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Abstract 

Nanopore sequencers enable selective sequencing of single molecules by reversing voltage 

across specific nanopores. DNA molecules are thus rejected and replaced, enabling 

enrichment, depletion or combinations of both to address a biological question. Previously 

we demonstrated this approach using dynamic time warping mapping signal to reference, 

but required significant compute and couldn’t scale to gigabase references. With GPU direct 

base calling we now scale to gigabase references. We can enrich specific chromosomes 

from the human genome and develop pipelines enriching low abundance organisms from 

mixed populations without a priori knowledge of sample composition. Finally, we enrich 

targeted panels comprising 25,600 exons from 10,000 human genes and 717 genes 

implicated in cancer identifying PML-RARA fusions in the NB4 cell line in under 15 hours 

sequencing. These methods can be used to efficiently screen any target panel of genes 

without specialised sample preparation using any computer and suitable GPU. Our toolkit, 

readfish, is available at https://www.github.com/looselab/readfish. 
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Introduction 

Selective sequencing, or “Read Until”, is the ability of a nanopore sequencer to reject 

individual molecules whilst they are being sequenced. This requires the rapid classification 

of current signal from the read start to determine if molecules should be sequenced or 

removed and replaced with new reads. We first demonstrated this using dynamic time 

warping (DTW) to compare the signal with a simulated current trace derived from a 

reference sequence ​1​. Although DTW enabled a small set of use cases, it required significant 

compute resources preventing its generalised use ​2​. Another recent method using raw signal 

is UNCALLED ​3​. Results show this method has a lighter computational footprint than 

previous signal based methods, but is limited in search space and still requires significant 

compute resources. An alternative approach was to use direct base calling of signal chunks 

enabling work in sequence space as shown by Edwards et. al ​4​. However, this failed to 

demonstrate any benefit compared with sequencing without read until as the approach 

filtered out unwanted reads but did not provide any enrichment. Furthermore, the approach 

still required significant CPU resources. 

 

Our goal was to work in sequence space, utilise reasonable computational resources and 

show enrichment of targets. To do this, we exploit Oxford Nanopore Technologies (ONT) 

base calling software. ONT have developed a number of base callers for nanopore 

sequence data, initially utilising Hidden Markov Models and available through the metrichor 

cloud service ​5​. These were replaced with neural network models running on CPU and then 

Graphical Processing Units (GPU). For real time base calling, ONT provide a range of 

computational platforms with integrated GPUs (minIT, Mk1C, GridION and PromethION). 

These devices enable real time base calling sufficient to keep pace with flow cells generating 

data. Most recently, these base callers implemented a server-client configuration, such that 

raw signal can be passed to the server and a nucleotide sequence returned. Using this we 

show that GPU base calling can be used to deliver a real time stream of nucleotide data 

from flow cells sequencing with up to 512 channels simultaneously. At the same time, the 

GPU can base call completed reads and optimised tools such as minimap2 ​6​ can therefore 

be used to map reads as they are generated, enabling dynamic updating of the both targets 

and the reference genome as results change.  

 

As our method does not use raw signal comparison we do not have to convert references 

into signal space as in DTW or other signal methods ​1,3​.  We are constrained by access to a 
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sufficiently powerful GPU. The results presented here mainly utilise the ONT GridION MK1 

which includes an NVIDIA GV100 GPU, but we also use an NVIDIA 1080 showing that this 

approach works on any device capable of real time base calling. We apply this approach to a 

range of model problems. First we select specific human chromosomes illustrating gigabase 

references are not a constraint. Secondly, we enrich low abundance genomes from a mixed 

population and find we improve both time-to-answer and the ability to assemble low copy 

genomes. Adaptive sampling is the process by which the software changes what is being 

sequenced in response to what has been seen during an experiment.  To illustrate this we 

use Centrifuge to identify the most abundant species present within a metagenomic sample, 

monitor depth of coverage for each in real time and enrich for the least abundant genomes 

without ​a priori​ knowledge of content ​7​. This method is necessarily limited by the composition 

of the reference database and also requires network access to retrieve references once 

identified. Finally, we enrich panels of human genes including 25,600 target regions 

corresponding to approximately 10,000 genes and 717 genes from the COSMIC (Catalog of 

Somatic Mutations in Cancer) panel ​8​. We demonstrate how Read Until can be used to 

capture information on key targets without the need for custom library preparation and show 

we can identify a known translocation in the NB4 cell line in under 15 hours ​9​.  

 

We provide a configurable toolkit, readfish, enabling targeted sequencing of gigabase 

genomes. This includes depletion of host sequences as well as example methods giving 

minimum coverage depth for specific sequences within a population. Configuration of these 

tools is relatively straightforward and requires no additional compute as long as a sufficiently 

powerful GPU capable of base calling multiple flowcells in real time is available. 

