75 (12)
Blood pressure, systolic (mmHg) 106 (10)
Blood pressure, diastolic (mmHg) 73(7)

“Thirteen measures of physical activity, fitness, and physical health were considered in testing the relation-
ship with brain IDPs. Here we report mean (SD) before correcting for demographics and socioeconomic sta-
tus. PA, Physical activity.

neuroimaging metrics (Table 4) with a linear combination of physical
measures (Table 5). To this end, we used CCA, an approach that has suc-
cessfully been applied in recent studies and that, compared with pairwise
association testing, has shown greater sensitivity for complex biological
processes and greater explained variance (Smith et al., 2015; Miller et al.,
2016).

CCA is a symmetric, cross-decomposition method that characterizes
covariation modes between a pair of two-dimensional datasets. This is
achieved by finding two sets of free parameters (or canonical coefficients,
i.e., one set of coefficient vectors per set of brain metrics and one set of
coefficient vectors per set of physical metrics) that maximize the correla-
tion of the projections of the two datasets into the identified latent space
(or canonical variates or subject scores). In other words, the variation in
mode strength between subjects is maximally correlated. Here, this was
computed using MATLAB ‘canoncorr’ function.

Unbiased statistical inference through block-aware permutation
testing

Deconfounding, as required to ensure that the CCA is not driven by nui-
sance factors, induces a dependency among the rows of the data submit-
ted to CCA. While this dependency is weak and diminishes with
increasing sample size, it represents a violation of the exchangeability
assumption required by permutation, which can inflate permutation sig-
nificance. To account for this deconfounding-induced dependency that
violates exchangeability, we use a method that, without changing the ca-
nonical correlations, reduces the data from N observations to N-Nz
observations that are exchangeable and, thus, can be subjected to a per-
mutation test (Theil, 1965; Winkler et al., 2020). We randomly chose
1000 sets of Nz rows for removal, conducting 1000 permutations for
each set.

Permutations were performed among subjects within school, respect-
ing dependencies given by the hierarchical structure of the data (Winkler
et al., 2015). For each of the 1000 repetitions, a p value was computed
based on this null distribution for the first CCA mode. Across repetitions,
a distribution of statistical significance values was built and the final statis-
tical significance level was computed as its average value. The results of
this analysis are shown in Figure 2b.

Unbiased estimation of effect size through leave-one school-out
cross-validation

In order to derive an unbiased estimate of the CCA correlation strength
that took into account the hierarchical structure in the data, we imple-
mented a leave-one school-out cross-validation (CV) approach. In all
but one school, we performed all the above steps (except permutation
testing), learning all the coefficients of the standardization steps and of
the linear transformations. On the left-out school, we then applied those
transformations and predicted left-out pupils’ scores in the CCA mode.
We repeated this procedure for all folds (here schools). CV performance
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for each PC number) around the previously
chosen PCs number (Nx =10). The results of
this analysis are shown in Figure 2¢c—f.

Characterization of brain and physical
phenotypes

We then aimed to characterize the CCA phe-
notypes: the set of brain measures and the set
of physical measures symmetrically linked by
the CCA covariance mode. To do this (for-
mally, to characterize the CCA crossed load-
ings, hereafter referred to as loadings), we
follow the procedure described by Smith et
al. (2015). On the whole sample, CCA brain
loadings were calculated as the pairwise
Pearson’s partial correlation between CCA
physical variate (or subject scores) and the
original datasets of brain IDPs, while control-
ling for the full set of nuisance variables:
CCA brain loadings = partial correlation
(brain IDPs, CCA physical variate, nuisance
variables). The results of this process are
shown in Figures 4-6. CCA physical loadings
were calculated with the following the same
process: CCA physical loadings = partial
correlation (physical variables, CCA brain
variate, nuisance variables). The results of
this process (only for structural IDPs) are
shown in Figure 3. CCA loadings are there-
fore bound between 1 and —1.

