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Abstract 

Objectives To develop and validate a pragmatic risk score to predict mortality for patients admitted to 

hospital with covid-19.  

Design Prospective observational cohort study: ISARIC WHO CCP-UK study (ISARIC Coronavirus Clinical 

Characterisation Consortium [4C]). Model training was performed on a cohort of patients recruited 

between 6 February and 20 May 2020, with validation conducted on a second cohort of patients 

recruited between 21 May and 29 June 2020. 

Setting 260 hospitals across England, Scotland, and Wales. 

Participants Adult patients (≥18 years) admitted to hospital with covid-19 admitted at least four weeks 

before final data extraction. 

Main outcome measures In-hospital mortality. 

Results There were 34 692 patients included in the derivation dataset (mortality rate 31.7%) and 22 454 

in the validation dataset (mortality 31.5%). The final 4C Mortality Score included eight variables readily 

available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral 

oxygen saturation, level of consciousness, urea, and C-reactive protein (score range 0-21 points). The 4C 

risk stratification score demonstrated high discrimination for mortality (derivation cohort: AUROC 0.79; 

95% CI 0.78 - 0.79; validation cohort 0.78, 0.77-0.79) with excellent calibration (slope = 1.0). Patients 

with a score ≥15 (n = 2310, 17.4%) had a 67% mortality (i.e., positive predictive value 67%) compared 

with 1.0% mortality for those with a score ≤3 (n = 918, 7%; negative predictive value 99%). 

Discriminatory performance was higher than 15 pre-existing risk stratification scores (AUROC range 

0.60-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73). 

Conclusions We have developed and validated an easy-to-use risk stratification score based on 

commonly available parameters at hospital presentation. This outperformed existing scores, 

demonstrated utility to directly inform clinical decision making, and can be used to stratify inpatients 

with covid-19 into different management groups. The 4C Mortality Score may help clinicians identify 

patients with covid-19 at high risk of dying during current and subsequent waves of the pandemic.  

Study registration ISRCTN66726260 
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Introduction 

Disease resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

has a high mortality rate with deaths predominantly due to respiratory failure.1 As of 30th July 2020, 

there are over 17 million confirmed cases worldwide and at least 660 000 deaths.2,3 As hospitals around 

the world are faced with an influx of patients with covid-19, there is an urgent need for a pragmatic risk 

stratification tool that will allow the early identification of patients infected with SARS-CoV-2 who are at 

the highest risk of death, to guide management and optimise resource allocation.  

Prognostic scores attempt to transform complex clinical pictures into tangible numerical values. 

Prognostication is more difficult when dealing with a severe pandemic illness such as covid-19, as strain 

on healthcare resources and rapidly evolving treatments alter the risk of death over time. Early 

information has suggested that the clinical course of a patient with covid-19 is different from that of 

pneumonia, seasonal influenza or sepsis.4 The majority of patients with severe covid-19 have developed 

a clinical picture characterised by pneumonitis, profound hypoxia, and systemic inflammation affecting 

multiple organs.1 

A recent review identified many prognostic scores used for covid-19,5 which varied in their setting, 

predicted outcome measure, and the clinical parameters included. The large number of risk 

stratification tools reflects difficulties in their application, with most scores demonstrating moderate 

performance at best and no benefit to clinical decision-making.6,7 It has been found that many novel 

covid-19 prognostic scores have a high risk of bias, which may reflect development in small cohorts, and 

many have been published without clear details of model derivation and testing.5 To our knowledge, a 

risk stratification tool is yet to be developed and validated within a large national cohort of hospitalised 

patients with covid-19. 

Our aim was to develop and validate a pragmatic, clinically relevant risk stratification score using 

routinely available clinical information at hospital presentation to predict in-hospital mortality in 

hospitalised covid-19 patients and then compare this with existing prognostic models. 
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Methods  

Study design and setting 

The International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical 

Characterisation Protocol UK (CCP-UK) study is an ongoing prospective cohort study in 260 acute care 

hospitals across England, Scotland, and Wales (National Institute for Health Research Clinical Research 

Network Central Portfolio Management System ID: 14152) performed by the ISARIC Covid-19 Clinical 

Characterisation Consortium (ISARIC-4C). The protocol and further study details are available online.8 

Model development and reporting followed the Transparent Reporting of a multivariate prediction 

mode for Individual Prediction or Diagnosis (TRIPOD) guidelines.9 The study was performed according to 

a pre-defined protocol (Appendix 1). 

 

Participants 

Patients aged ≥18 years old with a completed index admission to one of 260 hospitals in England, 

Scotland, or Wales were included.8 Reverse transcriptase-PCR was the only mode of testing available 

during the period of study. The decision to test was at the discretion of the clinician attending the 

patient, and not defined by protocol. The enrolment criterion “high likelihood of infection” reflected 

that a preparedness protocol cannot assume a diagnostic test will be available for an emergent 

pathogen. In this activation, site training emphasised importance of only recruiting proven cases. 

