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Abstract  
 

Drug-induced liver injury (DILI) is a complication of treatment with anti-tuberculosis 

(TB) drugs, especially in isoniazid-containing regimens. To investigate genetic risk 

factors, we performed a genome-wide association study (GWAS) involving anti-TB 

DILI cases (55 Indian, 70 European) and controls (1199 Indian, 10397 European). Most 

cases were treated with a standard anti-TB drug regimen; all received isoniazid. We 

imputed single nucleotide polymorphism and HLA genotypes and performed trans-

ethnic meta-analysis on GWAS and candidate gene genotypes. GWAS found one 

significant association (rs117491755) in Europeans only. For HLA, HLA-B*52:01 was 

significant (meta-analysis odds ratio (OR) 2.67; 95%CI 1.63-4.37; P=9.4x10-5). For N-

acetyltransferase 2 (NAT2), NAT2*5 frequency was lower in cases (OR 0.69; 95%CI  

0.57-0.83, P=0.01). NAT2*6 and NAT2*7 were more common, with homozygotes for 

NAT2*6 and/or NAT2*7 enriched among cases (OR 1.89; 95%CI 0.84-4.22; P=0.004). 

We conclude HLA genotype makes a small contribution to TB drug-related DILI and 

that the NAT2 contribution is complex, but consistent with previous reports when 

differences in the metabolic effect of NAT2*5 compared with those of NAT2*6 and 

NAT2*7 are considered. 
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Introduction 

Up to 20% of patients receiving isoniazid either as mono or combination therapy for 

tuberculosis (TB) may develop transient asymptomatic elevation of liver enzymes but 

this elevation usually resolves without drug discontinuation.1, 2 In a recent large 

prospective cohort study based in China, 5.4% of patients on anti-TB combination 

therapy developed drug-induced liver injury (DILI)3 as defined by the International 

DILI Expert Working Group.4 In 16% of these cases, DILI was accompanied by other 

symptoms of hepatotoxicity including jaundice and 5.3% developed acute liver failure.3 

Recurrence of DILI upon retreatment (called positive rechallenge) has been reported to 

occur in approximately 9%-25% with at least one of the anti-TB drugs.1, 2, 5, 6 The 

incidence of DILI when isoniazid (INH) is combined with rifampicin appears higher 

than for INH alone, with addition of pyrazinamide increasing the risk further.7 

A number of drug-specific and host related factors influence the susceptibility of a 

patient to DILI with anti-tuberculosis drugs.8  Potential mechanisms related to INH 

DILI have been the most widely investigated. Acetylhydrazine is generally considered 

to be a key INH metabolite contributing to INH-induced DILI and is produced by N-

acetyltransferase 2 (NAT2). It can undergo further metabolism by cytochrome P450 to 

a toxic metabolite or by NAT2 to the less toxic diacetylhydrazine. It has been suggested 

that fast acetylators (those with NAT2 activity within the normal range) will form 

diacetylhydrazine efficiently and therefore levels of both acetylhydrazine and toxic 

P450 metabolites will be low.9 It has also been proposed that slow acetylators who lack 

NAT2 activity may form higher concentrations of the toxic metabolite hydrazine by 

cleavage of the amide bond on INH to form isonicotinic acid.10 There are also data to 

suggest formation of a reactive metabolite directly from INH oxidation which may 

contribute to liver toxicity through the formation of protein adducts11 inducing an 

inappropriate immune response.12 

Because of the important contribution by acetylation to INH metabolism and the 

existence of common loss of function polymorphisms in NAT2, the gene encoding the 

acetylation enzyme, there have been a large number of studies examining these variants 

as DILI risk factors. At least four different meta-analyses including large numbers of 

cases have concluded that slow acetylators have an increased risk of TB drug DILI with  

an overall odds ratio (OR) varying from 1.59 to 6.42, although the risk varied depending 
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on the  precise genotypic definition of slow acetylation and the population studied.13-16 

Although many of these studies involved a limited number of patients experiencing 

only mild liver injury, the NAT2 association has also been observed in a study involving 

moderate to severe DILI cases only.17 A clinical trial based in Japan with differential 

dosing with INH on the basis of NAT2 genotype found a lower incidence of DILI when 

slow acetylators were given a lower dosing regimen.18  A genome-wide association 

study (GWAS) involving patients from Thailand recently described a genome-wide 

significant signal for NAT2, suggesting a stronger risk for DILI development in those 

positive for slow acetylator alleles in line with many of the earlier candidate gene 

studies.19 However, two GWAS which included small numbers of European cases with 

anti-TB DILI did not find any genome-wide significant association with the NAT2 slow 

acetylator genotype.20, 21 

In addition to NAT2 variants, other candidate genetic risk factors for anti-TB DILI have 

also been investigated, with reports suggesting that genotypes for genes relevant to anti-