For functional measures, each IDP is rep-
resented by a whole-brain RSN. To aid inter-
pretation, for each RSN, its CCA brain
loading was multiplied by the group RSN
map. The results of this process are shown in
Figure 5a, b. Then, to derive a summary rep-
resentation, we concatenated all RSN maps in
a 4D file and computed standardized mean
across RSN, separately for both functional
connectivity and amplitude. The results of this
process are shown in Figure 5¢, d.

We then aimed to characterize the average
involvement for each type of MRI value.
Across IDPs of a MRI metric, we computed
the average across CCA brain loadings. This
provided a ranked list of MRI parameters rep-
resenting the average relationship of each MRI

Number of PCs on IDPs
Figure 2.

Mode of brain—physical covariation across pupils. The results from CCA highlight one significant mode of brain—

metric with pupils’ physical scores. The results
of this process are shown in Figure 7.

physical covariation across pupils. a, Scatter plot of cross-validated canonical variates between brain IDP scores and physical

scores. Each dot represents a pupil (cross-validated CCA: p =0.34). Statistical significance of CCA was assessed 1000 times,
each time comparing the real value against 1000 block-aware permutations taking into account school structure. b,
Distribution of statistical significance values. The final significance value was assessed as the average of this distribution (p
=10.0130). Red dashed line indicates cutoff of statistical significance of «=0.05. ¢, Explained variance in IDPs as a function of
varying the number of PCs (from Nx = 6-14). d, For each number of PCs, the whole statistical testing pipeline was performed.
All analyses led to a statistically significant mode of covariation, showing robustness of identified brain—physical covariation.
For each number of PCs, the whole CV pipeline was performed: CV p () and CV MSE (f) across the range of PCs on the IDPs.

was then quantified as the Pearson’s p correlation coefficient and mean
squared error (MSE) calculated between predicted brain and physical ca-
nonical covariates (or predicted canonical variates). The results of this
analysis are shown in Figure 2a.

Supplementary analysis for robustness of identified covariation when
varying the number of principal components (PCs) on the IDPs

In order to assess whether the identified relationship changes when vary-
ing the number of PCs of IDPs, we repeated the whole statistical testing
pipeline for a range of PCs numbers (from Nx = 6-to-14, independently

Joint-inferences with univariate measures
of cognitive skills, mental health, and
general health

The tests for association between the identi-
fied CCA mode and the multiple variables
measuring the domains of cognitive skills,
mental health, and general health were con-
ducted (separately for each domain) using
multiple linear regression with nonparamet-
ric combination (NPC) implemented in FSL
PALM (Winkler et al., 2016). NPC works by combining test statistics or
p values of separate (even if not independent) analyses into a single, joint
statistic, the significance of which is assessed through synchronized per-
mutations for each of the separate tests. Here we asked whether each
CCA covariate (brain covariate while adjusting for physical covariate,
and vice versa) was associated with any domain of interest, and the NPC
was tested via Fisher statistic with 1000 block-aware permutations while
adjusting for nuisance variables in reduced space. For each domain,
NPC Fisher significance values were corrected for multiple comparison
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variables

0.61 VO2max - VO2/kg max
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-0.28 Sedentary activities (bursts)
-0.32 Sedentary activities (long-lasting)
-0.56 Body mass index
-0.5 0 0.5
Figure 3.  Physical phenotype linked to the brain—physical mode of covariation. Bar plot

represents the CCA physical loadings. Each coefficient represents the relationship between
each physical metric and subjects’ brain IDP scores (or CCA brain variate). Bar plot and vari-
able ranking are matched and color-coded in red/blue in accordance to a positive/negative
relationship with the mode of covariation (the magnitude of involvement is further repre-
sented through transparency).

testing across CCA covariates (brain and physical) via family-wise error
correction (FWE-corr).