 

Data collection 

Demographic, clinical and outcomes data were collected using a pre-specified case report form. 

Comorbidities were defined according to a modified Charlson Comorbidity Index10; those collected were: 

chronic cardiac disease; chronic respiratory disease (excluding asthma); chronic renal disease (estimated 

glomerular filtration rate ≤30); mild-to-severe liver disease; dementia; chronic neurological conditions; 

connective tissue disease; diabetes mellitus (diet, tablet or insulin-controlled); HIV/AIDS, and 

malignancy. These were selected a priori by a global consortium to provide rapid, coordinated clinical 

investigation of patients presenting with any severe or potentially severe acute infection of public 

interest and enabled standardisation.  

Clinician-defined obesity was also included as a comorbidity due its likely association with adverse 

outcomes in patients with covid-19.11,12 Patients with missing data on all comorbidities were assumed to 

have no comorbidities. The clinical information used to calculate prognostic scores was taken from the 

day of admission to hospital.13 No generally accepted approaches exist to estimate sample size 

requirements for derivation and validation studies of risk prediction models. We used all available data 

to maximise the power and generalisability of our results. Model reliability was enhanced by our use of a 

validation cohort and sensitivity analyses 
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Outcomes 

The primary outcome was in-hospital mortality. This outcome was selected due to the importance of the 

early identification of patients likely to develop severe illness from SARS-CoV-2 infection (a ‘rule in’ test). 

We chose a priori to restrict analysis of outcomes to patients who were admitted more than four weeks 

before final data extraction (29th June 2020) to enable most patients to complete their hospital 

admission. 

 

Independent predictor variables 

A reduced set of potential predictor variables was selected a priori including patient demographic 

information, common clinical investigations, and parameters consistently identified as clinically 

important in covid-19 cohorts following methodology described by Wynants et al.5 Candidate predictor 

variables were selected based on three common criteria:14 (1) patient and clinical variables known to 

influence outcome in pneumonia and flu-like illness; (2) clinical biomarkers previously identified within 

the literature as potential predictors in covid-19 patients; and (3) values were available for at least two-

thirds of patients within the derivation cohort. 

With the overall aim to develop an easy-to-use risk stratification score, an a priori decision was made to 

include an overall comorbidity count for each patient within model development giving each 

comorbidity equal weight, rather than individual comorbidities. Recent evidence suggests an additive 

effect of comorbidity in covid-19 patients, with increasing number of comorbidities associated with 

poorer outcomes.15 

 

Model development 

Models were trained using all available data up to 20th May 2020. The primary intention was to create a 

pragmatic model for bedside use not requiring complex equations, online calculators, or mobile 

applications. An a priori decision was therefore made to categorise continuous variables in the final 

prognostic score.  

A three-stage model building process was used (Figure 1). Firstly, generalised additive models (GAMs) 

were built incorporating continuous smoothed predictors (thin-plate splines) in combination with 

categorical predictors as linear components. A criterion-based approach to variable selection was taken 

based on the deviance explained, the unbiased risk estimator, and the area under the receiver operating 

characteristic curve (AUROC) (see Appendix 2).  

Secondly, plots of component smoothed continuous predictors were visually inspected for linearity and 

optimal cut-points were selected using the methods of Barrio et al.16 

Lastly, final models using categorised variables were specified using least absolute shrinkage and 

selection operator (LASSO) logistic regression. L1-penalised coefficients were derived using 10-fold 

cross-validation to select the value of lambda (minimised cross-validated sum of squared residuals). 

Shrunk coefficients were converted to a prognostic index with appropriate scaling to create the 

pragmatic “4C” Mortality Score (where 4C stands for Coronavirus Clinical Characterisation Consortium). 
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Machine learning approaches were used in parallel for comparison of predictive performance. Given 

issues with interpretability, this was intended to provide a “best-in-class” comparison of predictive 

performance when accounting for any complex underlying interactions. Extreme gradient boosting trees 

were used (XGBoost). All candidate predictor variables identified were included within the model, with 

the exception of those with high missing values (>33%). Individual major comorbidity variables, defined 

as chronic cardiac disease; chronic respiratory disease (excluding asthma); chronic renal disease 

(estimated glomerular filtration rate ≤30 mL/min/1.73m2); moderate-to-severe liver failure (presence of 

portal hypertension); diabetes mellitus (diet, tablet or insulin-controlled) and solid malignancy, together 

with obesity, were retained within the model to determine whether their inclusion enhanced predictive 

performance. An 80%/20% random split of the derivation dataset was used to define train/test sets. The 

validation datasets were held back and not used in the training process. A mortality label and design 

matrix of centred/standardised continuous and categorical variables including all candidate variables 

was used to train gradient boosted trees minimising the binary classification error rate (defined as 

number wrong cases / number all cases). Hyperparameters were tuned including the learning rate and 

maximum tree depth to maximise the AUROC in the test set.  