Results 

Methods Overview 

Selective sequencing requires bidirectional communication with a nanopore sequencer 

through the Read Until API ​10​. The API provides a stream of raw current samples from every 

sequencing pore on the flow cell and allows the user to respond in real time, either rejecting 

a read from a specific pore or allowing a read to finish naturally. Previous API 

implementations served any signal seen as a potential read and so required processing 

many signals that were not genuine reads, causing analysis challenges ​4​. The current API 

discriminates true DNA signal from background more efficiently and is configured to only 

provide signals identified as DNA reducing the analysis burden. We reasoned that the signal 
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served by the API should be compatible with the Guppy basecaller and so retrieve short 

sequences that are processed in base space.  

 

Fig. S1A illustrates the workflow for basecalling reads as they are being sequenced. Briefly, 

data chunks of signal are served from the Read Until API. Chunks default to one second 

duration but can be configured by the user. We found 0.4s chunk durations (~180 bases, see 

methods) balanced the need for small chunks with API performance (Table S1 and Fig. S2). 

The data chunk (up to 512 reads from a MinION flow cell) is converted to a Guppy 

compatible format and base called using pyguppyclient ​11​. Base called data are then mapped 

to a reference with minimap2 ​6​. Reads may uniquely map, map to multiple locations, or may 

not map at all. In response the user can choose to reject a read (unblock), acquire more data 

for that read (proceed) or stop receiving data for the remainder of that read (stop receiving).  

Read Until Performance 

Enrichment and Depletion 
To test performance of our real time base calling approach, we sequenced the well studied 

NA12878 reference cell line ​12​. The flow cell was configured to operate in quadrants each 

sequencing: a control (all reads accepted), chromosomes 1-8 (50% of reads accepted), 

chromosomes 9-14 (25% of reads accepted), and finally chromosomes 16-20 (12.5% of 

reads accepted). Reads are base called and mapped to the reference regardless of 

quadrant. Median read lengths per chromosome in each quadrant indicate those sequenced 

or rejected (Fig. 1A). Selectively sequenced reads have a median read length of ~15 kb. 

Rejected reads have a median length of ~500 bases, equating to ~1.1 seconds of 

sequencing time at 450 bases per second, although median data collected was closer to 1.5 

seconds. Reads are base called, mapped and the unblock action sent and actioned within 

~1s of the read starting. This run generated 9.5 Gb of sequence data, unevenly distributed 

across the quadrants; 3.47 Gb in the control, 2.79 Gb at 50% acceptance, 1.84 at 25% 

acceptance and only 1.22 Gb at 12% (Fig. 1B, Table S2). For each quadrant the optimal 

enrichment is 2-fold, 4-fold and 8-fold but we see lower enrichments by the end of the 

experiment, presumably due to reduced yield (Fig. 1C). We observe enrichment of target 

sequences in all cases compared with control. Relative enrichment is closer to the 

theoretical maximum at the beginning of the sequencing run (Fig. 1D). Analysis of available 

channels contributing to data generation shows that sequencing capacity is lost faster as 

more reads are rejected (Fig. 1E). For this experiment, we did not nuclease flush the flow 
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cell, but anticipate improvements in both yield and enrichment if we did. We were able to call 

all batches within our 0.4 second window (Fig. S3E).  

Enrichment of metagenomes and “Run Until”. 
A common goal in sequencing library preparation is to remove host DNA to enrich for a 

subpopulation ​13,14​. Selective sequencing may be beneficial in conjunction with library 

preparation methods. We considered metagenomics applications as a similar class of 

problem. Nicholls et. al. generated a reference dataset using the ZymoBIOMICS Microbial 

Community Standards​15​. They were able to generate sufficient data to assemble several of 

the bacteria into single contigs (without binning). Notably, eukaryotic genomes that were 

present at lower abundance (2%) did not generate high contiguity assemblies. This is not 

surprising as the coverage depth for ​Saccharomyces cerevisiae ​was 17x and ​Cryptococcus 

neoformans​ 10x when sequencing on a single GridION flow cell​15​. Enriching for these low 

abundance components is conceptually similar to depleting host material from a sample. In 

our experiments we utilise the ZymoBIOMICS high molecular weight DNA standard (D6322). 

This sample will ​a priori​ improve assemblies due to the longer read lengths and further 

differs from Nicholls et al. as it excludes ​C. neoformans​. 

 

To see if selective sequencing could improve the relative coverage of low abundance 

material we developed a simple pipeline (readfish align) to drive our selective sequencing 

decisions (Fig. S1B). This pipeline aligns completed reads against a reference as they are 

written to disc, then calculates coverage depth. Once an individual species reaches the 

desired coverage depth, new reads mapping to that species are rejected. We simultaneously 

base call both the real time stream from Read Until and completed reads. Finally, we 

implemented Run Until to stop the run once all targets had reached sufficient coverage. 