Results

Brain-physical mode of covariation across pupils

Using CCA, we tested the hypothesis that, across pupils, inter-
subject differences in multimodal whole-brain IDPs covaried
significantly with differences in physical lifestyle variables, inde-
pendent of nuisance variables. We found one significant mode of
brain-physical covariation across pupils, linking differences in
brain IDPs with individual differences in physical lifestyle (Fig.
2a, CCA: p =0.34, MSE = 1.38, using leave-one school-out CV;
Fig. 2b, p =0.0130, significance assessed on 1000 repetitions,
each with 1000 block-aware permutations; results remained the
same if adjusted for the full set of nuisance variables, p =0.0312,
significance assessed on 1000 repetitions). We also show that
varying the number of PCs on the IDPs (from Nx=6 PCs to 14
PCs) consistently produces the same results (Fig. 2¢c—f), showing
robustness of the identified relationship across a range of PCs on
the IDPs. This mode represents a pattern of brain IDPs that
covaries with a pattern of physical variables. We next interro-
gated this physical phenotype and brain phenotype separately, to
determine the patterns that underlie this mode.

Physical phenotype of covariation

For each physical variable, we calculated the loadings of the
physical phenotype relating to the CCA mode (or CCA physical
loadings) representing the relationship between each physical
variable and the CCA brain variate (or subjects’ brain scores)
(Fig. 3). We found that pupils who scored higher in the brain—
physical mode of covariation were those with higher cardiovas-
cular fitness; those with lower body mass index; those who spent
more time doing long-lasting (both moderate and vigorous)
physical activity during a normal school week and spent less
time being sedentary.

Brain phenotypes of covariation

In order to interpret brain phenotypes of physical covariation,
we calculated the canonical loadings for each IDP of brain struc-
ture, microstructure, and function. These loadings (or CCA
brain loadings) represent the relationship between each brain
IDP and the CCA physical variate (or subjects’ physical scores)
(to explore the spatial patterns of all structural, microstructural,
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and functional IDPs, see, respectively, Fig. 4 and Fig. 54,b; for
violin plot of CCA brain loadings for all IDPs, see Fig. 6).

We observed that some MRI metrics presented a global and
homogeneous involvement in the mode of covariation across
ROIs. In order to quantify this tendency, for each MRI metric, we
computed the average CCA brain loadings across all ROIs (Fig. 7).
We found that the strongest CCA brain loadings were found for
GM perfusion (and arrival time) as well as cortical surface area,
GM volume, and a number of WM diffusion metrics. MRI metrics
with the greatest average CCA brain loadings tended to be charac-
terized by spatially extended and homogeneous involvement
across the whole brain. Together, these results show that pupils
with greater physical scores were those who also showed global
patterns of higher blood perfusion (and lower arrival time, i.e.,
faster perfusion) in the GM, greater GM volume, greater cortical
surface area, greater neurite dispersion anisotropy across WM
tracts, as well as greater extraneurite fraction (equivalent to lower
intraneurite fraction), and lower neurite orientation dispersion.

We also observed that, although the average CCA brain load-
ings for RSN functional connectivity and BOLD amplitude was
close to zero, there was great variance across RSNs (Fig. 5).
Because RSN are not binary masks but are instead characterized
by spatial distributions, to summarize their pattern of involve-
ment in the mode of covariation, for each voxel we computed
the standardized mean CCA brain loadings across RSN (Fig. 5¢,
d). The resulting maps for functional connectivity (Fig. 5¢) and
amplitude (Fig. 5d) showed both similarities and differences in
their patterns of involvement in the mode of covariation. In
Figure 5c, RSN functional connectivity shows greater positive
involvement bilaterally in the parietal cortices, supplementary
motor cortex, putamen, and right primary motor cortex, whereas
it shows greater negative involvement broadly in the occipital cor-
tices. The peak of positive involvement was localized in the right
parietal cortex, whereas the negative involvement was localized in
the occipital cortex. In Figure 54, RSN BOLD amplitude shows
greater positive involvement in the anterior cingulate gyrus
(dACC), superior frontal gyrus, parietal cortices, right inferior
frontal gyrus, whereas it shows greater negative involvement
broadly in the occipital cortices, and left primary somatosensory
cortex. The peak of positive involvement was localized in the
dACC, whereas the negative involvement was localized in the
occipital cortex. These maps show a common pattern of greater
positive involvement bilaterally in the parietal cortices, and a com-
mon pattern of negative involvement in the occipital cortices.