Discrimination was assessed for all above models (4C and XGBoost model) using the AUROC in the 

derivation cohort, with 95% confidence intervals (CI) calculated using bootstrapping resampling (2000 

samples). An AUROC value of 0.5 indicates no predictive ability, 0.8 is considered good, and 1.0 is 

perfect.17 Overall goodness-of-fit was assessed with the Brier score,18 a measure to quantify how close 

predictions are to the truth ranging between 0 and 1, where smaller values indicate superior model 

performance. We plotted model calibration curves to examine agreement between predicted and 

observed risk across deciles of mortality risk to ascertain the presence of over- or under-prediction. Risk 

cut-off values were defined by the total point score for an individual which represented a low (<2% 

mortality rate), intermediate (2-14.9%) or high-risk (≥15%) groups, similar to commonly used pneumonia 

risk stratification scores.19,20  

Sensitivity analyses of missing values in potential candidate variables were performed using multiple 

imputation by chained equations, under the missing at random assumption. Ten sets, each with 10 

iterations, were imputed using available explanatory variables for both cohorts (derivation and 

validation). The outcome variable was included as a predictor in the derivation but not validation 

dataset. Model derivation was explored in imputed datasets. All models developed in the complete case 

derivation dataset were tested in the imputed validation dataset, with Rubin’s rules21 used to combine 

model parameter estimates.  

 

Model validation 

Patients entered subsequently into the ISARIC WHO CCP-UK study after 20th May 2020 were included in 

a separate validation cohort (Figure 1). We determined discrimination, calibration, and performance 

across a range of clinically relevant metrics. To avoid bias in the assessment of outcomes, patients who 

admitted within four weeks prior to data extraction on 29th June 2020 were excluded. 

A sensitivity analysis was also performed, with stratification of the validation cohort by geographical 

location. This geographical categorisation was selected based on well-described economic and health 

inequalities between the north and south of the UK.22,23 Recent analysis has demonstrated the impact of 
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deprivation on risk of dying with covid-19.24 As a result, population differences between regions may 

change the discriminatory performance of risk stratification scores. Two geographical cohorts were 

created, based on north-south geographical locations across the United Kingdom as defined by Hacking 

et al.22 A further sensitivity analysis was performed to determine model performance in ethnic minority 

groups, given reported differences in covid-19 outcomes.25 

All tests were two-tailed and p values <0.05 were considered statistically significant. We used R (version 

3.6.3) with the finalfit, glmnet, pROC, recipes, xgboost, rmda, and tidyverse packages for all statistical 

analysis. 

 

Comparison with existing risk stratification scores 

All derived models in the derivation dataset were compared within the validation cohort with existing 

scores. Model performance was assessed using the AUROC statistic, sensitivity, specificity, positive 

predictive value (PPV), and negative predictive value (NPV). Existing risk stratification scores were 

identified through a systematic literature search of EMBASE, WHO Medicus, and Google Scholar 

databases. We used the search terms “pneumonia”, “sepsis”, “influenza”, “COVID-19”, “SARS-CoV-2”, 

“coronavirus” combined with “score”’ and “prognosis”. We applied no language or date restrictions. The 

last search was performed on 1st July 2020. Risk stratification tools were included whose variables were 

available within the database and had accessible methodology for calculation. 

Performance characteristics were calculated according to original publications, and score cut-offs for 

adverse outcomes were selected based on the most commonly used criteria identified during the 

literature search. Cut-offs were the score value for which the patient was considered at low- or high-risk 

of adverse outcome, as defined by study authors. Patients with one or more missing input variables 

were omitted for that particular score.  

A decision curve analysis (DCA) was also performed.26 Briefly, assessment of the adequacy clinical 

prediction models can be extended by determining clinical utility. Using DCA, a clinical judgment of the 

relative value of benefits (treating a true positive) and harms (treating a false positive) associated with a 

clinical prediction tool can be made. The standardised net benefit was plotted against the threshold 

probability for considering a patient “high risk” for age alone and the best discriminating models 

applicable to >50% of patients in the validation cohort.  

 

Patient and public involvement 

This was an urgent public health research study in response to a Public Health Emergency of 

International Concern. Patients or the public were not involved in the design, conduct, or reporting of 

this rapid response research. 
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Figure 1. Model derivation and validation workflow. 
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Results 

In the derivation cohort, we collected data from 34 692 patients between 6th February 2020 and 20th 

May 2020. The overall mortality was 31.7% (10 998 patients). The median age of patients in the cohort 

was 74 (interquartile range (IQR) 59-83) years. 58.3% (20 184) were male and 75.3% (26 135) patients 

had at least one comorbidity. Demographic and clinical characteristics for the derivation and validation 

datasets are shown in Table 1.  

 

Model development 

In total, 41 candidate predictor variables measured at hospital admission were identified for model 

creation (Figure 1; Appendix 2). Following the creation of a composite variable containing all seven 

individual comorbidities and the exclusion of 13 variables due to high levels of missing values (Appendix 

3), 21 variables remained. 