TB drug disposition and oxidative stress such as CYP2E1,22 SOD2,23 GST isoforms,23 

carboxyesterase (CES) isoforms24 and PXR (NR1I2)25 may modulate risk. Human 

leukocyte antigen (HLA) genotype is a strong risk factor for a number of forms of 

DILI21 and it has been suggested that HLA class II genotype is relevant to risk of DILI 

due to anti-TB drugs in an Indian population.26 However, further studies using either 

candidate gene or genome-wide approaches have failed to confirm a role for HLA 

genotype in susceptibility to anti-TB drug-related DILI in Europeans.20, 21, 27 A recent 

study of DILI due to anti-TB drugs in an Ethiopian population who were also HIV-

positive and receiving anti-HIV treatment found an interesting association with the 

class I HLA B*57 alleles,28 but this form of DILI showed distinct phenotypic 

differences from that normally associated with anti-TB drugs. A non-HLA 

immunogenetic risk factor for DILI generally in the gene PTPN22 has also been 

identified recently but its relevance to anti-TB drug related DILI has not been 

investigated in detail to date.29 

The aims of the current study were to perform a GWAS together with additional 

candidate gene studies on a newly recruited group of Indian patients with moderate to 

severe anti-TB drug DILI  and on an enlarged European cohort which includes some 

cases studied previously.17, 20, 21   
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Methods 

Study design 

This study combined in a trans-ethnic meta-analysis framework results from GWAS 

conducted separately in subjects with European and Indian ancestry. The study was 

conducted according to the Declaration of Helsinki (Hong Kong Amendment) and 

Good Clinical Practice (European guidelines). All participants provided written 

informed consent and each study was approved by the appropriate local (Department 

of Gastroenterology, St John’s Medical College Hospital, Bangalore, India and 

Christian Medical College, Vellore, India), national or institutional ethical review 

boards as reported previously.21, 29 

Indian cohort 

Patients (n=55) who developed DILI after exposure to INH in combination with 

rifampicin, pyrazinamide and ethambutol (all 4 drugs for first 2 months and INH and 

rifampicin for further 4 months), 105 patients treated with these drugs without DILI 

development and 104 healthy South Indian adults of mixed ancestries  were enrolled 

from Aug 2009 to Feb 2014 at St John’s Medical College, Bengaluru and Christian 

Medical College, Vellore, South India. Roussel Uclaf Causality Assessment Method 

(RUCAM) was used for case adjudication as described previously.4 To further increase 

study power, we added to the control set a total of 990 ethnically matched samples 

comprising 356 from 1000G project and 634 controls of Indian descent from Charles 

Bronfman Institute for Personalized Medicine BioMe BioBank (phs000925.v1.p1) 

identified by principal component analysis (see Supplementary Materials).  

European cohort 

We analyzed 70 European ancestry DILI cases exposed at least to INH alone or in 

combination with one or more of rifampicin, pyrazinamide and ethambutol, collected 

by the DILIGEN, iDILIC and DILIN consortia. Of these cases, 43 were treated with 

INH alone as standard TB prophylaxis and 27 had been treated with any combination 

of INH and one or more additional anti-TB drugs with 11 of those exposed to all four 

drugs. These cases all form part of a large cohort of DILI cases previously analyzed by 

GWAS,29 with some also included in earlier studies as summarised in Table S1. A 

subgroup of 12 UK cases (DILIGEN study) had been included in an earlier study 
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involving direct NAT2 genotyping only17 but subsequently also underwent genome-

wide genotyping.20 European ancestry controls (n=10397) were used.29  

Clinical characterisation of DILI  

Criteria used for case definition, categorisation of DILI pattern as well as grading of 

severity of DILI were harmonised across all cohorts using previous guidelines.4 

Causality assessment was done by RUCAM score for the DILIGEN and iDILIC cohorts 

and by both structured expert opinion and RUCAM score for the DILIN cohort, as 

previously reported.20, 21   

DNA preparation and genotyping 

For the Indian cases and controls, DNA was isolated from whole blood samples using 

the standard phenol-chloroform method. DNA samples were genotyped in one batch 

using the Illumina Human Core Exome-24 BeadChip by Department of Molecular 

Genetics, Madras Diabetes Research Foundation, India. DNA isolation and genotyping 

of European cases from the DILIGEN, iDILIC and DILIN studies was as described 

previously.20, 21  

Population structure and imputation 

Quality control (QC) checks on the initial genotype data were performed as described 

previously.29 To assess the extent of population structure of the study cohorts, and 

derive eigenvectors to account for confounding, we applied principal component 

analysis on each cohort separately, using the smartPCA program from the 

EIGENSTRAT package (version 3.0)30 on the overlapping single nucleotide 

polymorphisms (SNPs) (minor allele frequency, MAF>0.01) across the range of 

genotyping arrays used for typing cases and controls. We used 1000 Genome Project 

samples as the reference panel to select cases and controls of Caucasian and South 