Relationship with measures of cognition, mental health, and
general health

We then tested the hypothesis that the identified CCA mode of
brain-physical covariation was significantly associated with meas-
ures of (1) cognitive skills, (2) mental health, and (3) general
reported health. We used a multiple linear regression to test the
association between the CCA variates (brain covariate while
adjusting for physical covariate, and vice versa) and the outcome
measures. Testing an NPC joint-inference for each domain, we
found no statistically significant association with cognitive skills
(respectively, for brain covariate and physical covariate, NPC
Fisher FWE-corr p =0.2600, 0.2360) or general reported health
(respectively, for brain covariate and physical covariate, FWE-corr
p=0.7240, 0.4910). We found a trend toward an association
between individual differences in the brain covariate and differen-
ces in mental health (NPC Fisher FWE-corr p =0.0640), whereas
no significant association was found for the physical covariate
(NPC Fisher FWE-corr p =0.1830).



Salvan et al. o Brain—Physical Covariation in Adolescence J. Neurosci., February 3,2021 - 41(5):1092-1104 - 1099

GM QMRI R2*

o

WM QMRI R1

Relationship with
CCA Physical variate

-0.3 NN O BT 0.3

Figure 4.  Structural IDPs and their relationship with the identified phenotype of physically active lifestyle. For each MRI metric and for each structural ROI (thus, for all structural IDPs), the
relationship with the identified phenotype of active lifestyle. Hot colors represent a positive relationship with the physical phenotype. Cold colors represent a negative relationship. Structural
maps are ranked from top to bottom (left column to right) in accordance to average CCA brain loadings (as shown in Fig. 7).

Discussion multimodal brain phenotypes are linked with a specific,
In this work, we show that, in 12-year-old pupils, physical ~ latent pattern of physical measures that capture a physically
activity, fitness, and physical health are linked with global  active lifestyle (high fit, high active, low sedentary individu-
patterns of brain structure, microstructure, and function. als). This finding hints at the involvement of multiple
In this relationship, whole-brain, homogeneous patterns of  underlying biological processes and suggests that physical
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Functional IDPs and their relationship with the identified phenotype of physically active lifestyle. For each RSN, and for both metrics functional connectivity (a) and amplitude (b),

the relationship with the identified phenotype of active lifestyle. Hot colors represent a positive relationship with the physical phenotype. Cold colors represent a negative relationship. To aid
interpretation, for each RSN, its CCA brain loading was multiplied by the group RSN map. RSNs are here ranked from top to bottom in accordance to their CCA brain loadings. We then con-
catenated all RSNs maps in a 4D file and computed the mean and SD across RSNs, separately for both functional connectivity and amplitude. ¢, Standardized mean of CCA brain loadings for
RSN functional connectivity. d, Standardized mean of CCA brain loadings for RSN amplitude. ¢, d, Top row represents the same brain coordinates. Bottom row represents the respective peak of

greater CCA brain loadings. ¢, d, Dashed circle represents the peak value.

health and aerobic exercise might have a wider effect on
brain processes than previously thought.