These experiments used a community specific reference file. Mean read lengths for target 

genomes reduce as they are added to the rejection list and the mean read length becomes 

dominated by short, rejected reads (Fig. 2A). Plotting coverage over time for reads not 

rejected by Read Until shows a decrease in coverage accumulation for completed genomes 

(i.e those at the desired coverage level) with an increase in sequencing potential for the least 

abundant sample, ​S. cerevisiae​ (Fig. 2B). The proportion of bases mapping to each genome 

reveals the shift in sequencing capacity to ​S. cerevisiae ​(Fig. 2C). Relative abundance can 

still be determined when running Read Until as the proportion of reads mapping to each 

genome does not change (Fig. 2D). The run automatically stops once each genome reaches 

40x, taking ~16 hours and 4.4 Gb of sequence data (Fig. S4). 
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This sample should be 2% ​S. cerevisiae ​by bases, typically yielding ~88 Mb or 7x of 

sequence data. Using selective sequencing we see 40x coverage, naively a 5.7 fold 

increase in on target data. However, a flow cell not implementing selective sequencing 

would have higher yield, so real world enrichment is lower. Nicholls et al. report 16 Gb on a 

similar sample generated in 48 hours, which would result in ~25x of ​S. cerevisiae​ bringing 

enrichment closer to 1.6x ​15,16​. Theoretically enrichment of a 2% subset should be greater, 

but there is a cost to rejecting an individual read. Even so we could enrich the least 

abundant element compared with that expected from the sample composition in multiple 

experiments (n=3). Thus we accelerate time-to-answer for a particular coverage depth (16 

hours vs 48 hours). This approach assumes knowledge of the sample ​a priori​ and so is of 

limited practical relevance. By integrating a metagenomics classifier into our pipeline 

(readfish centrifuge) we avoid this requirement ​7​. As strains are identified within the sample 

they can be dynamically tracked and added to a rejection list illustrating the principle of 

adaptive sequencing.  

 

Using this approach we generated 5.995 Gb of sequence data and identified all bacterial 

genomes in the sample, although we observed enrichment, the flow cell became completely 

blocked before reaching target coverage (Fig. 3, Table S2, Figs. S5,S6). 6 Gb of sequence 

should result in ~10x coverage; here we obtained 41x coverage (Fig. 3B). In this case, we 

considered the entire read as a candidate for read until, consequently some reads are 

rejected later into the read. This results in a wider range of mean rejected read lengths, 

particularly for ​S. cerevisiae ​(Fig 3A). This experiment was completed within 24 hours, 

illustrating the benefits in terms of time-to-answer. As expected, improved coverage depth 

results in almost complete assemblies using MetaFlye compared to that achieved by 

Nicholls et. al (Fig. S7); in part a consequence of improved read lengths here ​15,17​. 

Subsequent nuclease flushing of the flow cell would increase effective throughput, but this 

was not our goal. 

Target Panel Enrichment. 

Methods for target enrichment include PCR amplification, bait capture methods and 

CRISPR-Cas9 approaches ​18–21​. These methods are reliable and cost effective at scale, but 

have development, instrument and consumable costs. Unlike methods that capture native 

DNA ​20​, PCR based methods cannot capture methylation information without additional 

processing. Such panels cannot be altered easily. 
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Selective sequencing provides an alternative and so we identified 19,296 target genes 

annotated as protein coding with Transcript Name IDs (see methods) from the human 

genome (GRCh38) excluding those on X and Y and ignoring alt chromosomes ​22​. We 

extracted exon coordinates, extended 3kb either side and collapsed overlapping targets. We 

enriched for targets found on odd numbered chromosomes, rejecting all reads from outside 

these targets. This results in a total search space of 176 Mb (~5%) containing 25,600 targets 

covering ~10,000 genes (Fig. 4A). A single GridION flow cell with 1,660 pores gave 6.1 Gb 

of sequence data in 24 hours. After nuclease flushing, loading additional library and 24 hours 

more sequencing gave 5.573 Gb (total yield: 11.675 Gb, N50 9 kb, Table S2). Exon targets 

had median coverage of 17.23x (mean 17.39x) with 75%>14.15x, 25%>20.42x. On “control” 

even chromosomes, median coverage was 0.98x (mean 1.2x). Detailed coverage plots of 

targets on ODD (Fig. 4C,D) and EVEN (Fig. 4E,F) chromosomes correlate with the target 

regions. Controlling for these experiments is complicated by flow cell variability. We compare 

with theoretical yields of 10, 20 and 30 Gb resulting in approximately 3-10x coverage. Our 

effective enrichment is from 2.7-5.4x consistent with our earlier observations. Nuclease 

flushing significantly assists enrichment and flow cell efficiency (Fig. S8). 

 
Our exon panel contains 371 genes from COSMIC with median coverage of 13.7x (Fig. 4B)​8​. 

