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ABSTRACT 
Abnormal pH is a common feature of malignant tumours and has been associated clinically 

with sub-optimal outcomes. Amide proton transfer magnetic resonance imaging (APT MRI) 

holds promise as a means to non-invasively measure tumour pH, yet multiple factors 

collectively make quantification of tumour pH from APT MRI data challenging. The purpose of 

this study was to improve our understanding of the biophysical sources of altered APT MRI 

signals in tumours. Combining in vivo APT MRI measurements with ex vivo histological 

measurements of protein concentration in a rat model of brain metastasis, we determined that 

the proportion of APT MRI signal originating from changes in protein concentration was 

approximately 66%, with the remaining 34% originating from changes in tumour pH. In a 

mouse model of hypopharyngeal squamous cell carcinoma (FaDu), APT MRI showed that a 

reduction in tumour hypoxia was associated with a shift in tumour pH. The results of this study 

extend our understanding of APT MRI data and may enable the use of APT MRI to infer the 

pH of individual patients' tumours as either a biomarker for therapy stratification or as a 

measure of therapeutic response in clinical settings.  

 

STATEMENT OF SIGNIFICANCE 

Findings advance our understanding of amide proton transfer magnetic resonance imaging 

(APT MRI) of tumours and may improve the interpretation of APT MRI in clinical settings. 

  



INTRODUCTION 

The metabolic phenotype of tumour cells is such that they reverse the pH gradient across the 

cell membrane with respect to normal cells, with a slightly alkaline intracellular pH (pHi) and 

an acidic extracellular pH (pHe) (1). The severity of the acidosis of pHe has been shown to 

correlate with resistance to chemo- and radiotherapy treatments; tumours with a very acidic 

pHe are more resistant to radiotherapy (2), and ion-trapping of weakly basic chemotherapy 

agents prevents their entry to the cell (3). An alkalotic pHi also makes tumour cells less 

susceptible to cell death via apoptotic pathways (4) and promotes tumour proliferation (5). 

Determination of pHe or pHi in a non-invasive, reliable manner may, therefore, aid in the 

stratification of patients into personalised therapeutic strategies, or inform on treatment 

response. Thus, there is a clear need for non-invasive, reliable quantification of tumour pH in 

the clinic. 

In addition to pH changes, tumours often have regions of acute and chronic hypoxia as a result 

of both an increased oxygen consumption rate of tumour cells compared to normal cells, and 

an abnormal vasculature reducing delivery of oxygen (6,7). Tumours with larger fractions of 

hypoxia are more resistant to chemotherapy as a result of this abnormal vasculature, and are 

more resistant to radiotherapy because of a reduced oxygen enhancement effect of 

radiotherapy. Consequently, measurement of tumour hypoxia may also aid in the stratification 

of patients into optimal therapies, and reduction of tumour hypoxia is a common target for 

therapies. Importantly, a close link between tumour hypoxia and pH has been demonstrated 

(8). If tumour hypoxia is reduced then a shift in the metabolic phenotype of tumour cells that 

were previously hypoxic would be expected, with a resultant change in their pHi and pHe. 

Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) 

contrast mechanism that utilises the chemical exchange of labile protons in biomolecules with 

solvent water protons (9). Amide proton transfer (APT) is a variant of CEST MRI that is 

sensitive to the exchange of amide protons resident on the backbone and sidechains of 

proteins. APT MRI has been used previously in the imaging of tumours for non-invasive 

staging (10,11), differentiation of radiation necrosis from recurrent tumour (12,13) and 

definition of infiltrating tumour rim tissue (14). Additionally, since the APT signal is dependent 

on the exchange rate of amide protons with solvent water protons, and this exchange rate is 

base catalysed (15), APT is sensitive to the pH of tissue. Previous studies have measured the 

pH of tissue in ischaemic stroke lesions using calibrated APT signals (16,17). Quantification 

of tumour pH from APT MRI data, however, remains a significant challenge.  

Preclinical and clinical APT MRI studies have usually attributed the altered APT signal in 

tumours to an increase in cytosolic protein concentration because the cells are rapidly 



proliferating (10,18). This interpretation is contested, however, by work suggesting that APT 

signal changes in tumours are a result of alterations in water T1 relaxation time in these tissues 

(19). Despite the metabolic phenotype of tumour cells altering the intra- and extracellular pH 

of their microenvironment, this factor tends to be ignored when interpreting the APT signal 

change in tumours. The reason for this apparent oversight is that APT MRI is weighted towards 

measuring the intracellular compartment (18) and the intracellular pH change in tumours is 

less marked than the extracellular pH change (20,21). The combination of these factors has 

limited, to date, the use of APT MRI for quantitation of biophysical parameters such as protein 

concentration or pH in tumours, and this limitation will remain until the complex interplay 

between these factors is deconvolved. 