We applied a holistic approach to provide novel insight into
the importance of different aspects of a physically active lifestyle
in relation to brain structure and function. While high cardiovas-
cular fitness and physical activity are positively linked with the
identified brain phenotypes, sedentary activity and body mass

index are negatively related. Furthermore, we showed that long-
lasting physical activity, either moderate or vigorous, is more
important to this relationship than brief bursts of activity, sug-
gesting that regular moderate-to-vigorous physical activity might
be a better driver to promote brain changes. Together, these
findings situate pupils along a latent axis according to their
physical phenotype: pupils with high cardiorespiratory fitness
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patterns of brain structure than previously
thought. Further work is needed to better under-
stand multimodal, spatially extended phenotypes
of brain structure (Groves et al., 2012; Douaud et
al,, 2014). Indeed, it remains unknown how spa-
tially extended brain patterns relate to individual
differences in cognition, their level of heritability,
as well as to what extent they are susceptible to
plasticity. Although it is not possible to infer the
presence of a specific biological process or cellular
component solely on the basis of MRI measures
(Zatorre et al., 2012), these results suggest that
high fitness and regular physical activity might
have a more widespread impact on brain struc-
ture than previously thought.

Previous literature has explicitly focused on
studying the effects of aerobic exercise on the hip-
pocampus (Cotman, 2002; Pereira et al., 2007;
Chaddock-Heyman et al., 2016; Thomas et al,
2016). Cardiorespiratory fitness is indeed known
to promote hippocampal neurogenesis and
angiogenesis that, in turn, determines macroscale
changes that are also visible via noninvasive neu-
roimaging (van Praag et al., 1999). Here, we
extend the current knowledge beyond a uniquely
hippocampal pattern, highlighting the global na-
ture of greater volume and faster perfusion across
the whole-brain GM. In other words, variation in
hippocampal structure alone does not underlie
the brain-physical relationship characterized
here. Rather, we observed homogeneous loadings
across GM areas. The strongest contributions to
our brain phenotype came from perfusion meas-
ures. These robust associations found with perfu-
sion metrics are in line with a body of literature
showing positive effects of physically active life-
style on vascular health (Department of Health
and Human Services Office of Disease Prevention
and Health Promotion, 2000; Vaynman et al,

-0.2 0 0.2

Figure 7.

represented through transparency).

and performance and with high weekly levels of physical activ-
ity, contrast with pupils spending most time in sedentary or
low-energy behaviors.

The novelty of this work is the finding of multimodal global
brain phenotypes linked with a physically active lifestyle.
Although prior work has studied the relationship between single
measures of brain structure or function and, separately, physical
activity or fitness (Valkenborghs et al., 2019), our approach
allowed us to identify latent patterns of multimodal brain IDPs
characterized by the involvement of multiple brain regions in the
covariation with physical scores. Specifically, greater physical
scores were linked with spatially extended patterns of greater
blood perfusion and faster arrival time in the GM, greater GM
volume, and larger cortical surface area, and in the WM with
lower intraneurite density and kurtosis. This result shows that
high fitness and physical activity are associated with more global

Brain phenotype linked to the brain—physical mode of covariation. Bar plot represents the average
(CA brain loadings. Each coefficient represents the relationship between each MRI metric (average across ROIs)
and pupils’ physical lifestyle scores. Bar plot and variable ranking are matched and color-coded in red/blue in ac-
cordance to a positive/negative relationship with the mode of covariation (the magnitude of involvement is further

2004), as well as animal studies linking physical
exercise to angiogenesis (Kleim et al., 1996; Rhyu
etal., 2010).