Figures 4C and 4D show coverage for BRCA1, PML and surrounding targets. Although 

preferable to include introns, here we excluded intronic sequences to reduce the total search 

space (although not required). To further explore this and illustrate the flexibility of our 

approach, we targeted the entire COSMIC panel (717 genes) excluding those with no given 

genomic coordinates (Supplementary File 1). Including flanking 5 kb sequences, our search 

space was 89.9 Mb (~2.7% of the genome). Using a flow cell with 1,724 pores we generated 

3.7 Gb within 24 hours. Nuclease flush and reload generated a further 6.03 Gb giving a total 

of 9.73 Gb, with a read N50 of 940 bases (Fig 5, Fig. S9, Table. S2). Deliberately rejected 

reads had an N50 of 515 bases; sequenced reads had an N50 of 11,564 bases. Gene 

targets had median coverage 32.2x (mean 30.7x) (Fig. 5A, Supplementary File 1), with 75% 

of genes >28x, 25% of genes > 35x. ​Figure 5C-F shows coverage for BRCA1, PML, WIF1, 

HOXC11/C13. The specificity of selective sequencing is clear, particularly where 

neighbouring genes in the HOXC cluster are not sequenced. A second run, utilising three 

flushes, one every 24 hours, generated a total of 17.87 Gb with a read N50 of 793 bases 

(Fig. S10, ​Table S2​). Gene targets had median coverage 42.3x (mean 40.5x) (Fig. 5B), with 

75% of genes >​44x, 25% of genes >38x. To test performance of readfish on non-ONT 

hardware, we ran the same experiment using an NVIDIA GeForce GTX 1080 GPU using the fast 

model of the basecaller. This run generated only 6.7 Gb of data with a read N50 of 799 bases 
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(Fig. S11, ​Table S2​). Median coverage of genes was 19.6x (mean 19.1x), with 75% of genes 

>20.99x, 25% of genes >17.78x. 

 

The difference in yield between these runs is largely due to flow cell variation, particularly the 

third run which showed unusual flow cell activity (Fig. S12). However, normalising enrichment to 

the total yield of each flow cell shows similar performance in each experiment for a selection of 

target genes including PML, WIF1, HoxC11/C13, RARA and BRCA1 (Figs. S13-17). This 

suggests that any steps taken to maximise yield, such as flushing, will result in enhanced 

enrichment. As with any native nanopore sequence data, these data can be used to assess 

structural variants and nucleotide variation. As shown in Table S3, these data show recall and 

precision equivalent to, or better than, reference Nanopore whole genome data at similar 

coverage without targeting ​12​. Structural variants within the targeted regions can be detected with 

high recall (Table S4). Crucially, between 5-10 typical flow cells would be required to generate 

equivalent coverage without read until. 

 

To test screening for structural variants we used the NB4 acute promyelocytic leukemia 

(APL) cell line​9​. Using the same COSMIC panel we identified the translocation using a flow 

cell with only 1,196 pores, generating 4.5 Gb of sequence data in under 15 hours (Fig. S18. 

Median coverage of targets was ​11.46​x (mean 11.78x) (Figs. 6A,C,D), with 75% of genes 

>9.5x, 25% of genes > 13.4x. Analysis with svim looking for breakpoint ends, ignoring 

in/dels, identified two candidates passing default filtering (see methods)​23​. The breakpoint 

can also be detected with sniffles (data not shown)​24​. Of these candidates, one captured the 

known breakpoint supported by six reads. A further 24 hours of sequencing (~3Gb) resulted 

in median coverage of 17.37x (mean 18x) and 9 reads supporting the variant (Fig. 6E, Table 

S5). No complex rearrangements were reported in NA12878 using the same COSMIC panel 

(Table S5). A subsequent repeat of this experiment (Fig. S19), with flushing every 24 hours, 

generated 15.9 Gb of sequence data. Median coverage of targets was 34x (mean 35.5x) 

(Fig. 6B), with 75% of genes > 38x, 25% of genes > 30x and 23 reads supporting the 

breakpoint (Fig. 6F, Table S5).  

Discussion 

The idea of selectively sequencing (‘Read Until’) individual molecules using only 

computational methods is a unique aspect of Nanopore Sequencing​1​. Here we exploit ONT 

tools to provide a true real time stream of sequence data as nucleotide bases and provide a 

toolkit to design and control selective sequencing experiments called readfish. This 
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approach removes the need for complex signal mapping algorithms but does require a 

sufficiently performant base caller. Prior work by Edwards and colleagues illustrated that this 

method was a feasible approach, but required extensive additional compute and did not 

show significant enrichment over throughput achieved without running ‘Read Until’ ​4​. Here 

we demonstrate real enrichment over that expected from a similar control flow cell. We also 

show that standard techniques for enhancing flow cell yield such as nuclease flushing and 

loading additional library are similarly beneficial for read until experiments. Although not 

extensively exploited here, nuclease flushing and reuse of flow cells does increase yield and 

enrichment and we have taken to flushing read until experiments every 24 hours.  

 

We find that increased rejection of reads on a flow cell negatively impacts sequencing yield 

and so observed enrichment. The main benefit of selective sequencing in metagenomics 

and host depletion is to improve time-to-answer. For samples which sequence well (i.e do 

not tend to block the flow cell), additional enrichment benefits may be observed. Notably 

running selective sequencing does not disrupt the proportion of reads by count that map to a 

specific reference. Thus, for metagenomics, it is still possible to assess relative abundance 

whilst focussing sequencing length on specific subsets of reads. Future methods proposed 

by ONT to address blocking such as onboard nucleases might increase throughput in future.  