The aim of this study, therefore, was to determine the proportion of APT signal change 

between normal appearing and tumour tissue that is caused by protein concentration and pH 

changes, respectively, using a preclinical model of brain metastasis. Subsequently, we tested 

the sensitivity of our approach to pharmacological modulation of tumour pH following 

alleviation of tumour hypoxia in subcutaneous tumours. By understanding the biophysical 

sources of altered APT signals in tumours, our goal was to improve the interpretation of APT 

signal changes in tumours. 

 

METHODS AND MATERIALS 

In vivo brain tumour models 

All animal experiments were approved by the UK Home Office (Animals [Scientific 

Procedures] Act 1986) and conducted in accordance with the Guidelines for the Welfare and 

Use of Animals in Cancer Research (22). For the brain metastasis model, female Berlin 

Druckrey IX (BDIX) rats (180 – 340 g; n = 15; Charles River, UK) were focally microinjected 

with 1000 ENU1564 cells (kind gift from Prof. G. Stoica, Texas A&M University) in 1 µL 

phosphate buffered saline into the left striatum (co-ordinates 1 mm anterior, 3 mm lateral from 

bregma, 3.5 mm depth), as described previously (23). MRI experiments were performed four 

weeks post-injection. This animal model has been previously shown to exhibit similar 

histological characteristics to human brain metastatic growth, with an infiltrating tumour rim 

and necrotic tumour core, allowing observation of these two distinct areas (23). 

Subcutaneous model of hypopharyngeal squamous carcinoma 

Female BALB/c nude mice (age 55–70d; n = 18; Charles River, UK) were implanted with 

subcutaneous tumours on their right flank. Tumours were induced by injection of 1x106 FaDu 



hypopharyngeal carcinoma cells in Matrigel (Corning, USA). Once tumours reached a volume 

of 100 mm3 measured by callipers, mice were randomly split into Atovaquone-treated or 

control groups. Atovaquone is an anti-malarial drug which has recently been shown to alter 

the oxygen consumption rate of cancer cells in vitro and in vivo, reducing tumour hypoxia (24). 

Atovaquone was administered in drinking water (50 mg kg−1 d−1) with 2% dimethyl sulfoxide 

(DMSO) and 0.1% carboxymethylcellulose (CMC). Control mice were treated with DMSO and 

CMC only. After 7 days of treatment, MRI was performed on each mouse. 

MRI experiments 

All MRI experiments were performed using a 9.4 T Varian Inova spectrometer (Agilent 

Technologies, Santa Clara, CA, USA). Animals were anaesthetised with 2 – 3 % isoflurane in 

a mixture of 30 % oxygen and 70 % nitrogen. Respiration and rectal temperature were 

monitored and maintained at 40 – 60 breaths/min and 37 °C, respectively. For imaging of rats 

with brain tumours, a 72 mm diameter volume transmit coil and 4-channel surface receive 

array (Rapid Biomedical) were used, with the rat head immobilised using a custom cradle. 

Prior to placement of the rats in the MRI scanner, a tail vein was cannulated to allow for 

injection of contrast agents during imaging. For a subset of the rats (n = 10), 60 mg/kg 

pimonidazole (Hypoxyprobe, USA) was injected intraperitoneally prior to imaging. For imaging 

of mice with subcutaneous FaDu tumours, a 26 mm diameter volume transmit-receive coil 

was used, with mice positioned supine. Insulation was placed around the mice to prevent 

excessive heat loss and provide a small amount of immobilisation. 

The CEST MRI pulse sequence used for rat imaging comprised a pulsed saturation scheme 

of 50 saturation pulses, with each pulse comprising a 20 ms Gaussian radiofrequency (RF) 

pulse with flip angle 184° followed by a 20 ms crusher gradient, for a total saturation duration 

of 2 s with equivalent continuous wave RF power of 0.55 µT. This saturation scheme was 

preferentially sensitive to the exchange of amide protons at pH 7.02 in vivo (𝜔𝜔1 = 𝛾𝛾𝐵𝐵1 =

42.58 MHz T-1  ×  0.55 µT = 23.4 H𝑧𝑧, pH = 6.4 + log10 �
23.4
5.57

� = 7.02). The use of a pulsed 

saturation scheme was motivated by matching saturation parameters of previous human APT 

MRI studies at lower field strengths, which are more restricted in terms of hardware and 

specific absorption rate considerations (15,25). Following saturation, a spin-echo echo planar 

imaging (SE-EPI) readout with field of view = 32 mm x 32 mm measured the Z-magnetisation. 

