Monthly Notices

MNRAS 496, 328-338 (2020)
Advance Access publication 2020 May 28

doi:10.1093/mnras/staal469

Accelerated Bayesian inference using deep learning

Adam Moss*

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, England

Accepted 2020 May 19. Received 2020 May 15; in original form 2019 October 18

ABSTRACT

We present a novel Bayesian inference tool that uses a neural network (NN) to parametrize
efficient Markov Chain Monte Carlo (MCMC) proposals. The target distribution is first
transformed into a diagonal, unit variance Gaussian by a series of non-linear, invertible,
and non-volume preserving flows. NNs are extremely expressive, and can transform complex
targets to a simple latent representation. Efficient proposals can then be made in this space,
and we demonstrate a high degree of mixing on several challenging distributions. Parameter
space can naturally be split into a block diagonal speed hierarchy, allowing for fast exploration
of subspaces where it is inexpensive to evaluate the likelihood. Using this method, we develop
a nested MCMC sampler to perform Bayesian inference and model comparison, finding
excellent performance on highly curved and multimodal analytic likelihoods. We also test
it on Planck 2015 data, showing accurate parameter constraints, and calculate the evidence
for simple one-parameter extensions to the standard cosmological model in ~20D parameter
space. Our method has wide applicability to a range of problems in astronomy and cosmology
and is available for download from https://github.com/adammoss/nnest.

Key words: methods: data analysis —methods: statistical.

1 INTRODUCTION

In the last few years, we have witnessed a revolution in machine
learning. The use of deep neural networks (NNs) has become
widespread due to increased computational power, the availability
of large data sets, and their ability to solve problems previously
deemed intractable (see Lecun, Bengio & Hinton 2015 for an
overview). Deep learning is particularly suited to the era of data-
driven astronomy and cosmology, but so far applications have
mainly focused on supervised learning tasks such as classification
and regression.

Bayesian inference is now a standard technique, with codes such
as COSMOMC (Lewis & Bridle 2002), COSMOSIS (Zuntz et al. 2015),
EMCEE (Foreman-Mackey et al. 2013), MONTEPYTHON (Audren
et al. 2013), MULTINEST (Feroz & Hobson 2008; Feroz, Hobson &
Bridges 2009; Feroz et al. 2013), and POLYCHORD (Handley,
Hobson & Lasenby 2015; Higson et al. 2017) used for parameter
estimation and model selection. Many of these use Metropolis—
Hastings Markov Chain Monte Carlo (MCMC) to draw samples
from the posterior distribution. The dimensionality of the problem
can be high, with 2> 20 parameters for the Planck likelihood
(including nuisance parameters), and potentially more for future
large-scale surveys. For some problems the likelihood can be
non-Gaussian (e.g. with curving degeneracies) and/or multimodal,
making conventional MCMC techniques inefficient and liable to

* E-mail: adam.moss @nottingham.ac.uk

miss regions of parameter space. Likelihoods can also be expensive
to calculate, so minimizing the total number of evaluations is advan-
tageous. This was the motivation behind BAMBI (Graff et al. 2012;
Handley, Scott & White 2019), which used an NN to approximate
the likelihood function where possible. Efficient exploration of the
posterior is crucial for Bayesian inference and model selection.

A good proposal function is vital to fully explore the distribution
and ensure convergence of the chain. Deep learning has recently
been shown to accelerate MCMC sampling by using NNs to
parametrize efficient proposals that maintain detailed balance (see
e.g. Levy, Hoffman & Sohl-Dickstein 2017; Song, Zhao & Ermon
2017). The proposal function can be trained, for example, to
minimize the autocorrelation length of the chain. Some of these
methods (e.g. generalizations of Hamiltonian Monte Carlo) exploit
the gradient of the target, and analytic gradients are often not
available for astronomical or cosmological models. The training
time can also be prohibitive, offsetting the gain in efficiency when
sampling. In this work, we use an NN to transform the likelihood
to a simpler representation, which requires no gradient information
and is very fast to train. This approach is inspired by representation
learning, which hypotheses that deep NNs have the potential to yield
representation spaces in which Markov chains mix faster (Bengio,
Courville & Vincent 2012a; Bengio et al. 2012b).

The idea of optimizing the proposal function originated in Gel-
man, Roberts & Gilks (1996) and Haario et al. (2001), which
suggested using a normal distribution N (x, 2.38% X /d), where X is
the covariance matrix, x the current state, and d the dimension.
The factor of 2.38%/d was shown to minimize the chain auto-

© 2020 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

0202 1990100 20 U0 }sanb Aq 6028+8G/8ZE/1/96+/9101ME/SEIUW/W00" dNO"oIWUSpEdE//:SA)Y WO} PEpeojumod

https://github.com/adammoss/nnest
mailto:adam.moss@nottingham.ac.uk

correlation length. This is equivalent to transforming variables
by L~'x, where L is a lower triangular matrix defined by the
Cholesky decomposition of the covariance matrix, ¥ = LL.
Proposals can then be made using the diagonal normal distribution
N(x,2.3821/d), where I is the identity matrix. Standard practice
in cosmological parameter estimation is to use an initial set of
samples to estimate the covariance matrix, and make proposals
using the Cholesky decomposition. Linear transformations are also
used in affine invariant MCMC methods (Goodman & Weare 2010;
Foreman-Mackey et al. 2013).

This transformation works well when samples are well described
by their covariance matrix, but can become inefficient for more
complex distributions. In this paper, we use an NN to parametrize
more expressive transformations that are suitable for curved and
multimodal targets. The NN learns a non-linear, invertible, and non-
volume preserving (NVP) mapping between data and a simpler
latent space via maximum likelihood, and proposals are then
made in this space. We apply our method to nested sampling, a
commonly used tool to perform Bayesian inference and model
comparison, although it could easily be incorporated into other
MCMC frameworks. A major challenge in nested sampling is
drawing new samples from a constrained target distribution, and
we show that NNs can lead to improved performance over existing
rejection and MCMC-based approaches.

