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Interactions of molten salts with cathode products in the FFC Cambridge Process 
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Abstract 

Molten salts play multiple important roles in the electrolysis of solid metal compounds, 

particularly oxides and sulfides, for extraction of metals or alloys. Some of these roles are 

positive in assisting the extraction of metals, such as dissolving the oxide or sulfide anions, 

and transporting them to the anode for discharging, and offering the high temperature to lower 

the kinetic barrier to break the metal-oxygen or metal-sulfur bond. However, there are also 

unfavourable effects, including electronic conduction and significant capability of dissolving 

oxygen and carbon dioxide gases. In addition, although molten salts are relatively simple in 

terms of composition, physical properties and decomposition reactions at inert electrodes, in 

comparison with aqueous electrolytes, the high temperatures of molten salts may promote 

unwanted electrode-electrolyte interactions. This article reviews briefly and selectively 

research and development of the FFC Cambridge Process in the past two decades, focusing on 

observations, understanding and solutions of various interactions between the molten salts 

and the cathodes at different reduction states, including perovskitisation, non-wetting of 

molten salts on metals, carbon contamination to products, formation of oxychlorides and 

calcium intermetallic compounds, and oxygen transfer from air to the cathode product 

mediated by oxide anions in the molten salt.             

Keywords: FFC Cambridge Process, molten salts, electrolysis, extraction, oxides, sulfides, 

metals, alloys, reaction mechanisms 

 

1. Background 

In December 1999, the University of Cambridge published an international patent on what is 

now known widely as the Fray-Farthing-Chen (FFC) Cambridge Process. It is about 

electrolytic extraction of metals and alloys directly from their solid compounds in molten salts 

[1]. Preliminary findings from testing the FFC Cambridge Process were soon reported in a 
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Letter to Nature for the extraction of titanium from titanium dioxide (TiO2) in molten calcium 

chloride (CaCl2) [2]. The report aroused enthusiastic responses, both positive and critical, 

from global communities of titanium technologists and researchers [3-5]. In the past two 

decades, world-wide research and development have confirmed the scientific principle and 

technical feasibility and flexibility of the process for the extraction of almost all metals listed 

in the periodic table and their alloys from the respective oxide or sulfide precursors [6-14].  In 

addition, the FFC Cambridge Process has been shown to have versatile applications in other 

fundamental and industrial areas such as near-net shape manufacturing of metallic artefacts of 

complex structures, medical implants, oxygen generation on the Moon, capture and 

electrolytic conversion of carbon dioxide CO2 to various forms of solid carbon, e.g. carbon 

nanotubes, carbon monoxide (CO) and hydrocarbon fuels (CnH2n+2, n < 10), and rechargeable 

molten salt metal-air batteries [15-22].  

 

2. Basic electrochemistry 

The main claim of the FFC Cambridge Process is very general and states a method “for 

removing a substance (X) from a solid metal, a metal compound or semi-metal compound 

(M1X) by electrolysis in a fused salt of M2Y or mixture of salts, which comprises conducting 

the electrolysis under conditions such that reaction of X rather than M2 deposition occurs at 

an electrode surface, and that X dissolves in the electrolyte M2Y.” This claim makes it very 

clear that the cathode can be a metal containing another substance (e.g. impurity) or a metal 

or semi-metal compound, including but not limited to metal oxides which have been mostly 

studied in the past two decades.  It is interesting to point out that later research has 

demonstrated that the electrolysis of metal sulfides is actually quicker and more efficient than 

that of metal oxides, but the invention of FFC Cambridge Process was mostly based on the 

initial study of electrochemical reduction  of TiO2 to Ti metal in molten CaCl2, which is now 

known as one of the few most difficult metal oxides to electrolyse.  

In terms of thermodynamics [23], electrolysis of TiO2 should be fairly feasible, 

following Reaction (1) or (2) and (3) on an inert or carbon anode, respectively. Note that 
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although Reaction (3) seems more feasible than Reaction (2) on a carbon anode, the highly 

spontaneous Reaction (4) makes CO2 effectively the main product on the carbon anode. This 

view can be further explained. With log K = 2log pCO2 − (2log pCO + log pO2) = 16.1, it can be 

established that pCO2 >> (pCO + pO2) and (pCO2 + pCO + pO2)  1 atm for bubbles of the mixed 

anode gases to escape from the anode surface. Therefore, log (pCO/pO2) = - (16.1 + log pCO)  -

16, which indicates the amount of CO to be negligible in comparison with that of O2 formed 

on the carbon anode. Of course, the validity of thermodynamic predictions can be affected by 

the electrode kinetics, whilst experimental studies have confirmed the anodic formation of O2 

on carbon in molten CaCl2 [20,24,25] 

TiO2  = Ti + O2          (1) 

Go (900 oC) = 732.1 kJ;    Eo  = 1.897 V (inert anode)  

TiO2 + C = Ti + CO2         (2) 

Go (900 oC) = 336.1 kJ;   Eo = 0.871 V (carbon anode) 

TiO2 + 2 C = Ti + 2 CO        (3) 

Go (900 oC) = 300.7 kJ;   Eo = 0.779 V (carbon anode) 

2CO + O2 = 2CO2        (4) 

Go (900 oC) = -360.6 kJ;  log K = 16.1 

Reactions (1) to (3) are possible cell reactions, whilst electrode reactions are as follows.  

Cathode:  TiO2 + 4 e = Ti + 2 O2-      (5) 

Inert anode:  2 O2- = O2 + 4 e       (6) 

 Carbon anode:  C + x O2- = COx + 2x e  (x = 1, 2)    (7) 

Reaction (5) represents electrochemical reduction, or deoxidation of TiO2. The same can be 

written for other metal oxides. Thus, electro-deoxidation and electro-reduction are both used 

in the literature as the scientific terms in place of the FFC Cambridge Process.   

 Figure 1a illustrates schematically a typical laboratory molten salt electrolysis cell for 

studying the FFC Cambridge Process. This two electrode cell is suitable for electro-reduction 

of metal oxides and other compounds at the gram scale. Note that the lower part of the steel  
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vessel (or retort) extrudes below and outside the furnace so that it remains at temperatures 

much lower than that of the molten salt. In this way, any molten salt dripping or condensing at 

the welding joint between the wall and bottom of the retort will solidify and become non-

corrosive [18].  It can also be readily modified into a three electrode cell for fundamental 

analyses by, for example, cyclic voltammetry and chronoamperometry.  

 

Figure 1. (a) Schematic diagram of a molten salt electrolyser for laboratory study of 

the FFC Cambridge Process.  The external diameter of the steel retort is typically 15 

cm.  (b - h) Digital photographs of slip-cast and sintered pellets of TiO2 (b), mixed 

TiO2, Al2O3 and V2O5 (c), electro-reduced c (d), surface polished d (e), and a long 

graphite rod (ca. 1.6 cm in diameter) anode after electrolysis of TiO2 (f), the lower end 

of the graphite rod before (g) and after 24 hr electrolysis  (h). 