Generalised additive modelling (GAM) identified eight important predictors of mortality; age, sex, 

number of comorbidities, respiratory rate, peripheral oxygen saturation, Glasgow Coma Scale (GCS), 

urea, and C-reactive protein (CRP) (for variable selection process, see Appendix 4). Given the a priori 

need for a pragmatic score for use at the bedside, continuous variables were converted to factors with 

cut-points chosen using component smoothed functions (on linear predictor scale) from GAM model 

(Appendix 5).  

On entering variables into a penalised logistic regression model (LASSO), all variables were retained 

within the final model (Appendix 6). Penalised regression coefficients were converted into a prognostic 

index using appropriate scaling (4C Mortality Score range 0-21 points; Table 2). 

The 4C Mortality Score demonstrated good discrimination for in-patient death within the derivation 

cohort (Table 3) with performance that approached that of the XGBoost model. The 4C Mortality Score 

showed good calibration (Calibration slope = 1; Figure 2) across the range of risk and no adjustment to 

the model was required.
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Table 1. Demographic and clinical characteristics for derivation and validation cohorts for patients 

hospitalized with covid-19. 

  Derivation cohort 

(n = 34 692) 

Validation cohort 

(n = 22 454) 

Mortality (%)  10 998 (31.7) 6428 (28.6) 

Age on admission (years) <50 4397 (12.7) 2825 (12.6) 

 50-59 4603 (13.3) 2630 (11.7) 

 60-69 5563 (16.0) 3155 (14.1) 

 70-79 7986 (23.0) 4971 (22.1) 

 ≥80 12 143 (35.0) 8873 (39.5) 

Sex at Birth Male 20 184 (58.3) 12 202 (54.4) 

 Female 14 411 (41.7) 10 211 (45.6) 

Ethnicity White 25 680 (83.2) 16 837 (85.0) 

 South Asian 1423 (4.6) 786 (4.0) 

 East Asian 269 (0.9) 138 (0.7) 

 Black 1108 (3.6) 765 (3.9) 

 
Other Ethnic 

Minority 
2387 (7.7) 1275 (6.4) 

Chronic cardiac disease  10 192 (32.0) 6853 (33.9) 

Chronic kidney disease  5451 (17.3) 3682 (18.4) 

Malignant neoplasm  3201 (10.2) 2144 (10.8) 

Moderate or severe liver disease  581 (1.9) 427 (2.2) 

Clinician-reported obesity  3250 (11.3) 2127 (11.9) 

Chronic pulmonary disease (not 

asthma) 
 5684 (17.9) 3671 (18.3) 

Diabetes  8245 (26.3) 4210 (22.0) 

Number of comorbidities 0 8557 (24.7) 5524 (24.6) 

 1 9633 (27.8) 6045 (26.9) 

 ≥2 16 502 (47.6) 10 885 (48.5) 

Respiratory Rate  22.0 (8.0) 20.0 (8.0) 

Peripheral oxygen saturation (%)  94.0 (6.0) 94.0 (5.0) 

Systolic blood pressure (mmHg)  125.0 (33.0) 129.0 (33.0) 

Diastolic blood pressure (mmHg)  70.0 (19.0) 73.0 (20.0) 

Temperature (°C)  37.3 (1.6) 37.1 (1.5) 

Heart Rate (bpm)  90.0 (27.0) 90.0 (28.0) 

Glasgow Coma Score  15.0 (0.0) 15.0 (0.0) 

pH  7.4 (0.1) 7.4 (0.1) 

Bicarbonate (mmol/L)  24.5 (4.5) 24.4 (5.0) 

Infiltrates on chest radiograph  13 984 (62.9) 8244 (61.1) 

Haemoglobin (g/L)  130.0 (29.0) 127.0 (31.0) 
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  Derivation cohort 

(n = 34 692) 

Validation cohort 

(n = 22 454) 

White cell count (10
9
/L)  7.4 (5.0) 7.6 (5.3) 

Neutrophil count (10
9
/L)  5.6 (4.6) 5.8 (4.9) 

Lymphocyte count (10
9
/L)  0.9 (0.6) 0.9 (0.7) 

Haematocrit (%)  35.0 (40.6) 25.2 (38.6) 

Platelet Count (10
9
/L)  215.0 (120.0) 223.0 (126.0) 

Prothrombin (seconds)  13.2 (3.0) 13.2 (3.2) 

Activated partial thromboplastin time 

(APTT) (seconds) 
 29.6 (8.6) 29.2 (8.8) 

Sodium (mmol/L)  137.0 (6.0) 137.0 (6.0) 

Potassium (mmol/L)  4.1 (0.8) 4.1 (0.7) 

Total bilirubin (mg/dL)  10.0 (7.0) 10.0 (7.0) 

Alanine aminotransferase (ALT) 