Indian ancestries. SNP imputation was performed in batches dividing the samples 

according to ethnicity and genotyping platforms. For each batch imputation was carried 

out using Michigan Imputation Server as described previously.29 

GWAS analysis and meta-analysis 
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We tested for association of each SNP with DILI, separately in Indian and European 

GWAS, in a logistic regression framework, under an additive genetic model, with 

adjustment for the principal components from smartPCA to account for population 

structure using PLINK v 1.07.31 No other additional covariates were included in the 

model since we did not have clinical information for controls. Association summary 

statistics from the two cohorts were combined using effective sample size weighted Z-

score fixed-effects meta-analysis, implemented in METAL.32  Allelic odds ratios (ORs) 

across the two cohorts were obtained through inverse-variance weighting of effect 

sizes, with heterogeneity assessed with Cochran’s Q statistic,33 implemented in 

METAL. We reported only those SNPs that attained, in addition to genome-wide 

significance, nominal evidence of association (P<0.05) with the same direction of effect 

on DILI in both GWAS phases (internal validation). Genome-wide significance with 

clinical outcomes was defined using a common threshold of P<5x10-8. Since the 

phenotypes studied are rare, the number of cases analyzed was limited. All detailed 

analyses and Manhattan plots were produced with R (version 3.0.2, The R Project for 

Statistical Computing, http://www.r-project.org). Regional plots were drawn by 

LocusZoom as described previously.21 

HLA analysis 

For each cohort, HLA alleles were inferred using HIBAG34 using the reference 

predictor panels specific for the genotyping chip and ancestry provided in the software 

webpage. To impute Indian samples we used the provided Asian reference data.34 In 

total, we imputed 217 HLA alleles in the overall European cohort and 192 in the Indian 

cohort. We set the MHC-region-wide significance p-value threshold for the HLA allele 

association to 2.5x10-4 to correct for multiple testing (Bonferroni correction for 200 

predicted HLA alleles). Association test for each HLA allele and meta-analysis were 

carried out as reported above. Haplotype analysis was performed by Plink 1.07 

including the most significantly associated HLA alleles.  

NAT2 genotypes 

We predicted NAT2 alleles using genotypes for rs1801280, rs1799930 and rs1799931 

from the GWAS (NAT*5, *6 and *7 alleles respectively) by haplo.stats (https://cran.r-

project.org/web/packages/haplo.stats/index.html) and extracted the best haplotype 

predictions based on posterior probability.  We tested for association between DILI and 
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allele by logistic regression with adjustment for the principal components in Plink. 

NAT2 genotypes were recorded and samples were divided into different acetylator 

status groups as originally proposed35 and refined more recently:36 (a) rapid (*4/*4); (b) 

intermediate (*4/*5,*4/*6,*4/*7); (c) slow (*5/*5,*5/*6,*5/*7); (d) ultraslow 

(*6/*6,*6/*7,*7/*7). We then tested for association between DILI and acetylator status 

groups and genotypes in a multivariate regression model including principal 

components axes and acetylator status groups or genotypes as binomial variable or as 

categorical variable having 44 genotype or rapid/intermediate as baseline groups. The 

meta-analysis p-value was calculated using METAL with the default approach that 

combines p-value and direction of effect, weighted according to sample size.32 

Significance was defined using a Bonferroni threshold of P < 0.01 considering 4 

comparisons. 

Candidate gene analysis 

For analysis of additional candidate genes, we selected four genes previously proposed 

to have a role in the pathogenesis of INH-related DILI, including CYP2E1, CES2, 

CES1 and PXR/NR1I2. We extracted all variants belonging to each gene from 

GnomAD (https://gnomad.broadinstitute.org/). We performed an association analysis 

by Plink 1.07.31 Significance was defined using a Bonferroni threshold of P< 0.003 

considering 16 multiple comparisons.  

  



 11 

Results 

Cases and controls 

Clinical characteristics of the 55 DILI cases from India and 70 European cases are 

summarised in Table 1.  The total Indian DILI cohort was enriched in cases with severe 

liver injury with 22% of all patients progressing to acute liver failure, transplant or 

death. The majority of the European DILI cases met the definition of moderate to severe 

DILI used in our previous European DILI studies.21 Nine European patients (13%) 

suffered liver failure, underwent liver transplant or died (Table 1).  

As controls for the Indian cases, we used 1199 ethnically matched individuals (105 

patients treated for TB by similar regimens who did not develop DILI and 104 healthy 

adults recruited for this study, 356 from 1000G project phase 3 dataset and 634 from 

BioMe dataset (Figure S1)). As European controls, we used 10397 ethnically matched 

individuals (Figure S2). 

A schematic summary of the overall study is provided in Figure 1. 