 

 Electrode materials selection is crucial to ensure the success of the FFC Cambridge 

Process. For the cathode, Figure 1b and 1c show the pellets of TiO2 (white) and mixed  TiO2, 

Al2O3 and V2O5 (brown) that were to attach to, and be electro-reduced on the cathode current 

collector. The products in Figure 1d and 1e were the Ti-6Al-4V alloy before and after light 

polishing.  For the anode, because of their easy availability, ease of shaping and low cost, 

commercial graphite products, particular rods (see Figure 1f) and plates, have been commonly 

used to make the anode or counter electrode in various studies on the FFC Cambridge 
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Process, although quality of commercial graphite varies significantly. Poor quality graphite 

may suffer from the attack of oxidation and gas bubbling, leading to graphite erosion as 

shown clearly by comparison between Figure 1g and 1h, and unwanted carbon debris off the 

anode. The carbon debris can float on, or suspend in the molten salts, causing electronic 

conduction to lower electrolysis efficiency and contamination of the product on the cathode. 

More discussions are given later on the issues from using a graphite anode. Glassy carbon can 

also be used to make the anode or working electrode in studies of molten salts, particularly for 

fundamental analysis by cyclic voltammetry [26,27].  Like graphite, glassy carbon also 

suffers from electrochemical oxidation in presence of oxide ions, and hence is too expensive 

to use in bulk electrolysis.  

 In addition, it has been recognised that the discharge (electro-oxidation) of oxide ions 

(O2-) on a carbon electrode suffers from serious kinetic difficulties [26,27].  These complex 

kinetic steps lead to a fast increase of polarisation with increasing the current density on the 

anode. The kinetics are partly responsible for the practically applied cell voltage for 

electrolysis of TiO2 to be at or greater than 3.00 V, in contrast to the thermodynamic 

predictions of around 1.00 V according to Reactions (2) and (3).  To minimise such kinetic 

barriers, the surface area of the graphite anode in contact with the molten salt should be as 

large as realistically possible. It was found that the anodic polarisation could be reduced by 

about 1.0 V when the graphite anode surface area was increased by 10 times [27]. 

Alternatively, inert anodes should be considered as an option.  

 By definition, inert anodes should be inactive and non-consumable, and would work 

without all the problems resulting from using carbon. Although the potential for anodic 

formation of O2 is about 1.00 V higher than that for CO2 formation, see Reactions (1) and (2), 

this benefit of using carbon anodes could be largely lost to the above mentioned kinetic 

polarisation. There are two types of ceramic based inert anode: ion blocking and ion 

conducting as explained in Figure 2a and 2b, respectively. Several materials have been tested 

for making ion blocking inert anodes, including tin oxide (SnO2) with or without copper 

doping, and calcium ruthenate (CaRuO3) with or without titanium substitution [28,29].   
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Figure 2. Schematic illustrations of the working mechanisms of the (a) ion blocking 

inert anode and (b) ion conducting inert anode. 

 

 Ion conducting inert anodes are constructed with a membrane of oxide ion conductor, 

typically yttria stabilized zirconia (YSZ) in the form a tube with a closed end. One side of the 

membrane, the wet side, faces the molten salt to connect O2- conduction into the membrane. 

The other side, or dry side of the membrane can be made in contact with a liquid or solid 

metal, e.g. tin (Sn) or silver (Ag), with relatively high diffusivity and solubility of atomic 

oxygen [30,31]. Oxidation of O2- ions occurs at the YSZ/ metal interface with the produced 

atomic oxygen dissolving in, and diffusing through the metal to the metal/air interface where 

the O2 gas forms and escapes. Alternatively, the dry side of the YSZ membrane may be 

coated with a porous platinum (Pt) paste in which is buried a Pt mesh or wires as the current 

collector. Oxidation of O2- is catalysed by Pt at the YSZ/Pt/air three phase interlines (3PIs) 

with the produced O2 gas escaping through the pores in the paste into air [32]. The main 

issues of ceramic based anodes include their highly temperature dependent resistivity, thermal 

cyclability and related costs.   

 It is worth mentioning that graphite anodes are almost fully inert for discharging 

sulfide ions (S2-) to the sulfur vapour (S2) [33,34], and chloride ions (Cl-) to the chlorine gas 

(Cl2) [35,36] in molten chlorides.  In electrolytes with high oxide ion activity, such as molten 
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carbonates and mixed oxide melts, refractive metals with high tendency to form a stable 

surface oxide layer may also be used as ion blocking inert anodes [37-39]. However, a few 

metals, e.g. iridium (Ir) and silver (Ag) do not form stable oxides at high temperatures, and 

may behave sufficiently stable as an inert anode in some molten salts [12,40,41].  

 

3. Perovskitisation of metal oxides on cathode 

In a laboratory cell as shown in Figure 1a, the cell voltage applied for electrolysis of TiO2 is 

usually about 3.00 V with a graphite anode, although the thermodynamic prediction from 

Reactions (2) and (3) is less than 1.00 V. Apart from the kinetic difficulties on a carbon anode 

as mentioned above,  cathodic processes also contribute. First, it is partly related to the 

multiple intermediate phases between TiO2 and the Ti metal. At the electrolysis temperature 

(850 to 950 oC), these phases include TinO2n-1 (n ≥ 2, Magneli phase), Ti2O3, TiO, TiyO (y 

=1.5 and 2, pseudo-oxides) and solid oxygen solution. Thus, it can be expected that the 

electro-reduction of TiO2 will pass through each of these phases before reaching the final 

metallic phase. From available thermodynamic data [23], the cell voltages needed to 

decompose TiO and Ti3O2 with an inert or carbon anode are given below for Reactions (8) to 

(11).  It is worth pointing out that when the oxygen activity is lower than that in TiO or Ti3O2, 

O and Ti combine into a solid solution from which oxygen removal becomes increasingly 

controlled by O diffusion in Ti with a secondary effect from the applied cathode potential.  

 2 TiO = 2 Ti + O2        (8) 

Go (900 oC) = 860.9 kJ;    Eo = 2.231 V (inert anode) 

Ti3O2 = 3 Ti + O2        (9) 

Go (900 oC) = 863.5 kJ;    Eo = 2.237 V (inert anode) 

2 TiO + C = 2 Ti + CO2        (10) 

Go (900 oC) = 464.9 kJ;    Eo = 1.205 V (carbon anode) 

Ti3O2 + C = 3 Ti + CO2        (11) 

Go (900 oC) = 467.4 kJ;    Eo = 1.211 V (carbon anode) 
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 These are small changes compared with those of Reactions (1) and (2), and not 

enough to account for the experimental observation of 3.00 V. Therefore, kinetics must have 

played important roles that lead to cathodic polarisation. These were found to be caused 

largely by the formation of various perovskites on the cathode during electrolysis, resulting 

from interactions between original and partially reduced TiO2 and the calcium dication (Ca2+) 

[7,42,43]. Perovskitisation happens in both electrochemical and chemical ways as exemplified 

below. TiO and Ti3O2 seem to have no chemical interaction with Ca2+ ions.  