The structure of the paper is as follows. In Section 2, we provide a
short overview of nested sampling. In Section 3, we show how NNs
can be trained to transform complex target data to a simpler latent
space. We give further details of our algorithm in Section 4, and
demonstrate results on both analytic likelihoods and Planck data in
Section 5. We conclude and provide an outlook for future work in
Section 6.

2 NESTED SAMPLING

The nested sampling algorithm (Skilling 2004; Skilling et al. 2006)
was developed to accurately calculate the Bayesian evidence (or
marginal likelihood). From Bayes’ theorem, the posterior distribu-
tion of a set of parameters x, given data d, and model M is
p(dlx, M)p(x|M)
pxld, M) = —————, (H
p(d|M)

where p(d|x, M) = L(x) is the likelihood, p(x|M) = m(x) is the
prior and the normalizing constant p(d|M) is the evidence. This can
be expressed as

Z=pdM)= /ﬁ(x)ﬂ(x)dx. 2)

Two competing models M, and M, can be compared by calculating
the Bayes factor

_ p(Mild) (M) p(d|M))
p(Mald) (M) p(d|Ms)’
which simplifies to the evidence ratio if the models have equal prior
probability.
This integral (2) is typically hard to evaluate, but can be turned
into a simpler 1D integral by a change of variables (Skilling 2004),

©))

1
X(\) = / m(x)dx, Z= / L(X)dX, “4)
L(x)>) 0

such that X(A) is the prior volume associated with a likelihood
constant £(x) > X. Parameters are scaled to the unit hypercube, so
that the prior is normalized, and X takes values between 0 and 1.

Accelerated Bayesian inference 329

The nested sampling algorithm first draws a set of ;. points
from 7 (x). The prior is typically uniform or Gaussian, so is easy to
sample from. At each iteration, the point with the lowest likelihood
isreplaced by a new sample drawn from the prior, with the condition
that the new point has a higher likelihood. The discarded samples
are termed dead points. For a sequence of decreasing X values,
O<XM<-'-<X2<X1<X0:1, (5)

the integral in equation (4) can then be estimated using trapezoidal
integration

M
Z = Z[,iw,', (6)
i=1

where £; = £(X;) and w; = %(X,-,] — Xi+1). The error in logZ
can be estimated by /H /nie, Where H is the negative relative
entropy (Feroz & Hobson 2008)

M
;C,'U),‘ £i
H= Z S log —.)
i=1

Nested sampling can also perform posterior inference by using
the sequence of dead points (and the current set of live points), and
assigning a weight p; to the ith point

_ [,,»w,»
= 7 .

Di ®)
Since the posterior samples are independent but with different im-
portance weights, the effective number of samples can be estimated
by

(Z,Ail wi)2
Ziﬂil h '

The main difficulty with nested sampling is drawing a new,
independent sample subject to a hard likelihood constraint. This can
be achieved by rejection sampling, using an envelope function that
encloses the current set of live points. For Gaussian likelihoods,
it is most efficient to use an ellipsoidal envelope (Mukherjee,
Parkinson & Liddle 2006), and for multimodal distributions a set
of (possibly) overlapping ellipsoids can be drawn around clusters
of live points (Feroz & Hobson 2008; Feroz et al. 2009). The
disadvantage of rejection sampling is that the envelope function
requires scaling by an enlargement factor to ensure it contains
the entire iso-likelihood contour. This can lead to poor scaling
with dimension and introduces a choice of user specified hyper
parameter.

An alternative to rejection sampling is MCMC. Starting from
an existing live point, a new, independent sample is obtained after
performing a ‘sufficient’” number of steps. MCMC scales better
with dimension, but is not guaranteed to fully explore or mix the
distribution, and is generally not well suited if the likelihood is
highly curved and/or multimodal. Variants of MCMC developed to
cope with challenging targets include Galilean dynamics (Feroz &
Skilling 2013), diffusive sampling (Brewer, Partay & Csanyi 2009),
and slice sampling (Handley et al. 2015; Higson et al. 2017). Some
of these also use clustering algorithms to identify and sample from
multimodal distributions. The key point is that they all try and
choose better proposals — in our case we will use an NN to try and
learn one.

Netr =)

MNRAS 496, 328-338 (2020)

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

330 A. Moss
3 NEURAL NETWORK SAMPLING

3.1 Non-volume preserving flows

Initially, we have a set of data {x'}Y,, sampled from a target

distribution x ~ px(x), where x has dimension ng,. The goal is
to draw new samples from this distribution. Latent variables are
drawn from a simpler prior distribution z ~ pz(z), with the same
dimension. Given a bijection 2 X — Z, the change of variables
formula gives the corresponding distribution on X

af(x)
ox

px(x) = pz(f(x)) ‘det

. (10)

The inverse f~!(z) provides a mapping from latent to real space.
The bijection can be parametrized by an NN, with trainable
parameters 6. NNs, however, are not generally invertible, and the
Jacobian determinant in equation (10) is not easily tractable.

NVP flows, introduced in Dinh, Sohl-Dickstein & Bengio (2016),
can transform simple latent distributions into rich target distribu-
tions. They are invertible and allow for tractable Jacobians by using
a specific architecture for the NN. They exploit the fact that the
determinant of a triangular matrix is the product of its diagonal
terms. The NVP transformation is (Dinh et al. 2016)

X' =mOx+(1—m)oO (x ©exp (so,(m O x)) +15,(m O x)) ,
an

where m is a binary mask vector consisting of alternating 1’s and
0’s, 5o, and ty, are separate (s)cale and (t)ranslation NN’s with
trainable parameters 6, and 6,, and © is the element-wise product.
The transformation for ngi, = 2 with m = (1, 0), for example, is

/_
X = X1

X2 exp(se, (x1)) + fg,(x1), (12)

X
with Jacobian determinant exp(sg, (x;)), and the inverse is

xXp = x|
x2 = (% — 1, (x1)) exp(—s5, (x1)), (13)

with Jacobian determinant exp(—s, (x1)). Note that x; is unmodified
in this transformation.

A series of transformations can be composed into a flow by
permuting components of the inputs in successive transformations,
such that those modified in one transformation are left unchanged
in the next. This can be achieved by setting the mask in the next
transformation to 1 — m, so that successive masks resemble a
checkerboard pattern. The Jacobian determinant is still tractable,
and is simply the product of each individual transformation. A flow
transforms a target to latent space, and an inverse flow transforms
latent space to the target. Each transformation step of the flow has
separate s and 7 networks.