GWAS analysis 

The case-control GWAS in the European cohort showed one marker that passed the 

significance threshold (rs117491755, OR=4.37, 95%CI [2.702-7.061], P=1.8x10-9; 

AFcases = 0.143; AFcontrols = 0.037) (Figure 2A). rs117491755 is an intronic SNP in 

ASTN2. For the Indian cohort, there were no genome-wide significant associations 

between DILI and imputed or genotyped variants and rs117491755 did not pass QC 

checks in the imputed dataset (Figure 2B). Trans-ethnic meta-analysis between the two 

ethnic groups analysed 4,900,532 shared markers between the two cohorts. None of the 

variants in the meta analysis reached genome-wide significance (Figure 2C). 

HLA analysis 

In the European cohort, we identified two major histocompatibility complex (MHC) 

significant signals, HLA-C*12:02  (OR=6.43; 95%CI [2.53-16.37] ; P = 9.4x10-5, Table 

2 and Table S1) and HLA-B*52:01 (OR=6.39; 95%CI [2.25-16.29] ; P = 1.0x10-4, Table 

2). All carriers presented with both alleles. The B*52:01-C*12:02 haplotype conferred 

a significant increase in DILI risk of almost 7-fold (P = 7.8x10-5, Table S2), although 

the overall haplotype frequency is low even in the cases. The alleles were mainly 
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associated with DILI cases due to drug combinations compared with INH alone (Table 

S3). Slightly different HLA results were observed for Indian cases. These cases showed 

an enrichment in class II HLA risk alleles with HLA-DQA1*03:01 (OR= 2.60, 

95%CI[1.54-4.38]; P = 0.0003, Table 2) as the most significantly associated allele, 

though not passing the MHC multiple correction threshold. Indian cases also showed a 

nominal enrichment of HLA-B*52:01 and HLA-C*12:02 alleles compared with 

controls (Table S2). In line with the data from Europeans, the haplotype conferred a 

1.45 fold increase in risk of DILI (P = 0.04, Tables 2 and S2). In meta-analysis HLA-

B*52:01 showed a MHC-significant association (OR=2.67; 95%CI 1.63-4.37; P = 

9.4x10-5, Table 3).  

Candidate gene analysis 

NAT2 genotypes 

The frequency of the NAT2 alleles in both cohorts are summarised in Table 3. NAT2 

allele frequencies for our cohorts were similar to frequencies  reported previously with 

Indians showing a high frequency of the NAT2*6 allele in the control group compared 

to Europeans whereas in the European controls NAT2*5 was the most common allele.37 

We tested association between each allele and DILI correcting for population 

stratification (Table 4). We found that NAT2*5 was the most underrepresented NAT2 

allele in both European and Indian cases, passing the Bonferroni correction for the 

number of the predicted NAT2 alleles (PMeta-analysis = 0.01, Table 4). NAT2*6 was 

significantly enriched in Indian cases (P = 0.01). Severe Indian cases (n = 12) showed 

a slightly higher frequency for NAT2*6 (AF = 0.54) and lower frequency of NAT2*5  

(AF = 0.11) compared to the overall cases, with NAT2*5 statistically significant as a 

protective factor compared to controls (OR = 0.30; 95%CI 0.08 - 0.94; P = 0.05). 

Among Europeans, INH alone cases (n = 43) showed a significantly decreased 

frequency for NAT2*5 (AF = 0.34, P = 0.04) (Table 4). The group of European severe 

cases (n=9) was too small to detect significant trends. 

We then assigned NAT2 genotypes for each individual and classified them in four 

acetylator status groups. We evaluated if there was an enrichment of any of the groups 

in our cases compared to controls. We found that ultraslow acetylators (those carrying 

homozygous or compound heterozygous genotypes for NAT2*6 and NAT2*7) were 
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significantly enriched in cases compared with controls (PMeta-analysis = 0.004, Table 5). 

This enrichment was not significant in a multivariable regression model for which we 

combined rapid and intermediate acetylators as the baseline group (PEuropean = 0.08, and 

PIndian = 0.1). Examining the enrichment of single genotype groups, the only set  

significantly associated with DILI by meta-analysis was NAT2*6/NAT2*7 (P = 0.002) 

which was also significant in Europeans alone (P = 0.01, Table S4).  

Other candidate gene analysis  

We extracted variants located in selected candidate genes relevant to INH metabolism 

(CYP2E1, CES2, CES1 and PXR/NR1I2) from GnomAD 

(https://gnomad.broadinstitute.org) for a total of 16 imputed/genotyped SNPs in 

European (CYP2E1 n = 9; CES2 n = 2; CES1 n = 0; PXR/NR1I2 n = 5) 14 in Indians 

(CYP2E1 n = 5; CES2  n = 3; CES1 n = 4; PXR/NR1I2 n = 2). Since imputation is 

based on ethnicities and genotyping platforms, the SNPs available for analysis in the 

candidate genes were different for the two groups.  No variants were significantly 

associated with DILI (Table S5).   

