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1. Magnetometer data 

In the main manuscript we showed the data from the OPMs as a “planar” gradiometer. Figure S1 

contains the results of the motor task for both of the magnetometers alongside the gradiometer results 

from Figure 2. Panel (a) shows beta-band (13–20 Hz) filtered responses during task (green-shaded area) 

and rest (pink-shaded area) blocks. Single-trial responses can also be seen in the magnetometer data. 

TFSs are shown in panel (b), with a clear desynchronisation followed by a rebound in both magnetometer 

plots as well as in the gradiometer. Panel (c) contains the trial-averaged beta-band envelopes during task 

(blue) and rest (red). In panel (d), bar plots containing the SNR quantifications are shown: panel (i) shows 

the SNR during the movement-induced beta-rebound (1.5–2.4 s), when compared against the phantom 

measurement. Panel (ii) shows the relative beta modulation.  

 

Figure S1: Beta-band responses in primary motor cortex – Magnetometer and gradiometer data. a) Single-trial beta 

oscillations during task (green) and rest (pink) blocks. Black circles mark the beginning of each 4-s long trial. b) TFSs 

showing the oscillatory modulation across the wide band 0–110 Hz. c) Beta-band oscillatory amplitude averaged across 

task (blue) and rest (red) trials. d) Quantification of the (single-trial) SNR during the movement-induced beta-band 

rebound compared to the phantom signal (i) and based on the rest period (ii).  

Figure S2 shows resting state data acquired in both magnetometers. In both cases, the left hand plot 

shows OPM-magnetometer data with (purple) and without (blue) simultaneous EEG recordings. The right 



hand plot shows OPM magnetometer data with (red) and without (blue) movement. Note little effect of 

either EEG electrodes or movement on OPM-MEG signals.  

 

 

Figure S2: Concurrent EEG/MEG – resting state. Power spectral density of the magnetometer data during resting state 

runs. Left plot shows magnetometer data with (purple) and without (blue) simultaneous EEG measurements. Right plots 

show magnetometer data while the subject kept still (blue) or moved (red). 

 

 

 

2. Estimating the theoretical limits on signal leakage 

Assuming two dipolar sources in the brain, with amplitudes 𝑄1(𝑡) and 𝑄2(𝑡) at time t, and forward 

fields 𝐥1 and 𝐥2, then the MEG data, 𝐦(𝑡), can be expressed mathematically as 

𝐦(𝑡) = 𝐥1𝑄1(𝑡) + 𝐥2𝑄2(𝑡) + 𝐞(𝑡),       [1] 

where 𝐞(𝑡) represents random noise, at time 𝑡, at the channel level. We now employ a scalar beamformer 

to reconstruct the source strength at some arbitrary location and orientation in the brain, represented by 𝛉. 

The reconstructed source strength is given by a linear weighted sum of sensor measurements. Assuming that 

the weighting parameters, tuned to location and orientation 𝛉, are 𝐰𝛉, then we write the reconstructed 

source amplitude as  

𝑄̂𝛉 = 𝐰𝛉
T𝐦(𝑡).          [2] 

Substituting for the MEG data using Equation 1, gives  

𝑄̂𝛉 = 𝐰𝛉
T𝐥1𝑄1 + 𝐰𝛉

T𝐥2𝑄2 + 𝐰𝛉
T𝐞.       [3] 

Using a linearly constrained minimum variance beamformer, the weights, 𝐰𝛉, are derived based on 

minimisation of the variance of the output signal, with a constraint that variance originating at 𝛉 is retained. 

Mathematically, 

min
𝐰𝛉

(𝐸(𝑄̂𝛉
2)  subject to 𝐰𝛉

T𝐥𝛉 = 1,       [4] 



where 𝐥𝛉 is the forward field for location and orientation 𝛉. Note that the linear constraint (𝐰𝛉
T𝐥𝛉 = 1) is 

simply a definition of the forward field. The beamformer equation [4] can be solved analytically to generate 

the well-known identity 

𝐰𝛉 =
𝐥𝛉𝐂−𝟏

𝐥𝛉
T𝐂−𝟏𝐥𝛉

,          [5] 

where 𝐂 represents the data covariance matrix.  