Other sequence parameters were TR = 5 s, TE = 27 ms, 1 average, 10 slices, slice thickness 

= 1 mm, in-plane resolution 500 μm x 500 μm. A full Z-spectrum was measured following 

saturation at 49 saturation frequencies unevenly sampled between -4.1 and 5.0 ppm, with a 

further two measurements following saturation at ±300 ppm for normalisation. 



CEST MRI data were acquired from mice using a multi-slice gradient echo sequence (TR = 

195 ms, TE = 1.4 ms) with constant TR respiration gating using a SPLICER acquisition 

scheme (26). Briefly, within each TR a CEST saturation pulse (Gaussian shape, duration 20 

ms, flip angle 180°) was applied followed by a 1 ms crusher gradient and gradient echo 

readout of one k-space line. Data acquisition that was corrupted by a breath was reacquired. 

Data were acquired linearly through k-space to ensure that CEST saturation was in the steady 

state when acquiring the centre of k-space (27). Other sequence parameters were slice 

thickness = 2 mm, in-plane resolution 469 µm x 469 µm. A full Z-spectrum was measured 

following saturation at 35 saturation frequencies evenly sampled between –5.1 and 5.1 ppm, 

with a further two measurements at ±300 ppm for normalisation. 

Quantitative maps of the T1 and T2 relaxation times were acquired to correct for the 

concomitant change in T1 and T2 in tumours when analysing CEST MRI data (see MRI Data 

Analysis). For rats, T1 and T2 relaxation times were determined using inversion recovery (TR 

= 10 s, TE = 8.22 ms, inversion time (TI) varied in 9 steps from 13.14 – 8000 ms, signals fitted 

to MZ = M0(1-2exp(-TI/T1))) and spin echo (TR = 10 s, TE varied in 10 steps from 30 – 160 ms, 

signals fitted to MZ = M0exp(-TE/T2)) experiments, respectively. In both cases the same SE-

EPI readout used for CEST imaging was used to acquire images. The slice plan for T1 and T2 

mapping was identical to CEST MRI to enable co-registration of the images. T1 and T2 times 

were quantified post-mortem immediately after in vivo CEST MRI in a subset of mice used for 

the hypoxia alleviation experiment (n = 5 Atovaquone treated, n = 5 control) using the same 

method. Mice were euthanised with an overdose of pentobarbital and re-placed in the MRI, 

with their temperature continually maintained at 37 °C to minimise variations in relaxation 

times owing to reduced thermal regulation post-mortem. The relaxation times were measured 

post-mortem because no respiration-gated relaxation time mapping sequence was available 

on the spectrometer used in this study. 

For rats, T1-weighted gradient echo anatomical imaging was performed pre- and post-injection 

of gadolinium contrast agent (Omniscan, GE Healthcare, USA) to elucidate the extent of 

blood-brain barrier breakdown (TR = 500 ms, TE = 20 ms, same slice plan as CEST MRI but 

with in-plane resolution 125 μm x 125 μm). 

MRI Data Analysis 

The APT effect from the measured CEST MRI data was quantified using the APTR* metric as 

described previously (25,28–30). Briefly, data were fit to the Bloch-McConell equations using 

BayCEST in the FMRIB Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/baycest) 

assuming a 3-pool exchange model comprising water, amide protons at 3.5 ppm, and a 

combined NOE+MT pool at -2.41 ppm. Correction for water T1 and T2 effects was implemented 



by allowing BayCEST to fit water T1 and T2 from the data, with prior values set based on the 

average T1 and T2 time within the whole rat brain or whole tumour for mice, yielding an APTR* 

value that is sensitive only to amide proton concentration and exchange rate (which is itself 

proportional to 10pH). A previous study (30) has shown that APTR* quantified using this 

analysis approach is specific to changes in protein concentration and pH in biologically 

relevant phantoms. The exchange rate and concentration estimated by BayCEST were used 

to generate an idealised two-pool Z-spectrum, and APTR* calculated using equation 1. The 

calculation compares the signal at the amide proton frequency from this two-pool Z-spectrum 

(𝑆𝑆𝑤𝑤+𝑎𝑎(3.5ppm)) to the signal from an idealised one-pool Z-spectrum (𝑆𝑆𝑤𝑤(3.5ppm)), 

normalised by the unsaturated signal (𝑀𝑀𝑤𝑤0). The T1 and T2 relaxation times in the idealised 

simulations were set as 1.8s and 50ms for water, and as 1.8s and 1ms for amide protons. 