Frequency of rs2476601 in PTPN22 that has been previously associated with DILI due 

to several different drugs,29 was not increased in European DILI cases (AFcases 0.10; P 

= 0.40) and INH alone cases (AFcases 0.12; P = 0.15) but was marginally increased in 

the Indian  cases (OR = 3.8 95%CI [1.06-13.83] P = 0.04 AFcases= 0.03 and AFcontrols= 

0.01).  
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Discussion 

Despite a relatively large number of published studies, the genetic basis for 

susceptibility to DILI due to anti-TB drugs including INH remains poorly understood 

compared with DILI caused by certain other drugs such as flucloxacillin and 

amoxicillin-clavulanate. There are a number of reasons for this including: (a) the 

complexity of the phenotype (both mild and more serious cases of DILI due to anti-TB 

drugs are common); (b) the fact that the standard treatment typically involves a 

combination of four different drugs; (c) both TB as a disease and DILI induced by anti-

TB drug treatment are more common in developing countries where relevant genetic 

polymorphisms may show differing frequencies than in Europeans where DILI has been 

studied more extensively, making worldwide comparisons difficult. Furthermore, in 

some countries where concomitant infection with TB and HIV is more common, 

assessment of causality as to whether the DILI is due to the anti-HIV drugs, anti-TB 

drugs, or both, is often unclear. 

Similar to the findings in two earlier GWAS involving Europeans,20, 21 we failed to 

detect genome-wide significance when we undertook a GWAS in the Indian population. 

This is in contrast to the recent GWAS performed on a Thai population, where genome-

wide significance was seen for NAT2,19 but is more consistent with a separate GWAS 

performed in Ethiopians which also failed to observe genome-wide significant 

signals,38 although the Ethiopian patients were also undergoing HIV treatments that can 

cause DILI. In our enlarged European population which includes the previously studied 

cases 20, 21 as well as  8  new cases,29 we did see one genome-wide significant signal in 

an intronic SNP in ASTN2. This gene product appears to affect synaptic strength by 

trafficking and degradation of surface proteins.39 The relevance to DILI is not 

immediately clear and this signal was not seen in the Indian population. Without a 

positive replication, we have to consider this signal as either a false-positive or putative, 

until further patients have been studied. 

While the current study and several previous reports failed to detect strong HLA 

associations, we found some evidence that a rare HLA-C*12:02 -B*52:01 haplotype, 

which has been recently reported to be a risk factor for Crohn's disease in Asians, might 

contribute to risk of anti-TB drug DILI in some individuals.40 The effect of the 

haplotype seems to be consistent across both cohorts and the association passes the 
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Bonferroni correction based on the number of imputed alleles. Meta-analysis showed 

that the effect of the B*52:01 allele alone was more significant than for C*12:02. The 

number of cases positive for the risk allele was low but importantly both cohorts 

showed this association and that there is an already reported association for the 

haplotype with an autoimmune disease.40 In view of the small number of cases positive 

for the "at risk" haplotype and the absence of a signal in the INH only cases, it is 

possible that the HLA signal may reflect DILI induced by one of the other anti-TB 

drugs, possibly pyrazinamide. 

A previous HLA class II typing study in an Indian population reported that absence  of  

HLA-DQA1*01:02,  and presence of HLA-DQB1*02:01 were risk factors for DILI due 

to anti-TB drugs.26 However, in the current study the most significant findings for class 

II were increased frequencies of HLA-DQA1*01:03 and HLA-DQA1*03:01, although 

we did not observe this in Europeans. We also saw no association with B*57 alleles but 

as discussed previously, we consider that this particular association may relate to a 

combination of anti-HIV and anti-TB drug treatment28 which we would not expect to 

see confirmed in the current study.  

The PTPN22 variant rs2476601 has recently been found to be an additional risk factor 

for some forms of DILI showing HLA associations.29 We therefore also evaluated the 

role of this variant in our patients with anti-TB-related DILI, but did not find a 

significant association. However, the allele frequency of rs2476601 in South Asian 

populations is consistently lower compared to European populations (1% vs 10%, as 

reported in GnomAD) so our ability to detect any association was also limited. 

In view of very limited genome-wide or near genome-wide significant signals in the 

GWAS, we proceeded with additional candidate gene analysis using the GWAS data, 

focussing on NAT2, given the extensive literature which has demonstrated that NAT2 

genotype and phenotype is a risk factor for INH-induced DILI. Three meta analyses on 

NAT2 as a DILI risk factor which include studies published up to 2017  together with 

two recent large studies appear to be the most informative to use for comparison with 

the current study.13-15, 19, 41  In general, most previous studies on NAT2 genotype as a 

risk factor have examined all slow acetylators in comparison with either homozygous 

wild-types (who are often now classified as the fast acetylator group without inclusion 

of heterozygotes) or both homozygous wild-types and those heterozygous for one 
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variant allele only (the traditional fast acetylator group). In some studies, heterozygotes 

are designated as intermediate acetylators and were analysed separately.  