TiO2 + 2z e = TiO2-z + z O2-    (0  z  1/2)    (12) 

m TiO2 + Ca2+ + O2- = CaO·(TiO2)m (m ≥ 1)     (13) 

(CaO·(TiO2)m becomes CaTiO3 at m = 1) 

 m TiO2 +  Ca2+ + 2 e = Ca(TiO2)m  (m/ ≥ 2)    (14) 

  (Ca(TiO2)m becomes CaTi2O4 at m/ = 2) 

 n TiO2-z + Ca2+ + O2- = CaO·(TiO2-z)n (n ≥ 2)     (15) 

(CaO·(TiO2-z)n becomes CaTi2O4 at n = 2, z = 0.5) 

 Reactions (13) to (15) add Ca2+ ions to the cathode oxide phase without any oxygen 

removal, leading to volume expansion of the solid phase, which in turn reduces or eliminates 

the pore volume in the cathode. As a result, pores for O2- transport in the oxide cathode are 

partially or fully blocked, resulting in cathodic polarisation. In fact, perovskitisation also 

happens to the cathode of other metal oxides, such as chromium (Cr) and niobium (Nb) 

oxides [44,45].   

 There are two proposed and laboratory demonstrated approaches to avoid the impact 

of perovskitisation. The first approach uses ex situ perovskitisation, i.e. reacting TiO2 with 

CaO or Ca(OH)2 at elevated temperatures (e.g. 1300 oC for 5 hrs) to form a porous CaTiO3 

precursor (cylindrical pellet) in air, and then using the CaTiO3 precursor as the  cathode for 

electrolysis in molten CaCl2. By doing so, perovskitisation will not occur to the CaTiO3 

cathode during electrolysis, but the cell voltage for electrolysis of CaTiO3 should be slightly 

higher than that of TiO2 as can be seen by comparing Reactions (16) and (2).   
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 CaTiO3 + C = Ti + CaO + CO2      (16) 

Go (900 oC) = 423.7 kJ;    Eo = 1.098 V (carbon anode) 

 Initial tests of this approach were carried out at 3.20 V and 850 oC in molten CaCl2 

[43]. The results showed that under the same experimental conditions, electrolysis of CaTiO3 

was almost twice faster as electrolysis of TiO2 to achieve Ti products of comparable purities.  

The higher speed of electrolysis was also a reflection of faster transportation of O2- ions in the 

CaTiO3 cathode than in the TiO2 cathode. This is because electro-reduction of CaTiO3 

removes not only O2- but also Ca2+ions, leaving behind increased porosity. This is in contrast 

to electro-reduction of TiO2 in which perovskitisation brings about increased volume of the 

solid phase and hence blockage of the pores in the oxide cathode, impeding removal of O2- 

ions and the whole electrolysis.  Note that continuous CaTiO3 electrolysis via Reaction (16) 

will lead to accumulation of CaO in the molten salt. However, one can in principle combine 

Reactions (16) and (13) to form a closed loop in which CaO is cycled and functions like a 

“phase change catalyst” to accelerate the electrolysis of TiO2.   

 The second approach is to simply increase the porosity of the TiO2 cathode, using the 

low cost and recyclable NH4HCO3 as the fugitive porogenic agent. In most previous studies 

of the FFC Cambridge Process, the TiO2 cathode had usually a porosity of 40 to 50 %.  

Because the molar volumes of TiO2 and CaTiO3 are 18.9 and 34.2 mL/mol, respectively, 

perovskitisation can lead to a volume increase up to 81 %. Obviously, when it happens inside 

the pores of the TiO2 cathode of 40 to 50 % in porosity, partial blockage of the ion channels is 

inevitable. Because perovskitisation of the TiO2 cathode proceeds with electro-reduction 

which follows the 3PI propagation mechanism [46-48], it is possible to bypass the effect of 

perovskitisation by increasing the TiO2 cathode porosity to 60 to 80 % so that the formation 

rate of TiO and the pseudo-oxide phases surpasses the rate for perovskitisation.  In other 

words, the perovskite phase, if formed, is unable to grow in size before further reduction.  

This was indeed confirmed by experiments in which electro-reduction was found to be 

most effective when the porosity of the TiO2 precursor was made about 68 % [49]. It was 

thought that at higher porosities, the cathode volume also increased, making the path and time 
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longer as well for O2- ion to diffuse out of porous cathode.  Another benefit was that the 

porous TiO2 cathode prepared from using NH4HCO3 as the fugitive agent presented a micro-

macro-bimodal porosity as shown in Figure 3a.  It is understood that the macropores of over 

100 m in length were left by the evaporation of the NH4HCO3 granules that were mixed, 

pressed and sintered together with the TiO2 powder which alone would only form micropores  

 

Figure 3. (a) SEM image of the micro-macro-bimodal porous structure of a titanium 

sample that was prepared by electrolysis of pressed and sintered pellet of mixed TiO2 

and NH4HCO3 powder [49]. (2) Schematic illustration of O2- ion transport in the 

bimodal porous structure with the molten salt in the large pores effectively diluting the 

O2- ions from electro-reduction of TiO2 and hence hindering perovskitisation. 
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between the sub-micrometre particles. The sample shown in the SEM image in Figure 3a was 

fully metallised at 3.20 V in only 3 hrs, containing 6800 ppm O. Continuing the electrolysis at 

a lower voltage of 2.60 V for another 3 hrs led to a further decrease of the oxygen content to 

1900 ppm, whilst the energy consumption was as low as 21.5 kWh/kg-Ti. This observation is 

evidence of a much smaller kinetic influence on removing oxygen from the metallised TiO2 

cathode.  

 Figure 3b further illustrates how the micro-macro-bimodal porous structure of the 

TiO2 cathode benefits electro-reduction. Firstly, the cathodically produced O2- may participate 

in either or both of two competing reactions: perovskitisation in the solid phase of the 

cathode, and dissolution into the liquid molten salt. Obviously, dissolution is beneficial to 

electro-reduction. Both reactions proceed with the assistance of Ca2+ ions whose activity in 

the molten salt can be assumed to be constant. Thus, the key to prevent perovskitisation, or 

keep it short-lived upon formation, is to maintain a low O2- activity in the molten salt. This is 

very difficult, if not impossible, in the micropores that are present dominantly in the pressed 

and sintered pellets of TiO2 powder of 40-50% in porosity.   