Further key insights derive from spatially
extended patterns of WM covariation. Although
the myelin-sensitive metrics (Quantitative-MRI)
in the current study made little contribution to
the mode of variation, higher scores on the physi-
cal phenotype were associated with lower intra-
neurite density and kurtosis and, to a lesser extent, with lower
neurite orientation dispersion and with greater dispersion anisot-
ropy. It is relevant that the DW-MRI protocol used in this study
would be sensitive to diffusion properties within large glial cells,
such as astrocytes and oligodendrocytes. Our gradient strength
provides sensitivity to length-scales of ~4-6 um, with the body
size of astrocytes and oligodendrocytes being, respectively, in the
order 20 um (Oberheim et al., 2009) and of 14 um (Bakiri et al.,
2011), much larger than the average myelinated axon diameter
(<1 um) (Liewald et al., 2014). Indeed, astrocytes and oligoden-
drocytes are the most abundant cells in WM (based on cell
counts), accounting for more than half the volume of an MRI
voxel (Walhovd et al., 2014). It is thus possible that an increase
in size or number of macroglia cells would have a significant
effect on the DW-MRI signal, thus contributing to the positive
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association here observed between physical lifestyle scores and
WM extraneurite fraction (by construction 1 minus intraneurite
density, and specifically, the hindered space outside the neurites
prescribed through anisotropic diffusion). Crucially, there exists
key histologic evidence from animal studies in support of an
increase in astrocyte proliferation and in GFAP levels (Li et al.,
2005; Uda et al,, 2006) and in oligodendrocyte number (Luo et
al., 2019) in several areas of the rat brain. Together with this pre-
vious literature, the findings here reported may suggest a positive
relationship between physically active lifestyle and macroglia cell
density across multiple WM tracts, perhaps reflecting a role in
providing enhanced metabolic support for neurons. This hy-
pothesis should be tested using imaging alongside more direct
measures from ex vivo studies, or using alternative techniques
with greater specificity, such as detecting MRS-visible metabo-
lites with greater sensitivity to astrocytes (Brand et al., 1993).

We also report two patterns of RSNs involvement in the
mode of brain-physical covariation. We found that a physically
active lifestyle was linked with greater connectivity in the parietal
cortices and with lower connectivity in the occipital cortices,
showing, respectively, increased and decreased BOLD coupling
with all RSNs in more active participants. The same phenotype
of a physically active lifestyle was also positively related with
greater amplitude in local BOLD fluctuations in the dACC and
in the parietal cortices, and with lower amplitude in the occipital
cortices. Studying both RSNs amplitude (BOLD variance) and
functional connectivity (BOLD covariance) can be important
to understand possible sources of change and the related
neural processes (Garrett et al, 2010; Duff et al., 2018).
While greater activity both in functional connectivity and in
BOLD amplitude may suggest greater coactivation between
the parietal cortices and multiple RSNs across the whole
brain, greater BOLD amplitude with no increase in func-
tional connectivity, as observed in the dACC, may suggest
greater local activity that results in a decoupling of the dACC
from the rest of brain activity. Greater dACC activity during
a cognitive control task was previously associated with
higher fitness levels in preadolescent children, with greater
dACC activity in the high fit group positively related to accu-
racy in task performance (Voss et al., 2011). In this study,
however, we found no significant association between pupil’s
scores in the mode of brain-physical covariation and differ-
ences in cognitive skills. Only a trend for an association with
mental health was found, thus not allowing us to infer on the
cognitive or mental health relevance of this brain pattern.

Overall, our findings lend support to the growing body of evi-
dence demonstrating a close relationship between the body and
the brain. Although the relatively small sample size given the
number of variables of interest and the possible cluster effect of
schools may represent a limitation of this study, here we used
thorough statistical procedures (i.e., block-aware permutation
testing and leave-one cluster-out cross-validation) to explicitly
deal with this factor, thus producing robust and unbiased statis-
tics. Larger samples might provide power to detect multiple
modes of covariation. Also, the results here reported are correla-
tional; therefore, caution is required in interpreting directional-
ity. It is possible that this relationship also represents the other
direction of association, and indeed brain structure, microstruc-
ture, and function are key drivers of behavioral choices.
Nevertheless, our findings suggest that a complex physical phe-
notype that is influenced by physiology, and lifestyle choices,
might have widespread effects on biological processes influenc-
ing brain phenotypes. Future studies may test whether
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improving physical health and fitness through means of activity
interventions promotes diffuse neuroplasticity.

In conclusion, this work provides novel insight into the com-
prehensive relationship between physically active lifestyle and
brain structure and physiology in early adolescence. These find-
ings have broad implications for future research, suggesting
novel avenues to study the effect of modifiable lifestyle factors as
part of wider brain-body relationships. Understanding how
physical pathways may foster healthy human brain development
can help us to develop better intervention studies aimed at
informing public health and education policies.
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