There is however increasing data available which indicates that NAT2*5, which is 

common in Europeans, South Asians and Africans, but not in East Asians, is not a true 

"slow acetylator" allele with the gene product retaining some enzyme activity while the 

enzymes encoded by both NAT2*6 and NAT2*7 are associated with no activity.36, 42, 43 

In line with this, a recent study of South African Zulus examined levels of INH and 

certain metabolites in relation to NAT2 genotype in patients undergoing treatment with 

INH and did not find a significant difference in drug and metabolite levels when 

comparing NAT2*5 homozygotes or heterozygotes with those homozygous for two 

rapid acetylator alleles. NAT2*6 and NAT2*7 alleles were not detected in this 

population.44 One relatively small study of phenotype-genotype relationships in healthy 

Swedish volunteers used INH for phenotype determination and reported a higher 

metabolic ratio for NAT2*5 homozygotes compared with NAT2*6 homozygotes.45 

The NAT2 genotype distribution among the DILI cases in the current study indicates a 

protective effect for the NAT2*5 allele with NAT2*4 "neutral" whereas an increased 

risk was seen for NAT2*6 with the combined "ultraslow" group also showing a 

statistically significant increased risk. This is in agreement with a meta-analysis 

reporting an increased risk for NAT2*6 and NAT2*7.43 A recent study performed in 

Singapore also suggests that the risk for INH-related DILI is from NAT2*6 and *7 

only.41 This could also explain the recent genome-wide significance reported for NAT2 

variants in Thailand 19 since NAT2*5 is rarely seen in this East Asian population. One 

of the earliest reports on NAT2 genotype as a risk factor for INH-related DILI was 

performed in Taiwan.46 This study found a small number of individuals positive for 

NAT2*5 but hepatotoxicity was seen almost entirely in those carrying at least one 

NAT2*6 or NAT2*7 allele. The biological basis for this complex association with NAT2 

genotype is not completely clear but *6 and *7 carriers may be at increased risk of 

toxicity due to higher levels of the parent drug undergoing metabolism by alternative 

routes to toxic intermediates such as hydrazine or possibly by accumulation of the 

acetylhydrazine metabolite which also may be converted to hydrazine.9 INH-related 

DILI was  reported to be more common among East Asians compared with white 

Europeans and African-Americans in early population studies.47, 48 This could reflect 

the higher frequency of the NAT2*6 and NAT2*7 alleles in these populations46 
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compared with those reported for Europeans,45 despite the overall average higher 

acetylation activity seen in East Asians. It also remains possible that the recent GWAS 

findings reported for a Thai population19 showing significance for NAT2 are not directly 

comparable to the current study as the liver enzyme elevation thresholds for 

participation in that study were considerably lower than in the current study.  

We also studied four additional genes potentially relevant to INH disposition in detail 

in both cohorts to see if any evidence for trends towards genome-wide significance 

could be detected. These were chosen on the basis of direct relevance to the INH 

metabolic pathway9 and either encode enzymes (CYP2E1, CES1 and CES2) or 

transcription regulators with a role in regulation of gene expression (PXR/NR1I2 which 

regulates CES expression). Our findings were entirely negative. We believe this is not 

too surprising and is generally consistent with reports in the existing literature of no 

significance or small effects.24, 49 Larger studies might enable the detection of smaller 

effects than was feasible in the current study. 

A limitation of this study and most others on DILI due to anti-TB drugs is that in 

addition to INH, the other drugs used in treatment, especially pyrazinamide, can also 

cause DILI. All cases in the Indian cohort were related to combination anti-TB drug 

therapy while a significant proportion of DILI cases in the European cohort were 

attributable to INH monotherapy so the two cohorts are not identical in terms of drug 

treatment. This is an important limitation but the results obtained for the two cohorts, 

especially for NAT2 genotype and to some extent for HLA genotype, are still 

comparable. Alternative regimens not involving INH show slightly lower incidence of 

hepatotoxicity but DILI may still occur50 and although it may be possible to determine 

which drug causes DILI in a particular patient, this requires a series of individual drug 

rechallenges which is difficult to perform and was not feasible in the current study. 

In conclusion, we have obtained some evidence that certain NAT2 alleles increase the 

risk of DILI in patients receiving INH-containing anti-TB drug regimens. The two 

cohorts we studied were large compared with most previous studies with a well-defined 

phenotype but were still small compared with GWAS on more common diseases where 

relatively small but significant effects can be detected by use of very large cohorts. 

There is a need for additional studies involving either larger cases numbers or additional 
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meta analyses to better understand the underlying risk factors for DILI due to INH and 

other anti-TB drugs.  

 

STUDY HIGHLIGHTS 

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? 

Anti-tuberculosis (TB) drugs including isoniazid are a common cause of drug-induced 

liver injury (DILI). Previous reports suggest NAT2 genotype and some HLA alleles are 

risk factors but not all studies agree on this. 

WHAT QUESTION DID THIS STUDY ADDRESS? 