(units/L) 
 26.0 (27.0) 25.0 (26.0) 

Aspartate aminotransferase (AST) 

(units/L) 
 42.0 (41.0) 48.0 (53.0) 

Lactate dehydrogenase (Units/L)  432.0 (330.2) 416.5 (311.8) 

Glucose (mmol/L)  6.8 (3.1) 6.8 (3.2) 

Urea (mmol/L)  7.1 (6.4) 7.3 (6.8) 

Creatinine (µmol/L)  86.0 (53.0) 86.0 (56.0) 

Lactate (mmol/L)  1.5 (1.0) 1.5 (1.1) 

C-reactive protein (CRP) (mg/dL)  85.0 (121.0) 78.0 (120.0) 

Values stated as median with IQR in parentheses for continuous variables, patient number with percentage in 

parentheses for categorical variables. Comorbidities were defined using the Charlson Comorbidity Index, with the 

addition of clinician-defined obesity. Information on missing data contained within Appendix 3.
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Table 2. Final 4C Mortality Score for in-hospital mortality in patients with covid-19. Prognostic index 

derived from penalised logistic regression (LASSO) model.  

Variable 
 

4C Mortality 

Score 

Age (years) 

<50  

50-59 +2 

60-69 +4 

70-79 +6 

≥80 +7 

Sex at birth 
Female  

Male +1 

Number of comorbidities* 

0  

1 +1 

≥2 +2 

Respiratory rate (breaths/minute) 

<20  

20-29 +1 

≥30 +2 

Peripheral oxygen saturation on room air (%) 
≥92  

<92 +2 

Glasgow Coma Scale 
15  

<15 +2 

Urea (mmol/L) 

≤7  

7-14 +1 

>14 +3 

CRP (mg/dL) 

<50  

50-99 +1 

≥100 +2 

*Comorbidities were defined using the Charlson Comorbidity Index, with the addition of clinician-defined obesity 
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Table 3. Model discrimination in derivation cohort. 

 

 

 

 

AUROC, area under receiver operator curve; CI, confidence interval.  

 

Model AUROC 95% CI Brier score 

4C Mortality Score 0.79 0.78 to 0.79 0.174 

Machine learning comparison  

(extreme gradient boosting [XGBoost]) 
0.81 0.79 to 0.82 0.179 
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Figure 2. A, distribution of patients across range of 4C Mortality Score in derivation cohort. B, observed inpatient mortality across range of 4C 

Mortality Score in derivation cohort. C, predicted versus observed probability of inpatient mortality (calibration; red line) with distribution of 

patients across predicted probability (vertical black lines) for 4C Mortality Score within derivation cohort. 
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Figure 3. Receiver operator curves (ROC) (A) and decision curve analysis (B) for most discriminating three models applicable to >50% of 

validation population, together with age alone (spline). B, Lines are shown for standardised net benefit at different risk thresholds of treating no 

patients (black) and treating all patients (grey).  

 

 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted A

ugust 2, 2020. 
.

https://doi.org/10.1101/2020.07.30.20165464
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2020.07.30.20165464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

Model validation 

The validation cohort included data from 22 454 patients collected between 21
st
 May 2020 and 29

th
 June 

2020 who had at least four weeks follow-up. The overall mortality was 28.6% (10 998 patients). The 

median age of patients in the cohort was 76 (interquartile range (IQR) 60-85) years. 12 202 (54.4%) were 

male and 16 930 patients (75.4%) had at least one comorbidity (Table 1). Missing data for predictor 

variables within the validation cohort are summarised in Appendix 7. 

Discrimination of the 4C Mortality Score in the validation cohort was similar to that of the XGBoost 

model. Calibration was also found to be excellent in the validation cohort (Calibration slope = 1; 

Appendix 8), with a similar Brier score to the derivation cohort (0.174). The 4C Mortality Score 

demonstrated good performance in clinically relevant metrics, across a range of cut-offs (Table 4). 

Four risk groups were defined with corresponding mortality rates determined (Table 5): low risk (0-3 

score; mortality rate 1.0%), intermediate risk (4-8 score; 9.8%), high risk (9-14 score; 35.2%), and very 

high risk (≥15 score; 66.8%). Performance metrics demonstrated a high sensitivity (99.8%) and negative 

predictive value (NPV; 99.0%) for the low-risk group, covering 6.9% of the cohort and a corresponding 

mortality rate of 1.0%. Patients in the intermediate risk group (score 4-8; n = 3007, 22.7%) had a 

mortality rate of 9.8% (NPV 90.2%). High-risk patients (score 9-14; n = 7009, 52.9%) had a 35.2% 

mortality (NPV 64.8), while patients scoring ≥15 (n = 2310, 17.4%) had a 66.8% mortality (positive 

predictive value 66.8%). 