 With the use of NH4HCO3 to form the micro-macro-bimodal porous structure, the 

relatively large amount of molten salt in the macropores could help reduce the activity of O2- 

ions below that is needed to precipitate CaO, preventing perovskitisation. Secondly, the 

transport of O2- ions in the molten salt of the macropores should behave very much the same 

as in the bulk electrolyte with the diffusion coefficient in the range of 10-5 cm2/s, whilst in the 

micropores, the diffusion coefficient of O2- is about 10-7 cm2/s. Therefore, with faster ion 

transportation and minimised effect of perovskitisation, it is not surprising that electro-

reduction was much quicker in the micro-macro-bimodal porous TiO2 cathode. Obviously, the 

proposed increase of 10 to 20% in cathode porosity may translate to reduced volumetric 

productivity, which should be well balanced by the benefits in both speed increase and energy 

saving from using a more porous cathode.   
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4. Non-wetting of molten salts on fully electro-reduced metals  

It was found in the world’s first 99.8 % pure Ti product from electro-reduction of TiO2 in 

molten CaCl2 that the porous oxide precursor turned into a porous metal, as shown in Figure 

4a.  A technical question asked then on the FFC Cambridge Process was how to remove the 

salt that had solidified inside the porous metallic products. Since CaCl2 has a high solubility 

in water (100 g/mL) and most transition metals and their alloys are relatively stable in water,   

most, if not all, porous and powdery FFC metal samples reported in the literature were 

washed in water. Could it be fully effective to remove solidified salts hidden deep inside the 

pores? Also, because the nodular Ti particles were much larger than the spherical particles in 

the TiO2 precursor, growth of the Ti particles must have happened. Therefore, would it be 

possible that in the course of Ti particle growth, molten CaCl2 may be enclosed in the metal?  

 Analyses of the FFC Ti samples by SEM and XRD revealed interesting behaviour. As 

shown in Figure 4b, with careful selection and inspection, nanometre pores were found in the 

cross section of some relatively large but broken Ti nodules, but these were empty [50]. It 

could be argued that CaCl2 were removed by washing the sample in water and drying before 

the SEM examination. However, such nanopores should also exist in many more unbroken Ti 

nodules. If these closed nanopores were filled with CaCl2, the salt should have been detected 

by XRD, but it was not [43,49].  A hypothesis had attributed the formation of nanopores to 

the space left after removal of the fairly large amount of oxygen in the initially formed 

metallic phases [50]. For example, the pseudo-oxide phase of Ti3O2 has an oxygen content of 

18.2 wt%. This rationale is acceptable but it is not an account for the undetected CaCl2 in the 

pores of the porous FFC Ti product.  

 Another explanation came to light when the cause for an incidental observation was 

considered. In an experiment for electro-deoxygenation of a Ti foil sample in a Ti crucible, 

both the foil and crucible were polarised negatively at -3.0 V against a common graphite 

anode. When electrolysis was near the designated time of completion, the Ti foil was moved 

forward and backward to drive away a thin layer of floating carbon debris. The manual 

operation incidentally led to the contact between the foil and crucible. What happened next 
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was surprisingly unexpected. The Ti foil was stuck to the Ti crucible, and the two were only 

separated after cooling and washing away the solidified salt, and forcing a screwdriver 

between the two with a hammer. Obviously, the Ti foil was welded to the Ti crucible. It is 

known that in the absence of impurities, such as oxide, pure metal to metal mixing occurs, 

resulting in an integral bond. This principle is the foundation of an industrial technique called 

friction welding. Although the friction generates heat and hence high temperatures to promote 

atom mobility during friction welding, the metals are still solid without melting [51].  In the 

case of Ti foil and Ti crucible, because both were negatively polarised for a sufficiently long 

time, their surfaces must have become oxygen-free and hence were able to weld or bond. 

However, there was the molten salt between the two Ti surfaces and why the welding still 

proceeded could only be explained by the molten salt being non-wetting to pure Ti surfaces.   

 

 

Figure 4. SEM images of (a) the first sample of FFC Ti of 99.7 % purity (EDX) 

produced in Cambridge in late 1997 with a porous structure formed by interconnected 

nodules of micrometres, and (b) FFC Ti nodules of which a few were broken, 

revealing nanometre pores as shown in the inset [50].  

   

 This understanding of non-wetting of molten salts on a pure metal surface accounts 

well for another observation of the absence or very little of salt being present in a well 

electro-reduced and very lightly washed pellet of mixed nickel, manganese and gallium oxide 

powders [52].  Later, purposely designed experiments studied the wetting of molten CaCl2 on 
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the surface of terbium (Tb) metal [53].  In the first test, a fully electro-reduced (metallised) 

porous pellet of Tb2O3 (converted from Tb4O7) powder was cooled to room temperature and 

broken, without washing, into two halves to reveal the cross section which was directly 

analysed by SEM and EDX. As expected, CaCl2 was only detected in the surface region 

(labelled A), whilst the contents of both Cl and Ca decreased quickly into the metallised pellet 

(from B to E) as shown in Figure 5a. The SEM image of nodules in Figure 5b was taken from 

the sand-paper ground surface of the fully metallised sample after rinsing in dimethyl 

sulfoxide (DMSO) to remove debris from grinding. It can be seen that these nodules were 

very clean, whilst CaCl2 is insoluble in dry DMSO.   

 In the other experiment, a small sheet of pure Tb metal was drilled with 6 small holes 

of 1 mm in diameter, and immersed into molten CaCl2 in air. Upon removing the Tb sample 

from the molten salt, cooled in air, and scraping away the skin of solidified salt, it was seen 

that all the 6 holes were filled with solidified salt. This change, as presented in Figure 5c and 

5d, is understandable because the Tb metal surface was covered with a thin oxide layer on 

which the molten salt could wet. The Tb sheet was then placed back into the molten salt, 

electro-reduced against a graphite anode at 3.2 V for 30 min under argon. After electrolysis, 

the electro-reduced Tb sheet was removed from the molten salt and cooled in air.  It was then 

seen that 5 of the 6 holes were empty. These empty holes must have resulted from the electro-

reduced Tb sheet surface being free of oxygen. As a result, the walls of the small holes were 

unwettable by the molten salt which was driven out of the holes by gravity when the Tb sheet 

was lifted above the molten salt.  

 In conclusion, past experimental observations have proven qualitatively but 

conclusively that molten CaCl2 does not wet the wall surfaces of the internal pores in fully 

electro-metallised metal oxides cathodes. This finding is theoretically accountable, and 

practically meaningful to the engineering design of the FFC Cambridge Process in terms of 

separation of the metallic product from solidified molten salt in post-electrolysis processing. 

This finding also allows the use of some organic solvents that have a low but sufficient 
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solubility of the salts, but much lower reactivity to the as-produced metals, particularly rare 

earths [54].    

 

Figure 5. SEM images of (a) the cross section of a fully electro-reduced and unwashed 

porous pellet of Tb2O3 powder in molten CaCl2 with EDX analysis results indicated 

for Ca, Cl and Tb (balancing), and (b) an enlarged view of Tb nodules in the fully 

electro-reduced Tb2O3 pellet with some being ground to reveal the non-porous cross 

section. Digital photographs of (c) a small piece of Tb foil with 6 drilled holes before, 

and (d) after immersion in molten CaCl2 without electrolysis, showing all holes being 

filled with solidifed salt, and (e) after electrolysis at 3.2 V for 30 min under argon, 

showing 5 of the 6 holes being free of solidified salt [53]. 