APTR* =
𝑆𝑆𝑤𝑤(3.5ppm) − 𝑆𝑆𝑤𝑤+𝑎𝑎(3.5ppm)

𝑀𝑀𝑤𝑤0
 

(1) 

 

Regions of interest (ROI) were defined to measure the mean ± standard deviation APTR* from 

areas of biologically similar tissue. For rats, an initial abnormality volume was defined 

manually based on the T1-weighted post-Gd anatomical images, and down-sampled to the 

resolution of the CEST images. Since the model of brain metastasis used here is known to 

reflect the heterogeneity present in human disease (23), with a characteristic rim of infiltrating 

tumour cells surrounding a core of necrotic tissue and cellular debris, the water T1 time was 

used within the abnormality region as a tissue classifier: voxels with T1 < 1.6 s were classified 

as normal tissue, voxels with 1.6 s < T1 < 2.2 s as tumour, and tissue with T1 > 2.2s as necrotic 

(see Supplementary Material for example T1 and T2 maps). The automatic segmentation was 

implemented using MATLAB (MathWorks Inc., Natick, MA, USA) and adjusted manually to 

ensure an accurate ‘rim-core’ pattern was present in the full tumour volume. An ROI of 

approximately equal size to the tumour volume was defined in an equivalent anatomical 

location in the contralateral hemisphere to represent normal tissue, ensuring that the 

contralateral ROI contained the same composition of tissue (i.e. striatal) as the region 

encompassing the tumour ROI. 

Regions of interest for infiltrating tumour rim, necrotic tumour core, and contralateral 

hemisphere were then used to calculate the relative APTR* as rAPTR* = APTR*(Tumour) / 

APTR*(Normal). The relative APTR* metric calculated this way normalises differences in raw 

APTR* values between animals, thereby allowing groupwise statistics to be calculated. 

rAPTR* measurements from all animals and all ROIs were combined using a random effects 

model to generate a weighted mean that accounts for the size of the ROI in each animal as 



well as the variability of APTR* within each ROI (see Supplementary Methods for further 

details). Groupwise rAPTR* values are reported as a mean ± 95 % CI, and were compared to 

a hypothetical mean of 1 (which would suggest no difference from normal tissue) using a one-

sample t-test; statistical significance was defined as P < 0.05. 

For analysis of the subcutaneous tumours in mice, the whole tumour region was manually 

segmented. Since no normal control tissue was available to permit calculation of rAPTR*, the 

absolute APTR* values for all voxels in tumours from both Atovaquone-treated and control 

groups were calculated and the cumulative frequency of APTR* values compared using the 

Kolmogorov-Smirnov test, with statistical significance defined as P < 0.05. 

Ex vivo protein concentration measurements and histology 

Immediately following MRI experiments, rats were split into two groups. One group (n = 10) 

were sacrificed under terminal anaesthesia by transcardial perfusion-fixation with 0.9% 

heparinised saline, followed by periodate-lysine-paraformaldehyde (PLP) containing 0.025% 

glutaraldehyde. The brains of these animals were collected for histology. The remaining rats 

(n = 5) were sacrificed under terminal anaesthesia by transcardial perfusion with 0.9% 

heparinised saline. The brains of these rats were extracted and sliced into 2 mm slices using 

an ice-cold rat brain matrix (Braintree Scientific, USA). Tissue biopsies of the tumour and 

contralateral brain tissue were taken for subcellular fractionation and protein concentration 

quantification. The biopsies were snap-frozen in liquid nitrogen and stored at −80°C until 

further processing. 

Mice in the hypoxia alleviation experiment were also split into two groups following MRI. One 

group (n = 5 Atovaquone-treated animals and n = 6 control animals) were injected 

intraperitoneally with 0.01 ml g−1 EF5 (2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-

pentafluoropropyl) acetamide) and sacrificed under terminal anaesthesia by transcardial 

perfusion-fixation with 0.9% heparinised saline, followed by PLP containing 0.025% 

glutaraldehyde. The tumours of these animals were excised for histology. The remaining 

animals were sacrificed following MRI under terminal anaesthesia without perfusion, and their 

tumours excised and stored at −80◦C until further processing.  