 

Comparison with existing tools 

A total of 15 risk stratification scores were identified through a systematic literature search 
6,20,27–39 

The 

4C Mortality Score compared well against existing risk stratification scores in predicting inpatient 

mortality (Table 6). Risk stratification scores originally validated in patients with community-acquired 

pneumonia (n = 9) generally had higher discrimination for inpatient mortality in the validation cohort 

(e.g., A-DROP [AUROC 0.74; 95%CI 0.73-0.75], E-CURB65 [0.76; 0.74-0.79]) (Figure 3A) than those 

developed within covid-19 cohorts (n = 4: Surgisphere [0.63; 0.62-0.64], DL score [0.67; 0.66-0.68], 

COVID-GRAM [0.71; 0.68-0.74] and Xie score [0.73; 0.71-0.76]). Performance metrics for the 4C 

Mortality Score compared well against existing risk stratification scores at specified cut-offs (Appendix 

10). 

The number of patients in whom risk stratification scores could be applied differed due to certain 

variables not being available, either due to missingness or because they were not tested for/recorded in 

clinical practice. Seven scores could be applied to fewer than 2000 patients (<10%) in the validation 

cohort, due to the requirement for biomarkers or physiological parameters that were not routinely 

captured (e.g. lactate dehydrogenase [LDH]). 

Decision curve analysis demonstrated that the 4C Mortality Score had better clinical utility across the 

range of threshold risks compared with the best performing existing scores applicable to >50% of the 

validation cohort (A-DROP and CURB65).   
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Table 4. Performance metrics of 4C Mortality Score to rule-out mortality (A) and rule-in mortality (B) at 

different cut-offs in validation cohort. 

A 

 

B 

 
Number of patients 

at cut-off (%) 
TP TN FP FN Sensitivity Specificity PPV NPV 

Mortality 

(%) 

≥9 9319 (70.4) 4007 3620 5312 305 92.9 40.5 43.0 92.2 43.0 

≥11 7109 (53.7) 3489 5312 3620 823 80.9 59.5 49.1 86.6 49.1 

≥13 4495 (33.9) 2571 7008 1924 1741 59.6 78.5 57.2 80.1 57.2 

≥15 2310 (17.4) 1542 8164 768 2770 35.8 91.4 66.8 74.7 66.8 

TP, true positive; TN, true negative; FP, false positive; FP, false positive; PPV, positive predictive value; NPV, 

negative predictive value.  

 

 

Table 5. Comparison of mortality rates for 4C Mortality Score risk groups across derivation and 

validation cohorts 

 Derivation cohort    Validation cohort 

Risk group Number of 

patients (%) 

Mortality 

(%) 

Number of 

patients (%) 

Mortality 

(%) 

Low (0-3) 1275 (6.5) 1.5 918 (6.9) 1.0 

Intermediate (4-8) 4642 (23.8) 9.9 3007 (22.7) 9.8 

High (9-14) 10 430 (53.4) 38.1 7009 (52.9) 35.2 

Very high (≥15) 3175 (16.3) 69.8 2310 (17.4) 66.8 

Overall 19522 34.2 13244 32.6 

 

 

  

 
Number of patients 

at cut-off (%) 
TP TN FP FN Sensitivity Specificity PPV NPV 

Mortality 

(%) 

≤2 512 (3.9) 4310 510 8422 2 100.0 5.7 33.9 99.6 0.4 

≤3  918 (6.9) 4303 909 8023 9 99.8 10.2 34.9 99.0 1.0 

≤4  1353 (10.2) 4282 1323 7609 30 99.3 14.8 36.0 97.8 2.2 

≤6 2417 (18.2) 4196 2301 6631 116 97.3 25.8 38.8 95.2 4.8 

≤8  3925 (29.6) 4007 3620 5312 305 92.9 40.5 43.0 92.2 7.8 
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Table 6. Discriminatory performance of risk stratification scores within validation cohort to predict 

inpatient mortality in patients hospitalised with covid-19. See appendix 10 for other metrics.  

    Validation cohort (N = 22 454) 

 Number of patients with 

required parameters 

AUROC (95% CI) 

SOFA 190 0.60 (0.50 - 0.69) 

qSOFA 17 716 0.62 (0.62 - 0.63) 

SMARTCOP 476 0.63 (0.58 - 0.68) 

Surgisphere* 17 359 0.63 (0.62 - 0.64) 

NEWS2 17 455 0.66 (0.65 - 0.67) 

SCAP 358 0.66 (0.60 - 0.71) 

DL score* 15 142 0.67 (0.66 - 0.68) 

CRB65 17 716 0.69 (0.68 - 0.69) 

COVID-GRAM* 1152 0.71 (0.68 - 0.74) 

DS-CRB65 17 127 0.72 (0.71 - 0.73) 

CURB65 14 318 0.72 (0.72 - 0.73) 

PSI 358 0.73 (0.67 - 0.78) 

Xie score* 1627 0.73 (0.71 - 0.76) 

A-DROP 14 338 0.74 (0.73 - 0.75) 