 

5.  Carbon contamination 

The use of a carbon anode is commonplace in molten salt electrolysis, and has been the case 

in most reported studies of the FFC Cambridge Process. Graphite is mostly used, although 

glassy carbon also helped a few fundamental studies. The advantages of using a graphite 

anode are basically commercial availability, shaping and processing convenience, thermal and 

chemical stability in molten salts, and good electronic conductivity.  Obviously, according to 
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Reactions (2) and similar ones, emission of CO2 from the FFC Cambridge Process using a 

carbon anode is inevitable. However, if cost of materials is correlated with CO2 impact in the 

manufacturing stage, carbon anodes may still be a more acceptable choice in comparison with 

those inert anodes which are still under development.  In fact, the more negative impact from 

using a carbon anode is carbon contamination on the cathodic products, which follows two 

mechanisms as explained below.  

 

5.1. The carbonate cycling mechanism 

It has been long recognised that in operation of the FFC Cambridge Process, the CO2 gas 

produced on a carbon anode could be re-absorbed back into molten CaCl2 and contaminate 

possibly the cathode product via Reactions (17) and (18) below [42,44,55]. 

 CO2 + O2- = CO3
2-         (17) 

  CO2 + CaO = CaCO3 

 CO3
2- + 4 e  = C + 3 O2-        (18) 

It is worth noting that Reaction (18) was likely first reported in mid-1960 in molten carbonate 

salts [56,57], whilst later studies have suggested that this cathodic reaction could proceed in a 

wide range of molten salts as long as CO3
2- and Li+ ions are present [18-21, 56-60].  

Thermodynamic analyses of cathodic deposition of carbon and alkali or alkaline earth 

metals revealed that Ca2+ could also help cathodic deposition of carbon. This prediction was 

initially tested successfully in mixed CaCl2 and CaCO3 (84:16 in molar ratio) [60] but the 

applied temperature (730 oC) was higher than those of Li+ ion containing carbonates (<600 

oC). The unique behaviour of Li+ and Ca2+  (and also Ba2+) ions may have resulted from their 

high affinity to the O2- ion from Reaction (18) (or the molten salt). This affinity pushes the 

metal deposition potential negatively away from that for carbon deposition. The same does 

not apply to Na+ and K+ ions, leading to preference for metal deposition [60].   

 Unlike in molten carbonate salts or others with high CO3
2- activities, Reaction (18) in 

molten chloride salts is highly likely diffusion controlled. Also, the fate of CO3
2- in molten 

CaCl2 will depend on the experimental conditions. Thermal decomposition of CaCO3 occurs 
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at temperatures beyond 887 oC, which would reduce (but not likely eliminate) the CO3
2- 

activity.  At a sufficiently high activity, CO3
2- may also compete with O2- to discharge on the 

carbon anode according to Reaction (19) at a potential about 400 mV more positive than that 

of the reverse of Reaction (18) [60].  

2CO3
2- + C = 3 CO2 + 4 e       (19)  

Therefore, largely depending on the O2- activity in molten CaCl2, electro-reduction of TiO2 

does not necessarily always suffer from carbon contamination by Reaction (18).   

A systematic study of the products from electro-reduction of TiO2 precursors 

(cylindrical pellets) with different porosities revealed an interesting trend of carbon 

contamination in products from low porosity precursors, but not in those high porosity cases 

[61,62]. XRD patterns of these products are presented in Figure 6a. It should be noted that the 

XRD patterns of the electrolysed dense precursors were taken from the samples’ surface 

materials because the cores were partially or not reduced. In another experiment, TiO2 

precursors of the same porosity (70%) were electrolysed in molten CaCl2 with or without 

added CaO. The products were then analysed by XRD as shown in Figure 6b.  In both cases, 

carbon contamination was represented by the detection of TiC in the electrolysis products. 

Considering findings from both experiments, it appears that the TiC phase formed 

disregarding the porosity of the TiO2  precursors, but appeared in products from electrolysis 

for longer times. In addition, as expected, the XRD patterns in Figure 6b suggest convincingly 

a correlation of carbon contamination with the O2- activity in the molten salt.  

 It was thought that the anodically generated CO2 could travel to the cathode through 

both the gas and liquid phases. In the gas phase route, CO2 entered the molten salt via 

Reaction (17) at the gas/liquid interface, particularly near the cathode. In the liquid path, the 

as-produced CO2 immediately reacts with O2- via Reaction (17) in the molten salt near the 

anode, and then transports to the cathode via convection and diffusion. Figure 7a illustrates 

schematically this understanding.  In this mechanism, both time for mass transport of O2- and 

CO3
2-

 and O2- activity for conversion of CO2 to CO3
2- play important roles.  
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Figure 6. XRD patterns of products from electrolysis of (a) TiO2 cylindrical pellets of 

different porosities (A: 12%, B: 23%, C:44%, D: 68%, E: 77%, F: 80%) at 3.2 V in 

molten CaCl2 for 5 hrs (A, B, C, surface materials) or 3 hrs (D, E, F, full body), and (b) 

TiO2 pellets of 70% porosity in molten CaCl2 at 3.0 V for 5 hrs (G), or in molten CaCl2 

+ 5% CaO at 2.6 V for 11 hrs (H). Electrolysis temperature: 850 oC [61]. 

 

5.2. The carbon debris mechanism 

The other mechanism for carbon contamination is unique to the quality of commercial 

graphite for making the anode. In laboratory studies of the FFC Cambridge Process, it is often 

observed a thin layer of carbon debris floating on the surface of the molten salt. Such debris 

could also, depending on sizes, suspend in, or precipitate to the bottom of the molten salt. In a 

scaling up test, a thick slug of carbon debris was seen on the top of molten CaCl2 after 

electrolysis [63]. It is worth mentioning that various commercial graphite materials in the 

forms of rod and plate were used, but some of these performed better than the others in terms 

of stability, durability and contamination to the molten salt. Because graphite crucibles are 

commonly used to contain molten salts without contamination, it is believed that the 

observation of carbon debris was related to the anodic behaviour of graphite in CaCl2 based 

molten salts.  
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 This understanding agrees with experimental observations that graphite anodes were 

highly inert for discharging S2- ions to the S2 steam, or Cl- ions to the Cl2 gas in the molten 

mixtures of chloride salts with low O2- solubility [33-36]. Specifically, carbon debris did not 

form in the molten mixture of MgCl2, KCl and NaCl which prevented O2- ions from reaching 

the graphite anode by formation of insoluble MgO, and assisted successful electro-reduction 

of various metal oxides to the respective metals via anodic discharge of Cl- ions to Cl2 [36]. 

 

Figure 7. Schematic illustrations of two mechanisms of carbon transfer from the 

graphite anode to the oxide cathode during electrolysis of solid metal oxide (TiO2) in 

molten salts.  (a) Carbonate cycling mechanism: Chemical and cyclic conversion 

between cathodically discharged O2-, anodically formed CO2, and chemically formed 

CO3
2- that is electro-reduced to carbon and contaminates the cathode. (b) Carbon 

debris mechanism: Physical loss of carbon debris from the graphite anode by 

continous formation of gas with an increasing pressure in cracks or pores that are 

either present originally in commercial graphite or formed by loss of carbon at 

anodically selected sites for CO or CO2 formation, leading to eventual burst of the 

confined gas and formation of carbon debris that float on or suspend in the molten salt 

and eventually drift to contaminate the cathode [12].  