 

Key benefits of our approach are that we utilise only compute resources available within the 

GridION Mk1. As we use current commercially provided base callers, we can utilise new 

algorithms and pores as they are developed. Thus, although not yet tested, we could use 

this method on RNA if sufficiently long reads require depletion. Similarly we could use 

methylation aware base callers to sequence regions of DNA starting from either high or low 

methylation regions. As we obtain sequence, rather than signal, we dramatically simplify the 

construction of pipelines for downstream analysis of reads. Although we focus on results for 

the GridION Mk1 we show this method can be used with any MinION configuration provided 

sufficient available GPU to base call a sequencing run in real time (Supplementary Note 1). 

As we show here, it is possible to utilise the fast base calling model and obtain effective 

enrichment using a single Nvidia GeForceGTX 1080 GPU. Other users have reported 

success with the high accuracy model on systems configured with NVIDIA 2080 GPUs (J 

Tyson, Pers. Comm.). In cost terms, any platform capable of real time base calling will be 

compatible with our approach. In principle this method should scale to the PromethION.  
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We demonstrate that selective sequencing of arbitrary targeted regions of the human 

genome results in actionable coverage and can identify SNVs and SVs within the COSMIC 

panel. For SV analysis, DNA extraction, library preparation, sequencing and analysis could 

be completed within 24 hours. When sequencing a subset of a large genome, large numbers 

of off-target reads are sampled whilst detecting those of interest and the precise parameters 

of optimal target size and coverage have yet to be defined. Consequently, library preparation 

methods enriching for regions of interest will result in higher coverage than ‘Read Until’. But 

the design of such panels is relatively costly and inflexible once developed. Methods relying 

on amplification result in the loss of methylation data, which can be found using the methods 

presented here.  

 

In readfish selective sequencing, targets can be updated by a single configuration file. 

Developing a new panel is as straightforward as compiling a list of target regions. Here we 

also illustrate the concept of adaptive sequencing, as in our metagenomics examples, where 

targets can be dynamically adjusted during a run. In theory a panel could be updated in 

response to observations of the data in real time, perhaps adding targets where candidate 

novel structural variants have been identified or removing targets where sufficient evidence 

is available to eliminate the possibility of an SV existing.  

 

Of course, throughput achievable on platforms such as the PromethION at scale provides 

whole genome sequencing at relatively low cost​25​. Thus any effective method for enrichment 

must compete with these costs, including the additional compute required. By utilising the 

available GPU compute capacity during the sequencing run, we address this issue. There is 

no reason, in theory, why samples could not be multiplexed on a single flow cell as long as 

sufficient yield can be obtained to address the biological question. 

 

Although we have focussed exclusively on applications for ‘Read Until’, we believe that a 

real time sequence data stream as bases has significant advantages for future pipelines. If 

sequence data can be streamed directly into an analysis pipeline and conclusions drawn 

without the requirements for data storage then field deployment of sequencing for detection 

of specific sequences might be accelerated. Ultimately it may be possible to stream 

sequence data for calling of structural variants and further analysis in real time. 
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Online Methods 

Library preparation and sequencing 

Standard LSK-109 (ONT) sequencing libraries were prepared from either the ZymoBIOMICS 

HMW DNA Standard (DS6322 ZymoBIOMICS USA) or DNA extracted from GM12878 cells 

(Coriell), or NB4 cells (gift from M. Hubank) as described in Jain et al​12​. Human DNA for 

exon enrichment or gene targeting was sheared to approximately 12kb using g-TUBE 

(Covaris). Sequencing runs used either the GridION Mk1 or a MinION with NVIDIA 

GeForceGTX 1080 GPU (see Table S2). Standard scripts for sequencing were used with 

one modification, namely that the size of data chunk delivered by MinKNOW was reduced 

from 1 second to 0.4 seconds by changing the value of the break_reads_after_seconds 

parameter in the relevant TOML file (located in ../minknow/conf/package/sequencing/ for 

MinKNOW core version 3.6). All sequencing used FLO-MIN106 R9.4.1 flow cells.  

 

When running read until experiments seeking to maximise yield, throughput on the flow cell 

should be monitored closely. Our practice has been to nuclease flush flow cells every 24 

hours to maximise throughput. For maximising occupancy on the flow cell, users should 

experiment with loading more library than they might otherwise do. For example, where a 

user might load 400 ng of library with a read length N50 of 10-15 kb, we would recommend 

loading 600 ng of library. This assumes R9.4 flowcells. This protocol has not yet been tested 

on R10. 

Single Nucleotide Variant Detection 

SNPs in NA12878 read data were called using Nanopolish in methylation aware mode ​26​. 

Reads were mapped to hg38 removing ALTs with minimap2 using standard settings for ONT 

reads ​6​. High confidence gold standard SNPs were identified from the Genome In A Bottle 

(GIAB) truth set ​27​. SNPs were compared with a 35x WGS NA12878 reference set recalled 

using the same guppy basecaller model ​12​. SNP comparisons were made using HAP.PY 

using default settings and the same target sites used for selective sequencing ​28​.    