We aimed to identify novel genetic risk factors for DILI due to anti-TB drugs including 

isoniazid in European and Indian cases and consolidate understanding on relevance of 

HLA and NAT2 genotypes to risk of DILI. 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? 

The study provides further support for  NAT2*6 and NAT2*7 variants of NAT2 as risk 

factors for development of anti-TB drug-related DILI and for NAT2*5 being protective. 

There may also be increased  risk in those carrying the HLA-B*52:01 allele.  

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY OR 

TRANSLATIONAL SCIENCE? 

The study provides further support for NAT2 and HLA contributions to risk of DILI 

from TB drugs, adding to knowledge that may lead to genetic tests capable of 

identifying those patients at risk. 
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Table 1 Clinical phenotype for the Indian and European cases 

 

Groups 
Indian 

cohort 

European 

cohort 

Clinical characteristics   

Number of cases 55 70 

Gender (F/M) 28/27 37/33 

Age (years) (Mean ,SD) 40 (16.1) 55.1 (13.9) 

Time to onset from first drug exposure (days) (Mean, SD) 46.8 (55.1) 55.2 (45.8) 

Pattern of DILI   

Cholestatic  18% (10) 5.7% (4) 

Hepatocellular 59% (32) 77.1% (54) 

Mixed 22% (12) 10.0% (7) 

Unknown 1% (1) 7.1% (5) 

Causal drug   

Isoniazid and rifampicin (IR)  1.4% (1) 

Isoniazid, rifampicin, pyrazinamide (IRP)  21.4% (15) 

Isoniazid, rifampicin, pyrazinamide and ethambutol 

(IRPE) 
100% (55) 15.7% (11) 

Isoniazid (I)  61.43% 

(43) 

Severity   

Mild 0 11% (8) 

Moderate 78% (43) 73% (51) 

Severe/Fatal 22% (12) 13% (9) 

Not Reported 0 3% (2) 

Causality Score (CIOMS/RUCAM)   

3-5 (possible) 6% (3) 18% (13) 

6-8 (probable) 60% (33) 60% (42) 

>8 (highly probable) 34% (19) 21% (15) 

Genotyping platform   
1M Illumina Duo (%,N)  39% (27) 

Infinium Core Exome (%,N) 100% (55) 50% (35) 

Multi-Ethnic Genotyping Array Consortium (%,N)  11% (8) 
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Table 2 The most significant HLA associations for European and Indian cohorts  

 

 

Markers OR 95%CI P AF Cases 
AF 

Controls 

AF 

reference 

dataset* 

European associations           
  

HLA-C*12:02 6.43 2.526-16.37 0.00009 0.04 0.006 0.009 

HLA-B*52:01 6.40 2.511-16.29 0.0001 0.04 0.007 0.009 

HLA-DRB1*15:02 6.36 2.489-16.25 0.0001 0.04 0.006 0.007 

  
 

    

Indian associations             

HLA-DQA1*03:01 2.60 1.53-4.38 0.00035 0.15 0.06 0.09 

HLA-DPB1*01:01 3.24 1.58-6.61 0.0013 0.09 0.02 0.02 

HLA-DPB1*03:01 3.60 1.58-8.19 0.0023 0.07 0.02 0.05 

HLA-DRB1*04:06 8.48 2.02-35.52 0.00346 0.02 0.00 0.00 

HLA-DQA1*01:03 1.85 1.21-2.84 0.0047 0.27 0.14 0.14 

 

OR= Odds ratio of a multivariate regression model correcting for population stratification; 95%CI= confident interval of the Odd Ratio; AF 

Cases=allele frequency in cases; AF Controls =allele frequency in controls ; AF reference dataset = allele frequency calculated  based on the 

number of carriers estimated from all cohorts belonging to a particular geographic region reported in www.allelefrequencies.net; P =multinomial 

p-value 
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Table 3 HLA alleles meta-analysis association results  

 

 

 

 

 

 

 

 

 

 

 

OR= Odds ratio of a multivariate regression model correcting for population stratification; 95%CI= confidence interval of the Odds Ratio; AF 

Cases=allele frequency in cases; AF Controls = allele frequency in controls; AF reference dataset = allele frequency calculated  based on the 

number of carriers estimated from all cohorts belonging to a particular geographic region reported in www.allelefrequencies.net; PV=multinomial 

p value; PVm =meta-analysis pvalue; HetPV= Heterogeneity p value 

  

  

Marker Direction of effect OR 95%CI PVm HetPV 

HLA-B*52:01 Concordant 2.67 1.63-4.37 9.4x10-5 0.03 

HLA-C*12:02 Concordant 2.31 1.41-3.75 0.0008 0.01 

HLA-DQA1*01:03 Concordant 1.75 1.24-2.45 0.0013 0.66 
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Table 4 Frequency of NAT2 alleles in case and controls of European and Indian cohorts  

 