 

 Although there has not yet been a systematic study on the formation mechanisms of 

carbon debris, two reasonable assumptions are worth more discussion here.  Firstly, the 

reduction of CO3
2-, and likely directly CO2, to carbon can proceed at the 

  

O2- 

CO2
 

CO3
2- 

e 

e 

C CO3
2- 

O2- 

GAS PHASE 

MOLTEN SALT 

e 

O2- 
C 

CO2
 

CO2
 

CO2
 

e 

G
R

A
P

H
IT

E
 A

N
O

D
E

 

O
X

ID
E

 C
A

T
H

O
D

E
 

Ti-- CO3
2- 



20 
 

“gas/electrolyte/cathode current collector” three phase lines.  Such produced carbon may 

detach from the cathode and float as debris on the molten salt surface. However, this cathodic 

carbon formation mechanism may have only played a secondary role in the formation of 

carbon debris, if any.  This is because dedicated cathodic deposition of carbon in molten 

carbonates has very high current efficiency [18-20, 60], which means that most deposited 

carbon remained on the cathode upon collection. 

 Secondly, it was commonly noticed that the graphite anode was not attacked or 

eroded uniformly after electrolysis, as shown in Figure 1h.  In other words, the oxidative 

attack was selective. The theoretical density of graphite is 2.26 g/cm3 whilst commercial 

graphite rods and plates are manufactured by densification of graphitic particles with densities 

commonly below 2.0 g/cm3. Thus, commercial graphite has always a certain level of porosity 

with the pores, voids or cracks existing more likely in the boundaries between the packed 

particles.  Additional surface pores or cracks on the anode surface can result from oxidative 

attack by oxygen atoms and molecules formed from O2- discharge, particularly to the 

boundaries. Such pores or cracks on the surface of a graphite anode would be filled with 

molten salt in which CO2 forms. This process leads to two consequences. Firstly, the pore 

becomes deeper and wider due to carbon loss to CO2 formation. Secondly, when the speed of 

CO2 formation is faster than that for CO2 to escape from the pore, pressure builds up in the 

pores. Eventually, the increased CO2 gas pressure in the pores and the weakened connection 

between graphite particles jointly force the detachment of carbon debris into the molten salt. 

Figure 7b illustrates schematically this debris formation process on the carbon anode. 

Obviously, like the carbonate cycling mechanism, the carbon debris mechanism also takes 

time to proceed (to erode the anode gradually) and depends on the O2- activity in the molten 

salt (to enable CO2 formation in pores and cracks).  

 

5.3. Prevention of carbon contamination  

The above discussion indicates clearly that carbon contamination to the products in the FFC 

Cambridge Process originates from the use of a carbon anode. Therefore, as already discussed 
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above, the use of either an ionic blocking or conducting inert anode will eliminate this 

problem. Unfortunately, inert anodes are still under development, making graphite the more 

favoured choice in both laboratory and industry. Further, there are a few approaches that can 

help reduce the negative impact on the cathode from using a carbon anode. The followings 

discuss these approaches.  

 As mentioned above, the key step in the carbonate cycling mechanism is the reaction 

between CO2 and O2- in the molten salt near the anode, or at the gas/molten salt interface. 

However, decomposition of CaCO3 to CaO and CO2 occurs at temperatures above 887 oC. 

Thus, the carbonate cycling mechanism should be ineffective in molten CaCl2 at higher 

electrolysis temperatures [23, 64].   Nevertheless, cautions should be applied when using this 

simple approach if the molten salts used contains other alkali and/or alkaline earth metal 

cations which can stabilise CO3
2- against decomposition. As shown by Reactions (20) to (25), 

CaCO3 decomposes, but Na2CO3 remains very stable, at 950 oC [23].  Because CaCl2 has been 

often mixed with other chloride salts to lower the liquidus temperature, the carbonate cycling 

mechanism would not change in such melts by raising the electrolysis temperatures.  The 

following reactions also include those for electro-reduction of alkali or alkaline earth oxides 

against a carbon anode at 950 oC. In these cases, K2O and Na2O are much easier to electrolyse 

than the other oxides because Na and K are gases, whilst all the other listed alkali and alkaline 

earth metals are liquids at 950 oC [23]. 

MgCO3 = MgO + CO2,    Go (950 oC) = -105.2 kJ   (20) 

2 MgO + C = 2 Mg + CO2, Go (950 oC) = 539.4 kJ 

CaCO3 = CaO + CO2,    Go (950 oC) = -9.1 kJ     (21) 

  2 CaO + C = 2 Ca + CO2,  Go (950 oC) = 616.1 kJ 

BaCO3 = BaO + CO2,  Go (950 oC) = 68.9 kJ     (22) 

  2 BaO + C = 2 Ba + CO2,  Go (950 oC) = 480.1 kJ 

Li2CO3 = Li2O + CO2,  Go (950 oC) = 53.6 kJ     (23) 

2 Li2O + C = 4 Li + CO2,  Go (950 oC) = 568.2 kJ 
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Na2CO3 = Na2O + CO2,  Go (950 oC) = 149.8 kJ    (24) 

2 Na2O + C = 4 Na + CO2, Go (950 oC) = 83.5 kJ 

K2CO3 = K2O + CO2,  Go (950 oC) = 211.7.8 kJ    (25) 

2K2O + C = 4 K + CO2,  Go (950 oC) = -51.7 kJ 

 Therefore, to avoid carbon contamination via the carbonate cycling mechanism, it is 

recommended to operate the FFC Cambridge Process in pure CaCl2 with the O2- activity 

being as low as possible, but still at a sufficient level to maintain a good cathodic reaction rate 

and the anodic discharge of O2- ions, instead of Cl- ions. The working temperature should be 

above 900 oC, but below 1000 oC to avoid serious salt evaporation.   

 Physically reducing the direct contact between carbon debris and the oxide cathode 

was attempted to mitigate carbon contamination from the cathode. An alumina tube (sheath) 

was used to enclose the oxide pellet cathode from the gas phase and block most mass 

movement between the anode and cathode in the molten salt, leaving only a small hole in the 

tube side wall to continue the ionic conduction path, as shown in Figure 8a [35,65,66]. This 

approach worked highly effectively in elimination of the effect of carbon debris.  