E-CURB65 1438 0.76 (0.74 - 0.79) 

4C Mortality Score* 13 244 0.78 (0.77 - 0.79) 

Machine learning 

comparison (XGBoost) 
- 0.79 (0.78 - 0.80) 

     *novel covid-19 risk stratification score 

 

Sensitivity analysis 

Multiple imputation was performed in both the derivation and validation cohorts (predictor variables n 

= 41). Prognostic models derived using from the multiply imputed derivation cohort had poorer 

performance than models derived using complete case data. This was true whether performance was 

assessed in the complete case or multiply imputed validation datasets. As a sensitivity analysis, the final 

model was assessed in the multiply imputed datasets. Discriminatory performance demonstrated a 

small reduction (≤0.02 change in AUROC) (Appendix 11) across both derivation and validation cohorts.  

After stratification of the validation cohort into two geographical cohorts (validation north and south; 

Appendix 12), discrimination remained similar for the 4C Mortality Score in both the North (AUROC 0.78, 

95%CI 0.77-0.79) and South (0.77, 0.76-0.79) subsets (Appendix 13).  
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Discussion 

Principal findings 

We have developed and validated the eight-variable 4C Mortality Score for in-patient death in a UK 

prospective cohort of 57 146 patients hospitalised with covid-19. The 4C Mortality Score uses patient 

demographics, clinical observations, and blood parameters that are commonly available at the time of 

hospital admission and can accurately predict patients at a high risk of in-hospital death. It compared 

favourably to other models, including ‘best-in-class’ machine learning techniques and demonstrated 

consistent performance across the validation cohorts including good clinical utility in a decision curve 

analysis. 

Model performance compared well against other generated models, with minimal loss in discrimination 

despite its pragmatic nature. A machine learning approach demonstrated a marginal improvement in 

discrimination, but at the cost of interpretability, the requirement for many more input variables, and 

the requirement for an app/website calculator limiting use at the bedside. The 4C Mortality Score 

demonstrated good applicability within the validation cohort (around 60% population) and consistency 

across all performance measures.  

 

Comparison with other studies 

The 4C Mortality Score contains parameters reflecting patient demographics, comorbidity, physiology, 

and inflammation on hospital admission. It shares characteristics with existing prognostic scores for 

sepsis and community-acquired pneumonia, as well as for scores developed in covid-19 patients. Altered 

consciousness and high respiratory rate are included in most risk stratification scores for sepsis and 

community-acquired pneumonia,
19,20,27,28,31,32,35

 while elevated urea is also a common component.
19,20,27

 

Increasing age is a strong predictor of inpatient mortality within our hospitalised covid-19 cohort and is 

commonly included in other existing covid-19 scores,
36,40,41 

together with comorbidity
36,40,41

 and elevated 

CRP.
39,42

 

Discriminatory performance of existing covid-19 scores applied to our cohort was lower than reported in 

derivation cohorts (DL score 0.74; COVID-GRAM 0.88; Xie score 0.98).
36,37,39

 The use of small inpatient 

cohorts from Wuhan, China for model development may have resulted in over-fitting,
 
limiting 

generalisability in other cohorts.
37,39

 The Xie score demonstrated the highest discriminatory power 

(0.73), including age, lymphocyte count, LDH and peripheral oxygen saturations. However, we were only 

able to calculate this score for <10% of the validation cohort, as LDH is not routinely captured on 

admission in the UK.  

Due to challenges of clinical data collection during an epidemic, missing data is common, with choice of 

predictors influenced by data availability.
39

 Complete case analysis often leads to exclusion of a 

substantial proportion of the original sample, subsequently leading to a loss of precision and power.
43

 

However, the assessment of missing data on model performance in novel covid-19 risk stratification 

scores has been limited
36

 or unexplored
37,39

, potentially introducing bias and further limiting 

generalisability to other cohorts. We found discriminatory performance in both derivation and 

validation cohorts remained similar after the imputation of a wide range of variables (41), further 

supporting the validity of our findings. 
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The presence of comorbidities is handled differently in covid-19 prognostic scores, either included 

individually,
39,41

 given equal weight,
36

 or found to have no predictive effect.
37

 Recent evidence suggests 

an additive effect of comorbidity in covid-19 patients, with increasing number of comorbidities 

associated with poorer outcomes.
15

 In our cohort, the inclusion of individual comorbidities within the 

machine learning model conferred minimal additional discriminatory performance, supporting the 

inclusion of an overall comorbidity count.
 

 

Strengths and limitations of this study 

The ISARIC WHO CCP-UK study represents the largest prospectively collected covid-19 hospitalised 

patient cohort in the world and reflects the clinical data available in most economically developed 

healthcare settings. We developed a clinically applicable score with clear methodology and tested it 

against existing risk stratification scores in a large hospitalised patient cohort. It compared favourably to 

other prognostic tools, with good to excellent discrimination, calibration and performance 

characteristics. 