Given a set of samples, the s and ¢ networks can be trained by
minimizing the loss function

N
L=— Z log px(xi)

det

(14)

N
= "log pz(f(x")) + log

af(x")
ax’ |’
Parameters are updated by backpropagating the loss using gradient
descent, and the minimum loss is equivalent to the maximum-

likelihood estimate of 6 and 0,. Note that the entire flow, consisting
of multiple NN, is trained simultaneously.

MNRAS 496, 328-338 (2020)

| ®

Figure 1. Example datax ~ p(x) of 1000 samples used to train the network
for (left) the ngim = 2 Rosenbrock function, and (right) the Himmelblau
function.

As an example, we fit flows to two data sets, shown in Fig 1. The
initial data x ~ p(x) is obtained from the nested sampling of the
2D Rosenbrock and Himmelblau functions (defined in Section 5)
for ny = 1000 points, evaluated when the prior volume X = 0.02.
The target distribution is therefore uniform when £(x) > A,, with
A, defined by X(1,) = 0.02, otherwise the probability density is
zero. These functions are chosen as they are challenging examples
of curved and multimodal distributions.

We choose the prior distribution p; to be a diagonal Gaussian
with unit variance, that is z ~ N(0, I). We use four successive
transformations in the flow, each parametrized by a fully connected
s and ¢ network with an input layer of dimension 2, two hidden
layers of dimension 128, and an output layer of dimension 2. We
use rectified non-linear activation (ReLU) functions after the input
and hidden layers in each network.

The resulting inverse flows are shown in Fig. 2, after training
for 50 epochs (each epoch is a complete pass over training data).
Each transformation step begins with an (x; dependent) scaling and
translation of x, (the vertical axis in the plot), with x; unchanged.
These are then permuted, and scaling and transformation operations
are applied to (the now) x;. The initial Gaussian can be flowed
into the Rosenbrock function continuously, but narrow connecting
ridges appear for the Himmelblau function. This is because it cannot
continuously be deformed into the target distribution. Nevertheless,
the volume of these ridges is quite small compared to the region
where the target probability density is non-zero.

If the network could fit the target distribution perfectly, it would
be trivial to generate new, independent samples. One could simply
sample from latent space z ~ N(0, I') and perform the inverse flow
to obtain x. In reality, the fit is not perfect, but we can use the learnt
mapping to improve the efficiency of MCMC by making proposals
in the simpler latent space.

3.2 MCMC sampling

The acceptance probability required to maintain detailed balance in
a Metropolis—Hastings update is

o = min (1, M) , (15)
px(x)g(x’|x)

where the proposal function g(x'|x) is the conditional probability
of state x given x. If the proposal function is symmetric (e.g.
a Gaussian with the same covariance matrix for each state) then
q(x'|x) = g(x|x).

For proposals made in latent space z, the acceptance probability
must be modified by the Jacobian determinant to satisfy detailed

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

Accelerated Bayesian inference 331

Figure 2. Inverse flow for (top) the ngin = 2 Rosenbrock function and (bottom) the Himmelblau function, trained on the initial data shown in Fig. 1. The
inverse flow starts from latent space, z ~ N(0, I), and each step consists of a transformation followed by a permutation. The final image in each case ends at
the target distribution and is zoomed-in for clarity. The colours are to help the reader track the flow of the space from one panel to the next, and do not have

any specific meaning for the algorithm.

balance
af_ 1 (Z/)
det === 7

px(f71(=)q(zlz")

px(f1(2))q(2'|z) ‘det @

o =min | I,

(16)

Given the prior distribution of latent space is a diagonal, unit
variance Gaussian, we use a symmetric proposal function

q(Z'|2) = N(z, 0 I), (17)

where o is a scaling parameter. Based on estimates of optimal
proposals for Gaussian distributions (Gelman et al. 1996; Haario
et al. 2001), we tune o to give an acceptance rate of 50 per cent
using the method in Feroz & Hobson (2008),

oe'/M if N, > N,
o — (18)

oe N if N, < N, '

where N, and N, are the number of accepted and rejected samples
in the current MCMC chain.

To demonstrate this gives the correct distribution on py, we
generate new samples for the flows fitted to the 2D Rosenbrock
and Himmelblau functions. Starting from an existing sample X;pi,
we run a chain of length N, = 1000 and repeat this for 20 000

chains, each time choosing the same initial x;,;. In Fig. 3, we plot a
histogram of the resulting samples after 5 and 20 MCMC iterations,
also showing the first 20 proposed moves of an example chain
(note that not all of these proposals are accepted). After only five
iterations, the resulting distribution is non-uniform, with a higher
probability near the initial point, but after 20 iterations the samples
appear to have lost all memory of where they began. By sampling
in latent space, the chain is able to take large steps in data space,
even jumping directly between modes, with an overall acceptance
rate in each case of around 40 per cent.

To quantify how many iterations are required to generate a new,
independent sample, we calculate the effective sample size (ESS).
Given a chain of N, correlated samples {x}",, the ESS is

Ne
= Ne—1 J
1+2 2521 1 - S/Nc)ps
where p, is the autocorrelation of x at lag s. Since there is an
autocorrelation and ESS for each parameter, we use the (worst-

case) minimum ESS to set the chain length requirement. We use the
following estimate for p,,

ESS

19

1 a
5 — n__ n n—s _ o 2
b=y n;(x WE =), (20)

MNRAS 496, 328-338 (2020)

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

332 A. Moss

|| —
@ 5 10 15 20 25 30

Figure 3. MCMC chains for (top) the ngim = 2 Rosenbrock function and
(bottom) the Himmelblau function. On the left, we show the histogram of
samples after S MCMC iterations, and on the right after 20 MCMC iterations.
The initial position of all chains is indicated by a star. After 20 iterations,
the samples appear to have lost all memory of where they began. We also
show the first 20 proposed moves of an example chain.

where ji and 6% are the mean and variance of the initial data.
We truncate the sum over p; when p, < 0.05, as the estimate can
become dominated by noise for large lags (Carlin & Louis 2008).