 Figure 8b and 8c compare the electrolysis products from the cell with and without 

using the alumina tube. Without using the tube, the as-electrolysed cathode was covered by 

solidified mixture of salt and carbon debris, whilst that electrolysed inside the tube showed 

clear solidified salt only. In addition, it was noticed that using the tube in the electrolysis led 

to a significantly lower current flow than that without using the tube, as shown in Figure 8d, 

but the oxide pellet that was electro-reduced inside the tube could reach an oxygen content 

about 15% lower than that without using the tube [65]. These findings are indication of higher 

current and energy efficiencies. The efficiency derived from the electrolysis data in Figure 8d 

was almost twice improved by using the alumina tube [66].  
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Figure 8.  (a) Schematic diagram of a modified FFC cell with a graphite rod anode and 

an oxide pellet cathode (1 g Cr2O3 wrapped by Mo wire) that is sheathed in an alumina 

tube whose internal and external molten salts are connected via a small hole on the 

alumina tube side wall facing the graphite anode. (b, c) Photographs of electrolysed 

oxide cathodes without (b) and with (c) using the alumina sheath. (d) Current-time 

curves of electrolysis of Cr2O3 pellets at 2.80 V and 810 oC without and with using the 

sheathing alumina tube. (e - g) Photographs of graphite anodes after electrolysis of 

Cr2O3 pellets without (e) and with using the alumina tube (f: frontside that was facing 

the hole during electrolysis; g: backside)  [65,66]. 

 

 Such a significant improvement had obviously benefited from the sheathing tube not 

only blocking electronic conduction through the floating carbon debris, but also reducing the 

carbonate cycling. Whilst CO2 transfer via the gas phase near the cathode was completely 

blocked,  the route for CO3
2- cycling through the molten salt was also significantly narrowed 
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by the small hole in the tube sidewall. The consequence would be that most CO3
2- ions, if not 

all, in the molten salt were unable to reach the cathode in the same time interval, but remained 

in molten salt outside the sheathing tube. This in turn reduced the amount of O2- ions 

produced by Reaction (18), and hence the O2- activity and flux in the molten salt. This 

understanding was supported by the obvious difference in anode erosion represented by the 

photographs in Figure 8e, and 8f and 8g. 

 Without using the sheathing tube, the graphite anode suffered serious erosion and 

thinning, see Figure 8e which is similar to that in Figure 1h, but much less erosion occurred to 

the graphite anode, shown in Figures 8f and 8g, that was coupled with the alumina tube 

sheathed cathode. It is interesting to note that erosion occurred around the graphite anode in 

absence of the sheathing tube, but it was more notable in the frontside facing the hole of the 

tube than on the backside, as shown in Figure 8f and 8g, respectively. These are strong 

evidence that the O2- flux was smaller from the tube sheathed cathode, than that from the 

naked cathode, to the graphite anode, which can be explained by reduced CO3
2- cycling. Also, 

because the discharge of the O2- is driven by the electric field in the interfacial layer between 

the electrode and electrolyte, i.e. the electric double layer, the difference between Figure 8f 

and 8g is indicative of difference in the electric field strength. This was less likely caused by 

the potential distribution around the graphite anode which is a good electronic conductor. It 

can be attributed to the greater O2- activity and flux in front of the anode facing the hole of the 

sheathing tube. It is expected that if the anode was placed sufficiently distant away from the 

hole of the tube, the frontside and backside of the anode would have behaved more similarly 

as diffusion and convection should even out the O2- distribution around the anode.  

 

6. Other interactions 

The above discussed three main interactions are common to all metal oxides to be reduced in 

the FFC Cambridge Process. However, some interactions are specific to the metal oxides, or 

the metals produced.  For example, SiO2 can be electro-reduced in molten CaCl2 to Si which 

can react with Ca or Ca2+ at appropriate cathodic potentials to form various calcium silicides, 
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CaSix with x varying between 0.5 and 2.0 [67-69].  Reactions (26) and (27) below represent 

the chemical and electrochemical formation of CaSix, in which Ca may be assumed to result 

from the electro-reduction of Ca2+ ions under some depolarisation conditions, e.g. on the 

surface of Si, although the actual origin of Ca is thermodynamically irrelevant.   

 Ca + x Si = CaSix        (26) 

  Ca + Si = CaSi,   Go (850 oC) = -131.3 kJ  

 x SiO2 + (1+2x) Ca2+ + 2(1+2x) e = CaSix + 2x CaO    (27) 

  SiO2 + Ca + C = CaSi + CO2,  Go (850 oC) = 181.5 kJ 

 Because formation of CaSix occurs at potentials more positive than that for Ca 

deposition, the potential window for electro-reduction of SiO2 to pure Si is very much limited 

[67]. Whilst a robust reference electrode [70-72] could help perform constant potential 

electrolysis in laboratory to avoid CaSix formation, its application can be a great challenge in 

an industrial cell.  The use of a computer-aided control (CAC) of the cell voltage programme 

may offer a promising direction in industrial production [45]. This approach is simple, energy 

saving and low cost. The principle of CAC is basically to programme the cell voltage - time 

profile following that recorded in a successful test of constant potential electrolysis.  

 Aluminium (Al) is difficult to produce from its oxide, Al2O3, in the FFC Cambridge 

Process, although thermodynamics could predict clear feasibility as shown by Reactions (28) 

and (29).  

 2/3 Al2O3 +  C = 4/3 Al + CO2  Go (850 oC) = 484.4 kJ, Eo = 1.255 V  (28) 

 2 CaO + C = 2 Ca + CO2 Go (850 oC) = 638.8 kJ, Eo = 1.655 V   (29) 

The difficulty is partly because the melting point (  660.3 oC) of Al is too low and liquid Al 

does not dissolve oxygen. More importantly the reduction potential of Al2O3 is only 0.40 V 

more positive than that for Ca deposition. Such a small difference can be easily overtaken by 

the polarisation needed to reduce the very insulating Al2O3, which means the produced Al 

will react with Ca readily to form aluminides (CaAlx, x = 2, 4). Also, similar to the case of Ca 

deposition on Si, deposition of Ca on liquid Al could be more depolarised and effective to 
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form CaAlx. The positive shift of the potential for Ca deposition on Al via Reactions (30) and 

(31) could be 1.032 V and 1.008 V, respectively, which are greater than the difference 

between Reactions (28) and (29). 

 Ca + 2 Al = CaAl2   Go (850 oC) = -199.1 kJ   (30) 

 Ca + 4 Al = CaAl4   Go (850 oC) = -194.5 kJ   (31) 

 The literature is lack of sufficient research on electro-reduction of solid Al2O3, 

although one report claimed successful production of pure Al [73], but the other described 

both thermodynamic and experimental findings of formation of CaAlx [74].  A more recent 

study found that when the Al2O3 powder was used on the cathode, electroreduction produced 

CaAl2, whilst pure Al beads were collected from potentiostatic electrolysis of dense alumina 

(e.g. a small section of Al2O3 tube). It was thought that electrolysis of the small Al2O3 tube 

was favourable for the O2- ion to diffuse away from the reaction site, i.e. the 

Al/Al2O3/electrolyte 3PIs, leaving behind a sufficiently low O2- activity (high pO2- value) that 

helped production of pure Al as predicted by thermodynamic analysis [75]. However, when 

electro-reducing the Al2O3 powder, diffusion in the pores between powder particles was too 

slow, leading to  higher O2- activities to encourage formation, in analogy to perovskitisation, 

of various calcium aluminates between Ca3Al2O6 and CaAl12O19 (xCaO·yAl2O3, x = 1 to 3; y 

= 1 to 6) whose electro-reduction could only produce CaAlx. Obviously, the application of a 

constant cathodic potential was the key for the improved electrolysis result.  It is worth 

pointing out that current industrial production of pure Al is achieved at large scale by 

electrolysis of dissolved Al2O3 in molten fluoride salts with high rate and high efficiency. 