The snap-frozen biopsies from both mice and rats were homogenised in Cytoplasmic 

Extraction Buffer (from the Subcellular Protein Fractionation Kit for Tissues, Thermo Scientific, 

UK), sedimented by centrifugation (500 x g for 5 min at 4°C), and the supernatant recovered; 

this sample contained the cytoplasmic protein from the tissue biopsy. The pellet was 

resuspended in PBS and mixed until homogenous; this sample contained the remaining (non-

cytoplasmic) protein from the biopsy. The protein concentration of these fractions was 



quantified by bicinchoninic acid (BCA) assay (Pierce BCA Assay Kit, Thermo Scientific, UK). 

Mean and standard deviation protein concentrations were taken from triplicate measurements, 

and were combined across animals and cellular locations to give group-wise protein 

concentration estimates. The total protein concentration was derived as the sum of the two 

fractions. The protein concentrations were compared using an unpaired two-tailed t-test, with 

statistical significance defined as P < 0.05. 

Tissue from both rats and mice that had been perfusion-fixed was sectioned at 10 µm 

thickness. Tissue sections were stained non-specifically for all proteins using 1.25 % w/v 

Coomassie Brilliant Blue G-250 dye (Thermo Scientific, UK) in 0.9 % NaCl with 0.5 % Tween 

for 30 min. The addition of Tween to the staining solution ensures that cellular membranes 

are permeated and that Coomassie also stains intracellular proteins. Subsequently, sections 

were washed in PBS for 3 x 15 min or until the destain solution ran clear, and imaged at 200 

x magnification using a Leica Biosystem ScanScope CS2 scanner (Aperio, ePathology 

Solutions, Milton Keynes, UK). To convert the blue stain from Coomassie into protein 

concentration measurements, homogenised samples of naïve rat brain tissue were processed 

in a similar way to experimental tissue and serially diluted, as described previously (31). The 

protein concentration of each dilution was measured by both BCA assay and Coomassie 

staining to produce a standard curve (see Supplementary Methods for more details). For rat 

tissue, tissue sections adjacent to those stained for Coomassie Blue were stained for hypoxia 

(pimonidazole; Hypoxyprobe, USA) and blood vessel (CD31; AF3628, R&D Systems, UK) 

markers. For mouse tissue, adjacent tissue sections to those stained with Coomassie Blue 

were stained for the hypoxia marker EF5 and cellular nucleus marker DAPI, visualised using 

immunofluorescence, to evaluate the effect of Atovaquone treatment on tumour hypoxia. 

Estimation of contribution of protein concentration and pH to APT signals using isoAPTR*  

An isoAPTR* analysis (32) was performed to determine the contribution of protein 

concentration to measured APTR* differences between tumour and normal tissue. Briefly, a 

library of over 500,000 theoretical APTR* values was generated for a range of amide proton 

concentrations (relative concentration to water 0 – 4 x 10-3, n = 501) and pH values (5.00 – 

7.65, n = 1001, pH dependence of exchange rate defined by  𝑘𝑘amide = 5.57 × 10pH−6.4) using 

a two-pool model of the Bloch-McConnell equations. The T1 and T2 relaxation times for water 

were set as 1.8 s and 50 ms, respectively, and for amide protons as 1.8 s and 1 ms, 

respectively. Lines of constant APTR* (isoAPTR* lines) were defined in pH-amide 

concentration space corresponding to those measured from tumour and normal appearing 

tissue in vivo. The biophysical source of the difference in APTR* between these two tissue 

areas can then be determined by (1) assuming a normal tissue pH value and (2) inferring a 



change in amide proton concentration from some independent measurement. Using a normal 

brain pH of 7.1 (15) and the APTR* measured in normal appearing brain in vivo, the normal 

brain amide proton concentration was estimated. Subsequently, the change in amide proton 

concentration between tumour and normal tissue was assumed to be the same as the protein 

concentration change measured by Coomassie staining. Combining the tumour amide proton 

concentration estimate with the tumour measured APTR*, an estimate of the tumour pH may 

be found. By comparing the measured tumour rim APTR* with the APTR* expected to be 

measured if there was no pH change in the tumour, the proportion of APTR* signal change 

attributable to pH and protein concentration changes, respectively, was determined. 

Since the tumour pH estimated using isoAPTR* depends on the initial value of the normal 

tissue pH assumed, the steps of the isoAPTR* method were repeated but using different 

assumptions of normal tissue pH within a realistic physiological range (7.0 – 7.3) and the final 

tumour pH change taken as the average of all of these repeated calculations. 