We now assume that 𝛉 is placed at the location and orientation of source 1. Assuming a perfect 

forward model, then 𝐥𝛉 = 𝐥𝟏, and assuming that the noise term is orthogonal (in sensor space) to the weights 

(i.e. noise is negligible) we can write, 

𝑄̂1 = 𝐰1
T𝐥1𝑄1 + 𝐰1

T𝐥2𝑄2.        [6] 

Given that the beamformer weights are derived with the constraint that 𝐰1
T𝐥1 = 1 then, substituting 

for the beamformer weights, we can write 

𝑄̂1 = 𝑄1 +  
𝐥1
T𝐂−𝟏𝐥2

𝐥1
T𝐂−𝟏𝐥1

𝑄2.          [7] 

This can equivalently be written as 

𝑄̂1 = 𝑄1 +  ∆𝑄2,         [8] 

where ∆=
𝐥1
T𝐂−1𝐥2

𝐥𝟏
T𝐂−1𝐥𝟏

 represents the leakage term. 

We now wish to calculate the magnitude of ∆, and to do this we must first compute a mathematical 

form for the data covariance, 𝐂. Assuming that our two dipole time courses are temporally uncorrelated, 

then we can write  

𝐂 = 𝑄1
2𝐥1𝐥1

𝐓 + 𝑄2
2𝐥2𝐥2

𝐓 + 𝜐2𝐈,        [9] 

where 𝜐2𝐈 represents uncorrelated sensor noise. The form of this Equation means that the inverse of the 

covariance, 𝐂−1, can be calculated using the Sherman-Morrison-Woodbury matrix inversion Lemma. 

Specifically, 

𝐂−1 =
1

𝜈2 [𝐈 −
1

1−𝑓1𝑓2cos2(𝜆12)
{𝑓1

𝐥1𝐥1
T

‖𝐥1‖F
2 + 𝑓2

𝐥2𝐥2
T

‖𝐥2‖F
2 − 𝑓1𝑓2 cos(𝜆12)

𝐥2𝐥1
T+𝐥1𝐥2

T

‖𝐥1‖F ‖𝐥2‖F
}],   [10] 

where  

𝑓1 =
𝑄1

2‖𝐥1‖F
2

𝜈2+𝑄1
2‖𝐥1‖F

2          [11] 

and 

 𝑓2 =
𝑄2

2‖𝐥2‖F
2

𝜈2+𝑄2
2‖𝐥2‖F

2 .         [12] 

The subscript ‘F’ indicates a Frobenius norm. The angle, 𝜆12, is given by the dot product of the 

forward fields of the two sources; mathematically, 



𝐥1
T𝐥2 = ‖𝐥1‖‖𝐥2‖ cos(𝜆12).        [13] 

It is also noteworthy that, from Equation 13, the quantity cos(𝜆12) is equivalent to the Pearson 

product moment correlation coefficient between 𝐥1 and 𝐥2, and for this reason we let 

𝑅12 = cos(𝜆12).         [14] 

Defining 𝑃1 =
1

𝐥1
T𝐂−1𝐥1

 (which represents the beamformer-projected power for source 1), and by 

comparison of Equations 7 and 8, we can write 

∆= 𝑃1𝐥1
T𝐂−1𝐥2.          [15] 

Substituting into Equation 9, we find 

𝛿 =
𝑃1

𝜈2 [𝐥1
T𝐥2 −

1

1−𝑓1𝑓2𝑅12
{𝑓1

𝐥1
T𝐥1𝐥1

T𝐥2

‖𝐥1‖F
2 + 𝑓2

𝐥1
T𝐥2𝐥2

T𝐥2

‖𝐥2‖F
2 − 𝑓1𝑓2𝑅12

𝐥1
T𝐥2𝐥1

T𝐥2+𝐥1
T𝐥1𝐥2

T𝐥2

‖𝐥1‖F  ‖𝐥2‖F
}]  [16] 

and rearranging and simplifying this expression, produces a solution for the leakage, ∆, given by 

∆=
𝑃1‖𝐥1‖F‖𝐥2‖F

𝜈2 [
𝑅12(1−(𝑓1+𝑓2)+𝑓1𝑓2)

1−𝑓1𝑓2𝑅12
2 ].        [17] 