For the 2D Rosenbrock and Himmelblau functions, we obtain
an average minimum ESS of ~100 for N, = 1000. This suggests
that, on average, it takes around 10 iterations to generate a new,
independent sample. Empirically, we find this scales as ~ngj, for
higher dimensions.

3.3 Fast-slow decorrelation

In practice, the likelihood function can be computationally more
expensive to evaluate for some parameters (‘slow’ parameters) than
others (‘fast’ parameters). In astronomy/cosmology applications,
for example, nuisance parameters are often much faster to evaluate
than physical parameters of the model, when keeping physical
parameters fixed. It is therefore desirable to split parameter space
into a speed hierarchy, allowing for fast exploration of subspaces
where it is inexpensive to evaluate the likelihood (Lewis 2013).

Fast—slow decorrelation can naturally incorporated into our
method by fitting flows to each subspace and performing a further
transformation to decorrelate them. In the case of a single hierarchy,
for example, we fit separate flows to the slow (x,) and fast (xy)
subspaces, concatenate the output into the vector (yy, yy), and then
apply a transformation with mask (1, 0). This means that slow
parameters are unchanged by updating only the fast block, and
a slow update changes both fast and slow parameters. This is
illustrated in Fig. 4.

Given a speed hierarchy, we choose the sampling rate to be
proportional to the number of parameters in each block. In the case
of a single hierarchy, with ngim = nsjow + Mast, Where ngoy 18 the
number of slow parameters and ny,s the number of fast parameters,
at each MCMC iteration we perform a fast update with probability
Npast/(Mslow + Npast), Otherwise performing a slow update. In our

MNRAS 496, 328-338 (2020)

= = +X +X
; /-I-X = +kx
o] W [
4)\ { |
= +X = +X
)\)\)\ {
X1] X3 X4

Figure 4. Tllustration of transformations for a single fast-slow hierarchy,
where xj and x; are slow parameters and x3 and x4 are fast parameters. The
+ and X represent translation and scale operations of the NNs respectively,
and = indicates the input is unmodified. A sequence of three transformations
is applied to the slow and fast subspaces, then they are decorrelated by
applying a further transformation. Changes to only fast parameters do not
change slow parameters.

experiments, we find this leads to a minimum ESS similar to the
full update of all parameters.

4 NEURAL NEST ALGORITHM

In this section, we give further details of our algorithm applied
to nested sampling, although it could easily be incorporated into
other MCMC frameworks. As outlined in Section 2, the algorithm
begins by drawing njy. points from the prior distribution 7 (x). At
each iteration, the point with the lowest likelihood (denoted by 1,)
is replaced by a new sample drawn from the prior, subject to the
condition that £(x) > A,.

To obtain a new, independent sample, we first train a flow on the
current set of live points. Starting from an existing live point (chosen
at random), we transform to latent space, perform sampling, do the
reverse transformation and finally accept the new point after nycme
steps, with the requirement that it must have made at least one move
(in practice it will make many moves). Further pertinent details of
our implementation are:

Number of MCMC iterations: based on estimates of the ESS, we
set nyeme = Sngim- Empirically, we find this works well for a range
of target distributions. We monitor the ESS to ensure it does not
significantly drop below 1 as the algorithm progresses, and that the
chain performs a large number of updates by adjusting the proposal
width as in equation (18).

Fast—slow hierarchy: we will consider models with either no
hierarchy (ngim = ns0w) Or a single fast—slow hierarchy (n4im =
Ngow + Npast)- In the latter case, we perform fast updates at each
iteration with probability ngg/(siow + Past), Otherwise performing
a slow update that changes all parameters. On average, there will
be approximately Sngow slow likelihood evaluations per chain.

Initial rejection sampling: in the initial stages of selecting a new
point, the prior volume X ~ 1. In this case, it is more efficient to use

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

rejection sampling from the prior hypercube. We switch to MCMC
when the rejection efficiency is equal to the MCMC efficiency, that
is after the prior volume has decreased by a factor of 1/(S5ngow).

Training updates: the set of live points changes relatively slowly,
so we only retrain the flow every ny;. iterations. We train each update
for 50 epochs. Training is fast, taking <60 s on a CPU. The NN
is trained by backpropagating the loss in equation (14) using the
Adam optimizer (Kingma & Ba 2014).

Adding jitter: we add fjitter’ (random perturbations) to the set
of live points during training to reduce overfitting. Jitter is chosen
to be Gaussian with zero mean and a standard deviation of 0.2 times
the average nearest neighbour separation between live points. The
level of jitter therefore reduces as the algorithm progresses.

Validation data: during training, we use 90 per cent of the
current live points to train the flow. The remaining 10 per cent are
used as validation data to ensure the loss does not increase due to
overfitting.

Termination: the algorithm is terminated on determining the
fractional remaining Z to 0.5 in log-evidence (see Feroz & Hobson
2008 for details).

Parallelization: we parallelize our code using Message Passing
Interface (MPI), communicating the set of live points between
processes. Each process trains a separate flow to the (same) set
of points, providing a type of ensembling across NNs. A new live
point is generated by each process, and these are communicated
back to the master process, which is responsible for updating the set
of live points. Although this means that each process uses a slightly
different proposal, this is valid as each new sample is independent
and is uniformly drawn from the prior distribution, as shown in
Fig. 3.

The NN was coded using the PYTORCH library' and the nested
sampling code is available for download from https://github.com/a
dammoss/nnest.

5 RESULTS

5.1 Analytic likelihoods
We first test our method on several challenging analytic likelihoods:

Mixture of four Gaussians: this is the same multimodal
distribution given in Higson et al. (2017), with a likelihood function

M N —d/2 Ix — pm)
Ly =S wm (27w<'">) ew (- 5] @

m=1

We also consider M = 4, with weights W = 0.4, W% = 0.3,
W® = 0.2, and W® = 0.1. The only non-zero components of
L are /,L(zl) = —,u(zz) = /1,(13) = —/.L(14) = 4. The standard deviation is
o™ = 1 for all m. We choose a uniform prior of Z/(—10, 10) on the
parameters x. The analytic expression for the evidence is logZ =
—ndimlog 20.