RESULTS 

APTR* is elevated in the tumour rim and tumour core of brain metastases 

Post-Gd T1-weighted imaging showed the heterogeneity typical of human disease, with a 

contrast-enhancing rim and hypo- to isointense central area; taken to reflect an infiltrating rim 

and necrotic core, respectively (Figure 1A,B). APTR* was visually hyperintense in tumour 

regions (Figure 1C). Conventional MTRasym measurements were elevated in the tumour, and 

concomitant changes in the T1 and T2 relaxation times were also evident (see Supplementary 

Material). rAPTR* in both rim and core ROIs were significantly greater than 1, indicating 

increased APTR* values in tumour areas (Figure 2, rAPTR*(Rim) = 1.10 ± 0.09, rAPTR*(Core) 

= 1.14 ± 0.01, mean ± 95 % CI).  

Protein concentration is elevated in tumour rim assessed histologically 

No significant difference in cytoplasmic, non-cytoplasmic or total protein concentration was 

evident between the biopsied tumour and contralateral brain tissue (Figure 3). However, the 

protein concentration measurements are likely biased owing to tumour heterogeneity, 

meaning mixed tissue types (necrotic tumour core and infiltrating tumour rim) were likely 

assayed in the same sample. Consequently, quantitative protein concentration measurements 

were made using Coomassie staining of tissue sections in a second cohort of animals, yielding 

spatial information on protein concentration heterogeneity. Example sections through a 

tumour volume of a representative rat are shown in Figure 4A, as well as zoomed regions of 

the tumour rim, necrotic core and contralateral hemisphere from a single section (Figure 4B-



D). These sections show a clear pattern of lighter blue staining (corresponding to lower protein 

concentration) in the core areas, darker blue staining in the tumour rim areas, and an 

intermediate level of blue staining in the contralateral hemisphere. The same spatial 

distribution was maintained over all sections and all animals (18 sections per animal) with a 

small but significant increase in protein concentration in the tumour rim evident (normal 8 ± 2 

% w/w, tumour 9 ± 2 % w/w, mean ± s.d., P < 0.05, Figure 4E). Pimonidazole and CD31 vessel 

staining confirmed that core regions were largely necrotic, whilst the rim regions maintained 

vessel structure but also showed a degree of hypoxia (Supplementary Figure 2).  

Protein concentration changes account for 66 % of measured APTR* signal change 

Using the isoAPTR* method with the normal and tumour tissue measured APTR* (normal 3.43 

± 0.10 % M0, tumour 3.77 ± 0.09 % M0, mean ± 95 % CI) and the measured protein 

concentration increase in the tumour rim (from Coomassie measurements), it was found that 

approximately 66 % of the APTR* change was caused by protein concentration (α in Figure 

5). Thus, the remaining 34% signal change (β in Figure 5) reflects an increase in tumour pH 

to 7.14 ± 0.01. The contralateral hemisphere was used as a measurement of normal tissue 

since no evidence of tumour burden was observed using the post-Gd T1-weighted imaging 

(Figure 1A). Additionally, previous studies have confirmed histologically that there is no tumour 

present in the contralateral hemisphere in this model (23). 

 

Atovaquone treatment alleviates tumour hypoxia with no concomitant alteration of protein 

concentration 

Representative sections of tumours from mice in the control (DMSO) or Atovaquone treated 

groups are shown in Figure 6A stained for DAPI (cell nuclei), EF5 (hypoxia) and Coomassie 

(protein concentration). The alleviation of tumour hypoxia in the Atovaquone treated tumour 

is evident as a reduction in the intensity of the fluorescent signal in the image. The relative 

fluorescence intensity over all animals showed the significant effect of Atovaquone in reducing 

tumour hypoxia (Figure 6B). Importantly, no concomitant alteration in cytoplasmic protein 

concentration was observed, as shown by similar intensities in the Coomassie stained images 

in Figure 6A, the non-significant difference between protein concentration quantified from 

these images in Figure 6C, and the quantitation of protein concentration in various subcellular 

fractions by BCA assay in Figure 6D.  

APTR* measures pH change associated with alleviation of hypoxia due to Atovaquone 

treatment 



The histogram of APTR* measurements from Atovaquone treated tumours was significantly 

different from the histogram of APTR* measured from control animals, with the median APTR* 

being lower in Atovaquone treated animals (Figure 7A). The spatial heterogeneity of the 

APTR* maps in tumours, necessitating the measurement of effect size by cumulative 

frequency distributions, is shown in Figure 7B for two representative animals, clearly showing 

a higher APTR* in control (DMSO) treated animals compared to Atovaquone treated. 

Crucially, since no significant change in protein concentration was measured between the two 

groups using BCA assay and Coomassie staining techniques, it is likely that this APTR* 

difference is a result of a change in tumour pH associated with the reduction in tumour hypoxia. 