Structural Variant Detection and Concordance 

Reads were mapped to the hg38 primary assembly with minimap2 and standard ONT 

settings. Variants were called using SVIM and Sniffles with default settings and minimum 
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variant length set as 50 ​23,24​. Only SVIM variant calls with QUAL above 10 and longer than 

50bp were kept. Variants of the same type present in both SVIM and Sniffles callsets were 

selected as the final call set using SURVIVOR and a maximal distance between breakpoints 

was set to 500 ​29​. Only insertions and deletions intersecting the COSMIC Target Panel were 

considered for concordance calculations in WGS, Run1 and Run2. Concordance 

calculations were performed with Truvari ​30​ with reference distance set as 1.5Kb, percent 

size similarity as 0.3 and only insertions and deletions larger than 50bp within the COSMIC 

Target Panel were considered. For analysis of the translocation in the NB4 cell lines, variant 

calls were filtered with quality 10 and non BND (Breakpoint End)​ ​structural variant types 

were ignored. SVs were visualised with Ribbon ​31​.  

 

Target Lists 

The exact target list used to configure exon capture can be obtained at the following link: 

http://www.ensembl.org/biomart/martview/454f99b3f65c7e62669229fd48

de8e47?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.

default.structure.ensembl_gene_id|hsapiens_gene_ensembl.default.st

ructure.ensembl_gene_id_version|hsapiens_gene_ensembl.default.stru

cture.ensembl_transcript_id|hsapiens_gene_ensembl.default.structur

e.ensembl_transcript_id_version|hsapiens_gene_ensembl.default.stru

cture.chromosome_name|hsapiens_gene_ensembl.default.structure.exon

_chrom_start|hsapiens_gene_ensembl.default.structure.exon_chrom_en

d&FILTERS=hsapiens_gene_ensembl.default.filters.with_hgnc_trans_na

me.only|hsapiens_gene_ensembl.default.filters.chromosome_name.‘1,2

,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y’|hsapien

s_gene_ensembl.default.filters.biotype.‘protein_coding’&VISIBLEPAN

EL=attributepanel 

Read Until Cache Configuration and Chunk Size 

A read begins with adapter sequences as well as optional barcodes. Additionally read starts 

sometimes stall as DNA engages with the pore before signal containing sequence data are 

available. The first chunk of data may not provide an optimal base call and additional data 

may be required. Calling any single fragment of data in isolation is less informative than 

calling the entire signal and so we implement a read cache concatenating adjacent signal 

https://paperpile.com/c/XqNoK7/3SUIk+8vfZv
https://paperpile.com/c/XqNoK7/XyhR
https://paperpile.com/c/XqNoK7/jz2L
https://paperpile.com/c/XqNoK7/NwLy5


 

data from the same read. This enables base calling the complete signal for each read since 

it started. As of MinKNOW version 3.6, the sequencing platform is effectively limited to a 

lower bound chunk size of 0.4s. As shown in Fig. S2 and Table S1, more than 80% of 

human reads can be base called and aligned within 2 chunks or 0.8s worth of data. For 

bacterial sequences more than 40% of reads can be base called and aligned within a single 

chunk or 0.4s worth of data. So by observation, the smallest possible chunk size will enable 

the fastest decision making for any given sequence. In a typical experiment we find that 90% 

of reads can be processed (called, mapped, and decision made) within three chunks (1.2 s, 

Fig. S2, Table S1).  

 

Base caller Configuration 

The Guppy basecaller contains several models for base calling that trade speed (fast) for 

accuracy (high accuracy model, hac) and can optionally call methylation. For selective 

sequencing, the goal is speed and so we investigated the efficacy of both the fast and hac 

models finding the GridION Mk1 easily powerful enough to use the hac model. Across all 

experiments shown here the average batch of reads called in 0.28s and contained 30 reads. 

At maximum load, individual reads are processed in less than 0.002s. Thus we call at least 

100 read fragments per second and even at peak load can typically call all 512 reads (see 

Figs. S3-7, S10).  

Experiment Configuration 

Depending on experiment configuration, the response to read mapping varies (see online 

methods). If depleting contaminants (host depletion) then reads mapping to that reference 

should be rejected. For enrichment, reads mapping to a target should be sequenced. The 

action for non mapping reads will depend on the experiment. If the experimental goal is 

enriching low abundance or unknown targets, non mapping reads should be sequenced. If 

enriching for subsets of a known reference, non mapping reads might be rejected in favour 

of sampling more. Given the variety of options, we provide a configuration file allowing any 

mapping result to trigger any action. We include the option to dynamically update this file 

during sequencing enabling target switches whilst sequencing. The configuration also allows 

different experiments on regions of the same flow cell (see 

https://github.com/LooseLab/readfish/blob/master/TOML.md​).  