Rosenbrock function: the is the archetypal example of a banana-
shaped degeneracy, with a log-likelihood

ndim—1
log £66) == > [(1=x)* +100 (141 = x)°] . 22)

i=1

We choose uniform priors /(—5,5) on the parameters x. The
analytic evidence for ngi, = 2 is log Z = —5.80 (Graff et al. 2012).

Thttps://pytorch.org/

Accelerated Bayesian inference 333

X1
5
[]

X2
0w
-

/, N

N

. _ /\

2 B] VY 1 \

° e . . | . “ | .
-2 4 T / .“‘\
/
. N ‘ SN

-4 0 4 -8 -4 0 4 8 -2 0 2 -2 0 2

Xo X1 X2 X3

Figure 5. Marginalized 1D and 2D posterior distributions for the Gaussian
mixture model with ngiy, = 4.

There is no analytic expression for ng, > 2, so for ngy, = 3 we
perform numerical integration to obtain the ground truth value.
For higher dimensions, we found this too expensive to compute
numerically.

Himmelblau function: this is an example of a multimodal
distribution, with a log-likelihood

log £x) = — (37 +x0 — 11)7 = (1 + 22 = 7)". (23)

We also choose uniform priors /(—5, 5) on the parameters x. The
Himmelblau function has four identical local minima at (3, 2),
(—2.81, 3.13), (—3.78, —3.28), and (3.58, —1.85). There is also
no analytic expression for the evidence, so we perform numerical
integration to obtain the ground truth value for Z.

In Fig. 5, we show the marginalized 1D and 2D posterior
distributions for the Gaussian mixture model with ngi,, = 4. These
marginalized values agree well with the expected values.

In Table 1, we show logZ and the number of likelihood evalu-
ations for each of the three analytic likelihoods. We compare our
results to the nested sampling codes MULTINEST (Feroz et al. 2009)
and POLYCHORD (Handley et al. 2015). MULTINEST uses multimodal
ellipsoidal rejection sampling, and POLYCHORD uses MCMC slice
sampling with multimodal clustering. Each is run with their default
settings,? and are set to stop on determining the fractional remaining
log-evidence to 0.5.

In our code, we use five transformations in the NVP flow, each
parametrized by a fully connected s and ¢ network with an input
layer of dimension 2, two hidden layers of dimension 128, and an
output layer of dimension 2. We use ReL.U functions after the input
and hidden layers in each network. In all three codes, we set njiy. =
1000 and perform five separate runs to obtain summary statistics
of log Z and the number of likelihood evaluations. Each code also
produces an estimate of the evidence error for each run.

2An efficiency factor of 0.3 is used for MULTINEST and nepears = Sndim for
POLYCHORD.

MNRAS 496, 328-338 (2020)

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

https://github.com/adammoss/nnest
https://pytorch.org/

334 A. Moss

Table 1. Average log Z (top line of each entry), number of slow likelihood evaluations (second line of each entry) and effective
number of posterior samples (third line of each entry) for the analytic likelihoods. Values and errors are averaged over five runs.
Ground truth values denoted by a * were obtained by numerical integration. POLYCHORD is also capable of a fast—slow hierarchy.

Likelihood Nslow Nfast Ground truth MULTINEST POLYCHORD Ours
(Feroz et al. 2009) (Handley et al. 2015)
Gaussian mix. 5 0 —14.98 —14.94 +0.04 —14.91 +0.06 —14.91 +£0.05
34459 949 706 139755
5389 3791 5141
Gaussian mix. 10 0 —29.96 —29.90 + 0.06 —29.97 £ 0.10 —29.96 + 0.09
73041 3811072 582780
7710 3588 7431
Gaussian mix. 20 0 —59.91 —59.21 £0.12 —59.91 +£0.22 —59.95 +0.16
249826 15146455 2577875
11092 1728 10747
Gaussian mix. 30 0 —89.87 —88.42 + 0.09 —89.85 + 0.33 —89.79 £ 0.10
697089 33650878 6340351
13633 1516 12871
Gaussian mix. 2 3 —14.98 N/A —14.98 +0.12 —15.01 £0.04
381181 58 460
3812 5040
Gaussian mix. 2 8 —29.96 N/A —30.01 £0.18 —29.93 + 0.08
767216 121668
3530 7324
Gaussian mix. 2 18 —59.91 N/A —59.72 £ 0.08 —59.80 +0.17
1504787 261827
2185 10693
Gaussian mix. 2 28 —89.87 N/A —89.75 +0.27 —89.72 + 0.06
2241159 425564
1218 12732
Himmelblau 2 0 —5.54 +£0.02* —5.51 £0.06 —5.44 £0.04 —5.48 £0.08
21110 (259 506) (47 880)
3360 3,216 3162
Rosenbrock 2 0 —5.80 —5.83 +£0.03 —5.82+0.12 —5.77 £0.08
21612 340022 42173
3224 2894 3026
Rosenbrock 3 0 —10.46 + 0.03* —10.46 = 0.09 —1041 +0.11 —10.44 +£0.13
37658 775309 976438
4089 3539 3820
Rosenbrock 4 0 N/A —14.94 +0.11 —15.13+0.11 —15.14 £ 0.09
58 606 1443530 195704
5017 3668 4738
Rosenbrock 5 0 N/A —19.63 +0.08 —19.82 +0.08 —19.67 + 0.04
78 346 2308 802 319325
5895 3843 5557
Rosenbrock 10 0 N/A —42.13 £0.10 —42.81 +0.45 —43.04 +0.18
385446 9742368 1468 468
9854 3003 8965
Rosenbrock 20 0 N/A —87.67 £ 0.31 —91.63 +0.95 —91.83 +0.29
6459763 38047353 68 03 067
16061 1455 16524
Rosenbrock 30 0 N/A —134.05 —138.79 + 1.74 —141.81 £ 0.28
67612863 87761897 16305276
10607 787 21011

MNRAS 496, 328-338 (2020)