Therefore, direct electro-reduction of solid Al2O3 to Al in molten chloride salts remains a 

fundamental interest.  

 As it has been discussed above, research on the FFC Cambridge Process in the past 

20 years has been successful in making targeted metallic products, thanks to the relatively 

high stability of the relevant metal oxides and sulfides in CaCl2 (or LiCl) based molten salts. 

However, it was also found that formation of oxychlorides could occur during electro-
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reduction of metal oxides to different extends. The awareness of oxychloride formation came 

from an early observation of yellowish condensate [76] on the surface of the upper portions of 

a long graphite anode for electrolysis of TiO2 in molten CaCl2, see Figure 1f. EDX analysis of 

the condensate indicated presence of Ti, O and Cl together with CaCl2, which agrees with 

Reaction (31). Note that the Ti valence in TiOCl is III, suggesting the reaction having 

occurred upon partial reduction of the TiO2 cathode.  It is fortunate that Reaction (31) is only 

a side reaction, accounting for an insignificant percentage of the TiO2 feed.  

 4 TiO2 + 2 CaCl2 + C = 4 TiOCl + 2 CaO + CO2   Go (900 oC) = 456.9 kJ (31) 

Most literatures on electro-reduction of metal oxides have not focused on formation of 

oxychloride which however could occur between most rare earth (Re) metal oxides and 

molten CaCl2. Specially, lanthanum oxide (La2O3) reacts spontaneously with molten CaCl2 to 

produce LaOCl which may dissolve, at least partly, in CaCl2.  

 La2O3 + CaCl2 = 2LaOCl + CaO, Go (850 oC) = -33.5 kJ   (32) 

 La2O3 + 2LiCl = 2LaOCl + Li2O, Go (850 oC) = 40.8 kJ   (33) 

 Therefore, it is out of question to use molten CaCl2 for electro-reduction of La2O3, but 

it may still be feasible in molten LiCl. Nevertheless, it was shown that the oxychloride issue 

could be avoided effectively by pre-compounding La2O3 with NiO [77]. In doing so, various 

AB5 hydrogen storage alloys (HSAs) such as LaNi5 and LaNi4Co were prepared successfully 

by electroreduction in molten CaCl2 at high yields with the energy consumption being as low 

as 4.54 kWh/kg-LaNi5. After washing in water or DMSO, the as-produced HSAs all showed 

good charging-discharging performances. The obtained LaNi4Co powder performed most 

satisfactorily. A maximum discharging capacity of  325 mAh/g was recorded, which is close 

to the theoretical capacity of 371.9 mAh/g for LaNi5 + 3 H2 = LaNi5H2.    

 Last, but not the least, in the FFC Cambridge Process, air-isolated high temperature 

molten salts (e.g. CaCl2, LiCl and their mixtures with other salts) are used as the electrolyte. 

The applied high temperature helps lower the kinetic barriers for electrochemical reduction of 

semiconducting and insulating solid metal oxides or sulfides to the respective metals. Air 
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isolation, together with inert gas purging, is the most essential key to the success of the FFC 

Cambridge Process. To achieve air-isolation, it is crucial that the molten salt electrolyser is 

strictly sealed in a reaction vessel. There has been a general thought that because argon (Ar) is 

heavier than air, it can sink in the vessel and protect the electrolyser and cathode product from 

oxidation by the oxygen in air. This is an unfortunate misunderstanding and needs 

clarification. It can be derived from the Gibbs energy changes of Reactions (1) and (8) that 

the equilibrium partial pressures of oxygen are 2.50 x 10-33 atm and 4.60 x 10-39 atm, 

respectively, whilst the oxygen partial pressure in air is 0.21 atm. This ultra large difference 

in oxygen partial pressure means a huge rate for oxygen to diffuse from air into the reaction 

vessel, even just through small a leaking gap.   

 Another misunderstanding is that the molten salt may provide a physical barrier for 

direct contact between the cathode product and air, and hence protecting the former from 

oxidation.  The truth is that when O2- ions are present in a CaCl2 or LiCl based melt, which is 

inevitable in the FFC Cambridge Process, they could function as a phase transfer catalyst and 

transfer oxygen from the gas phase to the metal on cathode in the molten salt by formation of 

peroxide (O3
2-) and superoxide (O2

-) anions via Reactions (34) and (35) below [78]. 

 O2 + O2- = O3
2-         (34) 

  Ti + O3
2- = TiO2 + O2- 

 O2 + 2 O3
2- = 4 O2

-        (35) 

  3 Ti + 4 O2
- = 3 TiO2 + 2 O2- 

It can be seen from these two reactions that the O2- ion transfers oxygen, as a vehicle offering 

the return service, from the gas phase to the Ti metal on cathode in the molten salt. After 

reaction with the metal, the O2- ion is released back to the melt to bring more oxygen into the 

melt. Therefore, these two factors will together make it impossible to electro-reduce a metal 

oxide to the metal with a sufficiently low oxygen content.     
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7. Summary 

The FFC Cambridge Process has been in research and development for over two decades, 

embracing various successes but also challenges. Three generic interactions between the 

cathode product and molten salt, specifically CaCl2, have been identified as (1) 

perovskitisation and similar reactions that include Ca into the cathode without oxygen 

removal, (2) non-wetting of molten salts on pure metal surfaces, which helps separation of 

solidified salt in the final product, and (3) carbon contamination via either or both of the 

carbonate cycling and carbon debris mechanisms. In addition, observation and the 

mechanisms of formation of calcium silicides and calcium aluminides, formation of 

oxychlorides, and the problem of an unsealed or leaky reaction vessel are also discussed 

briefly.  In all discussed cases of interactions, it is shown that proper understanding of the 

causes and mechanisms of these interactions are the key to development and experimental 

demonstration of feasible approaches to the desirable solutions.  

In addition to what has been discussed on using more porous oxide precursor to speed 

up electro-reduction, it is worth mentioning that a few studies were carried out on oxide 

pellets of very low porosity ( 30%), capturing more details of intermediate phases [79-81]. 

Another uncovered area of interest and technological importance is nuclear fuel processing 

[82,83], which deserves a separate specialist analysis. Further, the literature of the past two 

decades has included numerous comprehensive or specific topic review articles on the FFC 

Cambridge Process, all showing positive and encouraging views on the prospects [6-12,40,50, 

69,84-86]. What has also emerged in the literature is the scaling-up studies of the FFC 

Cambridge Process with promising results for eventual commercialisation [13,14,85-87].  
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