https://github.com/LooseLab/readfish/blob/master/TOML.md


 

readfish Code availability 

The ONT Read Until API is required for running Read Until ​10​. The results presented here 

used an updated version of this API, available from our GitHub 

(​https://github.com/LooseLab/read_until_api_v2​; Git commit cff0f52). These changes were 

required for Python3 compatibility and also change the behaviour of the read cache enabling 

consecutive chunks of data to be stored for calling. As the ONT tool chain matures to 

Python3 such changes will no longer be required. pyguppyclient (v0.0.5), a python interface 

to the Guppy base calling server is currently available on PyPI. Our code is available open 

source at ​http://www.github.com/LooseLab/readfish​ and installable via PyPI. 

https://paperpile.com/c/XqNoK7/5XnW
https://github.com/LooseLab/read_until_api_v2
http://www.github.com/LooseLab/readfish


 

Read Until Implementation 

Mapping 
Condition 

Description 

multi_on Read fragment maps multiple locations including region of interest. 

multi_off Read fragment maps to multiple locations not including region of interest. 

single_on Read fragment only maps to region of interest. 

single_off Read fragment maps to one location but it is not a region of interest. 

no_map Read fragment does not map to the reference. 

no_seq No sequence was obtained for the signal fragment. 

Table 1. Description of possible read mapping conditions. 

 

 
Experiment 
Type 

 
Region of 
Interest for 
Alignments 

Mapping Condition 

multi_on multi_off single_on single_off no_map no_seq 

Host 
Depletion 

Known Host 
Genome 

unblock proceed unblock proceed proceed proceed 

Targeted 
Sequencing 

Known 
regions from 
one or more 
genomes. 

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Target 
Coverage 
Depth 
(known 
sample 
composition) 

All known 
genomes 
within the 
sample, 
tracked for 
coverage 
depth.  

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Low 
Abundance 
Enrichment 
(unknown 
sample 
composition) 

All genomes 
within the 
sample that 
can be 
identified as 
well as those 
that cannot. 

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Table 2 - Example configurations for different experiment types. “Unblock” causes a read to be ejected 

from the pore, “proceed” means that a read continues to sequence and serve data through the API for 

later decisions, “stop receiving” allows the read to continue sequencing with no further data served 

through the API.  



 

ReadFish scripts 

ReadFish is a set of scripts that control sequencing in real time. Each script is accessed as a 
sub-command, and a description is given below. 

targets 

This script runs the core Read Until process as specified in the experiment TOML file. It can 

select specific regions of a genome, mapping reads in real time using minimap2 and 

rejecting reads appropriately. This script should be started once the initial mux scan has 

completed. The experiment TOML file can be updated during a sequencing run to change 

the configuration of the Read Until process. It is through this mechanism that the ​align ​ and 

centrifuge ​ commands can change Read Until behaviour during a run. Configuration 

parameters are available under the help flag. Tables 1 and 2 describe the mapping 

parameters and configuration options for various possible experiment types. 

align  

This script runs an instance of the “Run Until” monitoring system that watches as completed 

reads are written to disc. When new data is detected this pipeline will map the data against 

the target reference genome (specified in the experiment TOML file) and compute the 

cumulative coverage for the sequencing run. Once a genomic target reaches sufficient 

coverage, it will be added to the unblock list. Optionally, the user can provide additional 

targets from the start of the run to implement “host depletion”. Finally, the user can configure 

align ​ to stop the entire run if all samples have reached the required coverage depth. At 

present, this coverage depth is uniform for all samples, so it is not possible to have variable 

coverage over a target set. 

centrifuge 

This script runs an instance of the “Run Until” monitoring system. As completed reads are 

written to disc this programme (Fig. S1C) will classify the reads using centrifuge and a user 

defined index. When 2000 reads are uniquely classified the corresponding reference 

genome is downloaded from RefSeq​32​ and incorporated into a minimap2 index. At this point 

the same process as in ​align ​ is used to determine coverage depth. The new alignment 

index is passed to the core Read Until script (​targets ​) by updating the experiment TOML 

file allowing dynamic updates for both the unblock list and the genomic reference.  

https://paperpile.com/c/XqNoK7/Fc4mS


 

unblock-all 

This script is provided as a test of the Read Until API where all incoming read fragments are 

immediately unblocked. It allows a user to quickly determine if their MinKNOW instance is 

able to provide and process unblock signals at the correct rate.  Users should provide a bulk 

FAST5 file for playback for this testing process. 

validate 

This script is a standalone tool for validating an experiment TOML file. We provide a 

ru_schema.json 

(​https://github.com/LooseLab/readfish/blob/master/ru/static/ru_toml.schema.json​) that 

describes the required configuration format. 