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

For the Gaussian mixture model, we obtain results consistent
with the ground truth values. The number of required likelihood
evaluations is around a factor of 5-10 higher (i.e. less efficient) than
MULTINEST, primarily due to the nyeme = Snginm iterations we per-
form to obtain a new, independent sample. In contrast, the number of
evaluations required per sample for MULTINEST is only ~3. Using
default settings, however, MULTINEST tends to overestimate log Z
for ngim > 10 — this can be alleviated by decreasing the efficiency
parameter, but at the cost of more likelihood evaluations. Decreasing
the efficiency to 0.05, for example, gives logZ = —59.92 £ 0.07
for ngim = 20, with an average 703 182 likelihood evaluations, and
logZ = —89.95 £ 0.15 for ngim = 30, with 962 111 likelihood
evaluations. This means that MULTINEST is still a factor ~5 times
more efficient. Our error estimate in logZ using equation (7) is
consistent with our summary statistics over five runs, being 0.08,
0.12, 0.17, and 0.21 for ng, = 5, 10, 20, and 30, respectively.

We also consider the same Gaussian mixture model but with
a fast/slow hierarchy. In this case, we choose x; and x, to be slow
parameters, with the remainder fast parameters. We take the number
of likelihood evaluations to be the number of slow evaluations.
This number is now significantly reduced and is comparable to
MULTINEST at low dimensions, which does not implement any
speed hierarchy, and is more efficient at high dimensions. One
advantage of POLYCHORD is that it is capable of a hierarchy
with multiple ‘speeds’. For comparison, we use a single fast/slow
hierarchy, with the number of repeats 7epears = 1510w and a grade
fraction of ngow/(Nsow + Npus) for the two slow parameters. The
grade fraction for the fast parameters is set to N/ (Msiow + Mrast)s
meaning there will be approximately ngy/ngow more fast repeats.
This makes the fast/slow hierarchy comparable to ours. Results are
given in Table 1 and show a similar improvement in the number
of slow likelihood evaluations. The evidence values and posterior
distributions are unaffected in both codes by using a fast/slow
hierarchy.

For the Himmelblau function, we obtain results consistent with
the ground truth value. The number of likelihood evaluations is
now only around a factor of 2 higher than MULTINEST. This is
an improvement over the mixture model at the same dimension,
as ellipsoidal rejection sampling is less efficient for non-Gaussian
distributions.

For the Rosenbrock function, we also obtain results consistent
with the available ground truth values. For ngy,, = 2, the efficiency is
within a factor of 2 of MULTINEST, and for r4;y, > 20, the poor scaling
of rejection sampling becomes apparent. There is a difference in
log Z compared to MULTINEST for ngy, > 20, and although the results
of POLYCHORD are consistent with ours, the lack of a ground truth
value makes it difficult to draw conclusions. Our error estimate
in log Z using equation (7) is again consistent with our summary
statistics, being 0.07,0.09,0.11,0.13,0.19, 0.28, and 0.34 for ngim =
2,3,4,5, 10, 20, and 30 respectively.

Compared to POLYCHORD, also an MCMC sampler, our method
requires a lower number of likelihood evaluations, by a factor of
~5. POLYCHORD also performs nyjcmc = Sngim repeats to obtain
a new sample, but requires additional evaluations to determine
the width of the slice. Recently, DYPOLYCHORD (Higson et al.
2017) has been developed, which dynamically allocates live points
during sampling. We have not performed direct comparisons with
DYPOLYCHORD in Table 1, as we wish to compare the efficiency
of each algorithm with a constant number of live points. From
our experiments, however, DYPOLYCHORD has similar performance
to POLYCHORD at low dimensions, but significantly improves the
scaling at higher dimensions. For the Rosenbrock function, for

Accelerated Bayesian inference 335

example, an average of 66 60 409 likelihood evaluations are required
for ngim = 20 and only 91 82 957 for ngi, = 30.

Other MCMC-based results in the literature are limited, but
in Feroz & Skilling (2013), it was shown that Galilean dynamics
required around 120 000 and 220 000 likelihood evaluations for the
Himmelblau and ngy, = 2 Rosenbrock functions, respectively.

Finally, it is also instructive to evaluate the performance at esti-
mating the posterior distribution. In nested sampling, the effective
number of posterior samples, Negr, can be estimated using equation
(9). The larger the effective number of samples, the smaller the
MCMC error. In Table 1, we give N for each of the three methods
on the different analytic likelihoods. The sampling efficiency, given
by the ratio of N.g to the number of likelihood evaluations, can
become small for high dimensions, but this is a generic issue for
nested sampling, as the posterior weight is small for much of the
prior volume. We obtain similar N.; compared to MULTINEST, and
this can be also verified qualitatively by comparing the posterior
distributions.

5.2 Planck

Our PYTHON implementation can easily be integrated with codes
such as MONTEPYTHON (Audren et al. 2013; Brinckmann & Les-
gourgues 2019) and COBAYA® to perform cosmological parameter
estimation and model selection. The Planck data sets used in
our analysis come from the 2015 mission (Aghanim et al. 2016;
Ade et al. 2016a). In particular, we use the TT-+lowP+lensing
combination, which contains the 100, 143, and 217-GHz binned
half-mission TT cross-spectra for £ = 30 — 2508 with cosmic
microwave background-cleaned 353-GHz map, CO emission maps,
and Planck catalogues for the masks and 545-GHz maps for the dust
residual contamination template. It also uses the joint temperature
and the E and B cross-spectra for £ = 2 — 29 with E and B
maps from the 70-GHz low-frequency instrument (LFI) full-mission
data and foreground contamination determined by 30-GHz LFI
and 353-GHz high-frequency instrument maps. The Planck lensing
likelihood (Ade et al. 2016b) uses both temperature and polarization
data in the multipole range ¢ = 100 — 2048 to estimate the lensing
power spectrum.

We use the full version of the Planck likelihood with MON-
TEPYTHON, fitting for a total of 6 base L-cold dark matter (LCDM)
parameters and 15 nuisance parameters. We also fit for simple one-
parameter extensions to LCDM with a variable effective number
of neutrino species Ny and curvature density Qk. We assume
uniform priors on the cosmological parameters, with the upper and
lower limits corresponding to approximate Planck £50 values. To
account for any Gaussian priors on nuisance parameters used in the
Planck analysis, we use uniform priors with +5¢ limits, and add an
additional term to the likelihood function. The prior ranges, along
with a description of each parameter, are shown in Table 2.