The 4C Mortality Score has several methodological advantages over current covid-19 prognostic scores. 

The use of penalised regression methods, an event-to-variable ratio greater than 100 reducing the risk 

of model over-fitting,
44,45

 and the use of clinical parameters at first assessment increases the clinical 

applicability of the score and limits use of highly selective predictors prevalent in other risk stratification 

scores.
4,46

 In addition, the sensitivity analyses demonstrated that score performance was robust. 

Our study has limitations. First, we were unable to evaluate the predictive performance of a number of 

existing scores that comprise a large number of parameters (for example APACHE II
47

), as well as several 

other covid-19 prognostic scores that include computed tomography findings or uncommonly measured 

biomarkers.
5
 In addition, several potentially relevant comorbidities, such as hypertension, previous 

myocardial infarction and stroke
15

 were not included in data collection. Their inclusion might have 

impacted upon or improved 4C Mortality Score performance and generalisability.  

Second, a proportion of recruited patients had incomplete episodes and were thus excluded from the 

analysis. Selection bias is possible if patients with incomplete episodes, such as those with prolonged 

hospital admission, had a differential mortality risk to those with completed episodes. Nevertheless, the 

size of our patient cohort compares favourably to other datasets for model creation. Furthermore, the 

patient cohort on which the 4C Mortality Score was derived comprised hospitalised patients who were 

seriously ill (mortality rate of 30.5%) and were of advanced age (median age 74 years). Further external 

validation is required to determine whether the 4C Mortality Score is generalisable among younger 

patients and in settings outside the UK.  

 

Conclusions and policy implications 

We have derived and validated an easy-to-use eight-variable risk stratification score that enables 

accurate stratification of hospitalised covid-19 patients by mortality risk at hospital presentation. 

Application within the validation cohorts demonstrated this tool may guide clinician decisions, including 

treatment escalation.  
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The key aim of clinical risk stratification scores is to support clinical management decisions. Three risk 

classes were identified and demonstrated similar adverse outcome rates across the validation cohort. 

Patients with a 4C Mortality Score falling within the low-risk groups (mortality rate 1%) might be suitable 

for management in the community, while those within the intermediate-risk group were at lower risk of 

mortality (mortality rate 10%; 23% of the cohort) and may be suitable for ward-level monitoring. Similar 

mortality rates have been identified as an appropriate cut-off in pneumonia risk stratification scores 

(CURB-65 and PSI).
19,20

 Meanwhile patients with a score ≥9 were at high risk of death (43%), which may 

prompt aggressive treatment, including the commencement of steroids,
48

 and early escalation to critical 

care if appropriate.  

 

 

 

 

List of figures 

Figure 1. Model derivation and validation workflow. 

Figure 2. A, distribution of patients across range of 4C Mortality Score in derivation cohort. B, observed 

inpatient mortality across range of 4C Mortality Score in derivation cohort. C, predicted versus observed 

probability of inpatient mortality (calibration; red line) with distribution of patients across predicted 

probability (vertical black lines) for 4C Mortality Score within derivation cohort. 

Figure 3. Receiver operator curves (ROC) (A) and decision curve analysis (B) for most discriminating 

three models applicable to >50% of validation population, together with age alone (spline). B, Lines are 

shown for standardised net benefit at different risk thresholds of treating no patients (black) and 

treating all patients (grey).  
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End matter 

 

What is already known on this topic 

• There is a lack of robust, validated clinical prediction tools to identify patients with covid-19 who 

are at the highest risk of mortality 

• Given uncertainty about how to stratify covid-19 patients, there is considerable interest in risk 

stratification scores to support frontline clinical decision making 

• Available risk stratification tools however suffer from a high risk of bias, small sample size 

resulting in uncertainty, poor reporting and lack of formal validation 

 

What this study adds 

• The majority of existing covid-19 risk stratification tools performed poorly in our cohort – 

caution should be applied when using novel tools based on small patient populations to in-

hospital cohorts with covid-19 

• In contrast, our 4C (Coronavirus Clinical Characterisation Consortium) score is an easy-to-use 

and valid prediction tool for inpatient mortality, accurately categorising patients as being at low, 

intermediate, high, or very high-risk of death 

• This pragmatic and clinically applicable score outperformed other risk stratification tools and 

had similar performance to more complex models 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2020. .https://doi.org/10.1101/2020.07.30.20165464doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.30.20165464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

Statements 

The study protocol is available at http://isaric4c.net/protocols; study registry 

https://www.isrctn.com/ISRCTN66726260. 
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Dissemination to participants and related patient and public communities 

ISARIC4C has a public facing website isaric4c.net and twitter account @CCPUKstudy. We are engaging 

with print and internet press, television, radio, news, and documentary programme makers. We will 

explore distribution of findings with The Asthma UK and British Lung Foundation Partnership and take 

advice from NIHR Involve and GenerationR Alliance Young People’s Advisory Groups. 
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