However, we need to recognise that 𝑃1 =
1

𝐥1
T𝐂−1𝐥1

 ; in other words, 𝑃1 is also a function of the inverse 

covariance. Specifically, we can write, 

𝑃1
−1 =

1

𝜈2 [𝒍1
𝑇𝒍1 −

1

1−𝑓1𝑓2𝑅12
2 {𝑓1

𝒍1
𝑇𝒍1𝒍1

𝑇𝒍1

‖𝒍1‖𝐹
2 + 𝑓2

𝒍1
𝑇𝒍2𝒍2

𝑇𝒍1

‖𝒍2‖𝐹
2 − 𝑓1𝑓2𝑅12

𝒍1
𝑇𝒍2𝒍1

𝑇𝒍1+𝒍1
𝑇𝒍1𝒍2

𝑇𝒍1

‖𝒍1‖𝐹‖𝒍2‖𝐹
}],   [18] 

which simplifies to 

𝑃1
−1 =

‖𝐥1‖F
2

𝜈2 [
1−𝑓1+(𝑓1𝑓2−𝑓2)𝑅12

2

(1−𝑓1𝑓2𝑅12
2 )

].        [19] 

Combining Equations 17 and 19 we obtain 

∆=
𝜈2

‖𝒍1‖𝐹
2 [

(1−𝑓1𝑓2𝑅12
2 )

1−𝑓1+(𝑓1𝑓2−𝑓2)𝑅12
2 ]

‖𝐥1‖F‖𝐥2‖F

𝜈2 [
𝑅12(1−(𝑓1+𝑓2)+𝑓1𝑓2)

1−𝑓1𝑓2𝑅12
2 ],    [20] 

which simplifies to a final expression for the leakage magnitude, 

∆=
‖𝐥2‖F

‖𝐥1‖F
[

𝑅12(1−(𝑓1+𝑓2)+𝑓1𝑓2)

1−𝑓1+(𝑓1𝑓2−𝑓2)𝑅12
2 ].        [21] 

This expression is used in the simulations to provide a quantitative estimate of the spatial selectivity of the 

beamformer. As noted in the main manuscript, the critical parameters are 𝑅12, the correlation of forward 

field topographies, and 𝑓1 and 𝑓2, the normalised SNRs of the two sources. It proves instructive to examine 

the behaviour of ∆ as a function of 𝑅12; further simplifying Equation 21, by assuming that the two sources 

have approximately equal magnitude and depth in the brain, such that ‖𝐥1‖F ≈ ‖𝐥2‖F and 𝑓1 ≈ 𝑓2 ≈ 𝑓, we 

can write 

∆≈
𝑟12(1−2𝑓+𝑓2)

1−𝑓+(𝑓2−𝑓)𝑅12
2 .         [22] 



Figure S3 shows ∆ plotted against 𝑅12, in accordance with Equation 22, for a number of different 

values of the SNR. Note that, for low SNR sources, the leakage is almost a linear function of the forward field 

correlation. However, at higher SNR values, the beamformer is able to separate the sources clearly (∆ is low) 

even in the case where the forward fields look relatively similar.  

 

Figure S3: Variation of beamformer source leakage, ∆, with correlation between source topographies, 𝑅12. Several 

curves are shown representing SNR values ranging from 0.1 to 0.9 in steps of 0.1.  

 

 

3. Supplementary simulation results 

In the main manuscript we showed simulation results for EEG and OPM-MEG. However, for completeness, 

our simulation also took into account a cryogenic MEG device, where we assumed that the pick-up coils were 

located ~2.5 cm from the scalp. Figure S4 is equivalent to Figure 8a in the manuscript, but with the addition 

of the cryogenic MEG system. Note the larger radius sphere representing the fact that the sensors are further 

from the scalp. The increased spatial diffusivity of measured field patterns for cryogenic, (compared to OPM) 

MEG is clear, and this effectively leads to reduced spatial degrees of freedom in the extracranial 

measurements.  



 

Figure S4: Example field patterns from two sources. Fields are simulated for EEG (left) OPM-MEG (centre) and cryogenic 

MEG (right). This is equivalent to Figure 8a in the main manuscript but with the addition of cryogenic MEG. In EEG, field 

patterns are made diffuse by the low conductivity of the skull; in cryogenic MEG, field patterns are made diffuse by the 

proximity of the sensors. In OPM-MEG however, field patterns contain higher spatial frequencies on the sphere surface. 