The size of this pH change was estimated as –0.07 pH units by isoAPTR* (Figure 7C), 

reducing tumour pH from 7.14 ± 0.01 to 7.07 ± 0.01. The tumour pH of 7.14 ± 0.01 in the 

DMSO group was assumed from the previous estimate of tumour pH in the rat model of brain 

metastasis. 

 

DISCUSSION 

In this study, we sought to better understand the contribution of protein concentration and pH 

changes in tumours to APT signals. We performed in vivo APT MRI and ex vivo protein 

concentration measurements, and combined information from both modalities to determine 

that approximately 66% of the measured APT signal change was explained by a protein 

concentration increase. The remaining 34% was assumed to be a result of an alkalosis of 

tumour intracellular pH (compared to normal tissue) to 7.14 ± 0.01, in agreement with previous 

studies showing that the intracellular pH in tumour cells is slightly alkalotic compared to normal 

cells (4,21). Elucidation of the contribution of pH effects to altered APT signals in tumours 

leads to improved understanding of APT measurements in the clinic, and may enable 

inferences regarding the pH of individual patients’ tumours in clinical settings. Additionally, we 

used the anti-malarial drug Atovaquone to reduce tumour hypoxia and measured the 

associated alteration in tumour pH using APT MRI, which opens the possibility of using APT 

MRI for assessing therapeutic response. The observed shift in intracellular pH of Atovaquone-

treated tumours, to values typically seen in normal cells, is consistent with expectations based 

on the link between hypoxia and tumour pH (6,33). 

This study represents the first application of the APTR* method (29) to tumour imaging, with 

all previous in vivo studies investigating ischaemic stroke. The measured increase in APTR* 

in the tumour rim and core in this study is in agreement with previous studies that have 

reported an increased APT signal in viable tumour and necrotic tissue using other non-

quantitative APT MRI analysis methods.  Although the BCA-derived protein assay showed no 



differences in protein concentration between normal brain and tumour tissue, the Coomassie 

histology revealed a reduced protein concentration in the necrotic core region compared to 

normal brain tissue. Tissue detachment during the sectioning and staining process is a 

common problem in acellular tissue areas, which could bias the Coomassie protein 

concentration measurements in the necrotic regions. For this reason, only tumour rim areas 

were used in the subsequent isoAPTR* analysis. Additional potential limitations to using the 

Coomassie stain as a protein concentration measurement technique include inaccurate 

measurements as a result of poor sectioning technique and difficulties with co-registration of 

the APT MRI data with histology resolution images. Nevertheless, Coomassie staining retains 

more information about tumour heterogeneity than simple biopsies of tumour tissue. The 

agreement between the BCA-derived protein concentration measurements in this study and 

previous measurements from a 9L glioma model (19), suggests that those studies may not 

have fully captured tumour protein heterogeneity and that future studies using other tumour 

models may benefit from protein concentration measurements made using the Coomassie 

staining procedure.  

The invasive nature of histology limits the clinical translatability of the methods used in this 

preclinical study. The histological measurement of protein concentration, and the associated 

estimation of pH by isoAPTR*, is not necessarily meant for clinical translation, however, but 

rather to aid in the interpretation of APT MRI. Whereas prior clinical studies have interpreted 

the APT signal in tumours in terms of changes in intracellular protein content alone, the results 

of this study suggest that the APT signal change in tumours also reflects changes in pH. 

Additionally, it may not be necessary to use ex vivo histological measurements of protein 

concentration to estimate tumour pH using isoAPTR* if tumour pH can be selectively 

modulated, as was done using Atovaquone in this study. Alternative endogenous CEST MRI 

methods such as AACID (34) have been used in this way to investigate the tumour pH change 

associated with administration of dichloroacetate (35), topiramate (36) and lonidamine (37) in 

preclinical experiments. Additionally, exogenous diaCEST (38–41) and paraCEST (42,43) 

contrast agents have been developed that successfully measure tumour extracellular pH, 

though these methods are limited by contrast agent availability to the tumour, which may be 

limited in areas of particularly poor perfusion (44) or in the brain where the blood-brain barrier 

may be partially intact in the early stages of tumour growth. 

The isoAPTR* method used in this study assumes that the measurement of protein 

concentration can be used to infer a change in the amide proton concentration, which is the 

true biophysical origin of the APT signal. This simplification requires further assumptions, for 

instance that the number of amide protons available for exchange per protein molecule does 

not change. Protein conformation changes, proteolysis, or differences in protein size between 



the two tissues may also affect the validity of this assumption. Although it is unlikely that 

protein structure would be sufficiently different between tumour and normal tissue to affect the 

conclusions of this work, further studies to investigate the effect of differences in protein 

structure and size on the APT MRI signal in tumours are warranted.  