For Planck, the total computational time is dominated by the
calculation of the cosmological observables, so we use a fast
hierarchy for the nuisance parameters. We use nje = 500 points
and the same network architecture as in the previous section. In
Table 3, we give the marginalized cosmological parameters for the
base LCDM, LCDM + N, and LCDM + Qg models. These agree
very well with the published Planck values, and in Fig. 6 we show
marginalized 1D and 2D posterior distributions for the base LCDM
model, compared to results from standard MCMC. These again

3https://github.com/CobayaSampler/cobaya

MNRAS 496, 328-338 (2020)

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

https://github.com/CobayaSampler/cobaya

336 A. Moss

Table 2. Prior ranges for the base LCDM (top), one-parameter extensions (middle), and nuisance parameters (bottom),

together with the resulting posterior values.

Lower Parameter Upper Description
0.0211 <Quph*< 0.0234 Physical baryon density

0.109 <Q.h?< 0.131 Physical CDM density

1.038 <10004< 1.044 Ratio of angular diameter distance to sound horizon
2.91 <In(10"04)< 3.27 Scalar amplitude

0.93 <ng< 1.0 Scalar spectral index

0.05 <r< 0.15 Optical depth to reionization

1.5 <Neg< 4.5 Effective number of neutrinos

—0.1 <Qg=< 0.05 Curvature density

0 uK?2 < ASB < 200 pK? CIB amplitude at 217 GHz

0 uK? <ARSZ< 10 pK? kSZ amplitude at 143 GHz

0 uK? <APZ < 10 pK? tSZ amplitude at 143 GHz

0 <gSZxCIB < 1 tSZ—CIB template amplitude

0 uK? < AP < 400 pK? Point source amplitude at 100 GHz
0 uK? < AﬁS < 400 pK? Point source amplitude at 143 GHz
0 pK? <A g < 400 pK? Point source amplitude at 143x217 GHz
0 pKz < Agls7 < 400 uKZ Point source amplitude at 217 GHz
0 uK? < APSIT < 17 pK? Dust amplitude at 100 GHz

0 uK? < A?g;tTT < 19 uK? Dust amplitude at 143 GHz

0 uK? < AMYIT. < 63.5 pK? Dust amplitude at 143 x 217 GHz
0 pK? < AT < 180 pK? Dust amplitude at 217 GHz

0.994 <c100= 1.004 Calibration factor for 100/143 GHz
0.985 <c7< 1.005 Calibration factor for 217/143 GHz
0.9875 <Veal < 1.0125 Total Planck calibration

Table 3. Marginalized values for the base LCDM, LCDM + Ngfr, and
LCDM + Qk cosmological parameters.

Parameter Base LCDM +Neft +Qx
2 +-0.00023 +0.00033 +0.00024
Sh 0.02229” 60004 0.02237 00033 0-02233Z0 90027
2 +0.0019 +0.0042 +0.0022
Qch 0.1182*5:9019 0.1190*5:0042 0.117615:9022
1000 1.042015:0004 1.04200:9907 1.042015:9005
In(10'04,) 3.07870:0% 3.08410:0%0 3.07070058
n 096900955 097267001 0.9708*000%8
T 0.073%9018 0.07679033 0.0703790%
Nete 3.046 3.11+039 3.046
Qx 0.0 0.0 —0.00427+0:0089

agree extremely well, showing that we obtain accurate parameter
constraints using our nested sampler.

We have also calculated the evidence, finding the Bayes factor to
belogB=—1.7+0.2and —2.1 £0.2 for LCDM + N and LCDM
+ Qk, respectively. The error on the Bayes factor is obtained from
adding the log-evidence errors in quadrature. In the revised Jeffreys
scale (Kass & Raftery 1995), |logB| > 1 is regarded as positive
evidence, |log B| > 3 as strong evidence, and |log B| > 5 as very
strong. These results therefore suggest that Planck disfavours both
extensions to LCDM. Although the evidence is dependant on the
choice of priors, our results are consistent with those in Heavens
et al. (2017), who reuse MCMC chains produced for parameter
inference to calculate the evidence.

6 CONCLUSIONS

In this paper, we have trained an NN to parametrize efficient MCMC
proposals, by transforming the target distribution to a simpler latent

MNRAS 496, 328-338 (2020)

representation. This approach is inspired by representative learning,
which suggests that deep NNs yield latent spaces in which Markov
chains can mix faster. Our method is a non-linear extension of the
commonly used technique of transforming parameter space using
the Cholesky decomposition of the covariance matrix.

We have applied this method to nested sampling, finding excellent
performance on highly curved and multimodal targets. At low
dimensions, the efficiency is within a factor of a few times that
of state-of-the-art multimodal rejection sampling, but has better
scaling in higher dimensions. Parameter space can also naturally be
split into a speed hierarchy, making it suitable for models with
a subset of parameters where it is inexpensive to evaluate the
likelihood. We demonstrate this for Planck data in ~20D parameter
space, accurately recovering the expected posterior distributions.
As an example, we calculate the Bayesian evidence for variable
effective number of neutrino species Neg and curvature density Qk,
finding the data disfavours these extensions to LCDM.

There are several possibilities for future work. First, it would be
interesting to see if the flow model can more naturally be extended
to multimodal distributions. Currently, the latent representation
forms narrow connecting ridges between modes, which reduces
the efficiency on models with a very high number of modes. One
could also potentially use more general types of NN, but these may
not have the desirables properties of being invertible with tractable
Jacobian determinants.

In terms of nested sampling, it has recently been shown that
dynamically allocating the number of live points can significantly
improve performance (Higson et al. 2017). It would be interesting
to apply this technique to our method, potentially even using an NN
to estimate the posterior mass £(X)X and control the allocation of
points.