We assumed a random noise level of 10fT/sqrt(Hz) for OPM-MEG, 5 fT/ sqrt(Hz) for cryogenic MEG, and 

120nV/sqrt(Hz) for EEG; we also assumed a bandwidth of 100Hz giving overall noise amplitudes of 100 fT, 50 

fT and 1.2 V. Figure S5, upper panel, shows the signal-to-noise ratios (here measured as the absolute 

amplitude of the maximum value in the lead field divided by the noise) as a function of source depth from 

the brain surface, and orientation angle with respect to the radial direction. As expected, both modalities 

have highest SNR for shallow sources. MEG is advantageous for tangentially oriented dipoles whilst EEG is 

best for radial sources. Note that our simulated noise levels are such that the SNR for EEG (for a radial source) 

is approximately the same as that for conventional MEG (for a tangential source).  

Figure S5, also shows forward field correlation, 𝑅12 (centre panel) and estimated leakage, ∆ (lower panel) 

plotted as a function of source separation and depth in the brain. As described in our main paper, low values 

(i.e. more blue) of both 𝑅12 and ∆ are desirable as they indicate improved spatial resolution. We see that 𝑅12 

for EEG and conventional MEG are approximately the same whereas OPM-MEG offers fundamental 

advantages due to more spatially focal field patterns. When looking at leakage (which not only takes into 

account spatial resolution but also signal-to-noise ratio, again we see OPMs have an advantage over EEG and 

conventional MEG with generally lower leakage values. Conventional MEG is also shown to be advantageous 

over EEG however this is a result of the simulation parameters which used tangential sources (see below).    



 

Figure S5: Equivalent results to Figure 8c/d but with conventional MEG included. Upper panel shows Parametric 

variation of SNR (maximum lead field divided by noise), centre and lower panels shows variation of spatial correlation 

of forward fields and source leakage respectively. All are shown plotted against source separation and source depth, for 

EEG, OPM-MEG and conventional MEG. 

 Figure S6 shows forward field correlation, R12,  (upper six plots) and leakage (lower six plots), plotted 

against source orientation and the direction of source separation. In both cases the upper panel shows the 

raw values of 𝑅12 and ∆, whereas the lower panels show which modality is advantageous. The 

complementary nature of EEG and MEG are shown clearly; e.g. comparing EEG and cryogenic MEG, we see 

that when the direction of source separation is parallel to the source orientation (𝜙 → 0𝑜 or 𝜙 → 180𝑜), EEG 

offers better spatial specificity; when the direction of source separation is perpendicular to the source 

orientation (𝜙 → 90𝑜), MEG offers better spatial specificity. Further, we see that for radial sources (to which 

MEG is insensitive) EEG also offers advantages as would be expected. It is these complementarities which 

have been the source of a large body of literature showing the advantages of concurrent MEG/EEG. However, 

for OPM-MEG, the fundamental improvement in spatial resolution means that, in the vast majority of cases, 

OPM-MEG offers lower leakage than EEG – the exception being when sources are very close to radial. This 

leads us to believe that concurrent EEG/MEG bight be less beneficial (from a spatial resolution point of view) 

for OPM-MEG than for cryogenic MEG. 



 

Figure S6: Equivalent results to Figure 8c/d but with conventional MEG included. Parametric variation of spatial 

correlation of forward fields (upper plots) and source leakage (lower plots) are shown plotted against source orientation 

and the direction of source separation, for EEG, OPM-MEG and conventional MEG. 

We stress that these simulations have limitations. We are using simple forward models (based on spherical 

approximations). In particular, the model used for EEG – which involves a triple concentric sphere and 

literature-based values for conductivity and skull thickness – is an over-simplification of the highly complex 

morphology of conductivity in a real head. Indeed, even the conductivity of the skull is still a matter for debate 

in the literature: the values that we have used (a ratio of ~1/80 for brain-scalp/skull) are in line with those 

most commonly used, but other literature suggests that the conductivity of the skull could be higher. Further, 

we have taken only representative noise values (given the known susceptibility of EEG to biological artefact, 

the values taken for EEG are likely underestimates). We have also assumed that the sensors are placed on a 

spherical surface, and we have not taken into account known brain structure (i.e. that dipoles are oriented 

perpendicular to the cortical sheet). Nevertheless, these results illustrate that, given a straightforward 

physical model of electric potentials and magnetic fields generated in the brain,  OPMs offer fundamental 

advantages when reconstructing underlying brain current distributions. 