 Europeans (70 cases) Indians (55 cases) Meta-analysis 

Allele Control 

freq 

Case 

freq 

INH 

only 

INH 

comb 

OR 95%CI P Control 

freq 

Case 

freq 

OR 95%CI P Effect 

dir 

OR 95% 

CI 

Pm Het 

P 

NAT2*4 0.23 0.24 0.29 0.14 1.06 0.71-

1.58 

0.75 0.22 0.16 0.66 0.39-

1.11 

0.12 N/P 0.77 0.61-

0.98 

0.81 0.1 

NAT2*5 0.46 0.37 0.34 0.41 0.7 0.49-

0.98 

0.04 0.33 0.25 0.68 0.43-

1.07 

0.1 C 0.69 0.57-

0.83 

0.01 0.43 

NAT2*6 0.29 0.35 0.31 0.41 1.3 0.91-

1.85 

0.14 0.37 0.5 1.77 1.18-

2.65 

0.01 C 1.42 0.97-

2.08 

0.03 0.05 

NAT2*7 0.02 0.04 0.04 0.04 1.88 0.81-

4.34 

0.14 0.08 0.08 1.09 0.55-

2.17 

0.79 C 1.21 0.61-

2.38 

0.14 0.82 

 

Freq=allele frequency; INH=Isoniazid; INH comb = INH combination; P=multinomial p value; OR= odds ratio of a multivariate regression 

model correcting for population stratification; Pm =meta-analysis p value; HetP= Heterogeneity p value. Effect dir=effect direction; 

N/P=null/positive; C=concordant 
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Table 5 Frequency of NAT2 acetylator status genotypes in European and Indian case/control cohorts and their association in a 

multivariate regression model 

 

 Europeans (70 cases) Indians (55 cases) Meta-analysis 

Acetylator 

status 

Control 

freq 

Case 

freq 

OR 95%CI P Control 

freq 

Case 

freq 

OR 95%CI P Effect 

dir 

OR 95% CI Pm Het P 

Rapid 0.05 0.06 1.18 0.44-3.28 0.73 0.06 0.02 0.29 0.03-2.20 0.23 D 0.38 0.22-0.65 0.1 0.75 

Intermediate 0.35 0.36 1.02 0.62-1.66 0.93 0.34 0.29 0.8 0.43-1.45 0.45 D 0.9 0.64-1.26 0.95 0.21 

Slow 0.49 0.4 0.6 0.41-1.08 0.1 0.41 0.4 0.93 0.53-1.64 0.82 C 0.68 0.52-0.88 0.87 0.46 

Ultra Slow 0.1 0.19 2.03 1.10-3.72 0.02 0.19 0.29 1.78 0.98-3.39 0.06 C 1.89 0.84-4.22 0.004 0.3 

 

 

We considered (a) in rapid group *4/*4 genotypes; (b) in intermediate group *4/*5,*4/*6,*4/*7 genotypes; (c) in slow group *5/*5,*5/*6,*5/*7 

genotypes; (d) in ultra slow *6/*6,*7/*6,*7/*7 genotypes. 

Freq=allele frequency; P=multinomial p value; OR= odds ratio of a multivariate regression model correcting for population stratification; Pm 

=meta-analysis p value; HetP= Heterogeneity p value. Effect dir=effect direction; D=discordant; C=concordant    
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Figure legends 

 

Figure 1 Schematic summary of the study including details on the number of cases 

and controls and analysis steps undertaken. 

 

Figure 2 Manhattan plots displaying the association results of the genetic association 

analyses. (A) Manhattan plot showing the summary statistics for the European GWAS; 

(B) Manhattan plot showing the summary statistics for the Indian GWAS (C) 

Manhattan plot showing the summary statistics for the meta analysis. The overall 

significance level was set at 5x10-8.  SNPs in green have a significance level less than 

5x10-6. 
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Supplemental Material 

 

 

 

 

 

 



Genome-wide genotyping on 70 
European anti-TB DILI cases & 10397 
population controls

Genome-wide genotyping of 55 
Indian anti-TB DILI cases & 1199 
Indian controls

After imputation of additional SNPs, assess association of individual SNPs with DILI 
by logistic regression, using additive model and adjusting for population structure. 
Perform separately in both cohorts followed by meta analysis.

Impute HLA genotypes from genome-wide genotyping data for cases and controls. 217 
alleles were imputed in Europeans and 192 in Indians. Assess association of individual 
alleles with DILI. Set p for significance at less than 2.5x10-4. Perform separately in both 
cohorts followed by meta analysis. 

Extract NAT2 genotypes from imputed GWAS data. Assess association of individual 
SNPs and acetylator genotypes with DILI in cases and controls. Perform separately in 
both cohorts followed by meta analysis.

Extract individual SNPs in additional candidate genes from imputed GWAS data. 
Assess association of SNPs individually with DILI in cases and controls. Set 
significance of p< 0.003 for 16 multiple comparisons. Perform separately in both 
cohorts.
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