In follow-up work, we will develop an NN sampler specifically
designed for fast inference, that can easily be integrated into
standard parameter estimation codes. This would improve on the

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

0.123

2

< 0118
c

0.113

Accelerated Bayesian inference 337

1.04

1.04

1006,

1.04
3.15

0.954

0.122

& 0.09

0.058

00215 00222 00230113 0118 0.1204 1.04
Oph? Quh? 1006

1.08.02 3.08

3.15 0.954 0.97 0.9860.058 0.09 0.122
111(1010145) g T

Figure 6. Marginalized 1D and 2D posterior distributions for the base LCDM cosmological parameters. In red, we show results from our nested sampling
method, and in blue results from standard parameter estimation using Metropolis—Hastings MCMC.

standard technique of using the covariance matrix to parametrize the
proposal function, working for both highly curved and multimodal
likelihoods. With the ability of NNs to characterize complex data
by simple representations, we expect they will become useful tools
to improve the speed of inference on a variety of problems.

ACKNOWLEDGEMENTS

We appreciate helpful conversations with Steven Bamford, Simon
Dye, Juan Garrahan and Dominic Rose, and Will Handley for very
useful comments on the nested sampling algorithm. We also thank
the referee (Joe Zuntz) for very helpful comments to improve
the manuscript. AM is supported by a Royal Society University
Research Fellowship.

REFERENCES

Ade P. A.R. etal., 2016a, A&A, 594, A13

Ade P. A.R. etal., 2016b, A&A, 594, A15

Aghanim N. et al., 2016, A&A, 594, A1l

Audren B., Lesgourgues J., Benabed K., Prunet S., 2013, J. Cosmol.
Astropart. Phys., 1302, 001

Bengio Y., Courville A., Vincent P., 2013, IEEE transactions on pattern
analysis and machine intelligence, 35, 1798

Bengio Y., Mesnil G., Dauphin Y., Rifai S., 2013, International conference
on machine learning, 552

Brewer B. J., , Partay L. B., Csanyi G., 2011, Statistics and Computing, 21,
649

Brinckmann T., Lesgourgues J., 2019, Phys. Dark Universe, 24,
100260

MNRAS 496, 328-338 (2020)

0202 1990100 20 U0 }sanb Aq 6028+8G/8ZE/1/96+/9101ME/SEIUW/W00" dNO"oIWUSpEdE//:SA)Y WO} PEpeojumod

http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525941
http://dx.doi.org/10.1051/0004-6361/201526926
http://dx.doi.org/10.1088/1475-7516/2013/02/001
http://dx.doi.org/10.1016/j.dark.2018.100260

338 A. Moss

Carlin B. P, Louis T. A., 2008, Bayesian Methods for Data Analysis. CRC
Press, Boca Raton, FL

Dinh L., Sohl-Dickstein J., Bengio S., 2016, preprint (arXiv:1605.08803)

Feroz F., Hobson M. P., 2008, MNRAS, 384, 449

Feroz E., Skilling J., 2013, in Toussaint U. V., ed., AIP Conf. Ser. Vol. 1553,
Am. Inst. Phys., New York, p. 106

Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601

Feroz F., Hobson M. P., Cameron E., Pettitt A. N., 2013, preprint (arXiv:
1306.2144)

Foreman-Mackey D. etal., 2013, Astrophysics Source Code Library , record
ascl:1303.002

Gelman A., Roberts G. O., Gilks W. R., 1996, in Oxford Sci. Publ., Bayesian
Statistics, 5 (Alicante, 1994). Oxford Univ. Press, New York, p. 599

Goodman J., Weare J., 2010, Commun. Appl. Math. Comput. Sci., 5, 65

Graff P., Feroz F., Hobson M. P., Lasenby A., 2012, MNRAS, 421, 169

Haario H., Saksman E., Tamminen J., 2001, Bernoulli, 7, 223

Handley W. J., Hobson M. P,, Lasenby A. N., 2015, MNRAS, 453, 4384

Handley W., Scott P., White M., 2019, DarkMachines/pyBAMBI: pyBAMBI
beta

Heavens A., Fantaye Y., Sellentin E., Eggers H., Hosenie Z., Kroon S.,
Mootoovaloo A., 2017, Phys. Rev. Lett., 119, 101301

MNRAS 496, 328-338 (2020)

Higson E., Handley W., Hobson M., Lasenby A., 2019, Statistics and
Computing, 29, 891

Kass R. E., Raftery A. E., 1995, J. Am. Stat. Assoc., 90, 773

Kingma D., Ba J., 2014, preprint (arXiv:1412.6980)

Lecun Y., Bengio Y., Hinton G., 2015, Nature, 521, 436

Levy D., Hoffman M. D., Sohl-Dickstein J., 2017, preprint
(arXiv:1711.09268)

Lewis A., 2013, Phys. Rev. D, 87, 103529

Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511

Mukherjee P., Parkinson D., Liddle A. R., 2006, ApJ, 638, L51

Skilling J. et al., 2006, Bayesian Anal., 1, 833

Skilling J., 2004, in Fischer R., Preuss R., Toussaint U. V., eds, AIP Conf.
Ser. Vol. 735, Am. Inst. Phys., New York, p. 395

Song J., Zhao S., Ermon S., 2017, Advances in Neural Information
Processing Systems 30, 5140

Zuntz J. et al., 2015, Astron. Comput., 12, 45

This paper has been typeset from a TEX/IATEX file prepared by the author.

0202 1990100 £0 U0 1saNB Aq 60Z878S/82E/1/961/2I01HE/SEIU/WOD dNO"dILISPEDE//:SANY WOI) PAPEOJUMOQ

https://ui.adsabs.harvard.edu/abs/2016arXiv160508803D/abstract
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1063/1.4819989
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
https://ui.adsabs.harvard.edu/abs/2019OJAp....2E..10F/abstract
http://dx.doi.org/10.1111/j.1365-2966.2011.20288.x
http://dx.doi.org/10.1093/mnras/stv1911
http://dx.doi.org/10.5281/zenodo.2560069
http://dx.doi.org/10.1103/PhysRevLett.119.101301
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1103/PhysRevD.87.103529
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1086/501068
http://dx.doi.org/10.1016/j.ascom.2015.05.005