Data Availability 
All reads generated in the course of this study are available from the ENA under project id 
PRJEB36644. 
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Figure Legends 
 

Figure 1. Human Genome Scale Selective Sequencing. A) Median read lengths for reads 
sequenced from GM12878 and mapped against HG38 excluding alt chromosomes. The four 
panels each represent a quadrant of the flow cell. In the control all reads are sequenced, in 
the second reads mapping to chromosomes 1-8, in the third reads mapping to chromosomes 
9-14 and the fourth reads mapping to chromosomes 16-20. The combined length of each of 
these target sets equates to approximately ½, ¼ and ⅛ of the human genome respectively. 
B) Heatmap of throughput per channel in each quadrant from the flow cell illustrating 
reduced yield as the proportion of reads rejected is increased. C) Yield ratio for each 
chromosome in each condition normalised against yield observed for each chromosome in 
the control quadrant. D) Yield of on target reads calculated in a rolling window over the 
course of the sequencing run showing the loss of enrichment potential. E) Plot of the number 
of channels contributing sequence data over the course of the sequencing run. Channels are 
lost at a greater rate when more reads are rejected. 

 

Figure 2. Adaptive sequencing enriching for the least abundant genome and ensuring 
uniform 40x coverage. A) Mean read lengths for reads sequenced from the ZymoBIOMICS 
mock metagenomic community mapped against the provided references (ZymoBIOMICS, 
USA). Read lengths are reported for the whole run, the deliberately sequenced reads and 
those which were actively unblocked. B) Shows cumulative coverage of each ZymoBIOMICS 
genome during the sequencing run. The total coverage still accumulated as unblocked 
reads, though short, still map. Sequencing was automatically terminated once each sample 
reached 40x. C) Stacked area graph illustrating how the proportion of bases mapping to 
each species changes over time. D) In contrast, the proportion of reads mapping to each 
species over time doesn’t change significantly. ​Species and composition are: bs - Bacillus 
subtilis (14%), ef - Enterococcus faecalis (14%), ec - Escherichia coli (14%), lm - Listeria 
monocytogenes (14%), pa - Pseudomonas aeruginosa (14%), sc - Saccharomyces 
cerevisiae (2%), se - Salmonella enterica (14%), sa - Staphylococcus aureus (14%). 

 

Figure 3. Adaptive sequencing enriching for the least abundant genome with centrifuge read 
classification and ensuring uniform 50x coverage. A) Mean read lengths for reads 
sequenced from the ZymoBIOMICS mock metagenomic community mapped against the 
provided references. Read lengths are reported for the whole run, the deliberately 
sequenced reads and those which were actively unblocked. B) Shows cumulative coverage 
of each ZymoBIOMICS genome during the sequencing run. The total coverage still 



 

accumulated as unblocked reads, though short, still map. Sequencing was automatically 
terminated once each sample reached 50x. The small overshoot in sequenced reads 
coverage is likely caused by the centrifuge step lagging as reads are not instantly written to 
disk. C) Stacked area graph illustrating how the proportion of bases mapping to each 
species changes over time. D) In contrast, the proportion of reads mapping to each species 
over time doesn’t change significantly. Species and composition as in Fig. 2. 

 

Figure 4 - Half Exome Panel Targeted Sequencing. A) Mean coverage across each exon 
target in the genome ordered by chromosome. Exons on odd numbered chromosomes are 
enriched (green) and depleted on even numbered chromosomes (red). B) Mean coverage 
across each exon for genes within the COSMIC panels. For A and B, horizontal lines 
represent approximate mean expected coverage for flow cells yielding 10, 20 or 30 Gb of 
data in a single run. Mean coverage calculated by mosdepth​33​. C,D,E,F) Coverage plots for 
highlighted genes including BRCA1 (C), PML (D), WIF1 (E) and HOXC13 and HOXC11 (F). 
C and D are enriched as they are found on chromosome 17 and 15 whilst E and F are 
depleted as genes are on chromosome 12. Exon target regions indicated by arrows. In this 
experiment, different targets were used for the watson and crick strands as illustrated by the 
offsets. Note the absence of target regions for panels E and F. 

 

Figure 5 - COSMIC Panel Targeted Sequencing. A & B) Mean coverage across the selected 
COSMIC gene regions ordered by chromosome for two independent sequencing runs of 
NA12878. Horizontal lines represent approximate mean expected coverage for flow cells 
yielding 10, 20 or 30 Gb of data in a single run. Mean coverage calculated by mosdepth​33​. 
C,D,E,F) Coverage plots from each run (light green) for highlighted genes including BRCA1 
(C), PML (D), WIF1 (E) and HOXC13 and HOXC11 (F). For comparison, coverage in the 
same regions for a 35X whole genome sequenced nanopore run shown in blue. COSMIC 
Target regions indicated by blue bars and include intronic sequence. 

 

Figure 6 - COSMIC Panel Targeted Sequencing of NB4. A & B) Mean coverage across each 
of the COSMIC target regions ordered by chromosome for two independent sequencing runs 
of the NB4 cell line. Horizontal dashed line indicates expected coverage from a flow cell 
yielding 10, 20 or 30 Gb of sequence data in a single run. C & D) Coverage plots for each 
NB4 sequencing run shown in orange for PML (C) and RARA (D). E & F) Reads mapping to 
chromosomes 15 and 17 derived from the NB4 cell line runs 1 and 2 respectively indicating 
the fusion between PML and RARA. Mappings of example individual reads are shown. 
Breakpoints identified using svim, visualisations using Ribbon ​23,31​.  
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