CONCLUSIONS 

This study combined in vivo APT MRI measurements with ex vivo histological measurements 

of protein concentration in a model of brain metastasis to determine that the proportion of APT 

signal change originating from changes in protein concentration is ca. 66%, with the remaining 

34% originating from changes in tumour pH. Furthermore, a significant change in tumour pH 

associated with a pharmacologically-induced reduction in tumour hypoxia was measured 

using APT MRI in a subcutaneous tumour model. This study extended our understanding of 

APT MRI, and may enable the use of APT MRI to infer the pH of individual patients’ tumours 

as a biomarker either for therapy stratification or of therapeutic response in clinical settings.  
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Figure Captions 

Figure 1: Representative post-gadolinium image (A) with tumour rim (red) and core (green) 

regions of interest overlaid (B), and APTR* map (C) from preclinical model of brain metastasis. 



The contrast-enhancing tumour rim and hypo- to isointense tumour core resemble images 

obtained from human metastatic foci, and illustrate the intratumoural heterogeneity of an 

infiltrating rim region and necrotic core. Enhancement in the APTR* map in the region of the 

tumour is evident. No tumour burden in the contralateral hemisphere is apparent. 

Figure 2: APTR* is elevated in both tumour rim and tumour core. P values show significance 

level of a one-sample t-test comparing to a hypothetical mean of rAPTR* = 1 (which would 

indicate no difference from normal tissue). Error bars are 95% CI. The number of voxels for 

each tissue type is 1347 for tumour rim, and 1475 for tumour core. 

Figure 3: Cytoplasmic, non-cytoplasmic and total protein concentration measured by BCA 

assay of tissue biopsies (n = 5) is not significantly different between tumour (grey) and normal 

(black) tissue. Statistical comparison was unpaired t-test comparing contralateral and tumour 

protein concentration in each fraction. 

Figure 4: Coomassie staining reveals the spatial heterogeneity of protein concentration in 

tumours. A. Examples of Coomassie stained tissue sections through a tumour of a 

representative rat. B-D. Magnified (200x) regions of tumour rim, tumour core and contralateral 

tissue, respectively. Group-wise protein concentration measurements (E) show that tumour 

rim has a significantly higher protein concentration than contralateral tissue, whereas tumour 

core has significantly lower protein concentration than contralateral tissue. **** = P < 0.0001, 

* = P < 0.05 (one-way repeated measures ANOVA, followed by Tukey’s multiple comparison 

test). 

Figure 5: Demonstration of the isoAPTR* method to measure the pH of ENU tumours. Black 

and red lines indicate the isoAPTR* lines for the APTR* values measured in the contralateral 

and tumour rim ROIs, respectively, with 95 % CI shown in grey for contralateral and pink for 

tumour rim. Arrows show the isoAPTR* methodology, where the contralateral tissue pH is 

assumed to be 7.11 and used with the measured APTR* to estimate the amide proton 

concentration. Using the relative increase in protein concentration in the tumour rim tissue 

measured by Coomassie staining, a tumour pH of 7.14 ± 0.01 is measured. The blue cross 

shows the APTR* value that would be expected with no pH change in the tumour, indicating 

that approximately 66% of the observed APTR* change reflects protein concentration changes 

(α), with the remaining 34% a result of pH changes in the tumour (β). 

Figure 6: Representative tissue sections from tumours in the DMSO or Atovaquone treatment 

groups stained for DAPI, EF5 and Coomassie show reduction in tumour hypoxia due to 

Atovaquone with no concomitant alteration of protein concentration (A). The reduction in 

tumour hypoxia is evident as a significant reduction in EF5 fluorescence intensity across all 



animals (B, P < 0.01, unpaired t-test). Cytoplasmic protein concentration as measured by 

Coomassie staining (C) or BCA assay (D) was not significantly different between Atovaquone 

and DMSO groups (P > 0.05, unpaired t-test). 

Figure 7: Histogram of APTR* values measured from tumours on mice treated with 

Atovaquone to decrease tumour hypoxia or with DMSO as control (A). The median APTR* 

was significantly lower in Atovaquone-treated animals (P < 0.001, Mann-Whitney test). The 

heterogeneity of APTR* values within single tumours is shown in representative animals from 

each group (B) to demonstrate the necessity of the histogram analysis. isoAPTR* analysis 

measured a tumour pH reduction of 0.07 pH units (C), consistent with the decrease in tumour 

pH expected with a reduction of tumour hypoxia. 
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